1
|
Park J, Peña-Tauber A, Talozzi L, Greicius MD, Guen YL. Genetic associations with human longevity are enriched for oncogenic genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.30.24311226. [PMID: 39132489 PMCID: PMC11312667 DOI: 10.1101/2024.07.30.24311226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Human lifespan is shaped by both genetic and environmental exposures and their interaction. To enable precision health, it is essential to understand how genetic variants contribute to earlier death or prolonged survival. In this study, we tested the association of common genetic variants and the burden of rare non-synonymous variants in a survival analysis, using age-at-death (N = 35,551, median [min, max] = 72.4 [40.9, 85.2]), and last-known-age (N = 358,282, median [min, max] = 71.9 [52.6, 88.7]), in European ancestry participants of the UK Biobank. The associations we identified seemed predominantly driven by cancer, likely due to the age range of the cohort. Common variant analysis highlighted three longevity-associated loci: APOE, ZSCAN23, and MUC5B. We identified six genes whose burden of loss-of-function variants is significantly associated with reduced lifespan: TET2, ATM, BRCA2, CKMT1B, BRCA1 and ASXL1. Additionally, in eight genes, the burden of pathogenic missense variants was associated with reduced lifespan: DNMT3A, SF3B1, CHL1, TET2, PTEN, SOX21, TP53 and SRSF2. Most of these genes have previously been linked to oncogenic-related pathways and some are linked to and are known to harbor somatic variants that predispose to clonal hematopoiesis. A direction-agnostic (SKAT-O) approach additionally identified significant associations with C1orf52, TERT, IDH2, and RLIM, highlighting a link between telomerase function and longevity as well as identifying additional oncogenic genes. Our results emphasize the importance of understanding genetic factors driving the most prevalent causes of mortality at a population level, highlighting the potential of early genetic testing to identify germline and somatic variants increasing one's susceptibility to cancer and/or early death.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Andrés Peña-Tauber
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Lia Talozzi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yann Le Guen
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
| |
Collapse
|
2
|
Miller B, Kim S, Cao K, Mehta HH, Thumaty N, Kumagai H, Iida T, McGill C, Pike CJ, Nurmakova K, Levine ZA, Sullivan PM, Yen K, Ertekin‐Taner N, Atzmon G, Barzilai N, Cohen P. Humanin variant P3S is associated with longevity in APOE4 carriers and resists APOE4-induced brain pathology. Aging Cell 2024; 23:e14153. [PMID: 38520065 PMCID: PMC11258485 DOI: 10.1111/acel.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024] Open
Abstract
The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Su‐Jeong Kim
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kevin Cao
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hemal H. Mehta
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Neehar Thumaty
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hiroshi Kumagai
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Tomomitsu Iida
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Cassandra McGill
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian J. Pike
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kamila Nurmakova
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
| | - Zachary A. Levine
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Patrick M. Sullivan
- Department of Medicine (Geriatrics)Duke University Medical CenterDurhamNorth CarolinaUSA
| | - Kelvin Yen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Gil Atzmon
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Nir Barzilai
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Pinchas Cohen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Tseng WHS, Chattopadhyay A, Phan NN, Chuang EY, Lee OK. Utilizing multimodal approach to identify candidate pathways and biomarkers and predicting frailty syndrome in individuals from UK Biobank. GeroScience 2024; 46:1211-1228. [PMID: 37523034 PMCID: PMC10828416 DOI: 10.1007/s11357-023-00874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Frailty, a prevalent clinical syndrome in aging adults, is characterized by poor health outcomes, represented via a standardized frailty-phenotype (FP), and Frailty Index (FI). While the relevance of the syndrome is gaining awareness, much remains unclear about its underlying biology. Further elucidation of the genetic determinants and possible underlying mechanisms may help improve patients' outcomes allowing healthy aging.Genotype, clinical and demographic data of subjects (aged 60-73 years) from UK Biobank were utilized. FP was defined on Fried's criteria. FI was calculated using electronic-health-records. Genome-wide-association-studies (GWAS) were conducted and polygenic-risk-scores (PRS) were calculated for both FP and FI. Functional analysis provided interpretations of underlying biology. Finally, machine-learning (ML) models were trained using clinical, demographic and PRS towards identifying frail from non-frail individuals.Thirty-one loci were significantly associated with FI accounting for 12% heritability. Seventeen of those were known associations for body-mass-index, coronary diseases, cholesterol-levels, and longevity, while the rest were novel. Significant genes CDKN2B and APOE, previously implicated in aging, were reported to be enriched in lipoprotein-particle-remodeling. Linkage-disequilibrium-regression identified specific regulation in limbic-system, associated with long-term memory and cognitive-function. XGboost was established as the best performing ML model with area-under-curve as 85%, sensitivity and specificity as 0.75 and 0.8, respectively.This study provides novel insights into increased vulnerability and risk stratification of frailty syndrome via a multi-modal approach. The findings suggest frailty as a highly polygenic-trait, enriched in cholesterol-remodeling and metabolism and to be genetically associated with cognitive abilities. ML models utilizing FP and FI + PRS were established that identified frailty-syndrome patients with high accuracy.
Collapse
Affiliation(s)
- Watson Hua-Sheng Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
| | - Nam Nhut Phan
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Oscar K Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Center for Translational Genomics and Regenerative Medicine, China Medical University Hospital, Taichung, Taiwan.
