1
|
Jiang Q, Li Z, Dang D, Wei J, Wu H. Role of mechanosensitive channel Piezo1 protein in intestinal inflammation regulation: A potential target. FASEB J 2024; 38:e70122. [PMID: 39425504 PMCID: PMC11580726 DOI: 10.1096/fj.202401323r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The intestine is a hollow tract that primarily transports and digests food. It often encounters mechanical forces and exotic threats, resulting in increased intestinal inflammation attributed to the consistent threat of foreign pathogens. Piezo1, a mechanosensitive ion channel, is distributed broadly and abundantly in the intestinal tissue. It transduces mechanical signals into electrochemical signals and participates in many critical life activities, such as proliferation, differentiation, cell apoptosis, immune cell activation, and migration. Its effect on inflammation has been discussed in detail in systems, such as musculoskeletal (osteoarthritis) and cardiac (myocarditis), but the effects on intestinal inflammation remain unelucidated. Piezo1 regulates mucosal layer and epithelial barrier homeostasis during the complex intestinal handling of foreign antigens and tissue trauma. It initiates and spreads immune responses and causes distant effects of inflammation in the vascular and lymphatic systems, but reports of the effects of Piezo1 in intestinal inflammation are scarce. Therefore, this study aimed to discuss the role of Piezo1 in intestinal inflammation and explore novel therapeutic targets.
Collapse
Affiliation(s)
- Qinlei Jiang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Zhenyu Li
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Dan Dang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Jiaqi Wei
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Hui Wu
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| |
Collapse
|
2
|
Gumpper RH, Nichols DE. Chemistry/structural biology of psychedelic drugs and their receptor(s). Br J Pharmacol 2024. [PMID: 39354889 DOI: 10.1111/bph.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 10/03/2024] Open
Abstract
This brief review highlights some of the structure-activity relationships of classic serotonergic psychedelics. In particular, we discuss structural features of three chemotypes: phenethylamines, ergolines and certain tryptamines, which possess psychedelic activity in humans. Where they are known, we point out the underlying molecular mechanisms utilized by each of the three chemotypes of psychedelic molecules. With a focus on the 5-HT2A receptor subtype, a G-protein coupled receptor known to be the primary target of psychedelics, we refer to several X-ray and cryoEM structures, with a variety of ligands bound, to illustrate the underlying atomistic basis for some of the known pharmacological observations of psychedelic drug actions.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David E Nichols
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Low ZXB, Ng WS, Lim ESY, Goh BH, Kumari Y. The immunomodulatory effects of classical psychedelics: A systematic review of preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2024:111139. [PMID: 39251080 DOI: 10.1016/j.pnpbp.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Emerging evidence suggests that classical psychedelics possess immunomodulatory and anti-inflammatory properties; however, these effects are yet to be well-established. This systematic review aims to provide a timely and comprehensive overview of the immunomodulatory effects of classical psychedelics in preclinical studies. A systematic search was conducted on six databases, including CINAHL, EMBASE, MEDLINE, PsychINFO, Scopus, and Web of Science. Eligible studies targeting classical psychedelics for evaluation of their effects on inflammatory markers and immunomodulation have been included for analysis. Data was extracted from 40 out of 2822 eligible articles, and their risk of bias was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool and Quality Assessment Tool for In Vitro Studies (QUIN). Studies examined 2,5-dimethoxy-4-iodoamphetamine (DOI; n = 18); psilocybin (4-PO-DMT; n = 9); N,N-dimethyltryptamine (DMT; n = 8); lysergic acid diethylamide (LSD; n = 6); 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; n = 3); psilocin (4-HO-DMT; n = 3); and mescaline (n = 2). In 36 studies where inflammatory cytokine levels were measured following psychedelic administration, a decrease in at least one inflammatory cytokine was observed in 29 studies. Immune cell activity was assessed in 10 studies and findings were mixed, with an equal number of studies (n = 5 out of 10) reporting either an increase or decrease in immune cell activity. Classical psychedelics were found to alleviate pre-existing inflammation but promote inflammation when administered under normal physiological conditions. This information is anticipated to inform future clinical trials, exploring classical psychedelics' potential to alleviate inflammation in various pathologies.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Wei Shen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Eugene Sheng Yao Lim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yatinesh Kumari
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
5
|
Bastawy EM, Eraslan IM, Voglsanger L, Suphioglu C, Walker AJ, Dean OM, Read JL, Ziemann M, Smith CM. Novel Insights into Changes in Gene Expression within the Hypothalamus in Two Asthma Mouse Models: A Transcriptomic Lung-Brain Axis Study. Int J Mol Sci 2024; 25:7391. [PMID: 39000495 PMCID: PMC11242700 DOI: 10.3390/ijms25137391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Patients with asthma experience elevated rates of mental illness. However, the molecular links underlying such lung-brain crosstalk remain ambiguous. Hypothalamic dysfunction is observed in many psychiatric disorders, particularly those with an inflammatory component due to many hypothalamic regions being unprotected by the blood-brain barrier. To gain a better insight into such neuropsychiatric sequelae, this study investigated gene expression differences in the hypothalamus following lung inflammation (asthma) induction in mice, using RNA transcriptome profiling. BALB/c mice were challenged with either bacterial lipopolysaccharide (LPS, E. coli) or ovalbumin (OVA) allergens or saline control (n = 7 per group), and lung inflammation was confirmed via histological examination of postmortem lung tissue. The majority of the hypothalamus was micro-dissected, and total RNA was extracted for sequencing. Differential expression analysis identified 31 statistically significant single genes (false discovery rate FDR5%) altered in expression following LPS exposure compared to controls; however, none were significantly changed following OVA treatment, suggesting a milder hypothalamic response. When gene sets were examined, 48 were upregulated and 8 were downregulated in both asthma groups relative to controls. REACTOME enrichment analysis suggests these gene sets are involved in signal transduction metabolism, immune response and neuroplasticity. Interestingly, we identified five altered gene sets directly associated with neurotransmitter signaling. Intriguingly, many of these altered gene sets can influence mental health and or/neuroinflammation in humans. These findings help characterize the links between asthma-induced lung inflammation and the brain and may assist in identifying relevant pathways and therapeutic targets for future intervention.
Collapse
Affiliation(s)
- Eslam M Bastawy
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Lara Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Cenk Suphioglu
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Geelong 3216, Australia
| | - Adam J Walker
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Olivia M Dean
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne 3052, Australia
| | - Justin L Read
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Mark Ziemann
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Geelong 3216, Australia
- Burnet Institute, Melbourne 3004, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| |
Collapse
|
6
|
Krupp KT, Yaeger JDW, Ledesma LJ, Withanage MHH, Gale JJ, Howe CB, Allen TJ, Sathyanesan M, Newton SS, Summers CH. Single administration of a psychedelic [(R)-DOI] influences coping strategies to an escapable social stress. Neuropharmacology 2024; 252:109949. [PMID: 38636726 PMCID: PMC11073902 DOI: 10.1016/j.neuropharm.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.
