1
|
Wu Y, Liu W, Li J, Shi H, Ma S, Wang D, Pan B, Xiao R, Jiang H, Liu X. Decreased Tiam1-mediated Rac1 activation is responsible for impaired directional persistence of chondrocyte migration in microtia. J Cell Mol Med 2024; 28:e18443. [PMID: 38837873 PMCID: PMC11149491 DOI: 10.1111/jcmm.18443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
The human auricle has a complex structure, and microtia is a congenital malformation characterized by decreased size and loss of elaborate structure in the affected ear with a high incidence. Our previous studies suggest that inadequate cell migration is the primary cytological basis for the pathogenesis of microtia, however, the underlying mechanism is unclear. Here, we further demonstrate that microtia chondrocytes show a decreased directional persistence during cell migration. Directional persistence can define a leading edge associated with oriented movement, and any mistakes would affect cell function and tissue morphology. By the screening of motility-related genes and subsequent confirmations, active Rac1 (Rac1-GTP) is identified to be critical for the impaired directional persistence of microtia chondrocytes migration. Moreover, Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) are detected, and overexpression of Tiam1 significantly upregulates the level of Rac1-GTP and improves directional migration in microtia chondrocytes. Consistently, decreased expression patterns of Tiam1 and active Rac1 are found in microtia mouse models, Bmp5se/J and Prkralear-3J/GrsrJ. Collectively, our results provide new insights into microtia development and therapeutic strategies of tissue engineering for microtia patients.
Collapse
Affiliation(s)
- Yi Wu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jia Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hang Shi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shize Ma
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Di Wang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyue Jiang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Percival KM, Paul V, Husseini GA. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int J Mol Sci 2024; 25:6012. [PMID: 38892199 PMCID: PMC11172494 DOI: 10.3390/ijms25116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In exploring the challenges of bone repair and regeneration, this review evaluates the potential of bone tissue engineering (BTE) as a viable alternative to traditional methods, such as autografts and allografts. Key developments in biomaterials and scaffold fabrication techniques, such as additive manufacturing and cell and bioactive molecule-laden scaffolds, are discussed, along with the integration of bio-responsive scaffolds, which can respond to physical and chemical stimuli. These advancements collectively aim to mimic the natural microenvironment of bone, thereby enhancing osteogenesis and facilitating the formation of new tissue. Through a comprehensive combination of in vitro and in vivo studies, we scrutinize the biocompatibility, osteoinductivity, and osteoconductivity of these engineered scaffolds, as well as their interactions with critical cellular players in bone healing processes. Findings from scaffold fabrication techniques and bio-responsive scaffolds indicate that incorporating nanostructured materials and bioactive compounds is particularly effective in promoting the recruitment and differentiation of osteoprogenitor cells. The therapeutic potential of these advanced biomaterials in clinical settings is widely recognized and the paper advocates continued research into multi-responsive scaffold systems.
Collapse
Affiliation(s)
- Kelly M. Percival
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
3
|
Gao J, Ren J, Ye H, Chu W, Ding X, Ding L, Fu Y. Thymosin beta 10 loaded ZIF-8/sericin hydrogel promoting angiogenesis and osteogenesis for bone regeneration. Int J Biol Macromol 2024; 267:131562. [PMID: 38626832 DOI: 10.1016/j.ijbiomac.2024.131562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Angiogenesis is pivotal for osteogenesis during bone regeneration. A hydrogel that promotes both angiogenesis and osteogenesis is essential in bone tissue engineering. However, creating scaffolds with the ideal balance of biodegradability, osteogenic, and angiogenic properties poses a challenge. Thymosin beta 10 (TMSB10), known for its dual role in angiogenesis and osteogenesis differentiation, faces limitations due to protein activity preservation. To tackle this issue, ZIF-8 was engineered as a carrier for TMSB10 (TMSB10@ZIF-8), and subsequently integrated into the self-assembled sericin hydrogel. The efficacy of the composite hydrogel in bone repair was assessed using a rat cranial defect model. Characterization of the nanocomposites confirmed the successful synthesis of TMSB10@ZIF-8, with a TMSB10 encapsulation efficiency of 88.21 %. The sustained release of TMSB10 from TMSB10@ZIF-8 has significantly enhanced tube formation in human umbilical vein endothelial cells (HUVECs) in vitro and promoted angiogenesis in the chicken chorioallantoic membrane (CAM) model in vivo. It has markedly improved the osteogenic differentiation ability of MC 3 T3-E1 cells in vitro. 8 weeks post-implantation, the TMSB10@ZIF-8/ Sericin hydrogel group exhibited significant bone healing (86.77 ± 8.91 %), outperforming controls. Thus, the TMSB10@ZIF-8/Sericin hydrogel, leveraging ZIF-8 for TMSB10 delivery, emerges as a promising bone regeneration scaffold with substantial clinical application potential.
Collapse
Affiliation(s)
- Jia Gao
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin 130000, PR China
| | - Hanjie Ye
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Wenhui Chu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Xuankai Ding
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Lingzhi Ding
- Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
4
|
Hakim LK, Yari A, Nikparto N, Mehraban SH, Cheperli S, Asadi A, Darehdor AA, Nezaminia S, Dortaj D, Nazari Y, Dehghan M, Hojjat P, Mohajeri M, Hasani Jebelli MS. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health 2024; 24:126. [PMID: 38267933 PMCID: PMC10809618 DOI: 10.1186/s12903-024-03911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND AIM Dental implantology has revolutionized oral rehabilitation, offering a sophisticated solution for restoring missing teeth. Despite advancements, issues like infection, inflammation, and osseointegration persist. Nano and biomaterials, with their unique properties, present promising opportunities for enhancing dental implant therapies by improving drug delivery systems. This review discussed the current applications of nano and biomaterials in drug delivery for dental implants. METHOD A literature review examined recent studies and advancements in nano and biomaterials for drug delivery in dental implantology. Various materials, including nanoparticles, biocompatible polymers, and bioactive coatings, were reviewed for their efficacy in controlled drug release, antimicrobial properties, and promotion of osseointegration. RESULTS Nano and biomaterials exhibit considerable potential in improving drug delivery for dental implants. Nanostructured drug carriers demonstrate enhanced therapeutic efficacy, sustained release profiles, and improved biocompatibility. Furthermore, bioactive coatings contribute to better osseointegration and reduced risks of infections. CONCLUSION Integrating current nano and biomaterials in drug delivery for dental implants holds promise for advancing clinical outcomes. Enhanced drug delivery systems can mitigate complications associated with dental implant procedures, offering improved infection control, reduced inflammation, and optimized osseointegration.
Collapse
Affiliation(s)
| | - Amir Yari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Nariman Nikparto
- Oral and Maxillofacial Surgeon (OMFS), Department of Oral and Maxillofacial Surgery, Masters in Public Health (MPH), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Hasani Mehraban
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirali Asadi
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sayna Nezaminia
- Oral and Maxillofacial Surgery Resident, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorara Dortaj
- Operative Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasin Nazari
- General Dentist, Masters in Engineering, Tehran, Iran
| | - Mohamad Dehghan
- Specialist in Prosthodontics, Independent Researcher, Tehran, Iran
| | - Pardis Hojjat
- Department of Periodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahsa Mohajeri
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Zheng XQ, Huang J, Lin JL, Song CL. Pathophysiological mechanism of acute bone loss after fracture. J Adv Res 2023; 49:63-80. [PMID: 36115662 PMCID: PMC10334135 DOI: 10.1016/j.jare.2022.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Acute bone loss after fracture is associated with various effects on the complete recovery process and a risk of secondary fractures among patients. Studies have reported similarities in pathophysiological mechanisms involved in acute bone loss after fractures and osteoporosis. However, given the silence nature of bone loss and bone metabolism complexities, the actual underlying pathophysiological mechanisms have yet to be fully elucidated. AIM OF REVIEW To elaborate the latest findings in basic research with a focus on acute bone loss after fracture. To briefly highlight potential therapeutic targets and current representative drugs. To arouse researchers' attention and discussion on acute bone loss after fracture. KEY SCIENTIFIC CONCEPTS OF REVIEW Bone loss after fracture is associated with immobilization, mechanical unloading, blood supply damage, sympathetic nerve regulation, and crosstalk between musculoskeletals among other factors. Current treatment strategies rely on regulation of osteoblasts and osteoclasts, therefore, there is a need to elucidate on the underlying mechanisms of acute bone loss after fractures to inform the development of efficacious and safe drugs. In addition, attention should be paid towards ensuring long-term skeletal health.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
6
|
Luo W, Zhang G, Wang Z, Wu Y, Xiong Y. Ubiquitin-specific proteases: Vital regulatory molecules in bone and bone-related diseases. Int Immunopharmacol 2023; 118:110075. [PMID: 36989900 DOI: 10.1016/j.intimp.2023.110075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Stabilization of bone structure and function involves multiple cell-to-cell and molecular interactions, in which the regulatory functions of post-translational modifications such as ubiquitination and deubiquitination shouldn't be underestimated. As the largest family of deubiquitinating enzymes, the ubiquitin-specific proteases (USPs) participate in the development of bone homeostasis and bone-related diseases through multiple classical osteogenic and osteolytic signaling pathways, such as BMP/TGF-β pathway, NF-κB/p65 pathway, EGFR-MAPK pathway and Wnt/β-catenin pathway. Meanwhile, USPs may also broadly regulate regulate hormone expression level, cell proliferation and differentiation, and may further influence bone homeostasis from gene fusion and nuclear translocation of transcription factors. The number of patients with bone-related diseases is currently enormous, making exploration of their pathogenesis and targeted therapy a hot topic. Pathological increases in the levels of inflammatory mediators such as IL-1β and TNF-α lead to inflammatory bone diseases such as osteoarthritis, rheumatoid arthritis and periodontitis. While impaired body metabolism greatly increases the probability of osteoporosis. Abnormal physiological activity of bone-associated cells results in a variety of bone tumors. The regulatory role of USPs in bone-related disease has received particular attention from academics in recent studies. In this review, we focuse on the roles and mechanisms of USPs in bone homeostasis and bone-related diseases, with the expectation of informing targeted therapies in the clinic.
