1
|
Lobato TB, Manoel R, Pereira ACG, Correa IS, Iser-Bem PN, Santos ESDS, Pereira JNB, de Araújo MJL, Borges JCDO, Pauferro JRB, Diniz VLS, Scervino MVM, Serdan TD, Pithon-Curi TC, Masi LN, Hirabara SM, Curi R, Gorjão R. Insulin resistance in nonobese type 2 diabetic Goto Kakizaki rats is associated with a proinflammatory T lymphocyte profile. FEBS Lett 2024; 598:2566-2580. [PMID: 39095330 DOI: 10.1002/1873-3468.14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 08/04/2024]
Abstract
Goto-Kakizaki (GK) rats develop a well-defined insulin resistance (IR) and type 2 diabetes mellitus (T2DM) without presenting obesity. The lymphocyte profile in nonobese diabetic conditions is not yet characterized. Therefore, GK rats were chosen to explore T lymphocyte (TL) dynamics at various stages (21, 60, and 120 days) compared to Wistar rats. GK rats exhibit progressive disruption of glucose regulation, with early glucose intolerance at 21 days and reduced insulin sensitivity at 60 days, confirming IR. Glucose transporter 1 (GLUT1) expression was consistently elevated in GK rats, suggesting heightened TL activation. T-regulatory lymphocyte markers diminished at 21 days. However, GK rats showed increased Th1 markers and reduced Gata-3 expression (crucial for Th2 cell differentiation) at 120 days. These findings underscore an early breakdown of anti-inflammatory mechanisms in GK rats, indicating a proinflammatory TL profile that may worsen chronic inflammation in T2DM.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Richelieau Manoel
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Ana Carolina Gomes Pereira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Ilana Souza Correa
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Patrícia Nancy Iser-Bem
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Tamires Duarte Serdan
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
2
|
Saini T, Mazumder PM. Current advancement in the preclinical models used for the assessment of diabetic neuropathy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2727-2745. [PMID: 37987794 DOI: 10.1007/s00210-023-02802-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Diabetic neuropathy is one of the prevalent and debilitating microvascular complications of diabetes mellitus, affecting a significant portion of the global population. Relational preclinical animal models are essential to understand its pathophysiology and develop effective treatments. This abstract provides an overview of current knowledge and advancements in such models. Various animal models have been developed to mimic the multifaceted aspects of human diabetic neuropathy, including both type 1 and type 2 diabetes. These models involve rodents (rats and mice) and larger animals like rabbits and dogs. Induction of diabetic neuropathy in these models is achieved through chemical, genetic, or dietary interventions, such as diabetogenic agents, genetic modifications, or high-fat diets. Preclinical animal models have greatly contributed to studying the intricate molecular and cellular mechanisms underlying diabetic neuropathy. They have shed light on hyperglycemia-induced oxidative stress, neuroinflammation, mitochondrial dysfunction, and altered neurotrophic factor signaling. Additionally, these models have allowed for the investigation of morphological changes, functional alterations, and behavioral manifestations associated with diabetic neuropathy. These models have also been crucial for evaluating the efficacy and safety of potential therapeutic interventions. Novel pharmacological agents, gene therapies, stem cell-based approaches, exercise, dietary modifications, and neurostimulation techniques have been tested using these models. However, limitations and challenges remain, including physiological differences between humans and animals, complex neuropathy phenotypes, and the need for translational validation. In conclusion, preclinical animal models have played a vital role in advancing our understanding and management of diabetic neuropathy. They have enhanced our knowledge of disease mechanisms, facilitated the development of novel treatments, and provided a platform for translational research. Ongoing efforts to refine and validate these models are crucial for future treatment developments for this debilitating condition.