Collapse
Affiliation(s)
- Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Jazmine D W Yaeger
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Leighton J Ledesma
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | | | - J J Gale
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Chase B Howe
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trevor J Allen
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Samuel S Newton
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
7
|
Glennon RA, Dukat M. 1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI): From an Obscure to Pivotal Member of the DOX Family of Serotonergic Psychedelic Agents - A Review. ACS Pharmacol Transl Sci 2024; 7:1722-1745. [PMID: 38898956 PMCID: PMC11184610 DOI: 10.1021/acsptsci.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI, or DOX where X = -I) was first synthesized in 1973 in a structure-activity study to explore the effect of various aryl substituents on the then newly identified, and subsequently controlled, hallucinogenic agent 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM, or DOX where X = -CH3). Over time, DOI was found to be a serotonin (5-HT) receptor agonist using various peripheral 5-HT receptor tissue assays and later, following the identification of multiple families of central 5-HT receptors, an agonist at 5-HT2 serotonin receptors in rat and, then, human brain. Today, classical hallucinogens, currently referred to as serotonergic psychedelic agents, are receiving considerable attention for their potential therapeutic application in various neuropsychiatric disorders including treatment-resistant depression. Here, we review, for the first time, the historical and current developments that led to DOI becoming a unique, perhaps a landmark, agent in 5-HT2 receptor research.
Collapse
Affiliation(s)
- Richard A. Glennon
- Department of Medicinal Chemistry
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Małgorzata Dukat
- Department of Medicinal Chemistry
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| |
Collapse
|
8
|
Flanagan T, Foster TP, Galbato TE, Lum PY, Louie B, Song G, Halberstadt AL, Billac GB, Nichols CD. Serotonin-2 Receptor Agonists Produce Anti-inflammatory Effects through Functionally Selective Mechanisms That Involve the Suppression of Disease-Induced Arginase 1 Expression. ACS Pharmacol Transl Sci 2024; 7:478-492. [PMID: 38357283 PMCID: PMC10863441 DOI: 10.1021/acsptsci.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Functional selectivity in the context of serotonin 2A (5-HT2A) receptor agonists is often described as differences psychedelic compounds have in the activation of Gq vs β-arrestin signaling in the brain and how that may relate to inducing psychoactive and hallucinatory properties with respect to each other. However, the presence of 5-HT2A receptors throughout the body in several cell types, including endothelial, endocrine, and immune-related tissues, suggests that functional selectivity may exist in the periphery as well. Here, we examine functional selectivity between two 5-HT2A receptor agonists of the phenylalkylamine class: (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] and (R)-2,5-dimethoxy-4-trifluoromethylamphetamine [(R)-DOTFM]. Despite comparable in vitro activity at the 5-HT2A receptor as well as similar behavioral potency, (R)-DOTFM does not exhibit an ability to prevent inflammation or elevated airway hyperresponsiveness (AHR) in an acute murine ovalbumin-induced asthma model as does (R)-DOI. Furthermore, there are distinct differences between protein expression and inflammatory-related gene expression in pulmonary tissues between the two compounds. Using (R)-DOI and (R)-DOTFM as tools, we further elucidated the anti-inflammatory mechanisms underlying the powerful anti-inflammatory effects of certain psychedelics and identified key mechanistic components of the anti-inflammatory effects of psychedelics, including suppression of arginase 1 expression.
Collapse
Affiliation(s)
- Thomas
W. Flanagan
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Timothy P. Foster
- Department
of Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Thomas E. Galbato
- Department
of Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Pek Yee Lum
- Auransa
Inc.Palo Alto, California94301, United States
| | - Brent Louie
- Auransa
Inc.Palo Alto, California94301, United States
| | - Gavin Song
- Auransa
Inc.Palo Alto, California94301, United States
| | - Adam L. Halberstadt
- Department
of PsychiatryUniversity of San Diego, California, San Diego, California92093, United States
| | - Gerald B. Billac
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Charles D. Nichols
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| |
Collapse
|
9
|
Zhang T, Huang H, Liang L, Lu H, Liang D. Long non-coding RNA (LncRNA) non-coding RNA activated by DNA damage (NORAD) knockdown alleviates airway remodeling in asthma via regulating miR-410-3p/RCC2 and inhibiting Wnt/β-catenin pathway. Heliyon 2024; 10:e23860. [PMID: 38261955 PMCID: PMC10796956 DOI: 10.1016/j.heliyon.2023.e23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Background Asthma is a chronic inflammatory disorder with high prevalence in childhood. Airway remodeling, an important structural change of the airways, is resulted from epithelial-mesenchymal transition. Long non-coding RNA non-coding RNA activated by DNA damage (NORAD) has been found to promote epithelial-mesenchymal transition in multiple cancers. This study aimed to analyze the role of NORAD in asthma, mainly focusing on epithelial-mesenchymal transition-mediated airway remodeling, and further explored the NORAD-miRNA-mRNA network. Methods NORAD expression was analyzed in transforming growth factor-β1-induced BEAS-2B human bronchial epithelial cells and ovalbumin-challenged asthmatic mice. The influences of NORAD on the epithelial-mesenchymal transition characteristics and Wnt/β-catenin pathway activation were analyzed in vitro. The interactions between NORAD and miR-410-3p as well as miR-410-3p and regulator of chromosome condensation 2 were detected by dual-luciferase reporter assay and RNA pull-down assay. Rescue experiments using miR-410-3p antagonist and chromosome condensation 2 overexpression were used to confirm the mechanism of NORAD. Additionally, the role and mechanism of NORAD were further evaluated in asthmatic mice. Results NORAD expression was elevated in both asthmatic models. Knockdown of NORAD impeded spindle-like morphology changes, elevated E-cadherin expression, decreased N-cadherin expression, suppressed cell migration, and inactivated the Wnt/β-catenin pathway in transforming growth factor-β1-stimulated BEAS-2B cells. NORAD acted as a sponge of miR-410-3p to regulate chromosome condensation 2 expression. Rescue assays demonstrated that silencing of NORAD ameliorated transforming growth factor-β1-induced EMT via miR-410-3p/chromosome condensation 2/Wnt/β-catenin axis. In vivo, knockdown of NORAD led to the reduction of inflammatory cell infiltration and collagen deposition, suppression of IL-4, IL-13, transforming growth factor-β1 and immunoglobulin E production, decreasing of N-cadherin, chromosome condensation 2, β-catenin and c-Myc expression, but increasing of E-cadherin and miR-410-3p expression. Conclusions Silencing of NORAD alleviated epithelial-mesenchymal transition-mediated airway remodeling in asthma via mediating miR-410-3p/chromosome condensation 2/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Han Huang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Lihong Liang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Hongxia Lu
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Dongge Liang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| |
Collapse
|
10
|
Pofi R, Caratti G, Ray DW, Tomlinson JW. Treating the Side Effects of Exogenous Glucocorticoids; Can We Separate the Good From the Bad? Endocr Rev 2023; 44:975-1011. [PMID: 37253115 PMCID: PMC10638606 DOI: 10.1210/endrev/bnad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
It is estimated that 2% to 3% of the population are currently prescribed systemic or topical glucocorticoid treatment. The potent anti-inflammatory action of glucocorticoids to deliver therapeutic benefit is not in doubt. However, the side effects associated with their use, including central weight gain, hypertension, insulin resistance, type 2 diabetes (T2D), and osteoporosis, often collectively termed iatrogenic Cushing's syndrome, are associated with a significant health and economic burden. The precise cellular mechanisms underpinning the differential action of glucocorticoids to drive the desirable and undesirable effects are still not completely understood. Faced with the unmet clinical need to limit glucocorticoid-induced adverse effects alongside ensuring the preservation of anti-inflammatory actions, several strategies have been pursued. The coprescription of existing licensed drugs to treat incident adverse effects can be effective, but data examining the prevention of adverse effects are limited. Novel selective glucocorticoid receptor agonists and selective glucocorticoid receptor modulators have been designed that aim to specifically and selectively activate anti-inflammatory responses based upon their interaction with the glucocorticoid receptor. Several of these compounds are currently in clinical trials to evaluate their efficacy. More recently, strategies exploiting tissue-specific glucocorticoid metabolism through the isoforms of 11β-hydroxysteroid dehydrogenase has shown early potential, although data from clinical trials are limited. The aim of any treatment is to maximize benefit while minimizing risk, and within this review we define the adverse effect profile associated with glucocorticoid use and evaluate current and developing strategies that aim to limit side effects but preserve desirable therapeutic efficacy.