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Zhu Y, Ryu S, Tare A, Barzilai N, Atzmon G, Suh Y. Targeted sequencing of the 9p21.3 region reveals association with reduced disease risks in Ashkenazi Jewish centenarians. Aging Cell 2023; 22:e13962. [PMID: 37605876 PMCID: PMC10577543 DOI: 10.1111/acel.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Genome-wide association studies (GWAS) have pinpointed the chromosomal locus 9p21.3 as a genetic hotspot for various age-related disorders. Common genetic variants in this locus are linked to multiple traits, including coronary artery diseases, cancers, and diabetes. Centenarians are known for their reduced risk and delayed onset of these conditions. To investigate whether this evasion of disease risks involves diminished genetic risks in the 9p21.3 locus, we sequenced this region in an Ashkenazi Jewish centenarian cohort (centenarians: n = 450, healthy controls: n = 500). Risk alleles associated with cancers, glaucoma, CAD, and T2D showed a significant depletion in centenarians. Furthermore, the risk and non-risk genotypes are linked to two distinct low-frequency variant profiles, enriched in controls and centenarians, respectively. Our findings provide evidence that the extreme longevity cohort is associated with collectively lower risks of multiple age-related diseases in the 9p21.3 locus.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Obstetrics and GynecologyColumbia UniversityNew York CityNew YorkUSA
| | - Seungjin Ryu
- Department of Pharmacology, College of MedicineHallym UniversityChuncheonGangwonKorea
| | - Archana Tare
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Nir Barzilai
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Gil Atzmon
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Yousin Suh
- Department of Obstetrics and GynecologyColumbia UniversityNew York CityNew YorkUSA
- Department of Genetics and DevelopmentColumbia UniversityNew York CityNew YorkUSA
| |
Collapse
|
5
|
Zhao H, Ji Q, Wu Z, Wang S, Ren J, Yan K, Wang Z, Hu J, Chu Q, Hu H, Cai Y, Wang Q, Huang D, Ji Z, Li J, Belmonte JCI, Song M, Zhang W, Qu J, Liu GH. Destabilizing heterochromatin by APOE mediates senescence. NATURE AGING 2022; 2:303-316. [PMID: 35368774 DOI: 10.1038/s43587-022-00186-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/01/2022] [Indexed: 04/30/2023]
Abstract
Apolipoprotein E (APOE) is a component of lipoprotein particles that function in the homeostasis of cholesterol and other lipids. Although APOE is genetically associated with human longevity and Alzheimer's disease, its mechanistic role in aging is largely unknown. Here, we used human genetic, stress-induced and physiological cellular aging models to explore APOE-driven processes in stem cell homeostasis and aging. We report that in aged human mesenchymal progenitor cells (MPCs), APOE accumulation is a driver for cellular senescence. By contrast, CRISPR-Cas9-mediated deletion of APOE endows human MPCs with resistance to cellular senescence. Mechanistically, we discovered that APOE functions as a destabilizer for heterochromatin. Specifically, increased APOE leads to the degradation of nuclear lamina proteins and a heterochromatin-associated protein KRAB-associated protein 1 via the autophagy-lysosomal pathway, thereby disrupting heterochromatin and causing senescence. Altogether, our findings uncover a role of APOE as an epigenetic mediator of senescence and provide potential targets to ameliorate aging-related diseases.
Collapse
Affiliation(s)
- Hongkai Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
| | - Qianzhao Ji
- University of the Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Chongqing Renji Hospital, University of the Chinese Academy of Sciences, Chongqing, China
| | - Jie Ren
- University of the Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianli Hu
- University of the Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Huifang Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qiaoran Wang
- University of the Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | | | - Moshi Song
- University of the Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Weiqi Zhang
- University of the Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Science and Technology of China, Hefei, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- University of the Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Basavaraju P, Balasubramani R, Kathiresan DS, Devaraj I, Babu K, Alagarsamy V, Puthamohan VM. Genetic Regulatory Networks of Apolipoproteins and Associated Medical Risks. Front Cardiovasc Med 2022; 8:788852. [PMID: 35071357 PMCID: PMC8770923 DOI: 10.3389/fcvm.2021.788852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Apolipoproteins (APO proteins) are the lipoprotein family proteins that play key roles in transporting lipoproteins all over the body. There are nearly more than twenty members reported in the APO protein family, among which the A, B, C, E, and L play major roles in contributing genetic risks to several disorders. Among these genetic risks, the single nucleotide polymorphisms (SNPs), involving the variation of single nucleotide base pairs, and their contributing polymorphisms play crucial roles in the apolipoprotein family and its concordant disease heterogeneity that have predominantly recurred through the years. In this review, we have contributed a handful of information on such genetic polymorphisms that include APOE, ApoA1/B ratio, and A1/C3/A4/A5 gene cluster-based population genetic studies carried throughout the world, to elaborately discuss the effects of various genetic polymorphisms in imparting various medical conditions, such as obesity, cardiovascular, stroke, Alzheimer's disease, diabetes, vascular complications, and other associated risks.
Collapse
Affiliation(s)
- Preethi Basavaraju
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Rubadevi Balasubramani
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Divya Sri Kathiresan
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Ilakkiyapavai Devaraj
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Kavipriya Babu
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vasanthakumar Alagarsamy
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
- *Correspondence: Vinayaga Moorthi Puthamohan
| |
Collapse
|
7
|
Kretzschmar GC, Alencar NM, da Silva SSL, Sulzbach CD, Meissner CG, Petzl-Erler ML, Souza RLR, Boldt ABW. GWAS-Top Polymorphisms Associated With Late-Onset Alzheimer Disease in Brazil: Pointing Out Possible New Culprits Among Non-Coding RNAs. Front Mol Biosci 2021; 8:632314. [PMID: 34291080 PMCID: PMC8287568 DOI: 10.3389/fmolb.2021.632314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/31/2021] [Indexed: 01/06/2023] Open
Abstract
Several genome-wide association studies (GWAS) have been carried out with late-onset Alzheimer's disease (LOAD), mainly in European and Asian populations. Different polymorphisms were associated, but several of them without a functional explanation. GWAS are fundamental for identifying loci associated with diseases, although they often do not point to causal polymorphisms. In this sense, functional investigations are a fundamental tool for discovering causality, although the failure of this validation does not necessarily indicate a non-causality. Furthermore, the allele frequency of associated genetic variants may vary widely between populations, requiring replication of these associations in other ethnicities. In this sense, our study sought to replicate in 150 AD patients and 114 elderly controls from the South Brazilian population 18 single-nucleotide polymorphisms (SNPs) associated with AD in European GWAS, with further functional investigation using bioinformatic tools for the associated SNPs. Of the 18 SNPs investigated, only four were associated in our population: rs769449 (APOE), rs10838725 (CELF1), rs6733839, and rs744373 (BIN1-CYP27C1). We identified 54 variants in linkage disequilibrium (LD) with the associated SNPs, most of which act as expression or splicing quantitative trait loci (eQTLs/sQTLs) in genes previously associated with AD or with a possible functional role in the disease, such as CELF1, MADD, MYBPC3, NR1H3, NUP160, SPI1, and TOMM40. Interestingly, eight of these variants are located within long non-coding RNA (lncRNA) genes that have not been previously investigated regarding AD. Some of these polymorphisms can result in changes in these lncRNAs' secondary structures, leading to either loss or gain of microRNA (miRNA)-binding sites, deregulating downstream pathways. Our pioneering work not only replicated LOAD association with polymorphisms not yet associated in the Brazilian population but also identified six possible lncRNAs that may interfere in LOAD development. The results lead us to emphasize the importance of functional exploration of associations found in large-scale association studies in different populations to base personalized and inclusive medicine in the future.