Collapse
Affiliation(s)
- Tanishk Saini
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, India.
| |
Collapse
|
3
|
Qamar F, Sultana S, Sharma M. Animal models for induction of diabetes and its complications. J Diabetes Metab Disord 2023; 22:1021-1028. [PMID: 37975101 PMCID: PMC10638335 DOI: 10.1007/s40200-023-01277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/03/2023] [Indexed: 11/19/2023]
Abstract
Objectives Animal models are widely used to develop newer drugs for treatment of diabetes and its complications. We conducted a systematic review to find various animal models to induce diabetes and also the suitable methods in various diabetic complications. With an emphasis on the animal models of diabetes induction, this review provides a basic overview of diabetes and its various types. It focused on the use of rats and mice for chemical, spontaneous, surgical, genetic, viral, and hormonal induction approaches. Methods All observations and research conducted on Diabetes and its complications published up to 18 May 2023 in PubMed, Web of Science, Scopus and Conchrane Library databases were included. Main outcome measures were reporting the induction of diabetes in experimental animals, the various animal models for diabetic complications including diabetic nephropathy, diabetic retinopathy, diabetic neuropathy and diabetic osteopathy. The quality of reporting of included articles and risk of bias were assessed. Results We reached various articles and found that rats and mice are the most frequently used animals for inducing diabetes. Chemical induction is the most commonly used followed by spontaneous and surgical methods. With slight modification various breeds and species are developed to study and induce specific complications on eyes, kidneys, neurons and bones. Conclusions Our review suggested that rats and mice are the most suitable animals. Furthermore, chemical induction is the method frequently used by experimenters. Moreover, high quality studies are required to find the suitable methods for diabetic complications.
Collapse
Affiliation(s)
- Faiz Qamar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| | - Shirin Sultana
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| |
Collapse
|
4
|
Experimental animal models for diabetes and its related complications-a review. Lab Anim Res 2021; 37:23. [PMID: 34429169 PMCID: PMC8385906 DOI: 10.1186/s42826-021-00101-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus, a very common and multifaceted metabolic disorder is considered as one of the fastest growing public health problems in the world. It is characterized by hyperglycemia, a condition with high glucose level in the blood plasma resulting from defects in insulin secretion or its action and in some cases both the impairment in secretion and also action of insulin coexist. Historically, animal models have played a critical role in exploring and describing malady pathophysiology and recognizable proof of targets and surveying new remedial specialists and in vivo medicines. In the present study, we reviewed the experimental models employed for diabetes and for its related complications. This paper reviews briefly the broad chemical induction of alloxan and streptozotocin and its mechanisms associated with type 1 and type 2 diabetes. Also we highlighted the different models in other species and other animals.
Collapse
|
5
|
Pereira JNB, Murata GM, Sato FT, Marosti AR, Carvalho CRDO, Curi R. Small intestine remodeling in male Goto-Kakizaki rats. Physiol Rep 2021; 9:e14755. [PMID: 33580916 PMCID: PMC7881800 DOI: 10.14814/phy2.14755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Obesity is associated with the development of insulin resistance (IR) and type-2 diabetes mellitus (T2DM); however, not all patients with T2DM are obese. The Goto-Kakizaki (GK) rat is an experimental model of spontaneous and non-obese T2DM. There is evidence that the intestine contributes to IR development in GK animals. This information prompted us to investigate small intestine remodeling in this animal model. METHODS Four-month-old male Wistar (control) and GK rats were utilized for the present study. After removing the small intestine, the duodenum, proximal jejunum, and distal ileum were separated. We then measured villi and muscular and mucosa layer histomorphometry, goblet cells abundance, total myenteric and submucosal neuron populations, and inflammatory marker expression in the small intestinal segments and intestinal transit of both groups of animals. KEY RESULTS We found that the GK rats exhibited decreased intestinal area (p < 0.0001), decreased crypt depth in the duodenum (p = 0.01) and ileum (p < 0.0001), increased crypt depth in the jejunum (p < 0.0001), longer villi in the jejunum and ileum (p < 0.0001), thicker villi in the duodenum (p < 0.01) and ileum (p < 0.0001), thicker muscular layers in the duodenum, jejunum, and ileum (p < 0.0001), increased IL-1β concentrations in the duodenum and jejunum (p < 0.05), and increased concentrations of NF-κB p65 in the duodenum (p < 0.01), jejunum and ileum (p < 0.05). We observed high IL-1β reactivity in the muscle layer, myenteric neurons, and glial cells of the experimental group. GK rats also exhibited a significant reduction in submucosal neuron density in the jejunum and ileum, ganglionic hypertrophy in all intestinal segments studied (p < 0.0001), and a slower intestinal transit (about 25%) compared to controls. CONCLUSIONS The development of IR and T2DM in GK rats is associated with small intestine remodeling that includes marked alterations in small intestine morphology, local inflammation, and reduced intestinal transit.