Collapse
Affiliation(s)
- Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Giorgio Caratti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford OX37LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
11
|
Konjevod M, Sreter KB, Popovic-Grle S, Lampalo M, Tudor L, Jukic I, Nedic Erjavec G, Bingulac-Popovic J, Safic Stanic H, Nikolac Perkovic M, Markeljevic J, Samarzija M, Pivac N, Svob Strac D. Platelet Serotonin (5-HT) Concentration, Platelet Monoamine Oxidase B (MAO-B) Activity and HTR2A, HTR2C, and MAOB Gene Polymorphisms in Asthma. Biomolecules 2023; 13:biom13050800. [PMID: 37238670 DOI: 10.3390/biom13050800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The complex role of the serotonin system in respiratory function and inflammatory diseases such as asthma is unclear. Our study investigated platelet serotonin (5-HT) levels and platelet monoamine oxidase B (MAO-B) activity, as well as associations with HTR2A (rs6314; rs6313), HTR2C (rs3813929; rs518147), and MAOB (rs1799836; rs6651806) gene polymorphisms in 120 healthy individuals and 120 asthma patients of different severity and phenotypes. Platelet 5-HT concentration was significantly lower, while platelet MAO-B activity was considerably higher in asthma patients; however, they did not differ between patients with different asthma severity or phenotypes. Only the healthy subjects, but not the asthma patients, carrying the MAOB rs1799836 TT genotype had significantly lower platelet MAO-B activity than the C allele carriers. No significant differences in the frequency of the genotypes, alleles, or haplotypes for any of the investigated HTR2A, HTR2C and MAOB gene polymorphisms have been observed between asthma patients and healthy subjects or between patients with various asthma phenotypes. However, the carriers of the HTR2C rs518147 CC genotype or C allele were significantly less frequent in severe asthma patients than in the G allele carriers. Further studies are necessary to elucidate the involvement of the serotonergic system in asthma pathophysiology.
Collapse
Affiliation(s)
- Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Katherina B Sreter
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", 10000 Zagreb, Croatia
| | - Sanja Popovic-Grle
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Lampalo
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Irena Jukic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | | | | | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| | - Jasenka Markeljevic
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre "Sestre Milosrdnice", 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Samarzija
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
- University of Applied Sciences "Hrvatsko Zagorje Krapina", 49000 Krapina, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
14
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Kasyanov ED, Pinakhina DV, Rakitko AS, Vergasova EO, Yermakovich DP, Rukavishnikov GV, Malyshko LV, Popov YV, Kovalenko EV, Ilinskaya AY, Kim AA, Plotnikov NA, Neznanov NG, Ilinsky VV, Kibitov AO, Mazo GE. [Anhedonia in mood disorders and somatic diseases: results of exploratory Mendelian randomization analysis]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:65-73. [PMID: 37141131 DOI: 10.17116/jnevro202312304265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
OBJECTIVE To conduct an exploratory Mendelian randomization analysis of the causal relationships of anhedonia with a wide range of psychiatric and somatic phenotypes based on the genetic data of participants in a population study. MATERIAL AND METHODS This cross-sectional study included 4520 participants, of which 50.4% (n=2280) were female. The mean age was 36.8 (S.D.=9.8) years. Participants were pheno-nailed based on the DSM-5 criteria for anhedonia in the framework of depression. An episode of anhedonia exceeding 2 weeks during life was reported by 57.6% (n=2604) of participants. A genome-wide association study (GWAS) of the anhedonia phenotype was performed, as well as a Mendelian randomization analysis using summary statistics of large-scale GWASs on psychiatric and somatic phenotypes. RESULTS The GWAS on anhedonia did not reveal the variants with genome-wide significant association (p<10-8). The most significant (p=9.71×10-7) was the variant rs296009 (chr5:168513184) in an intron of the slit guidance ligand 3 (SLIT3) gene. Using Mendelian randomization, nominally significant (p<0.05) causal associations of anhedonia with 24 phenotypes were identified, which can be divided into 5 main groups: psychiatric/neurological diseases, inflammatory diseases of the digestive system, respiratory diseases, oncological diseases and metabolic disorders. The most significant causal effects of anhedonia were found for breast cancer (p=0.0004, OR=0.9986, 95% confidence interval (CI) (0.9978-0.999)), minimal depression phenotype (p=0.009, OR=1.004, 95% CI (1.001-1.007)), as well as for apolipoprotein A (p=0.01, OR=0.973, 95% CI (0.952-0.993)) and respiratory diseases (p=0.01, OR=0.9988, 95% CI (0.9980-0.9997)). CONCLUSION The polygenic nature of anhedonia may cause the risks of comorbidity of this phenotype with a wide range of somatic diseases, as well as may be associated with mood disorders.