Collapse
Affiliation(s)
- Gabriela Canalli Kretzschmar
- Laboratory of Human Molecular Genetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Nina Moura Alencar
- Laboratory of Human Molecular Genetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Saritha Suellen Lopes da Silva
- Laboratory of Polymorphism and Linkage, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Carla Daniela Sulzbach
- Laboratory of Polymorphism and Linkage, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Caroline Grisbach Meissner
- Laboratory of Human Molecular Genetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Ricardo Lehtonen R. Souza
- Laboratory of Polymorphism and Linkage, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
8
|
Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener 2021; 16:29. [PMID: 33926499 PMCID: PMC8086309 DOI: 10.1186/s13024-021-00452-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that is characterized by neurodegeneration, cognitive impairment, and an eventual inability to perform daily tasks. The etiology of Alzheimer's is complex, with numerous environmental and genetic factors contributing to the disease. Late-onset AD is highly heritable (60 to 80%), and over 40 risk loci for AD have been identified via large genome-wide association studies, most of which are common variants with small effect sizes. Although these discoveries have provided novel insight on biological contributors to AD, disease-modifying treatments remain elusive. Recently, the concepts of resistance to pathology and resilience against the downstream consequences of pathology have been of particular interest in the Alzheimer's field as studies continue to identify individuals who evade the pathology of the disease even into late life and individuals who have all of the neuropathological features of AD but evade downstream neurodegeneration and cognitive impairment. It has been hypothesized that a shift in focus from Alzheimer's risk to resilience presents an opportunity to uncover novel biological mechanisms of AD and to identify promising therapeutic targets for the disease. This review will highlight a selection of genes and variants that have been reported to confer protection from AD within the literature and will also discuss evidence for the biological underpinnings behind their protective effect with a focus on genes involved in lipid metabolism, cellular trafficking, endosomal and lysosomal function, synaptic function, and inflammation. Finally, we offer some recommendations in areas where the field can rapidly advance towards precision interventions that leverage the ideas of protection and resilience for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Rebecca L. Weiner
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
9
|
Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. The aging lung: Physiology, disease, and immunity. Cell 2021; 184:1990-2019. [PMID: 33811810 PMCID: PMC8052295 DOI: 10.1016/j.cell.2021.03.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Jared H Rowe
- Division of Hematology Boston Children's Hospital and Division of Pediatric Oncology Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Disease, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Shiner T, Mirelman A, Rosenblum Y, Kavé G, Weisz MG, Bar-Shira A, Goldstein O, Thaler A, Gurevich T, Orr-Urtreger A, Giladi N, Bregman N. The Effect of GBA Mutations and APOE Polymorphisms on Dementia with Lewy Bodies in Ashkenazi Jews. J Alzheimers Dis 2021; 80:1221-1229. [PMID: 33646158 PMCID: PMC8150431 DOI: 10.3233/jad-201295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Glucocerebrosidase (GBA) gene mutations and APOE polymorphisms are common in dementia with Lewy bodies (DLB), however their clinical impact is only partially elucidated. OBJECTIVE To explore the clinical impact of mutations in the GBA gene and APOE polymorphisms separately and in combination, in a cohort of Ashkenazi Jewish (AJ) patients with DLB. METHODS One hundred consecutively recruited AJ patients with clinically diagnosed DLB underwent genotyping for GBA mutations and APOE polymorphisms, and performed cognitive and motor clinical assessments. RESULTS Thirty-two (32%) patients with DLB were carriers of GBA mutations and 33 (33%) carried an APOE ɛ4 allele. GBA mutation carriers had a younger age of onset (mean [SD] age, 67.2 years [8.9] versus 71.97 [5.91]; p = 0.03), poorer cognition as assessed by the Mini-Mental State Examination (21.41 [6.9] versus 23.97 [5.18]; p < 0.005), and more severe parkinsonism as assessed with the Unified Parkinson's Disease Rating Scale motor part III (34.41 [13.49] versus 28.38 [11.21]; p = 0.01) compared to non-carriers. There were statistically significant interactions between the two genetic factors, so that patients who carried both a mild GBA mutation and the APOE ɛ4 allele (n = 9) had more severe cognitive (p = 0.048) and motor dysfunction (p = 0.037). CONCLUSION We found a high frequency of both GBA mutations and the APOE ɛ4 allele among AJ patients with DLB, both of which have distinct effects on the clinical disease phenotype, separately and in combination.
Collapse
Affiliation(s)
- Tamara Shiner
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Yevgenia Rosenblum
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gitit Kavé
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Education and Psychology, The Open University, Raanana, Israel
| | - Mali Gana Weisz
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Orly Goldstein
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Tanya Gurevich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Noa Bregman
- Cognitive Neurology Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Khalid S, Rasheed U, Qamar U. GenF: A longevity predicting framework to aid public health sectors. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Sleep Deprivation and Neurological Disorders. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5764017. [PMID: 33381558 PMCID: PMC7755475 DOI: 10.1155/2020/5764017] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Sleep plays an important role in maintaining neuronal circuitry, signalling and helps maintain overall health and wellbeing. Sleep deprivation (SD) disturbs the circadian physiology and exerts a negative impact on brain and behavioural functions. SD impairs the cellular clearance of misfolded neurotoxin proteins like α-synuclein, amyloid-β, and tau which are involved in major neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. In addition, SD is also shown to affect the glymphatic system, a glial-dependent metabolic waste clearance pathway, causing accumulation of misfolded faulty proteins in synaptic compartments resulting in cognitive decline. Also, SD affects the immunological and redox system resulting in neuroinflammation and oxidative stress. Hence, it is important to understand the molecular and biochemical alterations that are the causative factors leading to these pathophysiological effects on the neuronal system. This review is an attempt in this direction. It provides up-to-date information on the alterations in the key processes, pathways, and proteins that are negatively affected by SD and become reasons for neurological disorders over a prolonged period of time, if left unattended.