Collapse
Affiliation(s)
- Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Gu L, Wang Z, Gu H, Wang H, Liu L, Zhang WB. Atf4 regulates angiogenic differences between alveolar bone and long bone macrophages by regulating M1 polarization, based on single-cell RNA sequencing, RNA-seq and ATAC-seq analysis. J Transl Med 2023; 21:193. [PMID: 36918894 PMCID: PMC10012539 DOI: 10.1186/s12967-023-04046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
In the repair of maxillofacial bone defects, autogenous craniofacial bone can often provide superior clinical results over long bone grafts. Most current studies have focused on the osteogenic differences between alveolar bone marrow (ABM) and long bone marrow (LBM), however, studies about the angiogenic differences between the two are currently lacking. We downloaded single-cell RNA sequencing (scRNA-seq) of mouse ABM and LBM respectively from the public database, and the data were processed by using Seurat package. CellphoneDB2 results showed that macrophages had the strongest interaction with mesenchymal stem cells (MSCs) and endothelial cells (ECs). ELISA results confirmed that ABM macrophages secreted a higher level of vascular endothelial growth factor A (Vegfa) compared to LBM macrophages, which further promoted angiogenesis of ECs and MSCs. Using SCENIC package, six key transcription factors (TFs) were identified to regulate the difference between ABM and LBM macrophages, and activating transcription factor 4 (Atf4) was confirmed to be more expressed in ABM macrophages by polymerase chain reaction (PCR) and western blot (WB), with predicted target genes including Vegfa. Besides, the result of scRNA-seq implied ABM macrophages more in M1 status than LBM macrophages, which was confirmed by the following experiments. From the results of another assay for transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq about M1 macrophages, Atf4 was also confirmed to regulate the M1 polarization. So, we suspected that Atf4 regulated the different expression of Vegfa between ABM and LBM macrophages by activating M1 polarization. After knocking down Atf4, the expression of M1 polarization markers and Vegfa were downregulated and vasculogenic differences were eliminated, which were subsequently reversed by the addition of LPS/IFN-γ. Our study might provide a new idea to improve the success rate of autologous bone grafting and treatment of oral diseases.
Collapse
Affiliation(s)
- Lanxin Gu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Zhongyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hong Gu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210029, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Luwei Liu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Wei-Bing Zhang
- Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China.
- Department of Stomatology, Medical Center of Soochow University, Suzhou, China.
- Department of Stomatology, Suzhou Dushu Lake Hospital, Suzhou, China.
| |
Collapse
|
8
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
9
|
Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front Pharmacol 2023; 14:1050954. [PMID: 36860296 PMCID: PMC9968752 DOI: 10.3389/fphar.2023.1050954] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Bone tissue engineering (BTE) has become a hopeful potential treatment strategy for large bone defects, including bone tumors, trauma, and extensive fractures, where the self-healing property of bone cannot repair the defect. Bone tissue engineering is composed of three main elements: progenitor/stem cells, scaffold, and growth factors/biochemical cues. Among the various biomaterial scaffolds, hydrogels are broadly used in bone tissue engineering owing to their biocompatibility, controllable mechanical characteristics, osteoconductive, and osteoinductive properties. During bone tissue engineering, angiogenesis plays a central role in the failure or success of bone reconstruction via discarding wastes and providing oxygen, minerals, nutrients, and growth factors to the injured microenvironment. This review presents an overview of bone tissue engineering and its requirements, hydrogel structure and characterization, the applications of hydrogels in bone regeneration, and the promising roles of hydrogels in bone angiogenesis during bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lili Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Feng Gao,
| |
Collapse
|
10
|
Ke Y, Ye Y, Wu J, Ma Y, Fang Y, Jiang F, Yu J. Phosphoserine-loaded chitosan membranes promote bone regeneration by activating endogenous stem cells. Front Bioeng Biotechnol 2023; 11:1096532. [PMID: 37034248 PMCID: PMC10076862 DOI: 10.3389/fbioe.2023.1096532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Bone defects that result from trauma, infection, surgery, or congenital malformation can severely affect the quality of life. To address this clinical problem, a phosphoserine-loaded chitosan membrane that consists of chitosan membranes serving as the scaffold support to accommodate endogenous stem cells and phosphoserine is synthesized. The introduction of phosphoserine greatly improves the osteogenic effect of the chitosan membranes via mutual crosslinking using a crosslinker (EDC, 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide). The morphology of PS-CS membranes was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of phosphoserine into chitosan membranes was confirmed by energy dispersive spectrum (EDS), Fourier Transforms Infrared (FTIR), and X-ray diffraction (XRD) spectrum. The CCK8 assay and Live/Dead staining, Hemolysis analysis, and cell adhesion assay demonstrated that PS-CS membranes had good biocompatibility. The osteogenesis-related gene expression of BMSCs was higher in PS-CS membranes than in CS membranes, which was verified by alkaline phosphatase (ALP) activity, immunofluorescence staining, and real-time quantitative PCR (RT-qPCR). Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that PS-CS membranes dramatically stimulated bone regeneration in vivo. Moreover, H&E staining of the main organs (heart, liver, spleen, lung, or kidney) showed no obvious histological abnormalities, revealing that PS-CS membranes were no additional systemic toxicity in vivo. Collectively, PS-CS membranes may be a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanxia Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of General Dentistry, Nanjing Medical University, Nanjing, China
- *Correspondence: Fei Jiang, ; Jinhua Yu,
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- *Correspondence: Fei Jiang, ; Jinhua Yu,
| |
Collapse
|
11
|
Metformin can mitigate skeletal dysplasia caused by Pck2 deficiency. Int J Oral Sci 2022; 14:54. [PMCID: PMC9663691 DOI: 10.1038/s41368-022-00204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
As an important enzyme for gluconeogenesis, mitochondrial phosphoenolpyruvate carboxykinase (PCK2) has further complex functions beyond regulation of glucose metabolism. Here, we report that conditional knockout of Pck2 in osteoblasts results in a pathological phenotype manifested as craniofacial malformation, long bone loss, and marrow adipocyte accumulation. Ablation of Pck2 alters the metabolic pathways of developing bone, particularly fatty acid metabolism. However, metformin treatment can mitigate skeletal dysplasia of embryonic and postnatal heterozygous knockout mice, at least partly via the AMPK signaling pathway. Collectively, these data illustrate that PCK2 is pivotal for bone development and metabolic homeostasis, and suggest that regulation of metformin-mediated signaling could provide a novel and practical strategy for treating metabolic skeletal dysfunction.
Collapse
|
12
|
Di Maggio N, Banfi A. The osteo-angiogenic signaling crosstalk for bone regeneration: harmony out of complexity. Curr Opin Biotechnol 2022; 76:102750. [PMID: 35841865 DOI: 10.1016/j.copbio.2022.102750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
In recent years it has been increasingly appreciated that blood vessels are not simply suppliers of nutrients and oxygen, but actually play an exquisite regulatory role in bone development and repair. A specialized kind of endothelium, named type H because of its high expression of CD31 and Endomucin, constitutes anatomically defined vessels in proximity of the epiphyseal growth plate. Type H endothelium regulates the proliferation and differentiation of both osteoblasts and osteoclasts through the secretion of angiocrine signals and is a hub for the bidirectional molecular crosstalk between the different cell populations of the osteogenic microenvironment. Type H vessels are a key target for current translational approaches aiming at coupling angiogenesis and osteogenesis for bone repair. Open questions remain about their presence and features in notstereotyped tissues, like engineered osteogenic grafts, and the opportunities for their clinical stimulation by pharmacological treatments.
Collapse
Affiliation(s)
- Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland; Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Switzerland.
| |
Collapse
|
13
|
Miao Y, Chang YC, Tanna N, Almer N, Chung CH, Zou M, Zheng Z, Li C. Impact of Frontier Development of Alveolar Bone Grafting on Orthodontic Tooth Movement. Front Bioeng Biotechnol 2022; 10:869191. [PMID: 35845390 PMCID: PMC9280714 DOI: 10.3389/fbioe.2022.869191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Sufficient alveolar bone is a safeguard for achieving desired outcomes in orthodontic treatment. Moving a tooth into an alveolar bony defect may result in a periodontal defect or worse–tooth loss. Therefore, when facing a pathologic situation such as periodontal bone loss, alveolar clefts, long-term tooth loss, trauma, and thin phenotype, bone grafting is often necessary to augment bone for orthodontic treatment purposes. Currently, diverse bone grafts are used in clinical practice, but no single grafting material shows absolutely superior results over the others. All available materials demonstrate pros and cons, most notably donor morbidity and adverse effects on orthodontic treatment. Here, we review newly developed graft materials that are still in the pre-clinical stage, as well as new combinations of existing materials, by highlighting their effects on alveolar bone regeneration and orthodontic tooth movement. In addition, novel manufacturing techniques, such as bioprinting, will be discussed. This mini-review article will provide state-of-the-art information to assist clinicians in selecting grafting material(s) that enhance alveolar bone augmentation while avoiding unfavorable side effects during orthodontic treatment.
Collapse
Affiliation(s)
- Yilan Miao
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nipul Tanna
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolette Almer
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Zou
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Orthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
14
|
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, Che Z, Liu T, Liu H, Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810880. [PMID: 35433652 PMCID: PMC9008764 DOI: 10.3389/fbioe.2022.810880] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023] Open
Abstract
At present, bone nonunion and delayed union are still difficult problems in orthopaedics. Since the discovery of bone morphogenetic protein (BMP), it has been widely used in various studies due to its powerful role in promoting osteogenesis and chondrogenesis. Current results show that BMPs can promote healing of bone defects and reduce the occurrence of complications. However, the mechanism of BMP in vivo still needs to be explored, and application of BMP alone to a bone defect site cannot achieve good therapeutic effects. It is particularly important to modify implants to carry BMP to achieve slow and sustained release effects by taking advantage of the nature of the implant. This review aims to explain the mechanism of BMP action in vivo, its biological function, and how BMP can be applied to orthopaedic implants to effectively stimulate bone healing in the long term. Notably, implantation of a system that allows sustained release of BMP can provide an effective method to treat bone nonunion and delayed bone healing in the clinic.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhenjia Che
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tengyue Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| | - Lanfeng Huang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| |
Collapse
|
15
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
16
|
Vadaye Kheiry E, Fazly Bazzaz BS, Kerachian MA. Implantation of stem cells on synthetic or biological scaffolds: an overview of bone regeneration. Biotechnol Genet Eng Rev 2021; 37:238-268. [PMID: 34789069 DOI: 10.1080/02648725.2021.2003590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Humans are exposed to a wide range of bone tissue injuries. In severe cases, bone damages could be only treated with transplantation of autologous or allogeneic grafting.In recent years, tissue engineering has become a promising strategy for repairing damaged organs and tissues, providing a great opportunity to cure several diseases. Bone tissue engineering consists of three components: scaffold, cells, and growth factors. Current bone tissue engineering strategies combine the use of stem cells with biologically active materials and gene therapy to mimic the natural microenvironment of bone. The combination of the scaffold with growth factors and extracellular matrix protein molecules can promote cell attachment, proliferation, and induce osteogenesis, which could provide signals for cell migration to begin the healing process during repair and bone formation.This article reviews the principles of bone regeneration and the most current developments of bone tissue engineering related to bone growth factors, the biologically active materials, such as bacterial cellulose, and stem cells.