Collapse
Affiliation(s)
- E D Kasyanov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - D V Pinakhina
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - A S Rakitko
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Genotek Ltd., Moscow, Russia
| | | | | | - G V Rukavishnikov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - L V Malyshko
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | | | | | | | - A A Kim
- Genotek Ltd., Moscow, Russia
| | | | - N G Neznanov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - V V Ilinsky
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Genotek Ltd., Moscow, Russia
| | - A O Kibitov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
16
|
Nichols CD. Psychedelics as potent anti-inflammatory therapeutics. Neuropharmacology 2022; 219:109232. [PMID: 36007854 DOI: 10.1016/j.neuropharm.2022.109232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
17
|
Hibicke M, Nichols CD. Validation of the forced swim test in Drosophila, and its use to demonstrate psilocybin has long-lasting antidepressant-like effects in flies. Sci Rep 2022; 12:10019. [PMID: 35705666 PMCID: PMC9200711 DOI: 10.1038/s41598-022-14165-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Psilocybin has been shown to be a powerful, long-lasting antidepressant in human clinical trials and in rodent models. Although rodents have commonly been used to model psychiatric disorders, Drosophila have neurotransmitter systems similar to mammals and many comparable brain structures involved in similar behaviors. The forced swim test (FST), which has been used extensively to evaluate compounds for antidepressant efficacy, has recently been adapted for Drosophila. The fly FST has potential to be a cost-effective, high-throughput assay for evaluating potential antidepressants. For this study we pharmacologically validated the fly FST using methamphetamine, DL-α-methyltyrosine, and the antidepressant citalopram. While methamphetamine and DL-α-methyltyrosine altered overall locomotor activity in the Drosophila Activity Monitor System (DAMS), they had no significant impact on measures of immobility in the FST. Conversely, chronic citalopram decreased measures of immobility in the FST in both sexes without increasing DAMS activity. We used the validated FST to evaluate the antidepressant-like effects of high (3.5 mM) and low (0.03 mM) doses of psilocybin. Both doses of psilocybin significantly reduced measures of immobility in male flies, but not females. 0.03 mM had an effect size comparable to chronic citalopram, and 3.5 mM had an effect size approximately twice that of chronic citalopram.
Collapse
Affiliation(s)
- M Hibicke
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - C D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
18
|
Battaglia DM, Sanchez-Pino MD, Nichols CD, Foster TP. Herpes Simplex Virus-1 Induced Serotonin-Associated Metabolic Pathways Correlate With Severity of Virus- and Inflammation-Associated Ocular Disease. Front Microbiol 2022; 13:859866. [PMID: 35391733 PMCID: PMC8982329 DOI: 10.3389/fmicb.2022.859866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus-associated diseases are a complex interaction between cytolytic viral replication and inflammation. Within the normally avascular and immunoprivileged cornea, HSV ocular infection can result in vision-threatening immune-mediated herpetic keratitis, the leading infectious cause of corneal blindness in the industrialized world. Viral replicative processes are entirely dependent upon numerous cellular biosynthetic and metabolic pathways. Consistent with this premise, HSV infection was shown to profoundly alter gene expression associated with cellular amino acid biosynthetic pathways, including key tryptophan metabolism genes. The essential amino acid tryptophan is crucial for pathogen replication, the generation of host immune responses, and the synthesis of neurotransmitters, such as serotonin. Intriguingly, Tryptophan hydroxylase 2 (TPH2), the neuronal specific rate-limiting enzyme for serotonin synthesis, was the most significantly upregulated gene by HSV in an amino acid metabolism PCR array. Despite the well-defined effects of serotonin in the nervous system, the association of peripheral serotonin in disease-promoting inflammation has only recently begun to be elucidated. Likewise, the impact of serotonin on viral replication and ocular disease is also largely unknown. We therefore examined the effect of HSV-induced serotonin-associated synthesis and transport pathways on HSV-1 replication, as well as the correlation between HSV-induced ocular serotonin levels and disease severity. HSV infection induced expression of the critical serotonin synthesis enzymes TPH-1, TPH-2, and DOPA decarboxylase (DDC), as well as the serotonin transporter, SERT. Concordantly, HSV-infected cells upregulated serotonin synthesis and its intracellular uptake. Increased serotonin synthesis and uptake was shown to influence HSV replication. Exogenous addition of serotonin increased HSV-1 yield, while both TPH-1/2 and SERT pharmacological inhibition reduced viral yield. Congruent with these in vitro findings, rabbits intraocularly infected with HSV-1 exhibited significantly higher aqueous humor serotonin concentrations that positively and strongly correlated with viral load and ocular disease severity. Collectively, our findings indicate that HSV-1 promotes serotonin synthesis and cellular uptake to facilitate viral replication and consequently, serotonin's proinflammatory effects may enhance the development of ocular disease.
Collapse
Affiliation(s)
- Diana Marie Battaglia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Maria D. Sanchez-Pino
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Charles D. Nichols
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Timothy P. Foster
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Louisiana Vaccine Center, New Orleans, LA, United States
| |
Collapse
|
19
|
Adulthood asthma as a consequence of childhood adversity: a systematic review of epigenetically affected genes. J Dev Orig Health Dis 2022; 13:674-682. [PMID: 35256035 DOI: 10.1017/s2040174422000083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is an accumulating data that shows relation between childhood adversity and vulnerability to chronic diseases as well as epigenetic influences that in turn give rise to these diseases. Asthma is one of the chronic diseases that is influenced from genetic regulation of the inflammatory biomolecules and therefore the hypothesis in this research was childhood adversity might have caused epigenetic differentiation in the asthma-related genes in the population who had childhood trauma. To test this hypothesis, the literature was systematically reviewed to extract epigenetically modified gene data of the adults who had childhood adversity, and affected genes were further evaluated for their association with asthma. PRISMA guidelines were adopted and PubMed and Google Scholar were included in the searched databases, to evaluate epigenetic modifications in asthma-related genes of physically, emotionally or sexually abused children. After retrieving a total of 5245 articles, 36 of them were included in the study. Several genes and pathways that may contribute to pathogenesis of asthma development, increased inflammation, or response to asthma treatment were found epigenetically affected by childhood traumas. Childhood adversity, causing epigenetic changes in DNA, may lead to asthma development or influence the course of the disease and therefore should be taken into account for the prolonged health consequences.
Collapse
|
20
|
Li X, Han Z, Wang F, Qiao J. The STAT6 inhibitor AS1517499 reduces the risk of asthma in mice with 2,4-dinitrochlorobenzene-induced atopic dermatitis by blocking the STAT6 signaling pathway. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:12. [PMID: 35177102 PMCID: PMC8851827 DOI: 10.1186/s13223-022-00652-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/22/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Epidemiological studies have revealed a link between atopic dermatitis (AD) and asthma. AS1517499, a selective signal transducer and activation of transcription 6 (STAT6) inhibitor, has been shown to effectively block this connection. In this study, we further explored the underlying mechanism by constructing an AD mouse model. METHODS Female BALB/c mice were randomly divided into four groups (n = 10/group). The AD mouse model was established by 2,4-dinitrochlorobenzene induction with repeated ovalbumin challenge. AS1517499 and corn oil were used as treatment interventions. The features of airway inflammation, remodeling, and hyperactivity were analyzed. RESULTS Active use of AS1517499 in AD mice effectively reduced Th2-related cytokine levels, alleviated airway eosinophil and lymphocyte infiltration, and regulated GATA3/Foxp3 levels and subepithelial collagen deposition. These changes might be due to specific blockade of the STAT6 signaling pathway. CONCLUSION AS1517499 could partially block the association between AD and asthma by specifically inhibiting the STAT6 signaling pathway.