Collapse
|
13
|
Abstract
The majority of research to understand the pathogenesis of and contributors to Alzheimer’s disease (AD) pathology, dementia, and disease progression has focused on studying individuals who have the disease or are at increased risk of having the disease. Yet there may be much to learn from individuals who have a paradoxical decreased risk of AD suggesting underlying protective factors. Centenarians demonstrate exceptional longevity that for a subset of the cohort is associated with an increased health span characterized by the delay or escape of age-related diseases including dementia. Here, I give evidence of the association of exceptional longevity with resistance and resilience to AD and describe how cohorts of centenarians and their offspring may serve as models of neuroprotection from AD. Discoveries of novel genetic, environmental, and behavioral factors that are associated with a decreased risk of AD may inform the development of interventions to slow or prevent AD in the general population. Centenarian cohorts may also be instrumental in serving as controls to individuals with AD to identify additional risk factors.
Collapse
|
14
|
Sathyan S, Verghese J. Genetics of frailty: A longevity perspective. Transl Res 2020; 221:83-96. [PMID: 32289255 PMCID: PMC7729977 DOI: 10.1016/j.trsl.2020.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Frailty is a complex late life phenotype characterized by cumulative declines in multiple physiological systems that increases the risk for disability and mortality. The biological changes associated with aging are risk factors for frailty as well as for complex diseases; whereas longevity is assumed to be an outcome of protective biological mechanisms. Understanding the interplay between biological alterations associated with aging and protective mechanisms associated with longevity in the context of frailty may help guide development of interventions to increase healthspan and promote successful aging. The complexity of these phenotypes and relatively low heritability in studies are the main roadblocks in deciphering genetic mechanisms of these age associated conditions. We review genetic research related to frailty, and discuss the possible intertwined biology of frailty and longevity.
Collapse
Affiliation(s)
- Sanish Sathyan
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
15
|
Beyond the CNS: The many peripheral roles of APOE. Neurobiol Dis 2020; 138:104809. [PMID: 32087284 DOI: 10.1016/j.nbd.2020.104809] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein E (APOE) is a multifunctional protein synthesized and secreted by multiple mammalian tissues. Although hepatocytes contribute about 75% of the peripheral pool, APOE can also be expressed in adipose tissue, the kidney, and the adrenal glands, among other tissues. High levels of APOE production also occur in the brain, where it is primarily synthesized by glia, and peripheral and brain APOE pools are thought to be distinct. In humans, APOE is polymorphic, with three major alleles (ε2, ε3, and ε4). These allelic forms dramatically alter APOE structure and function. Historically, the vast majority of research on APOE has centered on the important role it plays in modulating risk for cardiovascular disease and Alzheimer's disease. However, the established effects of this pleiotropic protein extend well beyond these two critical health challenges, with demonstrated roles across a wide spectrum of biological conditions, including adipose tissue function and obesity, metabolic syndrome and diabetes, fertility and longevity, and immune function. While the spectrum of biological systems in which APOE plays a role seems implausibly wide at first glance, there are some potential unifying mechanisms that could tie these seemingly disparate disorders together. In the current review, we aim to concisely summarize a wide breadth of APOE-associated pathologies and to analyze the influence of APOE in the development of several distinct disorders in order to provide insight into potential shared mechanisms implied in these various pathophysiological processes.
Collapse
|
16
|
Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019; 18:e13048. [PMID: 31560163 PMCID: PMC6826135 DOI: 10.1111/acel.13048] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid‐related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.
Collapse
|
17
|
Dankner R, Ben Avraham S, Harats D, Chetrit A. ApoE Genotype, Lipid Profile, Exercise, and the Associations With Cardiovascular Morbidity and 18-Year Mortality. J Gerontol A Biol Sci Med Sci 2019; 75:1887-1893. [DOI: 10.1093/gerona/glz232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractBackgroundStudies of longevity examined apolipoprotein E (ApoE), a gene involved in lipoprotein metabolism, which interacts with susceptibility to age-related diseases, and with mortality. We evaluated the association of ApoE isoforms with cardiovascular disease (CVD) and all-cause mortality.MethodsA prospective cohort of 949 survivors of the Israel Study of Glucose Intolerance, Obesity, and Hypertension, examined during 1999–2004, mean age 72 years, was followed for mortality until 2017. Participants were interviewed for lifestyle habits and medical history. Anthropometrics and biochemical markers were taken. Logistic regression was used to assess CVD morbidity and Cox proportional hazard model for mortality.ResultsThe most common genotype in the cohort was ApoE E3 (76.3%), with the other two almost equally distributed (ApoE E2 11.2% and ApoE E4 12.5%). In men only, ApoE E4 associated with CVD (adjusted odds ratio = 1.46, 95% confidence interval [CI] 0.76, 2.80) and with 18-year mortality (adjusted hazard ratio = 1.47, 95% CI 0.95, 2.26), adjusting for age, ethnicity, physical activity, hypertension, diabetes, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, triglycerides and lipid-lowering medications. Low levels of HDL cholesterol, adjusted for ApoE and the above-mentioned variables, associated with higher prevalence of CVD (adjusted odds ratio = 1.35, 95% CI 1.00, 1.83) and all-cause mortality (adjusted hazard ratio = 1.42, 95% CI 1.14, 1.78). ApoE E3 and E2 conferred a lower 18-year mortality risk in the physically active individuals, compared to the sedentary (adjusted hazard ratio = 0.57, 95% CI 0.44, 0.74, and adjusted hazard ratio = 0.53, 95% CI 0.78, 1.02, respectively).ConclusionsIn community-dwelling older adults, sociodemographic characteristics and physical activity, blood pressure and HDL-cholesterol levels, may outweigh the impact of ApoE polymorphisms on CVD morbidity and all-cause mortality.