Collapse
Affiliation(s)
| | | | - Fabio Takeo Sato
- Department of GeneticsEvolution, Microbiology and ImmunologyInstitute of BiologyState University of CampinasCampinasBrazil
| | | | | | - Rui Curi
- Interdisciplinary Post‐Graduate Program in Health SciencesCruzeiro do Sul UniversitySão PauloBrazil
- Department of Physiology and BiophysicsInstitute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Butantan InstituteSão PauloBrazil
| |
Collapse
|
6
|
Szkudelska K, Okulicz M, Hertig I, Szkudelski T. Resveratrol ameliorates inflammatory and oxidative stress in type 2 diabetic Goto-Kakizaki rats. Biomed Pharmacother 2020; 125:110026. [PMID: 32092822 DOI: 10.1016/j.biopha.2020.110026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is associated with inflammatory and oxidative stress. Resveratrol, a naturally occurring diphenolic compound, was shown to improve glycemic control and alleviate metabolic disturbances in Goto-Kakizaki (GK) rats, a non-obese model of type 2 diabetes. However, in GK rats effects of resveratrol addressing inflammatory and oxidative stress were not explored. The present study aimed to determine anti-inflammatory and anti-oxidative properties of resveratrol in these rats. GK and Sprague-Dawley (SD) rats were divided into 4 groups: GK control, GK treated with resveratrol, SD control and SD treated with resveratrol. Resveratrol (20 mg/kg b.w.) was given once a day for 10 weeks. It was shown that contents of inflammatory markers, interleukin 6 (IL-6), interleukin 1 β (IL-1β), tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), were increased in the skeletal muscle of diabetic rats, but these effects were prevented by resveratrol therapy. Similarly, amounts of IL-1β and TNF-α were elevated in livers of GK rats; however, this rise was alleviated in resveratrol-treated animals. Moreover, the contents of inflammation-related factors (IL-6, IL-1β, TNF-α and NF-κB) were augmented in adipose tissue of GK rats; nevertheless, in this tissue resveratrol was ineffective. Resveratrol reduced also lipid peroxidation in the skeletal muscle, reduced activities of glutathione peroxidase in blood serum and catalase in the livers of GK rats. Our new findings show that resveratrol therapy results in relieving inflammatory and oxidative stress in GK rats, which may be largely associated with the alleviation of metabolic disturbances in this model of diabetes. Nevertheless, it was demonstrated that the efficacy of resveratrol action is tissue-specific.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences Wolynska 35, 60-637 Poznan, Poland.