Collapse
Affiliation(s)
- Xueying Li
- Department of Respiratory, Shanghai Ninth People's Hospital Affiliated Shanghai JiaoTong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200001, China
| | - Zhaoqing Han
- Department of Respiratory, Shanghai Ninth People's Hospital Affiliated Shanghai JiaoTong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200001, China
| | - Feng Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai JiaoTong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200001, China.
| | - Jianou Qiao
- Department of Respiratory, Shanghai Ninth People's Hospital Affiliated Shanghai JiaoTong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200001, China.
| |
Collapse
|
21
|
Kelley DP, Venable K, Destouni A, Billac G, Ebenezer P, Stadler K, Nichols C, Barker S, Francis J. Pharmahuasca and DMT Rescue ROS Production and Differentially Expressed Genes Observed after Predator and Psychosocial Stress: Relevance to Human PTSD. ACS Chem Neurosci 2022; 13:257-274. [PMID: 34990116 DOI: 10.1021/acschemneuro.1c00660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is associated with cognitive deficits, oxidative stress, and inflammation. Animal models have recapitulated features of PTSD, but no comparative RNA sequencing analysis of differentially expressed genes (DEGs) in the brain between PTSD and animal models of traumatic stress has been carried out. We compared DEGs from the prefrontal cortex (PFC) of an established stress model to DEGs from the dorsolateral PFC (dlPFC) of humans. We observed a significant enrichment of rat DEGs in human PTSD and identified 20 overlapping DEGs, of which 17 (85%) are directionally concordant. N,N-dimethyltryptamine (DMT) is a known indirect antioxidant, anti-inflammatory, and neuroprotective compound with antidepressant and plasticity-facilitating effects. We tested the capacity of DMT, the monoamine oxidase inhibitor (MAOI) harmaline, and "pharmahuasca" (DMT + harmaline) to reduce reactive oxygen species (ROS) production and inflammatory gene expression and to modulate neuroplasticity-related gene expression in the model. We administered DMT (2 mg/kg IP), harmaline (1.5 mg/kg IP), pharmahuasca, or vehicle every other day for 5 days, following a 30 day stress regiment. We measured ROS production in the PFC and hippocampus (HC) by electron paramagnetic resonance spectroscopy and sequenced total mRNA in the PFC. We also performed in vitro assays to measure the affinity and efficacy of DMT and harmaline at 5HT2AR compared to 5-HT. DMT and pharmahuasca reduced ROS production in the PFC and HC, while harmaline had mixed effects. Treatments normalized 9, 12, and 14 overlapping DEGs, and pathway analysis implicated that genes were involved in ROS production, inflammation, growth factor signaling, neurotransmission, and neuroplasticity.
Collapse
Affiliation(s)
- D. Parker Kelley
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Katy Venable
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Aspasia Destouni
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Gerald Billac
- Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Philip Ebenezer
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Krisztian Stadler
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Charles Nichols
- Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Steven Barker
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Joseph Francis
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) 2A receptor is most well known as the common target for classic psychedelic compounds. Interestingly, the 5-HT2A receptor is the most widely expressed mammalian serotonin receptor and is found in nearly every examined tissue type including neural, endocrine, endothelial, immune, and muscle, suggesting it could be a novel and pharmacological target for several types of disorders. Despite this, the bulk of research on the 5-HT2A receptor is focused on its role in the central nervous system (CNS). Recently, activation of 5-HT2A receptors has emerged as a new anti-inflammatory strategy. This review will describe recent findings regarding psychedelics as anti-inflammatory compounds, as well as parse out differences in functional selectivity and immune regulation that exist between a number of well-known hallucinogenic compounds.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
23
|
Kelly JR, Gillan CM, Prenderville J, Kelly C, Harkin A, Clarke G, O'Keane V. Psychedelic Therapy's Transdiagnostic Effects: A Research Domain Criteria (RDoC) Perspective. Front Psychiatry 2021; 12:800072. [PMID: 34975593 PMCID: PMC8718877 DOI: 10.3389/fpsyt.2021.800072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating clinical evidence shows that psychedelic therapy, by synergistically combining psychopharmacology and psychological support, offers a promising transdiagnostic treatment strategy for a range of disorders with restricted and/or maladaptive habitual patterns of emotion, cognition and behavior, notably, depression (MDD), treatment resistant depression (TRD) and addiction disorders, but perhaps also anxiety disorders, obsessive-compulsive disorder (OCD), Post-Traumatic Stress Disorder (PTSD) and eating disorders. Despite the emergent transdiagnostic evidence, the specific clinical dimensions that psychedelics are efficacious for, and associated underlying neurobiological pathways, remain to be well-characterized. To this end, this review focuses on pre-clinical and clinical evidence of the acute and sustained therapeutic potential of psychedelic therapy in the context of a transdiagnostic dimensional systems framework. Focusing on the Research Domain Criteria (RDoC) as a template, we will describe the multimodal mechanisms underlying the transdiagnostic therapeutic effects of psychedelic therapy, traversing molecular, cellular and network levels. These levels will be mapped to the RDoC constructs of negative and positive valence systems, arousal regulation, social processing, cognitive and sensorimotor systems. In summarizing this literature and framing it transdiagnostically, we hope we can assist the field in moving toward a mechanistic understanding of how psychedelics work for patients and eventually toward a precise-personalized psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
| | - Claire M. Gillan
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
- Global Brain Health Institute, Trinity College, Dublin, Ireland
| | - Jack Prenderville
- Transpharmation Ireland Ltd, Institute of Neuroscience, Trinity College, Dublin, Ireland
- Discipline of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Clare Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
24
|
Saeger HN, Olson DE. Psychedelic-inspired approaches for treating neurodegenerative disorders. J Neurochem 2021; 162:109-127. [PMID: 34816433 DOI: 10.1111/jnc.15544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Psychedelics are increasingly being recognized for their potential to treat a wide range of brain disorders including depression, post-traumatic stress disorder (PTSD), and substance use disorder. Their broad therapeutic potential might result from an ability to rescue cortical atrophy common to many neuropsychiatric and neurodegenerative diseases by impacting neurotrophic factor gene expression, activating neuronal growth and survival mechanisms, and modulating the immune system. While the therapeutic potential of psychedelics has not yet been extended to neurodegenerative disorders, we provide evidence suggesting that approaches based on psychedelic science might prove useful for treating these diseases. The primary target of psychedelics, the 5-HT2A receptor, plays key roles in cortical neuron health and is dysregulated in Alzheimer's disease. Moreover, evidence suggests that psychedelics and related compounds could prove useful for treating the behavioral and psychological symptoms of dementia (BPSD). While more research is needed to probe the effects of psychedelics in models of neurodegenerative diseases, the robust effects of these compounds on structural and functional neuroplasticity and inflammation clearly warrant further investigation.