Collapse
Affiliation(s)
- Rachel Dankner
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Ben Avraham
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
| | - Dror Harats
- Bert Strassburger Lipid Center, Sheba Medical Center, Ramat Gan, Israel
| | - Angela Chetrit
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
18
|
Giuliani C, Garagnani P, Franceschi C. Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework. Circ Res 2019; 123:745-772. [PMID: 30355083 DOI: 10.1161/circresaha.118.312562] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human longevity is a complex trait, and to disentangle its basis has a great theoretical and practical consequences for biomedicine. The genetics of human longevity is still poorly understood despite several investigations that used different strategies and protocols. Here, we argue that such rather disappointing harvest is largely because of the extraordinary complexity of the longevity phenotype in humans. The capability to reach the extreme decades of human lifespan seems to be the result of an intriguing mixture of gene-environment interactions. Accordingly, the genetics of human longevity is here described as a highly context-dependent phenomenon, within a new integrated, ecological, and evolutionary perspective, and is presented as a dynamic process, both historically and individually. The available literature has been scrutinized within this perspective, paying particular attention to factors (sex, individual biography, family, population ancestry, social structure, economic status, and education, among others) that have been relatively neglected. The strength and limitations of the most powerful and used tools, such as genome-wide association study and whole-genome sequencing, have been discussed, focusing on prominently emerged genes and regions, such as apolipoprotein E, Forkhead box O3, interleukin 6, insulin-like growth factor-1, chromosome 9p21, 5q33.3, and somatic mutations among others. The major results of this approach suggest that (1) the genetics of longevity is highly population specific; (2) small-effect alleles, pleiotropy, and the complex allele timing likely play a major role; (3) genetic risk factors are age specific and need to be integrated in the light of the geroscience perspective; (4) a close relationship between genetics of longevity and genetics of age-related diseases (especially cardiovascular diseases) do exist. Finally, the urgent need of a global approach to the largely unexplored interactions between the 3 genetics of human body, that is, nuclear, mitochondrial, and microbiomes, is stressed. We surmise that the comprehensive approach here presented will help in increasing the above-mentioned harvest.
Collapse
Affiliation(s)
- Cristina Giuliani
- From the Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology (C.G.), University of Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom (C.G.).,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Italy (C.G.)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) (P.G.), University of Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden (P.G.)
| | | |
Collapse
|
19
|
Deelen J, Evans DS, Arking DE, Tesi N, Nygaard M, Liu X, Wojczynski MK, Biggs ML, van der Spek A, Atzmon G, Ware EB, Sarnowski C, Smith AV, Seppälä I, Cordell HJ, Dose J, Amin N, Arnold AM, Ayers KL, Barzilai N, Becker EJ, Beekman M, Blanché H, Christensen K, Christiansen L, Collerton JC, Cubaynes S, Cummings SR, Davies K, Debrabant B, Deleuze JF, Duncan R, Faul JD, Franceschi C, Galan P, Gudnason V, Harris TB, Huisman M, Hurme MA, Jagger C, Jansen I, Jylhä M, Kähönen M, Karasik D, Kardia SLR, Kingston A, Kirkwood TBL, Launer LJ, Lehtimäki T, Lieb W, Lyytikäinen LP, Martin-Ruiz C, Min J, Nebel A, Newman AB, Nie C, Nohr EA, Orwoll ES, Perls TT, Province MA, Psaty BM, Raitakari OT, Reinders MJT, Robine JM, Rotter JI, Sebastiani P, Smith J, Sørensen TIA, Taylor KD, Uitterlinden AG, van der Flier W, van der Lee SJ, van Duijn CM, van Heemst D, Vaupel JW, Weir D, Ye K, Zeng Y, Zheng W, Holstege H, Kiel DP, Lunetta KL, Slagboom PE, Murabito JM. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun 2019; 10:3669. [PMID: 31413261 PMCID: PMC6694136 DOI: 10.1038/s41467-019-11558-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.
Collapse
Affiliation(s)
- Joris Deelen
- Max Planck Institute for Biology of Ageing, 50866, Cologne, Germany.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA.
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Niccolò Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Marianne Nygaard
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
| | - Xiaomin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | | | - Gil Atzmon
- Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Erin B Ware
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Albert V Smith
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Icelandic Heart Association, 201, Kópavogur, Iceland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, USA
| | | | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | - Kaare Christensen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
- Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense C, Denmark
| | - Lene Christiansen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Joanna C Collerton
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sarah Cubaynes
- MMDN, Univ. Montpellier, EPHE, Unité Inserm 1198, PSL Research University, 34095, Montpellier, France
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA
| | - Karen Davies
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Birgit Debrabant
- Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
| | - Jean-François Deleuze
- Fondation Jean Dausset-CEPH, 75010, Paris, France
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, 91000, Evry, France
| | - Rachel Duncan
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Jessica D Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Claudio Franceschi
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
- IRCCS Institute of Neurological Sciences of Bologna (ISNB), 40124, Bologna, Italy
| | - Pilar Galan
- EREN, UMR U1153 Inserm/U1125 Inra/Cnam/Paris 13, Université Paris 13, CRESS, 93017, Bobigny, France
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, 1007 MB, Amsterdam, The Netherlands
| | - Mikko A Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Carol Jagger
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Iris Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marja Jylhä
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), Tampere University, 33104, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - David Karasik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13010, Israel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
| | - Sharon L R Kardia
- School of Public Health, Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Kingston
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Thomas B L Kirkwood
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Kiel University, 24105, Kiel, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Carmen Martin-Ruiz
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Junxia Min
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 311058, China
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Chao Nie
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Ellen A Nohr
- Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - Thomas T Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Department of Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20521, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20014, Turku, Finland
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Jean-Marie Robine
- MMDN, Univ. Montpellier, EPHE, Unité Inserm 1198, PSL Research University, 34095, Montpellier, France
- CERMES3, UMR CNRS 8211-Unité Inserm 988-EHESS-Université Paris Descartes, 94801, Paris, France
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Division of Genetic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Jennifer Smith
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
- School of Public Health, Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, and Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
- MRC Integrative Epidemiology Unit, Bristol University, BS8 2BN, Bristol, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - James W Vaupel
- Max Planck Institute for Demographic Research, 18057, Rostock, Germany
| | - David Weir
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development and Raissun Institute for Advanced Studies, Peking University, 100871, Beijing, China
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, 27710, USA
| | - Wanlin Zheng
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA.
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
20
|
The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes (Basel) 2019; 10:genes10030222. [PMID: 30884759 PMCID: PMC6471373 DOI: 10.3390/genes10030222] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.