Collapse
Affiliation(s)
- Elahe Vadaye Kheiry
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Ou L, Kang W, Liang Z, Gao F, Dong T, Wei P, Li M. Investigation of anti-osteoporosis mechanisms of Rehmanniae Radix Preparata based on network pharmacology and experimental verification. J Orthop Surg Res 2021; 16:599. [PMID: 34649566 PMCID: PMC8515747 DOI: 10.1186/s13018-021-02751-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Background Rehmanniae Radix Preparata (RRP) can effectively improve the symptoms of osteoporosis, but its molecular mechanism for treating osteoporosis is still unclear. The objective of this study is to investigate the anti-osteoporosis mechanisms of RRP through network pharmacology. Methods The overlapping targets of RRP and osteoporosis were screened out using online platforms. A visual network diagram of PPI was constructed and analyzed by Cytoscape 3.7.2 software. Molecular docking was used to evaluate the binding activity of ligands and receptors, and some key genes were verified through pharmacological experiments. Results According to topological analysis results, AKT1, MAPK1, ESR1, and SRC are critical genes for RRP to treat osteoporosis, and they have high binding activity with stigmasterol and sitosterol. The main signal pathways of RRP in the treatment of osteoporosis, including the estrogen signaling pathway, HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway. Results of animal experiments showed that RRP could significantly increase the expression levels of Akt1, MAPK1, ESR1, and SRC1 mRNA in bone tissue to increase bone density. Conclusion This study explained the coordination between multiple components and multiple targets of RRP in the treatment of osteoporosis and provided new ideas for its clinical application and experimental research.
Collapse
Affiliation(s)
- Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Wenqian Kang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ziyi Liang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
18
|
Li J, Zhao C, Liu C, Wang Z, Ling Z, Lin B, Tan B, Zhou L, Chen Y, Liu D, Zou X, Liu W. Cobalt-doped bioceramic scaffolds fabricated by 3D printing show enhanced osteogenic and angiogenic properties for bone repair. Biomed Eng Online 2021; 20:70. [PMID: 34303371 PMCID: PMC8306242 DOI: 10.1186/s12938-021-00907-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-021-00907-2.
Collapse
Affiliation(s)
- Jungang Li
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Chaoqian Zhao
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Chun Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhenyu Wang
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zeming Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bin Lin
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Bizhi Tan
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Linquan Zhou
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Delong Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Wenge Liu
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
19
|
A Chemotactic Functional Scaffold with VEGF-Releasing Peptide Amphiphiles Facilitates Bone Regeneration by BMP-2 in a Large-Scale Rodent Cranial Defect Model. Plast Reconstr Surg 2021; 147:386-397. [PMID: 33235044 DOI: 10.1097/prs.0000000000007551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Current common techniques for repairing calvarial defects by autologous bone grafting and alloplastic implants have significant limitations. In this study, the authors investigated a novel alternative approach to bone repair based on peptide amphiphile nanofiber gels that are engineered to control the release of vascular endothelial growth factor (VEGF) to recruit circulating stem cells to a site of bone regeneration and facilitate bone healing by bone morphogenetic protein-2 (BMP-2). METHODS VEGF release kinetics from peptide amphiphile gels were evaluated. Chemotactic functional scaffolds were fabricated by combining collagen sponges with peptide amphiphile gels containing VEGF. The in vitro and in vivo chemotactic activities of the scaffolds were evaluated by measuring mesenchymal stem cell migration, and angiogenic capability of the scaffolds was also evaluated. Large-scale rodent cranial bone defects were created to evaluate bone regeneration after implanting the scaffolds and other control materials. RESULTS VEGF was released from peptide amphiphile in a controlled-release manner. In vitro migration of mesenchymal stem cells was significantly greater when exposed to chemotactic functional scaffolds compared to control scaffolds. In vivo chemotaxis was evidenced by migration of tracer-labeled mesenchymal stem cells to the chemotactic functional scaffolds. Chemotactic functional scaffolds showed significantly increased angiogenesis in vivo. Successful bone regeneration was noted in the defects treated with chemotactic functional scaffolds and BMP-2. CONCLUSIONS The authors' observations suggest that this bioengineered construct successfully acts as a chemoattractant for circulating mesenchymal stem cells because of controlled release of VEGF from the peptide amphiphile gels. The chemotactic functional scaffolds may play a role in the future design of clinically relevant bone graft substitutes for large-scale bone defects.
Collapse
|
20
|
da Silva Sasso GR, Florencio-Silva R, Sasso-Cerri E, Gil CD, de Jesus Simões M, Cerri PS. Spatio-temporal immunolocalization of VEGF-A, Runx2, and osterix during the early steps of intramembranous ossification of the alveolar process in rat embryos. Dev Biol 2021; 478:133-143. [PMID: 34245724 DOI: 10.1016/j.ydbio.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/10/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A) is expressed by several cell types and is a crucial factor for angiogenic-osteogenic coupling. However, the immunolocalization of VEGF-A during the early stages of the alveolar process formation remains underexplored. Thus, we analyzed the spatio-temporal immunolocalization of VEGF-A and its relationship with Runt-related transcription factor 2 (Runx2) and osterix (Osx) during the early steps of intramembranous ossification of the alveolar process in rat embryos. Embryo heads (E) of 16, 18 and 20-day-old rats were processed for paraffin embedding. Histomorphometry and immunohistochemistry to detect VEGF-A, Runx2, and Osx (osteoblast differentiation markers) were performed. The volume density of bone tissue including bone cells and blood vessels increased significantly in E18 and E20. Cells showing high VEGF-A immunoreactivity were initially observed within a perivascular niche in the ectomesenchyme; afterwards, these cells were diffusely located near bone formation sites. Runx2-and Osx-immunopositive cells were observed in corresponded regions of cells showing strong VEGF-A immunoreactivity. Although these immunostained cells were observed in all specimens, this immunolocalization pattern was more evident in E16 specimens and gradually decreased in E18 and E20 specimens. Double immunofluorescence labelling showed intracellular co-localization of Osx and VEGF-A in cells surrounding the developing alveolar process, indicating a crucial role of VEGF-A in osteoblast differentiation. Our results showed VEGF-A immunoexpression in osteoblasts and its precursors during the maxillary alveolar process formation of rat embryos. Moreover, the VEGF-A-positive cells located within a perivascular niche at the early stages of the alveolar process development suggest a crosstalk between endothelium and ectomesenchymal cells, reinforcing the angiogenic-osteogenic coupling in this process.
Collapse
Affiliation(s)
- Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil
| | - Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil.
| |
Collapse
|
21
|
Janebodin K, Chavanachat R, Hays A, Reyes Gil M. Silencing VEGFR-2 Hampers Odontoblastic Differentiation of Dental Pulp Stem Cells. Front Cell Dev Biol 2021; 9:665886. [PMID: 34249919 PMCID: PMC8267829 DOI: 10.3389/fcell.2021.665886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a source of postnatal stem cells essential for maintenance and regeneration of dentin and pulp tissues. Previous in vivo transplantation studies have shown that DPSCs are able to give rise to odontoblast-like cells, form dentin/pulp-like structures, and induce blood vessel formation. Importantly, dentin formation is closely associated to blood vessels. We have previously demonstrated that DPSC-induced angiogenesis is VEGFR-2-dependent. VEGFR-2 may play an important role in odontoblast differentiation of DPSCs, tooth formation and regeneration. Nevertheless, the role of VEGFR-2 signaling in odontoblast differentiation of DPSCs is still not well understood. Thus, in this study we aimed to determine the role of VEGFR-2 in odontoblast differentiation of DPSCs by knocking down the expression of VEGFR-2 in DPSCs and studying their odontoblast differentiation capacity in vitro and in vivo. Isolation and characterization of murine DPSCs was performed as previously described. DPSCs were induced by VEGFR-2 shRNA viral vectors transfection (MOI = 10:1) to silence the expression of VEGFR-2. The GFP+ expression in CopGFP DPSCs was used as a surrogate to measure the efficiency of transfection and verification that the viral vector does not affect the expression of VEGFR-2. The efficiency of viral transfection was shown by significant reduction in the levels of VEGFR-2 based on the Q-RT-PCR and immunofluorescence in VEGFR-2 knockdown DPSCs, compared to normal DPSCs. VEGFR-2 shRNA DPSCs expressed not only very low level of VEGFR-2, but also that of its ligand, VEGF-A, compared to CopGFP DPSCs in both transcriptional and translational levels. In vitro differentiation of DPSCs in osteo-odontogenic media supplemented with BMP-2 (100 ng/ml) for 21 days demonstrated that CopGFP DPSCs, but not VEGFR-2 shRNA DPSCs, were positive for alkaline phosphatase (ALP) staining and formed mineralized nodules demonstrated by positive Alizarin Red S staining. The expression levels of dentin matrix proteins, dentin matrix protein-1 (Dmp1), dentin sialoprotein (Dspp), and bone sialoprotein (Bsp), were also up-regulated in differentiated CopGFP DPSCs, compared to those in VEGFR-2 shRNA DPSCs, suggesting an impairment of odontoblast differentiation in VEGFR-2 shRNA DPSCs. In vivo subcutaneous transplantation of DPSCs with hydroxyapatite (HAp/TCP) for 5 weeks demonstrated that CopGFP DPSCs were able to differentiate into elongated and polarized odontoblast-like cells forming loose connective tissue resembling pulp-like structures with abundant blood vessels, as demonstrated by H&E, Alizarin Red S, and dentin matrix staining. On the other hand, in VEGFR-2 shRNA DPSC transplants, odontoblast-like cells were not observed. Collagen fibers were seen in replacement of dentin/pulp-like structures. These results indicate that VEGFR-2 may play an important role in dentin regeneration and highlight the potential of VEGFR-2 modulation to enhance dentin regeneration and tissue engineering as a promising clinical application.