Collapse
Affiliation(s)
- Hannah N Saeger
- Pharmacology and Toxicology Graduate Group, University of California, Davis, Davis, California, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, California, USA.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA.,Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
25
|
He H, Cao L, Wang Z, Wang Z, Miao J, Li XM, Miao M. Sinomenine Relieves Airway Remodeling By Inhibiting Epithelial-Mesenchymal Transition Through Downregulating TGF-β1 and Smad3 Expression In Vitro and In Vivo. Front Immunol 2021; 12:736479. [PMID: 34804018 PMCID: PMC8602849 DOI: 10.3389/fimmu.2021.736479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Airway remodeling is associated with dysregulation of epithelial-mesenchymal transition (EMT) in patients with asthma. Sinomenine (Sin) is an effective, biologically active alkaloid that has been reported to suppress airway remodeling in mice with asthma. However, the molecular mechanisms behind this effect remain unclear. We aimed to explore the potential relationship between Sin and EMT in respiratory epithelial cells in vitro and in vivo. First, 16HBE cells were exposed to 100 μg/mL LPS and treated with 200 μg/mL Sin. Cell proliferation, migration, and wound healing assays were performed to evaluate EMT, and EMT-related markers were detected using Western blotting. Mice with OVA-induced asthma were administered 35 mg/kg or 75 mg/kg Sin. Airway inflammation and remodeling detection experiments were performed, and EMT-related factors and proteins in the TGF-β1 pathway were detected using IHC and Western blotting. We found that Sin suppressed cell migration but not proliferation in LPS-exposed 16HBE cells. Sin also inhibited MMP7, MMP9, and vimentin expression in 16HBE cells and respiratory epithelial cells from mice with asthma. Furthermore, it decreased OVA-specific IgE and IL-4 levels in serum, relieved airway remodeling, attenuated subepithelial collagen deposition, and downregulating TGF-β1and Smad3 expression in mice with asthma. Our results suggest that Sin suppresses EMT by inhibiting IL-4 and downregulating TGF-β1 and Smad3 expression.
Collapse
Affiliation(s)
- Hongjuan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zheng Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiu-Min Li
- Microbiology and Immunology, and Department of Otolaryngology, New York Medical College, New York, NY, United States
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
26
|
Yu B, Battaglia DM, Foster TP, Nichols CD. Serotonin 5-HT 2A receptor activity mediates adipocyte differentiation through control of adipogenic gene expression. Sci Rep 2021; 11:19714. [PMID: 34611182 PMCID: PMC8492876 DOI: 10.1038/s41598-021-98970-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Serotonin 5-HT2 receptors are expressed in many tissues and play important roles in biological processes. Although the 5-HT2A receptor is primarily known for its role in central nervous system, it is also expressed in peripheral tissues. We have found that 5-HT2A receptor antagonists inhibit human subcutaneous primary adipocyte differentiation. We also show that siRNA knockdown of the 5-HT2A receptor blocks differentiation. Using gene expression analysis in combination with receptor antagonists we found that activity of 5-HT2A receptors is necessary very early in the differentiation process to mediate expression of adipogenic genes, including peroxisome proliferator-activated receptor gamma (ppar-γ), adipocyte protein 2 (aP2), adiponectin, and serine/threonine-protein kinase 1 (sgk1). We show here for the first time that 5-HT2A receptor activity is necessary for differentiation of human primary subcutaneous preadipocytes to adipocytes, and that 5-HT2A receptor activity mediates key genes related to adipogenesis during this process. Importantly, this work contributes to a greater understanding of the adipocyte differentiation process, as well as to the role of 5-HT2A receptors in peripheral tissues, and may be relevant to the development of novel therapeutic strategies targeting this receptor for the treatment of obesity related diseases.
Collapse
Affiliation(s)
- Bangning Yu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Diana M Battaglia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Science Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Timothy P Foster
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Science Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 1901 Perdido Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
27
|
Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int J Mol Sci 2021; 22:ijms22157931. [PMID: 34360695 PMCID: PMC8347425 DOI: 10.3390/ijms22157931] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Qingjuan Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-6273-8589
| |
Collapse
|
28
|
Jones GH, Vecera CM, Pinjari OF, Machado-Vieira R. Inflammatory signaling mechanisms in bipolar disorder. J Biomed Sci 2021; 28:45. [PMID: 34112182 PMCID: PMC8194019 DOI: 10.1186/s12929-021-00742-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with a high individual and societal burden. While not all patients display overt markers of elevated inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease, and likely explains the elevated rates of comorbid inflammatory illnesses seen in this population. While individual systems have been intensely studied and targeted, a relative paucity of attention has been given to the interconnecting role of inflammatory signals therein. This review presents an updated overview of some of the most prominent pathophysiologic mechanisms in bipolar disorder, from mitochondrial, endoplasmic reticular, and calcium homeostasis, to purinergic, kynurenic, and hormonal/neurotransmitter signaling, showing inflammation to act as a powerful nexus between these systems. Several areas with a high degree of mechanistic convergence within this paradigm are highlighted to present promising future targets for therapeutic development and screening.
Collapse
Affiliation(s)
- Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA.