Collapse
|
21
|
Tindale LC, Salema D, Brooks-Wilson AR. 10-year follow-up of the Super-Seniors Study: compression of morbidity and genetic factors. BMC Geriatr 2019; 19:58. [PMID: 30819100 PMCID: PMC6394013 DOI: 10.1186/s12877-019-1080-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/19/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Super-Seniors are healthy, long-lived individuals who were recruited at age 85 years or older with no history of cancer, cardiovascular disease, diabetes, dementia, or major pulmonary disease. In a 10-year follow-up, we aimed to determine whether surviving Super-Seniors showed compression of morbidity, and to test whether the allele frequencies of longevity-associated variants in APOE and FOXO3 were more extreme in such long-term survivors. METHODS Super-Seniors who survived and were contactable were re-interviewed 10 years after initial characterization. Health and lifestyle were characterized via questionnaire. Geriatric tests including the Timed Up and Go (TUG), Geriatric Depression Scale (GDS), Instrumental Activities of Daily Living (IADL) and the Mini-Mental State Exam (MMSE) were administered, and data were compared to results from on average 10 years earlier. As well, genotype and allele frequencies for SNPs rs7412 and rs429358 in APOE, and rs2802292 in FOXO3 were compared to the frequencies in the original collection of Super-Seniors and mid-life controls. RESULTS Of the 480 Super-Seniors recruited from 2004 to 2007, 13 were alive, contactable, and consented to re-interview (mean age = 100.1 ± 3.3). Eight of these 13 participants (62%) still met Super-Senior health criteria. Diseases that occurred in late life were cardiovascular (5 of 13; 38%) and lung disease (1 of 13; 8%). MMSE and IADL scores declined in the decade between interviews, and GDS and TUG scores increased. The surviving group of centenarians had a higher frequency of APOE and FOXO3 longevity-associated variants even when compared to the original long-lived Super-Senior cohort. CONCLUSIONS Although physical and mental decline occurred in the decade between interviews, the majority of Super-Seniors re-interviewed still met the original health criteria. These observations are consistent with reports of compression of morbidity at extreme ages, particularly in centenarians. The increased frequency of longevity- associated variants in this small group of survivors is consistent with studies that reported genetics as a larger contributor to longevity in older age groups.
Collapse
Affiliation(s)
- Lauren C. Tindale
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Diane Salema
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
| | - Angela R. Brooks-Wilson
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
22
|
Tesi N, van der Lee SJ, Hulsman M, Jansen IE, Stringa N, van Schoor N, Meijers-Heijboer H, Huisman M, Scheltens P, Reinders MJT, van der Flier WM, Holstege H. Centenarian controls increase variant effect sizes by an average twofold in an extreme case-extreme control analysis of Alzheimer's disease. Eur J Hum Genet 2019; 27:244-253. [PMID: 30258121 PMCID: PMC6336855 DOI: 10.1038/s41431-018-0273-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
The detection of genetic loci associated with Alzheimer's disease (AD) requires large numbers of cases and controls because variant effect sizes are mostly small. We hypothesized that variant effect sizes should increase when individuals who represent the extreme ends of a disease spectrum are considered, as their genomes are assumed to be maximally enriched or depleted with disease-associated genetic variants. We used 1,073 extensively phenotyped AD cases with relatively young age at onset as extreme cases (66.3 ± 7.9 years), 1,664 age-matched controls (66.0 ± 6.5 years) and 255 cognitively healthy centenarians as extreme controls (101.4 ± 1.3 years). We estimated the effect size of 29 variants that were previously associated with AD in genome-wide association studies. Comparing extreme AD cases with centenarian controls increased the variant effect size relative to published effect sizes by on average 1.90-fold (SE = 0.29, p = 9.0 × 10-4). The effect size increase was largest for the rare high-impact TREM2 (R74H) variant (6.5-fold), and significant for variants in/near ECHDC3 (4.6-fold), SLC24A4-RIN3 (4.5-fold), NME8 (3.8-fold), PLCG2 (3.3-fold), APOE-ε2 (2.2-fold), and APOE-ε4 (twofold). Comparing extreme phenotypes enabled us to replicate the AD association for 10 variants (p < 0.05) in relatively small samples. The increase in effect sizes depended mainly on using centenarians as extreme controls: the average variant effect size was not increased in a comparison of extreme AD cases and age-matched controls (0.94-fold, p = 6.8 × 10-1), suggesting that on average the tested genetic variants did not explain the extremity of the AD cases. Concluding, using centenarians as extreme controls in AD case-control studies boosts the variant effect size by on average twofold, allowing the replication of disease-association in relatively small samples.
Collapse
Affiliation(s)
- Niccolò Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU, Amsterdam, The Netherlands
| | - Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Natasja van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | | | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands.
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
23
|
Yashin AI, Arbeev KG, Wu D, Arbeeva LS, Bagley O, Stallard E, Kulminski AM, Akushevich I, Fang F, Wojczynski MK, Christensen K, Newman AB, Boudreau RM, Province MA, Thielke S, Perls TT, An P, Elo I, Ukraintseva SV. Genetics of Human Longevity From Incomplete Data: New Findings From the Long Life Family Study. J Gerontol A Biol Sci Med Sci 2018; 73:1472-1481. [PMID: 30299504 PMCID: PMC6175028 DOI: 10.1093/gerona/gly057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 02/04/2023] Open
Abstract
The special design of the Long Life Family Study provides a unique opportunity to investigate the genetics of human longevity by analyzing data on exceptional lifespans in families. In this article, we performed two series of genome wide association studies of human longevity which differed with respect to whether missing lifespan data were predicted or not predicted. We showed that the use of predicted lifespan is most beneficial when the follow-up period is relatively short. In addition to detection of strong associations of SNPs in APOE, TOMM40, NECTIN2, and APOC1 genes with longevity, we also detected a strong new association with longevity of rs1927465, located between the CYP26A1 and MYOF genes on chromosome 10. The association was confirmed using data from the Health and Retirement Study. We discuss the biological relevance of the detected SNPs to human longevity.
Collapse
Affiliation(s)
- Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Liubov S Arbeeva
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Fang Fang
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Kaare Christensen
- Department of Epidemiology, University of Southern Denmark, Odense, Denmark
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert M Boudreau
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael A Province
- Department of Genetics, Washington University in St Louis, St Louis, Missouri
| | | | - Thomas T Perls
- Medical Center, Boston University, Boston, Massachusetts
| | - Ping An
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Irma Elo
- Department of Sociology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Svetlana V Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| |
Collapse
|
24
|
Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, Lu L, Auwerx J, Williams RW. Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2718-2732. [PMID: 29410319 PMCID: PMC6066442 DOI: 10.1016/j.bbadis.2018.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Abstract
Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan.