Collapse
Affiliation(s)
- Kajohnkiart Janebodin
- Department of Pathology, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Aislinn Hays
- Department of Pathology, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Morayma Reyes Gil
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
22
|
Rare functional genetic variants in COL7A1, COL6A5, COL1A2 and COL5A2 frequently occur in Chiari Malformation Type 1. PLoS One 2021; 16:e0251289. [PMID: 33974636 PMCID: PMC8112708 DOI: 10.1371/journal.pone.0251289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2021] [Indexed: 11/19/2022] Open
Abstract
Chiari Malformation Type 1 (CM-1) is characterized by herniation of the cerebellar tonsils below the foramen magnum and the presence of headaches and other neurologic symptoms. Cranial bone constriction is suspected to be the most common biologic mechanism leading to CM-1. However, other mechanisms may also contribute, particularly in the presence of connective tissue disorders (CTDs), such as Ehlers Danlos Syndrome (EDS). Accumulating data suggest CM-1 with connective tissue disorders (CTD+) may have a different patho-mechanism and different genetic risk factors than CM-1 without CTDs (CTD-). To identify CM-1 genetic risk variants, we performed whole exome sequencing on a single large, multiplex family from Spain and targeted sequencing on a cohort of 186 unrelated adult, Caucasian females with CM-1. Targeted sequencing captured the coding regions of 21 CM-1 and EDS candidate genes, including two genes identified in the Spanish family. Using gene burden analysis, we compared the frequency of rare, functional variants detected in CM-1 cases versus publically available ethnically-matched controls from gnomAD. A secondary analysis compared the presence of rare variants in these genes between CTD+ and CTD- CM-1 cases. In the Spanish family, rare variants co-segregated with CM-1 in COL6A5, ADGRB3 and DST. A variant in COL7A1 was present in affected and unaffected family members. In the targeted sequencing analysis, rare variants in six genes (COL7A1, COL5A2, COL6A5, COL1A2, VEGFB, FLT1) were significantly more frequent in CM-1 cases compared to public controls. In total, 47% of CM-1 cases presented with rare variants in at least one of the four significant collagen genes and 10% of cases harbored variants in multiple significant collagen genes. Moreover, 26% of CM-1 cases presented with rare variants in the COL6A5 gene. We also identified two genes (COL7A1, COL3A1) for which the burden of rare variants differed significantly between CTD+ and CTD- CM-1 cases. A higher percentage of CTD+ patients had variants in COL7A1 compared to CTD+ patients, while CTD+ patients had fewer rare variants in COL3A1 than did CTD- patients. In summary, rare variants in several collagen genes are particularly frequent in CM-1 cases and those in COL6A5 co-segregated with CM-1 in a Spanish multiplex family. COL6A5 has been previously associated with musculoskeletal phenotypes, but this is the first association with CM-1. Our findings underscore the contribution of rare genetic variants in collagen genes to CM-1, and suggest that CM-1 in the presence and absence of CTD symptoms is driven by different genes.
Collapse
|
23
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
24
|
Nasreddine G, El Hajj J, Ghassibe-Sabbagh M. Orofacial clefts embryology, classification, epidemiology, and genetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108373. [PMID: 34083042 DOI: 10.1016/j.mrrev.2021.108373] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/14/2023]
Abstract
Orofacial clefts (OFCs) rank as the second most common congenital birth defect in the United States after Down syndrome and are the most common head and neck congenital malformations. They are classified as cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO). OFCs have significant psychological and socio-economic impact on patients and their families and require a multidisciplinary approach for management and counseling. A complex interaction between genetic and environmental factors contributes to the incidence and clinical presentation of OFCs. In this comprehensive review, the embryology, classification, epidemiology and etiology of clefts are thoroughly discussed and a "state-of-the-art" snapshot of the recent advances in the genetics of OFCs is presented.
Collapse
Affiliation(s)
- Ghenwa Nasreddine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| | - Joelle El Hajj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| |
Collapse
|
25
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
26
|
Moore AC, Wu J, Jewlal E, Barr K, Laird DW, Willmore KE. Effects of Reduced Connexin43 Function on Mandibular Morphology and Osteogenesis in Mutant Mouse Models of Oculodentodigital Dysplasia. Calcif Tissue Int 2020; 107:611-624. [PMID: 32902679 DOI: 10.1007/s00223-020-00753-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
Mutations in the gene encoding the gap-junctional protein connexin43 (Cx43) are the cause of the human disease oculodentodigital dysplasia (ODDD). The mandible is often affected in this disease, with clinical reports describing both mandibular overgrowth and conversely, retrognathia. These seemingly opposing observations underscore our relative lack of understanding of how ODDD affects mandibular morphology. Using two mutant mouse models that mimic the ODDD phenotype (I130T/+ and G60S/+), we sought to uncover how altered Cx43 function may affect mandibular development. Specifically, mandibles of newborn mice were imaged using micro-CT, to enable statistical comparisons of shape. Tissue-level comparisons of key regions of the mandible were conducted using histomorphology, and we quantified the mRNA expression of several cartilage and bone cell differentiation markers. Both G60S/+ and I130T/+ mutant mice had altered mandibular morphology compared to their wildtype counterparts, and the morphological effects were similarly localized for both mutants. Specifically, the biggest phenotypic differences in mutant mice were focused in regions exposed to mechanical forces, such as alveolar bone, muscular attachment sites, and articular surfaces. Histological analyses revealed differences in ossification of the intramembranous bone of the mandibles of both mutant mice compared to their wildtype littermates. However, chondrocyte organization within the secondary cartilages of the mandible was unaffected in the mutant mice. Overall, our results suggest that the morphological differences seen in G60S/+ and I130T/+ mouse mandibles are due to delayed ossification and suggest that mechanical forces may exacerbate the effects of ODDD on the skeleton.
Collapse
Affiliation(s)
- Alyssa C Moore
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Jessica Wu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Elizabeth Jewlal
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Kevin Barr
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Dale W Laird
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Katherine E Willmore
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.
| |
Collapse
|
27
|
Tobiume S, Kaji Y, Nakamura O, Yamaguchi K, Oka K, Yamamoto T. Effects of VEGF on Prefabricated Vascularized Bone Allografts in Rats. J Reconstr Microsurg 2020; 37:405-412. [PMID: 33058099 DOI: 10.1055/s-0040-1718394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Massive bone defects after wide resection of malignant bone tumors or a serious injury require treatment using vascularized bone grafts. Although cadaveric bone allografts combined with vascularized bone autografts are currently thought to be ideal in terms of size and durability, this treatment requires the scarification of healthy bone tissue. In a previous study, we attempted to improve this situation by prefabricating a vascularized bone allograft in recipient rats. In this study, we added vascular endothelial growth factor (VEGF)-containing hydroxyapatite/collagen composite (HAp/Col) to a prefabricated vascularized bone allograft to stimulate angiogenesis, which is known to be important for bone formation. METHODS Sprague Dawley rats (n = 50) were used as donors and Wistar rats (n = 50) as recipients. All rats were 9 weeks old. The recipient rats were divided into five groups according to the use of vascular bundles, HAp/Col, and an additive substance (VEGF). The bone allografts collected from the donors were transplanted into the thigh region of the recipients, and a saphenous vein and 10 μg HAp/Col with VEGF were inserted into the bone allografts through the slit. After 4 weeks, the transplanted bone allografts were harvested, and histologic and genetic evaluations were performed in relation to bone formation and resorption. RESULTS The results showed that, compared with the control group, the implantation of the vascular bundles and VEGF-containing HAp/Col significantly stimulated angiogenesis and bone formation in the rats with the bone allografts. However, histological and genetic evaluations of bone resorption revealed that resorption was not observed in any group. CONCLUSION These results suggest that VEGF-containing HAp/Col effectively stimulates angiogenesis and bone formation, but not bone resorption, in prefabricated vascularized bone allografts. This method could therefore become a useful tool for treating large bone defects.