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| | - Omar F Pinjari
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| |
Collapse
|
29
|
Evaluation of lorcaserin as an anticonvulsant in juvenile Fmr1 knockout mice. Epilepsy Res 2021; 175:106677. [PMID: 34130255 DOI: 10.1016/j.eplepsyres.2021.106677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Recent preclinical and clinical studies suggest that lorcaserin, a preferential serotonin 2C receptor (5-HT2CR) agonist that was approved for the treatment of obesity, possesses antiepileptic properties. Here, we tested whether lorcaserin (1, 3, 5.6, 10 mg/kg) is prophylactic against audiogenic seizures (AGSs) in juvenile Fmr1 knockout mice, a mouse model of fragile X syndrome (FXS). MPEP (30 mg/kg), a non-competitive mGluR5 receptor antagonist, was used as a positive control. As lorcaserin likely engages 5-HT2ARs at therapeutic doses, we pretreated one group of mice with the selective 5-HT2AR antagonist/inverse agonist, M100907 (0.03 mg/kg), alone or before administering lorcaserin (5.6 mg/kg), to discern putative contributions of 5-HT2ARs to AGSs. We also assessed lorcaserin's in vitro pharmacology at human (h) and mouse (m) 5-HT2CRs and 5-HT2ARs and its in vivo interactions at m5-HT2CRs and m5-HT2ARs. MPEP significantly decreased AGS prevalence (P = 0.011) and lethality (P = 0.038). Lorcaserin, 3 mg/kg, attenuated AGS prevalence and lethality by 14 % and 32 %, respectively, however, results were not statistically significant (P = 0.5 and P = 0.06); other doses and M100907 alone or with lorcaserin also did not significantly affect AGSs. Lorcaserin exhibited full efficacy agonist activity at h5-HT2CRs and m5-HT2CRs, and near full efficacy agonist activity at h5-HT2ARs and m5-HT2ARs; selectivity for activation of 5-HT2CRs over 5-HT2ARs was greater for human (38-fold) compared to mouse (13-fold) receptors. Lorcaserin displayed relatively low affinities at antagonist-labeled 5-HT2CRs and 5-HT2ARs, regardless of species. Lorcaserin (3 and 5.6 mg/kg) increased the 5-HT2AR-dependent head-twitch response (HTR) elicited by (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) in mice (P = 0.03 and P = 0.02). At 3 mg/kg, lorcaserin alone did not elicit an HTR. If mice were treated with the selective 5-HT2CR antagonist SB 242084 (0.5 or 1 mg/kg) plus lorcaserin (3 mg/kg), a significantly increased HTR was observed, relative to vehicle (P = 0.01 and P = 0.03), however, the HTR was much lower than what was elicited by DOI or DOI plus lorcaserin. Lorcaserin, 3 mg/kg, significantly reduced locomotor activity on its own, an effect reversed by SB 242084, and lorcaserin also dose-dependently reduced locomotor activity when administered prior to DOI (Ps<0.002). These data suggest that lorcaserin may engage 5-HT2CRs as well as 5-HT2ARs in mice at doses as low as 3 mg/kg. The similar activity at m5-HT2CRs and m5-HT2ARs suggests careful dosing of lorcaserin is necessary to selectively engage 5-HT2CRs in vivo. In conclusion, lorcaserin was ineffective at preventing AGSs in Fmr1 knockout mice. Lorcaserin may not be a suitable pharmacotherapy for seizures in FXS.
Collapse
|
30
|
Rodriguez-Rodriguez N, Gogoi M, McKenzie AN. Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annu Rev Immunol 2021; 39:167-198. [PMID: 33534604 PMCID: PMC7614118 DOI: 10.1146/annurev-immunol-110119-091711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.
Collapse
Affiliation(s)
- Noe Rodriguez-Rodriguez
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Andrew N.J. McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK,Corresponding author:
| |
Collapse
|
31
|
Flanagan T, Billac GB, Landry AN, Sebastian MN, Cormier SA, Nichols CD. Structure-Activity Relationship Analysis of Psychedelics in a Rat Model of Asthma Reveals the Anti-Inflammatory Pharmacophore. ACS Pharmacol Transl Sci 2021; 4:488-502. [PMID: 33860179 PMCID: PMC8033619 DOI: 10.1021/acsptsci.0c00063] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Psychedelic drugs can exert potent anti-inflammatory effects. However, anti-inflammatory effects do not appear to correlate with behavioral activity, suggesting different underlying mechanisms. We hypothesized that the distinct structural features of psychedelics underlie functionally selective mechanisms at the target 5-HT2A receptor to elicit maximal anti-inflammatory effects. In order to test this hypothesis, we developed a new rat-based screening platform for allergic asthma. Next, we investigated 21 agonists at the 5-HT2A receptor from the three primary chemotypes (phenylalkylamine, ergoline, and tryptamine) for their ability to prevent airways hyperresponsiveness as a measure of pulmonary inflammation. Furthermore, we assessed each drug for in vitro activation of the canonical signaling pathway, calcium mobilization, from the 5-HT2A receptor. We find that the drug 2,5-dimethoxyphenethylamine (2C-H) represents the pharmacophore for anti-inflammatory activity and identify structural modifications that are either permissive or detrimental to anti-inflammatory activity. Additionally, there is no correlation between the ability of a particular psychedelic to activate intracellular calcium mobilization and to prevent the symptoms of asthma or with behavioral potencies. Our results support the notions that specific structural features mediate functional selectivity underlying anti-inflammatory activity and that relevant receptor activated pathways necessary for anti-inflammatory activity are different from canonical signaling pathways. Our results inform on the nature of interactions between ligands at the 5-HT2A receptor as they relate to anti-inflammatory activity and are crucial for the development of new 5-HT2A receptor agonists for anti-inflammatory therapeutics in the clinic that may be devoid of behavioral activity.
Collapse
Affiliation(s)
- Thomas
W. Flanagan
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Gerald B. Billac
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Alexus N. Landry
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Melaine N. Sebastian
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Stephania A. Cormier
- Department
of Biological Sciences Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, United States
| | - Charles D. Nichols
- Department
of Pharmacology and Experimental Therapeutics, Louisiana Stat University Health Sciences Center, New Orleans, Louisiana 70112, United States
| |
Collapse
|
32
|
Abstract
This paper introduces a new construct, the 'pivotal mental state', which is defined as a hyper-plastic state aiding rapid and deep learning that can mediate psychological transformation. We believe this new construct bears relevance to a broad range of psychological and psychiatric phenomena. We argue that pivotal mental states serve an important evolutionary function, that is, to aid psychological transformation when actual or perceived environmental pressures demand this. We cite evidence that chronic stress and neurotic traits are primers for a pivotal mental state, whereas acute stress can be a trigger. Inspired by research with serotonin 2A receptor agonist psychedelics, we highlight how activity at this particular receptor can robustly and reliably induce pivotal mental states, but we argue that the capacity for pivotal mental states is an inherent property of the human brain itself. Moreover, we hypothesize that serotonergic psychedelics hijack a system that has evolved to mediate rapid and deep learning when its need is sensed. We cite a breadth of evidences linking stress via a variety of inducers, with an upregulated serotonin 2A receptor system (e.g. upregulated availability of and/or binding to the receptor) and acute stress with 5-HT release, which we argue can activate this primed system to induce a pivotal mental state. The pivotal mental state model is multi-level, linking a specific molecular gateway (increased serotonin 2A receptor signaling) with the inception of a hyper-plastic brain and mind state, enhanced rate of associative learning and the potential mediation of a psychological transformation.