Collapse
Affiliation(s)
- Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Maroun Bou Sleiman
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James F Nelson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johan Auwerx
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Ahmadian N, Hejazi S, Mahmoudi J, Talebi M. Tau Pathology of Alzheimer Disease: Possible Role of Sleep Deprivation. Basic Clin Neurosci 2018; 9:307-316. [PMID: 30719245 PMCID: PMC6360494 DOI: 10.32598/bcn.9.5.307] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/17/2017] [Accepted: 02/18/2018] [Indexed: 12/24/2022] Open
Abstract
Sleep deprivation is a common complaint in modern societies. Insufficient sleep has increased the risk of catching neurodegenerative diseases such as Alzheimer’s. Several studies have indicated that restricted sleep increases the level of deposition of β-amyloid and formation of neurofibrillary tangles, the major brain microstructural hallmarks for Alzheimer disease. The mechanisms by which sleep deprivation affects the pathology of Alzheimer disease has not yet been fully and definitively identified. However, risk factors like apolipoprotein E risk alleles, kinases and phosphatases dysregulation, reactive oxygen species, endoplasmic reticulum damages, glymphatic system dysfunctions and orexinergic system inefficacy have been identified as the most important factors which mediates between the two conditions. In this review, these factors are briefly discussed.
Collapse
Affiliation(s)
- Nahid Ahmadian
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Hejazi
- Department of Anatomy, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Miller M. Low-Density Lipoprotein Triglycerides: Widening the Atherogenic Landscape in CVD Risk Assessment. J Am Coll Cardiol 2018; 72:170-172. [PMID: 29976290 DOI: 10.1016/j.jacc.2018.03.541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Michael Miller
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
27
|
Yashin AI, Fang F, Kovtun M, Wu D, Duan M, Arbeev K, Akushevich I, Kulminski A, Culminskaya I, Zhbannikov I, Yashkin A, Stallard E, Ukraintseva S. Hidden heterogeneity in Alzheimer's disease: Insights from genetic association studies and other analyses. Exp Gerontol 2018; 107:148-160. [PMID: 29107063 PMCID: PMC5920782 DOI: 10.1016/j.exger.2017.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
Despite evident success in clarifying many important features of Alzheimer's disease (AD) the efficient methods of its prevention and treatment are not yet available. The reasons are likely to be the fact that AD is a multifactorial and heterogeneous health disorder with multiple alternative pathways of disease development and progression. The availability of genetic data on individuals participated in longitudinal studies of aging health and longevity, as well as on participants of cross-sectional case-control studies allow for investigating genetic and non-genetic connections with AD and to link the results of these analyses with research findings obtained in clinical, experimental, and molecular biological studies of this health disorder. The objective of this paper is to perform GWAS of AD in several study populations and investigate possible roles of detected genetic factors in developing AD hallmarks and in other health disorders. The data collected in the Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), Health and Retirement Study (HRS) and Late Onset Alzheimer's Disease Family Study (LOADFS) were used in these analyses. The logistic regression and Cox's regression were used as statistical models in GWAS. The results of analyses confirmed strong associations of genetic variants from well-known genes APOE, TOMM40, PVRL2 (NECTIN2), and APOC1 with AD. Possible roles of these genes in pathological mechanisms resulting in development of hallmarks of AD are described. Many genes whose connection with AD was detected in other studies showed nominally significant associations with this health disorder in our study. The evidence on genetic connections between AD and vulnerability to infection, as well as between AD and other health disorders, such as cancer and type 2 diabetes, were investigated. The progress in uncovering hidden heterogeneity in AD would be substantially facilitated if common mechanisms involved in development of AD, its hallmarks, and AD related chronic conditions were investigated in their mutual connection.
Collapse
Affiliation(s)
- Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA.
| | - Fang Fang
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Mikhail Kovtun
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Konstantin Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Alexander Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Ilya Zhbannikov
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024 W. Main Street, Durham, NC 27705, USA.
| |
Collapse
|
28
|
Sebastiani P, Gurinovich A, Bae H, Andersen S, Malovini A, Atzmon G, Villa F, Kraja AT, Ben-Avraham D, Barzilai N, Puca A, Perls TT. Four Genome-Wide Association Studies Identify New Extreme Longevity Variants. J Gerontol A Biol Sci Med Sci 2017; 72:1453-1464. [PMID: 28329165 DOI: 10.1093/gerona/glx027] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/14/2017] [Indexed: 01/10/2023] Open
Abstract
The search for the genetic determinants of extreme human longevity has been challenged by the phenotype's rarity and its nonspecific definition by investigators. To address these issues, we established a consortium of four studies of extreme longevity that contributed 2,070 individuals who survived to the oldest one percentile of survival for the 1900 U.S. birth year cohort. We conducted various analyses to discover longevity-associated variants (LAV) and characterized those LAVs that differentiate survival to extreme age at death (eSAVs) from those LAVs that become more frequent in centenarians because of mortality selection (eg, survival to younger years). The analyses identified new rare variants in chromosomes 4 and 7 associated with extreme survival and with reduced risk for cardiovascular disease and Alzheimer's disease. The results confirm the importance of studying truly rare survival to discover those combinations of common and rare variants associated with extreme longevity and longer health span.
Collapse
Affiliation(s)
- Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | | | - Harold Bae
- College of Public Health and Human Sciences, Oregon State University, Corvallis
| | - Stacy Andersen
- Geriatrics Section, Department of Medicine, Boston University School of Medicine & Boston Medical Center, Massachusetts
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
| | - Gil Atzmon
- Department of Natural Science, University of Haifa, Israel.,Department of Medicine.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Francesco Villa
- IRCCS MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Aldi T Kraja
- Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, Missouri
| | - Danny Ben-Avraham
- Department of Medicine.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Nir Barzilai
- Department of Medicine.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Annibale Puca
- IRCCS MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Thomas T Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine & Boston Medical Center, Massachusetts
| |
Collapse
|
29
|
Cognitive status in the oldest old and centenarians: a condition crucial for quality of life methodologically difficult to assess. Mech Ageing Dev 2017; 165:185-194. [PMID: 28286214 DOI: 10.1016/j.mad.2017.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2017] [Accepted: 02/07/2017] [Indexed: 12/20/2022]
Abstract
Human life expectancy and the number of the oldest old are rapidly increasing worldwide. Advanced age is the main risk factor for dementia, representing one of the major causes of disability/dependency among older people with a strong impact on their families/caregivers. Centenarians have reached the extreme limits of human life escaping or delaying the major age-related diseases. Thus, these extraordinary individuals embody the best model to answer the crucial question if cognitive decline and dementia are progressive and unavoidable occurrences of increasing age. Despite a growing amount of data underlines the importance of cognitive function for quality of life and survival in old age, studies on centenarians have paid more attention to their physical condition rather than the assessment of their actual cognitive abilities. Accordingly, this work aims to summarize available data on the prevalence of dementia in centenarians and to critically address topics which can have a relevant impact on the cognitive assessment/status of the oldest old: (i) lack of standardized tools for cognitive assessment; (ii) criteria and threshold to establish the presence of dementia; (iii) influence of birth cohort and education; (iv) role of depression or positive attitude towards life; (v) gender differences.