Collapse
Affiliation(s)
- Sachiko Tobiume
- Department of Orthopaedic Surgery, Kagawa University Faculty of Medicine, Miki-cho, Kita-gun, Kagawa, Japan
| | - Yoshio Kaji
- Department of Orthopaedic Surgery, Kagawa University Faculty of Medicine, Miki-cho, Kita-gun, Kagawa, Japan
| | - Osamu Nakamura
- Department of Orthopaedic Surgery, Kagawa University Faculty of Medicine, Miki-cho, Kita-gun, Kagawa, Japan
| | - Konosuke Yamaguchi
- Department of Orthopaedic Surgery, Kagawa University Faculty of Medicine, Miki-cho, Kita-gun, Kagawa, Japan
| | - Kunihiko Oka
- Department of Orthopaedic Surgery, Kagawa University Faculty of Medicine, Miki-cho, Kita-gun, Kagawa, Japan
| | - Tetsuji Yamamoto
- Department of Orthopaedic Surgery, Kagawa University Faculty of Medicine, Miki-cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
28
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
29
|
Zheng Y, Zheng Y, Jia L, Zhang Y, Lin Y. Integrated analysis of lncRNA-mRNA networks associated with an SLA titanium surface reveals the potential role of HIF1A-AS1 in bone remodeling. RSC Adv 2020; 10:20972-20990. [PMID: 35517763 PMCID: PMC9054372 DOI: 10.1039/d0ra01242d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Microstructured titanium surface implants, such as typical sandblasted and acid-etched (SLA) titanium implants, are widely used to promote bone apposition in prosthetic treatment by dental implants following tooth loss. Although there are multiple factors associated with the superior osseointegration of an SLA titanium surface, the molecular mechanisms of long noncoding RNAs (lncRNAs) are still unclear. In this study, we characterized smooth (SMO) and SLA surfaces, and compared the osteoinduction of these surfaces using human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and implants in a rat model in vivo. Then, we used microarrays and bioinformatics analysis to investigate the differential expression profiles of mRNAs and lncRNAs on SMO and SLA titanium surfaces. An lncRNA–mRNA network was constructed, which showed an interaction between lncRNA HIF1A antisense RNA 1 (HIF1A-AS1) and vascular endothelial growth factor. We further found that knockdown of HIF1A-AS1 significantly decreased osteogenic differentiation of hBMSCs. This study screened SLA-induced lncRNAs using a systemic strategy and showed that lncRNA HIF1A-AS1 plays a role in promotion of new bone formation in the peri-implant area, providing a novel insight for future surface modifications of implants. Long non-coding RNA HIF1A-AS1 plays a role in SLA titanium surface-induced osteogenic differentiation of hBMSCs by regulating p38 MAPK.![]()
Collapse
Affiliation(s)
- Yan Zheng
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing 100081 China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology Beijing 100081 China.,Central Laboratory, Peking University School and Hospital of Stomatology Beijing 100081 China
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| | - Ye Lin
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| |
Collapse
|
30
|
Marconi GD, Diomede F, Pizzicannella J, Fonticoli L, Merciaro I, Pierdomenico SD, Mazzon E, Piattelli A, Trubiani O. Enhanced VEGF/VEGF-R and RUNX2 Expression in Human Periodontal Ligament Stem Cells Cultured on Sandblasted/Etched Titanium Disk. Front Cell Dev Biol 2020; 8:315. [PMID: 32478069 PMCID: PMC7240029 DOI: 10.3389/fcell.2020.00315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bone formation, in skeletal development or in osseointegration processes, is the result of interaction between angiogenesis and osteogenesis. To establish osseointegration, cells must attach to the implant in a direct way without any deposition of soft tissue. Structural design and surface topography of dental implants enhance the cell attachment and can affect the biological response. The aim of the study was to evaluate the cytocompatibility, osteogenic and angiogenic markers involved in bone differentiation of human periodontal ligament stem cells (hPDLSCs) on different titanium disks surfaces. The hPDLSCs were cultured on pure titanium surfaces modified with two different procedures, sandblasted (Control—CTRL) and sandblasted/etched (Test—TEST) as experimental titanium surfaces. After 1 and 8 weeks of culture VEGF, VEGF-R, and RUNX2 expression was evaluated under confocal laser scanning microscopy. To confirm the obtained data, RT-PCR and WB analyses were performed in order to evaluate the best implant surface performance. TEST surfaces compared to CTRL titanium surfaces enhanced cell adhesion and increased VEGF and RUNX2 expression. Moreover, titanium TEST surfaces showed a different topographic morphology that promoted cell adhesion, proliferation, and osteogenic/angiogenic commitment. To conclude, TEST surfaces performed more efficiently than CTRL surfaces; furthermore, TEST surface results showed them to be more biocompatible, better tolerated, and appropriate for allowing hPDLSC growth and proliferation. This fact could also lead to more rapid bone–titanium integration.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Luigia Fonticoli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sante D Pierdomenico
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
31
|
McLaughlin KI, Milne TJ, Zafar S, Zanicotti DG, Cullinan MP, Seymour GJ, Coates DE. The in vitro effect of VEGF receptor inhibition on primary alveolar osteoblast nodule formation. Aust Dent J 2020; 65:196-204. [PMID: 32072641 DOI: 10.1111/adj.12752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a master regulator and is required for the effective coupling of angiogenesis and osteogenesis supporting both skeletal development and postnatal bone repair. A direct role for VEGF in intramembranous-derived osteoblast growth and differentiation is not clear. We investigated the expression of primary alveolar osteoblast VEGF receptors and the subsequent effects on mineralization and nodule formation in vitro following VEGFR inhibition. METHODS Primary human alveolar osteoblasts (HAOBs) were cultured in the presence of VEGF receptor inhibitors, exogenous VEGF or the bisphosphonate, zoledronic acid. VEGF, VEGFR1 and VEGFR2 mRNA expression and nodule formation following 21 days of culture. VEGFR1 protein expression was examined using immunofluorescence after 48 h. RESULTS The HAOBs expressed high levels of VEGF and VEGFR1 protein but VEGFR2 was not detected. The VEGFR1/2 inhibitors, ZM306416 and KRN633, lead to a dose-dependent decrease in mineralization. Treatment with zoledronic acid showed no difference in HAOB VEGF receptor expression. CONCLUSION VEGF/VEGFR1 pathway appears to be important for intramembranous-derived osteoblast differentiation and maturation in vitro.
Collapse
Affiliation(s)
- K I McLaughlin
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - T J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - S Zafar
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D G Zanicotti
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M P Cullinan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - G J Seymour
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Balode E, Pilmane M. Characteristics of Neuropeptide-Containing Innervation, Tissue Remodeling, Growth, and Vascularity in Noses of Patients With Cleft Lip and Palate. Cleft Palate Craniofac J 2020; 57:948-956. [PMID: 32066266 DOI: 10.1177/1055665620904519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To detect the appearance and distribution of factors regulating remodeling, innervation, growth, and vascularity of the nasal tissue affected by cleft lip and palate (CLP). DESIGN Morphological analysis of human tissue. SETTING Cleft and craniofacial center. PARTICIPANTS Fifteen patients who underwent CLP rhinoplasty, 7 control patients. INTERVENTIONS Rhinoplasty. MAIN OUTCOME MEASURES Immunohistochemistry was performed with protein gene product (PGP) 9.5, transforming growth factor β1 (TGFβ1), vascular endothelial growth factor (VEGF), cluster of differentiation 34 (CD34), matrix metalloproteinase 2 (MMP2), MMP9, and tissue inhibitor of metalloproteinase 2 (TIMP2). The results were evaluated semiquantitatively. Spearman rank order correlation coefficient and Mann-Whitney U test were used for statistical analysis. RESULTS Cleft lip and palate-affected tissue revealed dense and loose connective tissue, adipose cells, and hyaline cartilage, along with numerous CD34-positive endotheliocytes and regions of VEGF-positive neoangiogenesis. We observed moderate to numerous PGP 9.5-positive nerve fibers. Transforming growth factor β1, MMP2, MMP9, and TIMP2 were found in cartilage and connective tissue. Cleft lip and palate-affected tissue compared to control samples showed a statistically significant difference in PGP 9.5 (P = .006), VEGF (P = .001), MMP2 (P = .002), MMP9 (P = .013), and TIMP2 (P < .001) expression. We observed a strong, positive correlation between VEGF and MMP9 (P = .027; r S = 0.705). CONCLUSIONS The moderate expression of TGFβ1 and increased distribution of VEGF, MMP2, MMP9, and TIMP2 demonstrate an active extracellular matrix remodeling and angiogenesis, performed by proteases. The cartilaginous septum of the nose is an example of balance between tissue degradation and its suppression, demonstrated by the relationship between MMPs and TIMPs and the presence of VEGF.
Collapse
Affiliation(s)
- Evija Balode
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| | - Mara Pilmane
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
33
|
Ruscitto A, Morel MM, Shawber CJ, Reeve G, Lecholop MK, Bonthius D, Yao H, Embree MC. Evidence of vasculature and chondrocyte to osteoblast transdifferentiation in craniofacial synovial joints: Implications for osteoarthritis diagnosis and therapy. FASEB J 2020; 34:4445-4461. [PMID: 32030828 DOI: 10.1096/fj.201902287r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) leads to permanent cartilage destruction, jaw dysfunction, and compromises the quality of life. However, the pathological mechanisms governing TMJ OA are poorly understood. Unlike appendicular articular cartilage, the TMJ has two distinct functions as the synovial joint of the craniofacial complex and also as the site for endochondral jaw bone growth. The established dogma of endochondral bone ossification is that hypertrophic chondrocytes undergo apoptosis, while invading vasculature with osteoprogenitors replace cartilage with bone. However, contemporary murine genetic studies support the direct differentiation of chondrocytes into osteoblasts and osteocytes in the TMJ. Here we sought to characterize putative vasculature and cartilage to bone transdifferentiation using healthy and diseased TMJ tissues from miniature pigs and humans. During endochondral ossification, the presence of fully formed vasculature expressing CD31+ endothelial cells and α-SMA+ vascular smooth muscle cells were detected within all cellular zones in growing miniature pigs. Arterial, endothelial, venous, angiogenic, and mural cell markers were significantly upregulated in miniature pig TMJ tissues relative to donor matched knee meniscus fibrocartilage tissue. Upon surgically creating TMJ OA in miniature pigs, we discovered increased vasculature and putative chondrocyte to osteoblast transformation dually marked by COL2 and BSP or RUNX2 within the vascular bundles. Pathological human TMJ tissues also exhibited increased vasculature, while isolated diseased human TMJ cells exhibited marked increased in vasculature markers relative to control 293T cells. Our study provides evidence to suggest that the TMJ in higher order species are in fact vascularized. There have been no reports of cartilage to bone transdifferentiation or vasculature in human-relevant TMJ OA large animal models or in human TMJ tissues and cells. Therefore, these findings may potentially alter the clinical management of TMJ OA by defining new drugs that target angiogenesis or block the cartilage to bone transformation.
Collapse
Affiliation(s)
- Angela Ruscitto
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mallory M Morel
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Carrie J Shawber
- Department of OB/GYN, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gwendolyn Reeve
- Division of Oral and Maxillofacial Surgery, New York Presbyterian Weill Cornell Medical Center, New York, NY, USA
| | - Michael K Lecholop
- Department of Oral and Maxillofacial Surgery, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Bonthius
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Greenville, SC, USA
| | - Hai Yao
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Greenville, SC, USA.,Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mildred C Embree
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
34
|
VEGF/VEGF-R/RUNX2 Upregulation in Human Periodontal Ligament Stem Cells Seeded on Dual Acid Etched Titanium Disk. MATERIALS 2020; 13:ma13030706. [PMID: 32033260 PMCID: PMC7040902 DOI: 10.3390/ma13030706] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
In restorative dentistry, the main implants characteristic is the ability to promote the osseointegration process as the result of interaction between angiogenesis and osteogenesis events. On the other hand, implants cytocompatibility remains a necessary feature for the success of surgery. The purpose of the current study was to investigate the interaction between human periodontal stem cells and two different types of titanium surfaces, to verify their cytocompatibility and cell adhesion ability, and to detect osteogenic and angiogenic markers, trough cell viability assay (MTT), Confocal Laser Scanning Microscopy (CLSM), scanning electron microscopy (SEM), and gene expression (RT-PCR). The titanium surfaces, machined (CTRL) and dual acid etched (TEST), tested in culture with human periodontal ligament stem cells (hPDLSCs), were previously treated in two different ways, in order to evaluate the effects of CTRL and TEST and define the best implant surface. Furthermore, the average surface roughness (Ra) of both titanium surfaces, CTRL and TEST, has been assessed through atomic force microscopy (AFM). The vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) expressions have been analyzed by RT-PCR, WB analysis, and confocal laser scanning microscopy. Data evidenced that the different morphology and topography of the TEST disk increased cell growth, cell adhesion, improved osteogenic and angiogenic events, as well osseointegration process. For this reason, the TEST surface was more biocompatible than the CTRL disk surface.