Collapse
Affiliation(s)
- Ari Brouwer
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | | |
Collapse
|
33
|
Vieira ÉLM, da Silva MCM, Gonçalves AP, Martins GL, Teixeira AL, de Oliveira ACP, Reis HJ. Serotonin and dopamine receptors profile on peripheral immune cells from patients with temporal lobe epilepsy. J Neuroimmunol 2021; 354:577534. [PMID: 33713941 DOI: 10.1016/j.jneuroim.2021.577534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 01/11/2023]
Abstract
The role of inflammation and immune cells has been demonstrated in neurological diseases, including epilepsy. Leukocytes, as well as inflammatory mediators, contribute to abnormal processes that lead to a reduction in seizure threshold and synaptic reorganization. In this sense, identifying different phenotypes of circulating immune cells is essential to understanding the role of these cells in epilepsy. Immune cells can express a variety of surface markers, including neurotransmitter receptors, such as serotonin and dopamine. Alteration in these receptors expression patterns may affect the level of inflammatory mediators and the pathophysiology of epilepsy. Therefore, in the current study, we evaluated the expression of dopamine and serotonin receptors on white blood cells from patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Blood samples from 17 patients with TLE-HS and 21 controls were collected. PBMC were isolated and stained ex vivo for flow cytometry. We evaluated the expression of serotonin (5-HT1A, 5-HT1B, 5-HT2, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4), and dopamine receptors (D1, D2, D3, D4, and D5) on the cell surface of lymphocytes and innate immune cells (monocytes and granulocytes). Our results demonstrated that innate cells and lymphocytes from patients with TLE-HS showed high mean fluorescent intensity (MFI) for 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 compared to controls. No difference was observed for 5-HT2B. For dopamine receptors, the expression of D1, D2, D4, and D5 receptors was higher on innate cells from patients with TLE-HS when compared to controls for the MFI. Regarding lymphocytes population, D2 expression was increased in patients with TLE-HS. In conclusion, there are alterations in the expression of serotonin and dopamine receptors on immune blood cells of patients with TLE-HS. Although the biological significance of these findings still needs to be further investigated, these changes may contribute to the understanding of TLE-HS pathophysiology.
Collapse
Affiliation(s)
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ana Paula Gonçalves
- Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gabriela Lopes Martins
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Lúcio Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte 30260-070, Brazil; Neuropsychiatry Program and Immuno-Psychiatry Lab, Department of Psychiatry and Behavioral Sciences, UT Health Houston, 1941 East Road, Houston, TX 77054, USA
| | - Antônio Carlos Pinheiro de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Helton José Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; Programa de Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
34
|
Li X, Zhang ZH, Zabed HM, Yun J, Zhang G, Qi X. An Insight into the Roles of Dietary Tryptophan and Its Metabolites in Intestinal Inflammation and Inflammatory Bowel Disease. Mol Nutr Food Res 2021; 65:e2000461. [PMID: 33216452 DOI: 10.1002/mnfr.202000461] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/14/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is complex, chronic, and relapsing gastrointestinal inflammatory disorders, which includes mainly two conditions, namely ulcerative colitis (UC) and Crohn's disease (CD). Development of IBD in any individual is closely related to his/her autoimmune regulation, gene-microbiota interactions, and dietary factors. Dietary tryptophan (Trp) is an essential amino acid for intestinal mucosal cells, and it is associated with the intestinal inflammation, epithelial barrier, and energy homeostasis of the host. According to recent studies, Trp and its three major metabolic pathways, namely kynurenine (KYN) pathway, indole pathway, and 5-hydroxytryptamine (5-HT) pathway, have vital roles in the regulation of intestinal inflammation by acting directly or indirectly on the pro/anti-inflammatory cytokines, functions of various immune cells, as well as the intestinal microbial composition and homeostasis. In this review, recent advances in Trp- and its metabolites-associated intestinal inflammation are summarized. It further discusses the complex mechanisms and interrelationships of the three major metabolic pathways of Trp in regulating inflammation, which could elucidate the value of dietary Trp to be used as a nutrient for IBD patients.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
35
|
Carlson EL, Karuppagounder V, Pinamont WJ, Yoshioka NK, Ahmad A, Schott EM, Le Bleu HK, Zuscik MJ, Elbarbary RA, Kamal F. Paroxetine-mediated GRK2 inhibition is a disease-modifying treatment for osteoarthritis. Sci Transl Med 2021; 13:13/580/eaau8491. [PMID: 33568523 DOI: 10.1126/scitranslmed.aau8491] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by progressive cartilage degeneration, with no available disease-modifying therapy. OA is driven by pathological chondrocyte hypertrophy (CH), the cellular regulators of which are unknown. We have recently reported the therapeutic efficacy of G protein-coupled receptor kinase 2 (GRK2) inhibition in other diseases by recovering protective G protein-coupled receptor (GPCR) signaling. However, the role of GPCR-GRK2 pathway in OA is unknown. Thus, in a surgical OA mouse model, we performed genetic GRK2 deletion in chondrocytes or pharmacological inhibition with the repurposed U.S. Food and Drug Administration (FDA)-approved antidepressant paroxetine. Both GRK2 deletion and inhibition prevented CH, abated OA progression, and promoted cartilage regeneration. Supporting experiments with cultured human OA cartilage confirmed the ability of paroxetine to mitigate CH and cartilage degradation. Our findings present elevated GRK2 signaling in chondrocytes as a driver of CH in OA and identify paroxetine as a disease-modifying drug for OA treatment.
Collapse
Affiliation(s)
- Elijah L Carlson
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - William J Pinamont
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Natalie K Yoshioka
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Adeel Ahmad
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | - Michael J Zuscik
- Colorado Program for Skeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Reyad A Elbarbary
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA. .,Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
36
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2020; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Prada-Dacasa P, Urpi A, Sánchez-Benito L, Bianchi P, Quintana A. Measuring Breathing Patterns in Mice Using Whole-body Plethysmography. Bio Protoc 2020; 10:e3741. [PMID: 33659401 DOI: 10.21769/bioprotoc.3741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/02/2022] Open
Abstract
Respiratory dysfunction is among the main cause of severe and fatal pathologies worldwide. The use of effective experimental models and methodologies for the study of the pulmonary pathophysiology is necessary to prevent, control and cure these diseases. Plethysmography, a technique for the assessment of lung function, has been widely applied in mice for the characterization of respiratory physiology. However, classical plethysmography methods present technical limitations such as the use of anesthesia and animal immobilization. Whole-body plethysmography (WBP) avoids these issues providing a non-invasive approach for the assessment of the respiratory function in conscious animals. WBP relies on the recording of pressure changes that are produced by the spontaneous breathing activity of an animal placed inside an airtight chamber. During normal respiration, pressure variation is directly proportional to the respiratory pattern of the animal allowing the measurement of the respiratory rate and tidal volume. These parameters are commonly used to evaluate pulmonary function in different physiological and disease models. In contrast to classical plethysmography methods, WBP technique allows reproducible serial measurements as it avoids animal restraint or the use of anesthesia. These key features rend WBP a suitable approach for longitudinal studies allowing the assessment of progressive respiratory alterations in physiological and pathological conditions. This protocol describes the procedures for the measurement of the breathing patterns in mice using the WBP method, the data analysis and results interpretation.
Collapse
Affiliation(s)
- Patricia Prada-Dacasa
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrea Urpi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Sánchez-Benito
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patrizia Bianchi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Quintana
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|