Collapse
|
30
|
Takao M, Hirose N, Arai Y, Mihara B, Mimura M. Neuropathology of supercentenarians - four autopsy case studies. Acta Neuropathol Commun 2016; 4:97. [PMID: 27590044 PMCID: PMC5010697 DOI: 10.1186/s40478-016-0368-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
Supercentenarians (aged 110 years old or more) are extremely rare in the world population (the number of living supercentenarians is estimated as 47 in the world), and details about their neuropathological information are limited. Based on previous studies, centenarians (aged 100–109 years old) exhibit several types of neuropathological changes, such as Alzheimer’s disease and Lewy body disease pathology, primary age-related tauopathy, TDP-43 pathology, and hippocampal sclerosis. In the present study, we provide results from neuropathological analyses of four supercentenarian autopsy cases using conventional and immunohistochemical analysis for neurodegenerative disorders. In particular, we focused on the pathology of Alzheimer’s disease and Lewy body disease, as well as the status of hippocampal sclerosis, TDP-43 pathology, aging-related tau astrogliopathy, and cerebrovascular diseases. Three cases were characterized as an “intermediate” level of Alzheimer’s disease changes (NIA-AA guideline) and one was characterized as primary age-related tauopathy. TDP-43 deposits were present in the hippocampus in two cases. Neither Lewy body pathology nor hippocampal sclerosis was observed. Aging-related tau astrogliopathy was consistently observed, particularly in the basal forebrain. Small vessel diseases were also present, but they were relatively mild for cerebral amyloid-beta angiopathy and arteriolosclerosis. Although our study involved a small number of cases, the results provide a better understanding about human longevity. Neuropathological alterations associated with aging were mild to moderate in the supercentenarian brain, suggesting that these individuals might have some neuroprotective factors against aging. Future prospective studies and extensive molecular analyses are needed to determine the mechanisms of human longevity.
Collapse
|
31
|
Heffernan AL, Chidgey C, Peng P, Masters CL, Roberts BR. The Neurobiology and Age-Related Prevalence of the ε4 Allele of Apolipoprotein E in Alzheimer's Disease Cohorts. J Mol Neurosci 2016; 60:316-324. [PMID: 27498201 DOI: 10.1007/s12031-016-0804-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterised by amyloid beta (Aβ) plaques and tau neurofibrillary tangles in the brain. Human apolipoprotein E (ApoE) is a lipid transport protein coded by the polymorphic APOE gene, with three major alleles: ε2, ε3 and ε4. After age, the ε4 allele is the greatest risk factor for developing sporadic AD, conferring an increased risk of 3-4 and 8-12 times for one or two copies of the allele, respectively. This risk is reported to vary by demographic factors including sex, ethnicity and geography. In order to understand the risk of ApoE ε4 in relation to age, the primary risk factor for developing AD, we need to understand how the prevalence of APOE genotypes changes with age. Here, we present the first data on age-related prevalence of APOE ε4 in AD in three AD cohorts in Australia and the USA. There is a significant association between age and ε4 prevalence, particularly for ε4 homozygotes, such that as age increases the prevalence of ε4 decreases. Further studies on a random, population-based sample of the population are needed to provide more generalizable data, particularly in the >90-year-old age group.
Collapse
Affiliation(s)
- Amy L Heffernan
- University of Melbourne, The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Cameron Chidgey
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Po Peng
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Colin L Masters
- University of Melbourne, The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Blaine R Roberts
- University of Melbourne, The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Cooperative Research Centre for Mental Health, Parkville, VIC, Australia.
| |
Collapse
|
32
|
Freudenberg-Hua Y, Li W, Abhyankar A, Vacic V, Cortes V, Ben-Avraham D, Koppel J, Greenwald B, Germer S, Darnell RB, Barzilai N, Freudenberg J, Atzmon G, Davies P. Differential burden of rare protein truncating variants in Alzheimer's disease patients compared to centenarians. Hum Mol Genet 2016; 25:3096-3105. [PMID: 27260402 DOI: 10.1093/hmg/ddw150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022] Open
Abstract
We compared coding region variants of 53 cognitively healthy centenarians and 45 patients with Alzheimer's disease (AD), all of Ashkenazi Jewish (AJ) ancestry. Despite the small sample size, the known AD risk variant APOE4 reached genome-wide significance, indicating the advantage of utilizing 'super-controls'. We restricted our subsequent analysis to rare variants observed at most once in the 1000 Genomes database and having a minor allele frequency below 2% in our AJ sample. We compared the burden of predicted protein altering variants between cases and controls as normalized by the level of rare synonymous variants. We observed an increased burden among AD subjects for predicted loss-of-function (LoFs) variants defined as stop-gain, frame shift, initiation codon (INIT) and splice site mutations (n = 930, OR = 1.3, P = 1.5×E-5). There was no enrichment across all rare protein altering variants defined as missense plus LoFs, in frame indels and stop-loss variants (n = 13 014, OR = 0.97, P = 0.47). Among LoFs, the strongest burden was observed for INIT (OR = 2.16, P = 0.0097) and premature stop variants predicted to cause non-sense-mediated decay in the majority of transcripts (NMD) (OR = 1.98, P = 0.02). Notably, this increased burden of NMD, INIT and splice variants was more pronounced in a set of 1397 innate immune genes (OR = 4.55, P = 0.0043). Further comparison to additional exomes indicates that the difference in LoF burden originated both from the AD and centenarian sample. In summary, we observed an overall increased burden of rare LoFs in AD subjects as compared to centenarians, and this enrichment is more pronounced for innate immune genes.
Collapse
Affiliation(s)
- Yun Freudenberg-Hua
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA .,Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY 11004, USA
| | - Wentian Li
- Robert S Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | | | | | - Vanessa Cortes
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Danny Ben-Avraham
- Institute for Aging Research and the Diabetes Research Center, Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeremy Koppel
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Blaine Greenwald
- Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY 11004, USA
| | | | | | | | - Nir Barzilai
- Institute for Aging Research and the Diabetes Research Center, Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jan Freudenberg
- Robert S Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA.,The Regeneron Genetics Center, Tarrytown, NY 10591, USA and
| | - Gil Atzmon
- Institute for Aging Research and the Diabetes Research Center, Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel
| | - Peter Davies
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|