Collapse
|
35
|
Rumney RMH, Lanham SA, Kanczler JM, Kao AP, Thiagarajan L, Dixon JE, Tozzi G, Oreffo ROC. In vivo delivery of VEGF RNA and protein to increase osteogenesis and intraosseous angiogenesis. Sci Rep 2019; 9:17745. [PMID: 31780671 PMCID: PMC6882814 DOI: 10.1038/s41598-019-53249-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Deficient bone vasculature is a key component in pathological conditions ranging from developmental skeletal abnormalities to impaired bone repair. Vascularisation is dependent upon vascular endothelial growth factor (VEGF), which drives both angiogenesis and osteogenesis. The aim of this study was to examine the efficacy of blood vessel and bone formation following transfection with VEGF RNA or delivery of recombinant human VEGF165 protein (rhVEGF165) across in vitro and in vivo model systems. To quantify blood vessels within bone, an innovative approach was developed using high-resolution X-ray computed tomography (XCT) to generate quantifiable three-dimensional reconstructions. Application of rhVEGF165 enhanced osteogenesis, as evidenced by increased human osteoblast-like MG-63 cell proliferation in vitro and calvarial bone thickness following in vivo administration. In contrast, transfection with VEGF RNA triggered angiogenic effects by promoting VEGF protein secretion from MG-63VEGF165 cells in vitro, which resulted in significantly increased angiogenesis in the chorioallantoic (CAM) assay in ovo. Furthermore, direct transfection of bone with VEGF RNA in vivo increased intraosseous vascular branching. This study demonstrates the importance of continuous supply as opposed to a single high dose of VEGF on angiogenesis and osteogenesis and, illustrates the potential of XCT in delineating in 3D, blood vessel connectivity in bone.
Collapse
Affiliation(s)
- Robin M H Rumney
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, United Kingdom.
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, United Kingdom.
| | - Stuart A Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, United Kingdom
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, United Kingdom
| | - Alexander P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, United Kingdom
| | - Lalitha Thiagarajan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - James E Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, United Kingdom
| |
Collapse
|
36
|
Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One 2019; 14:e0225472. [PMID: 31751396 PMCID: PMC6872157 DOI: 10.1371/journal.pone.0225472] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Growth factors in serum-free conditioned media from human bone marrow-derived mesenchymal stem cells (MSC-CM) are known to be effective in bone regeneration. However, the secretomes in MSC-CM that act as active ingredients for bone regeneration, as well as their mechanisms, remains unclear. Exosomes, components of MSC-CM, provide the recipient cells with genetic information and enhance the recipient cellular paracrine stimulation, which contributes to tissue regeneration. We hypothesized that MSC-CM-derived exosomes (MSC-Exo) promoted bone regeneration, and that angiogenesis was a key step. Here, we prepared an MSC-Exo group, MSC-CM group, and Exo-antiVEGF group (MSC-Exo with angiogenesis inhibitor), and examined the osteogenic and angiogenic potential in MSCs. Furthermore, we used a rat model of calvaria bone defect and implanted each sample to evaluate bone formation weekly, until week 4 after treatment. Results showed that MSC-Exo enhanced cellular migration and osteogenic and angiogenic gene expression in MSCs compared to that in other groups. In vivo, early bone formation by MSC-Exo was also confirmed. Two weeks after implantation, the newly formed bone area was 31.5 ± 6.5% in the MSC-Exo group while those in the control and Exo-antiVEGF groups were 15.4 ± 4.4% and 8.7 ± 1.1%, respectively. Four weeks after implantation, differences in the area between the MSC-Exo group and the Exo-antiVEGF or control groups were further broadened. Histologically, notable accumulation of osteoblast-like cells and vascular endothelial cells was observed in the MSC-Exo group; however, fewer cells were found in the Exo-antiVEGF and control groups. In conclusion, MSC-Exo promoted bone regeneration during early stages, as well as enhanced angiogenesis. Considering the tissue regeneration with transplanted cells and their secretomes, this study suggests that exosomes might play an important role, especially in angiogenesis.
Collapse
Affiliation(s)
- Ryoko Takeuchi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Wataru Katagiri
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| | - Satoshi Endo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
37
|
Wang Z, Sun J, Li Y, Chen C, Xu Y, Zang X, Li L, Meng K. Experimental study of the synergistic effect and network regulation mechanisms of an applied combination of BMP-2, VEGF, and TGF-β1 on osteogenic differentiation. J Cell Biochem 2019; 121:2394-2405. [PMID: 31646676 DOI: 10.1002/jcb.29462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023]
Abstract
The study aimed to explore the osteogenic effect induced by the combined use of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1), attain the best combination for osteogenic quality and efficiency, and explore the network regulation mechanisms of induced osteogenesis. MC3T3-E1 cells were cultured in vitro, and BMP-2, VEGF, and TGF β1 were added to osteogenic induction mediums in different combinations to conduct experiments. At 7 and 14 days, the alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining of the applied BMP-2 and VEGF combination were deeper and the quantitative analysis were higher than those of the other groups. After optimizing the time-effect relationship of the combined application, with BMP-2, VEGF, and TGF-β1 adding in the early stage and BMP-2 and VEGF adding in the late, the ALP and ARS staining of these groups were deeper and the quantitative analyses were meaningfully higher than the BMP-2 and VEGF combination group at 7 and 14 days. The expression of the RUNX2 gene and the Smad1 signaling pathway in the optimized combination group was also significantly higher. The results demonstrate that the combination of BMP-2, VEGF, and TGF-β1 applied according to the time-effect relationship can significantly promote osteogenic differentiation mainly through the classical BMP-receptor-Smad signal pathway.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jian Sun
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, Shandong, China.,Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao, Shandong, China
| | - Yali Li
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chen Chen
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yaoxiang Xu
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaolong Zang
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Li Li
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Kun Meng
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
38
|
Pizzicannella J, Gugliandolo A, Orsini T, Fontana A, Ventrella A, Mazzon E, Bramanti P, Diomede F, Trubiani O. Engineered Extracellular Vesicles From Human Periodontal-Ligament Stem Cells Increase VEGF/VEGFR2 Expression During Bone Regeneration. Front Physiol 2019; 10:512. [PMID: 31114512 PMCID: PMC6503111 DOI: 10.3389/fphys.2019.00512] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/11/2019] [Indexed: 01/15/2023] Open
Abstract
Bone regeneration represents still a challenge, in particular for calvarium defects. Recently, the development of biomaterials with the addiction of stem cells is giving promising results for the treatment of bone defects. In particular, it was demonstrated that scaffolds enriched with mesenchymal stem cells (MSCs) and/or their derivatives, such as conditioned medium (CM) and extracellular vesicles (EVs), may improve bone regeneration. Moreover, given the deep link between osteogenesis and angiogenesis, a successful approach must also take into consideration the development of vascularization. In this work we evaluated the bone regeneration capacity of a collagen membrane (3D-COL) enriched with human periodontal-ligament stem cells (hPDLSCs) and CM or EVs or EVs engineered with polyethylenimine (PEI-EVs) in rats subjected to a calvarial defect. We evaluated also their capacity to induce angiogenic factors. At first, in vitro results showed an increased expression of osteogenic markers in hPDLSCs cultured with the 3D-COL and PEI-EVs, associated also with the increased protein levels of Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). The increased expression of these proteins was confirmed also in vivo in rats implanted with the 3D-COL enriched with hPDLSCs and PEI-EVs. Moreover, histological examination evidenced in this group of rats the activation of bone regeneration and of the vascularization process. Also MicroCT imaging with morphometric analysis confirmed in rats transplanted with 3D-COL enriched with hPDLSCs and PEI-EVs an important regenerative process and a better integration level. All together, these results evidenced that the 3D-COL enriched with hPDLSCs and PEI-EVs may promote bone regeneration of calvaria defects, associated also with an increased vascularization.
Collapse
Affiliation(s)
- Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Tiziana Orsini
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessia Ventrella
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | | | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
39
|
Gong Y, Li S, Zeng W, Yu J, Chen Y, Yu B. Controlled in vivo Bone Formation and Vascularization Using Ultrasound-Triggered Release of Recombinant Vascular Endothelial Growth Factor From Poly(D,L-lactic-co-glycolicacid) Microbubbles. Front Pharmacol 2019; 10:413. [PMID: 31068814 PMCID: PMC6491501 DOI: 10.3389/fphar.2019.00413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bone defects are challenging to treat in musculoskeletal system due to the lack of vascularization. Biomaterials with internal vascularization ability and osteoinduction bioactivity are promising strategies for orthopedic applications. Vascular endothelial growth factor (VEGF) has been widely used for angiogenesis and osteogenesis. Here, we developed VEGF-loaded PLGA microbubbles (MBs) for improvement of angiogenesis and osteogenesis in bone defect repair in combination with ultrasound-targeted microbubble destruction (UTMD). Release profile showed UTMD promoted the burst release of VEGF from PLGA MBs. We subsequently investigated the combination of ultrasound application with VEGF MBs for in vitro osteogenesis. The results demonstrated that the expression of osteogenesis-related genes and calcium deposits were increased by VEGF MBs in combination of UTMD. Micro-computed tomography (micro-CT) and histological analysis were conducted 4 and 8 weeks post-surgery. In vivo results show that VEGF MBs in combination of UTMD could significantly enhance new bone formation and vascular ingrowth at the defect site in a rat calvarial defect model. In summary, VEGF MBs in combination of UTMD could augment bone regeneration and vascularization at calvarial bone defects and hold huge potential for clinical translation.
Collapse
Affiliation(s)
- Yong Gong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjian Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zeng
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianing Yu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Veeriah V, Paone R, Chatterjee S, Teti A, Capulli M. Osteoblasts Regulate Angiogenesis in Response to Mechanical Unloading. Calcif Tissue Int 2019; 104:344-354. [PMID: 30465120 DOI: 10.1007/s00223-018-0496-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022]
Abstract
During mechanical unloading, endothelial cells reduce osteogenesis and increase bone resorption. Here we describe the feedback response of endothelial cells to unloaded osteoblasts. Primary endothelial cells, ex vivo mouse aortic rings and chicken egg yolk membranes were incubated with conditioned medium from mouse primary osteoblasts (OB-CM) subjected to unit gravity or simulated microgravity, to assess its effect on angiogenesis. In vivo injection of botulin toxin A (Botox) in the quadriceps and calf muscles of C57BL/6J mice was performed to mimic disuse osteoporosis. Unloaded osteoblasts showed strong upregulation of the pro-angiogenic factor, VEGF, and their conditioned medium increased in vitro endothelial cell viability, Cyclin D1 expression, migration and tube formation, ex vivo endothelial cell sprouting from aortic rings, and in ovo angiogenesis. Treatment with the VEGF blocker, avastin, prevented unloaded OB-CM-mediated in vitro and ex vivo enhancement of angiogenesis. Bone mechanical unloading by Botox treatment, known to reduce bone mass, prompted the overexpression of VEGF in osteoblasts. The cross talk between osteoblasts and endothelial cells plays a pathophysiologic role in the response of the endothelium to unloading during disuse osteoporosis. In this context, VEGF represents a prominent osteoblast factor stimulating angiogenesis.
Collapse
Affiliation(s)
- Vimal Veeriah
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| | - Riccardo Paone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| | - Suvro Chatterjee
- Anna University K.B.Chandrashekar Research Centre, Chennai, India
- Department of Biotechnology, Anna University, Chennai, India
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy.
| | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito 2, 67100, L'aquila, Italy
| |
Collapse
|
41
|
Zheng Y, Yang Y, Deng Y. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:770-782. [PMID: 30889752 DOI: 10.1016/j.msec.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 01/28/2023]
Abstract
Bone grafting on defects caused by trauma or tumor stimulates bone regeneration, a complex process requiring highly orchestrated cell-signal interactions. Bone vascular growth is coupled with osteogenesis, but less is known about the interplay between angiogenesis and osteogenesis. Understanding this relationship is relevant to improved bone regeneration. Here, tricalcium phosphate (TCP) scaffolds doped with varying concentration of cobalt (Co-TCP) were designed to investigate the dosage effect of vascularization on bone formation. The surface structure, phase composition, mechanical features, and chemical composition were investigated. Co doping improved the mechanical properties of TCP. Co-TCP, particularly 2% and 5% Co-TCP, boosted cell viability of bone marrow stromal cells (BMSCs). The 2% Co-TCP promoted alkaline phosphatase activity, matrix mineralization, and expression of osteogenic genes in BMSCs in vitro. However, excessive Co doping decreased TCP-induced osteogenesis. Meanwhile, Co-TCP dose-dependently favored the growth and migration of human umbilical vein endothelial cells (HUVECs), and the expression of vascular endothelial growth factor (VEGF). The 2% Co-TCP significantly shrank the defect area in rat alveolar bone compared with TCP. Smaller bone volume and more abundant blood vessels were observed for 5% Co-TCP compared with 2% Co-TCP. The CD31 immunostaining in the 5% Co-TCP group was more intense than the other two groups, indicating of the increment of endothelium cells. Besides, 5% Co-TCP led to mild inflammatory response in bone defect area. Overall, TCP doped appropriately with Co has positive effect on osteogenesis, while excessive Co suppressed osteoblast differentiation and bone formation. These data indicate that vascularization within a proper range promotes osteogenesis, which may be a design consideration for bone grafts.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuanyi Yang
- Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
42
|
Logjes RJH, Breugem CC, Van Haaften G, Paes EC, Sperber GH, van den Boogaard MJH, Farlie PG. The ontogeny of Robin sequence. Am J Med Genet A 2018; 176:1349-1368. [PMID: 29696787 DOI: 10.1002/ajmg.a.38718] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/17/2017] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
The triad of micrognathia, glossoptosis, and concomitant airway obstruction defined as "Robin sequence" (RS) is caused by oropharyngeal developmental events constrained by a reduced stomadeal space. This sequence of abnormal embryonic development also results in an anatomical configuration that might predispose the fetus to a cleft palate. RS is heterogeneous and many different etiologies have been described including syndromic, RS-plus, and isolated forms. For an optimal diagnosis, subsequent treatment and prognosis, a thorough understanding of the embryology and pathogenesis is necessary. This manuscript provides an update about our current understanding of the development of the mandible, tongue, and palate and possible mechanisms involved in the development of RS. Additionally, we provide the reader with an up-to-date summary of the different etiologies of this phenotype and link this to the embryologic, developmental, and genetic mechanisms.
Collapse
Affiliation(s)
- Robrecht J H Logjes
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Wilhelmina Children's Hospital Utrecht, Utrecht, The Netherlands
| | - Corstiaan C Breugem
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Wilhelmina Children's Hospital Utrecht, Utrecht, The Netherlands
| | - Gijs Van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emma C Paes
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Wilhelmina Children's Hospital Utrecht, Utrecht, The Netherlands
| | - Geoffrey H Sperber
- Faculty of Medicine and Dentistry, University of Alberta, Alberta, Canada
| | | | - Peter G Farlie
- Royal Children's Hospital, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
43
|
Zhang C, Meng C, Guan D, Ma F. BMP2 and VEGF165 transfection to bone marrow stromal stem cells regulate osteogenic potential in vitro. Medicine (Baltimore) 2018; 97:e9787. [PMID: 29384874 PMCID: PMC5805446 DOI: 10.1097/md.0000000000009787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An exogenous supply of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factors 165 (VEGF165) will synergize to promote bone regeneration in vivo. The aim of this study was to confirm the role of VEGF165 on the osteogenesis potential of bone mesenchymal stem cells (BMSCs) transduced by adenovirus vector containing BMP2 gene in vitro.Rabbit BMSCs were isolated and transfected with various adenovirus vectors: Ad-BMP2-VEGF165 (BMP2+VEGF165 group), Ad-BMP2 (BMP2 group), Ad-VEGF165 (VEGF165 group), and Ad-green fluorescent protein (GFP group). The multiplicity of infection was detected by GFP expression. Expression of BMP2 and VEGF165 was detected by Western blot and ELISA, and the osteogenic biological activity of BMP2 and VEGF165 by osteogenic assay. Meanwhile, the osteogenic biological activity of BMP2 and VEGF165 was evaluated by detection of Col I (collagen type I), OC (osteocalcin), and ALP (alkaline phosphatase) activity using OC staining, ALP activity assay, and real-time PCR assay.Expression of target genes and proteins reached peak values at 5 days and then gradually declined. The OC staining, ALP activity, and real-time PCR assay of ColI, OC, and ALP were all increased in cells transfected with Ad-BMP2-VEGF165, Ad-BMP2, Ad-VEGF165, and Ad-GFP. However, the osteogenic biological activity in cells transfected with Ad-BMP2 was higher compared to cells transfected with other vectors after transfection at 14 and 21 days. We also found that BMP2 +VEGF165 group showed more osteogenic activity effect than the VEGF165 or control group. Furthermore, osteogenic assays in VEGF165 showed that a slightly lower osteogenic effect when compared to controls at 21 days.VEGF165 might be a potent inhibitor of BMSCs differentiation into osteoblasts. The strategies to use BMP2 and VEGF165 in bone regeneration and the molecular mechanism of their interaction require further investigation.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Spine Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong
| | - Chunyang Meng
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong
| | - Dafan Guan
- Department of Orthopedics, Ankang Central Hospital, Ankang, Shanxi, China
| | - Fengyu Ma
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong
| |
Collapse
|
44
|
Grosso A, Burger MG, Lunger A, Schaefer DJ, Banfi A, Di Maggio N. It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration. Front Bioeng Biotechnol 2017; 5:68. [PMID: 29164110 PMCID: PMC5675838 DOI: 10.3389/fbioe.2017.00068] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/16/2017] [Indexed: 12/29/2022] Open
Abstract
Bone regeneration is a complex process requiring highly orchestrated interactions between different cells and signals to form new mineralized tissue. Blood vessels serve as a structural template, around which bone development takes place, and also bring together the key elements for bone homeostasis into the osteogenic microenvironment, including minerals, growth factors and osteogenic progenitor cells. Vascular endothelial growth factor (VEGF) is the master regulator of vascular growth and it is required for effective coupling of angiogenesis and osteogenesis during both skeletal development and postnatal bone repair. Here, we will review the current state of knowledge on the molecular cross-talk between angiogenesis and osteogenesis. In particular, we will focus on the role of VEGF in coupling these two processes and how VEGF dose can control the outcome, addressing in particular: (1) the direct influence of VEGF on osteogenic differentiation of mesenchymal progenitors; (2) the angiocrine functions of endothelium to regulate osteoprogenitors; (3) the role of immune cells, e.g., myeloid cells and osteoclast precursors, recruited by VEGF to the osteogenic microenvironment. Finally, we will discuss emerging strategies, based on the current biological understanding, to ensure rapid vascularization and efficient bone formation in regenerative medicine.
Collapse
Affiliation(s)
- Andrea Grosso
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Maximilian G Burger
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, Basel, Switzerland
| | - Alexander Lunger
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, Basel, Switzerland
| | - Andrea Banfi
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Nunzia Di Maggio
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Thrivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for Craniofacial Bone Regeneration. Dent Clin North Am 2017; 61:835-856. [PMID: 28886771 PMCID: PMC5663293 DOI: 10.1016/j.cden.2017.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Functional reconstruction of craniofacial defects is a major clinical challenge in craniofacial sciences. The advent of biomaterials is a potential alternative to standard autologous/allogenic grafting procedures to achieve clinically successful bone regeneration. This article discusses various classes of biomaterials currently used in craniofacial reconstruction. Also reviewed are clinical applications of biomaterials as delivery agents for sustained release of stem cells, genes, and growth factors. Recent promising advancements in 3D printing and bioprinting techniques that seem to be promising for future clinical treatments for craniofacial reconstruction are covered. Relevant topics in the bone regeneration literature exemplifying the potential of biomaterials to repair bone defects are highlighted.
Collapse
Affiliation(s)
- Greeshma Thrivikraman
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Chelsea Twohig
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Sunil Kumar Boda
- Mary and Dick Holland Regenerative Medicine Program, Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE 68198-5965, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, OHSU School of Dentistry, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, OHSU School of Medicine, 3303 SW Bond Avenue, Portland, OR 97239, USA; OHSU Center for Regenerative Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Ivanina AV, Falfushynska HI, Beniash E, Piontkivska H, Sokolova IM. Biomineralization-related specialization of hemocytes and mantle tissues of the Pacific oyster Crassostrea gigas. ACTA ACUST UNITED AC 2017; 220:3209-3221. [PMID: 28667243 DOI: 10.1242/jeb.160861] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
The molluscan exoskeleton (shell) plays multiple important roles including structural support, protection from predators and stressors, and physiological homeostasis. Shell formation is a tightly regulated biological process that allows molluscs to build their shells even in environments unfavorable for mineral precipitation. Outer mantle edge epithelial cells (OME) and hemocytes were implicated in this process; however, the exact functions of these cell types in biomineralization are not clear. Pacific oysters (Crassostrea gigas) were used to study differences in the expression profiles of selected biomineralization-related genes in hemocytes and mantle cells, and the functional characteristics of hemocytes such as adhesion, motility and phagocytosis. The specialized role of OME in shell formation was supported by high expression levels of the extracellular matrix (ECM) related and cell-cell interaction genes. Density gradient separation of hemocytes revealed distinct phenotypes based on the cell morphology, gene expression patterns, motility and adhesion characteristics. These hemocyte fractions can be categorized into two functional groups, i.e. biomineralization and immune response cells. Gene expression profiles of the putative biomineralizing hemocytes indicate that in addition to their proposed role in mineral transport, hemocytes also contribute to the formation of the ECM, thus challenging the current paradigm of the mantle as the sole source of the ECM for shell formation. Our findings corroborate the specialized roles of hemocytes and the OME in biomineralization and emphasize complexity of the biological controls over shell formation in bivalves.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Halina I Falfushynska
- Department of Human Health, I.Ya. Horbachevsky Ternopil State Medical University, Ternopil 46000, Ukraine
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of Pittsburg, Pittsburgh, PA 15261, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biosciences, University of Rostock, Rostock 18059, Germany
| |
Collapse
|
47
|
Schorn L, Sproll C, Ommerborn M, Naujoks C, Kübler NR, Depprich R. Vertical bone regeneration using rhBMP-2 and VEGF. Head Face Med 2017; 13:11. [PMID: 28592312 PMCID: PMC5463342 DOI: 10.1186/s13005-017-0146-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Background Sufficient vertical and lateral bone supply and a competent osteogenic healing process are prerequisities for the successful osseointegration of dental implants in the alveolar bone. Several techniques including autologous bone grafts and guided bone regeneration are applied to improve quality and quantity of bone at the implantation site. Depending on the amount of lacking bone one- or two-stage procedures are required. Vertical bone augmentation has proven to be a challenge particularly in terms of bone volume stability. This study focuses on the three dimensional vertical bone generation in a one stage procedure in vivo. Therefore, a collagenous disc-shaped scaffold (ICBM = Insoluble Collagenous Bone Matrix) containing rhBMP-2 (Bone Morphogenetic Protein-2) and/or VEGF (Vascular Endothelial Growth Factor) was applied around the coronal part of a dental implant during insertion. RhBMP-2 and VEGF released directly at the implantation site were assumed to induce the generation of new vertical bone around the implant. Methods One hundred eight titanium implants were inserted into the mandible and the tibia of 12 mini pigs. Four experimental groups were formed: Control group, ICBM, ICBM + BMP-2, and ICBM + BMP-2 + VEGF. After 1, 4 and 12 weeks the animals were sacrificed and bone generation was investigated histologically and histomorphometrically. Results After 12 weeks the combination of ICBM + rhBMP2 + VEGF showed significantly more bone volume density (BVD%), a higher vertical bone gain (VBG) and more vertical bone gain around the implant (PVBG) in comparison to the control group. Conclusion By using collagenous disc-shaped matrices in combination with rhBMP-2 and VEGF vertical bone can be generated in a one stage procedure without donor site morbidity. The results of the presenting study suggest that the combination of rhBMP-2 and VEGF applied locally by using a collagenous carrier improves vertical bone generation in vivo. Further research is needed to establish whether this technique is applicable in clinical routines.
Collapse
Affiliation(s)
- Lara Schorn
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Christoph Sproll
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Michelle Ommerborn
- Department of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Duesseldorf, 40225, Germany
| | - Christian Naujoks
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Norbert R Kübler
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Rita Depprich
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
48
|
Hu K, Olsen BR. Vascular endothelial growth factor control mechanisms in skeletal growth and repair. Dev Dyn 2017; 246:227-234. [PMID: 27750398 PMCID: PMC5354946 DOI: 10.1002/dvdy.24463] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/01/2016] [Indexed: 01/04/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) is a critical regulator of vascular development and postnatal angiogenesis and homeostasis, and it is essential for bone development and repair. Blood vessels serve both as structural templates for bone formation and they provide essential cells, growth factors and minerals needed for synthesis and mineralization, as well as turnover, of the extracellular matrix in bone. Through its regulation of angiogenesis, VEGF contributes to coupling of osteogenesis to angiogenesis, and it directly controls the differentiation and function of osteoblasts and osteoclasts. In this review, we summarize the properties of VEGF and its receptors that are relevant to bone formation and repair; the roles of VEGF during development of endochondral and membranous bones; and the contributions of VEGF to bone healing during different phases of bone repair. Finally, we discuss contributions of altered VEGF function in inherited disorders with bone defects as part of their phenotypes, and we speculate on what will be required before therapeutic strategies based on VEGF modulation can be developed for clinical use to treat patients with bone growth disorders and/or compromised bone repair. Developmental Dynamics 246:227-234, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kai Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
49
|
Isobe K, Suzuki M, Watanabe T, Kitamura Y, Suzuki T, Kawabata H, Nakamura M, Okudera T, Okudera H, Uematsu K, Nakata K, Tanaka T, Kawase T. Platelet-rich fibrin prepared from stored whole-blood samples. Int J Implant Dent 2017; 3:6. [PMID: 28251561 PMCID: PMC5332319 DOI: 10.1186/s40729-017-0068-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022] Open
Abstract
Background In regenerative therapy, self-clotted platelet concentrates, such as platelet-rich fibrin (PRF), are generally prepared on-site and are immediately used for treatment. If blood samples or prepared clots can be preserved for several days, their clinical applicability will expand. Here, we prepared PRF from stored whole-blood samples and examined their characteristics. Methods Blood samples were collected from non-smoking, healthy male donors (aged 27–67 years, N = 6), and PRF clots were prepared immediately or after storage for 1–2 days. Fibrin fiber was examined by scanning electron microscopy. Bioactivity was evaluated by means of a bioassay system involving human periosteal cells, whereas PDGF-BB concentrations were determined by an enzyme-linked immunosorbent assay. Results Addition of optimal amounts of a 10% CaCl2 solution restored the coagulative ability of whole-blood samples that contained an anticoagulant (acid citrate dextrose) and were stored for up to 2 days at ambient temperature. In PRF clots prepared from the stored whole-blood samples, the thickness and cross-links of fibrin fibers were almost identical to those of freshly prepared PRF clots. PDGF-BB concentrations in the PRF extract were significantly lower in stored whole-blood samples than in fresh samples; however, both extracts had similar stimulatory effects on periosteal-cell proliferation. Conclusions Quality of PRF clots prepared from stored whole-blood samples is not reduced significantly and can be ensured for use in regenerative therapy. Therefore, the proposed method enables a more flexible treatment schedule and choice of a more suitable platelet concentrate immediately before treatment, not after blood collection.
Collapse
Affiliation(s)
| | | | | | | | - Taiji Suzuki
- Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
| | | | | | | | | | - Kohya Uematsu
- Division of Oral Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
50
|
Maeda Y, Miwa Y, Sato I. Expression of CGRP, vasculogenesis and osteogenesis associated mRNAs in the developing mouse mandible and tibia. Eur J Histochem 2017; 61:2750. [PMID: 28348418 PMCID: PMC5289303 DOI: 10.4081/ejh.2017.2750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/27/2022] Open
Abstract
The neuropeptide Calcitonin Gene-Related Peptide (CGRP) is a well-characterized neurotransmitter. However, little is known about the role of CGRP in osteogenesis and vascular genesis during the developmental formation of bone. In the present study, we assessed the abundance of CGRP mRNA and the mRNA of osteogenesis and vascular genesis markers in the foetal mouse mandible and leg bone (tibia). We also analysed the expression and localization of CGRP, osteopontin (OPN) and vascular endothelial growth factor (VEGF-A) using in situ hybridization and immunohistochemical localization in the mouse mandible and tibia at embryonic days 12.5 (E12.5), E14.5, E17.5, and postnatal day 1 (P1). CGRP was clearly detected in the mandible relative to the tibia at E14.5. Hybridization using an anti-sense probe for CGRP was not detected in the mandible at P1. Hybridization with an anti-sense probe for OPN was detected at E14.5, later in the mandible and at P1 in Meckel’s cartilage. However, OPN was only detected in the tibia at E17.5 and later. The abundance of CGRP mRNA differed between the mandible and tibia. The level of vasculogenesis markers, such as VEGF-A, was similar to that of CGRP in the mandible. The levels of VEGF-A, cluster of differentiation 31 (CD31) and lymphatic vessel endothelial hyaluronan receptor 1 (LIVE-1) differed from that of OPN in the mandible. In contrast, the levels of VEGF-A, CD31, matrix metalloproteinase-2 (MMP-2), collagen I (Col I), collagen II (Col II) and OPN mRNA differed from E12.5 to P1 (P<0.001) in the tibia. The abundance of mRNA of CGRP and bone matrix markers (Col I, Col II, and OPN) was low at P5 in the tibia. These differences in CGRP and other mRNAs may induce a different manner of ossification between the mandible and tibia. Therefore, a time lag of ossification occurs between the mandible and tibia during foetal development.
Collapse
Affiliation(s)
- Yuuki Maeda
- The Nippon Dental University, Department of Anatomy.
| | | | | |
Collapse
|