| | - Monika Okulicz
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences Wolynska 35, 60-637 Poznan, Poland
| | - Iwona Hertig
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences Wolynska 35, 60-637 Poznan, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences Wolynska 35, 60-637 Poznan, Poland
| |
Collapse
|
7
|
Zhang W, Bai Y, Chen Z, Li X, Fu S, Huang L, Lin S, Du H. Comprehensive analysis of long non-coding RNAs and mRNAs in skeletal muscle of diabetic Goto-Kakizaki rats during the early stage of type 2 diabetes. PeerJ 2020; 8:e8548. [PMID: 32095365 PMCID: PMC7023842 DOI: 10.7717/peerj.8548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/12/2020] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle long non-coding RNAs (lncRNAs) were reported to be involved in the development of type 2 diabetes (T2D). However, little is known about the mechanism of skeletal muscle lncRNAs on hyperglycemia of diabetic Goto-Kakizaki (GK) rats at the age of 3 and 4 weeks. To elucidate this, we used RNA-sequencing to profile the skeletal muscle transcriptomes including lncRNAs and mRNAs, in diabetic GK and control Wistar rats at the age of 3 and 4 weeks. In total, there were 438 differentially expressed mRNAs (DEGs) and 401 differentially expressed lncRNAs (DELs) in skeletal muscle of 3-week-old GK rats compared with age-matched Wistar rats, and 1000 DEGs and 726 DELs between GK rats and Wistar rats at 4 weeks of age. The protein–protein interaction analysis of overlapping DEGs between 3 and 4 weeks, the correlation analysis of DELs and DEGs, as well as the prediction of target DEGs of DELs showed that these DEGs (Pdk4, Stc2, Il15, Fbxw7 and Ucp3) might play key roles in hyperglycemia, glucose intolerance, and increased fatty acid oxidation. Considering the corresponding co-expressed DELs with high correlation coefficients or targeted DELs of these DEGs, our study indicated that these dysregulated lncRNA-mRNA pairs (NONRATG017315.2-Pdk4, NONRATG003318.2-Stc2, NONRATG011882.2-Il15, NONRATG013497.2-Fbxw7, MSTRG.1662-Ucp3) might be related to above biological processes in GK rats at the age of 3 and 4 weeks. Our study could provide more comprehensive knowledge of mRNAs and lncRNAs in skeletal muscle of GK rats at 3 and 4 weeks of age. And our study may provide deeper understanding of the underlying mechanism in T2D of GK rats at the age of 3 and 4 weeks.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yunmeng Bai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xingsong Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Jiang X, Zhang H, Zhang Z, Quan X. Flexible Non-Negative Matrix Factorization to Unravel Disease-Related Genes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1948-1957. [PMID: 29993985 DOI: 10.1109/tcbb.2018.2823746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, non-negative matrix factorization (NMF) has been shown to perform well in the analysis of omics data. NMF assumes that the expression level of one gene is a linear additive composition of metagenes. The elements in metagene matrix represent the regulation effects and are restricted to non-negativity. However, according to the real biological meaning, there are two kinds of regulation effects, i.e., up-regulation and down-regulation. Few methods based on NMF have considered this biological meaning. Therefore, we designed a flexible non-negative matrix factorization (FNMF) algorithm by further considering the biological meaning of gene expression data. It allows negative numbers in the metagene matrix, and negative numbers represent down-regulation effects. We separated gene expression data into disease-driven gene expression and background gene expression. Subsequently, we computed disease-driven gene relative expression, and a ranked list of genes was obtained. The top ranked genes are considered to be involved in some disease-related biological processes. Experimental results on two real-world gene expression data demonstrate the feasibility and effectiveness of FNMF. Compared with conventional disease-related gene identification algorithms, FNMF has superior performance in analyzing gene expression data of diseases with complex pathology.
Collapse
|
9
|
Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW. Quantification of Mitochondrial Oxidative Phosphorylation in Metabolic Disease: Application to Type 2 Diabetes. Int J Mol Sci 2019; 20:E5271. [PMID: 31652915 PMCID: PMC6862501 DOI: 10.3390/ijms20215271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is a growing health concern with nearly 400 million affected worldwide as of 2014. T2D presents with hyperglycemia and insulin resistance resulting in increased risk for blindness, renal failure, nerve damage, and premature death. Skeletal muscle is a major site for insulin resistance and is responsible for up to 80% of glucose uptake during euglycemic hyperglycemic clamps. Glucose uptake in skeletal muscle is driven by mitochondrial oxidative phosphorylation and for this reason mitochondrial dysfunction has been implicated in T2D. In this review we integrate mitochondrial function with physiologic function to present a broader understanding of mitochondrial functional status in T2D utilizing studies from both human and rodent models. Quantification of mitochondrial function is explained both in vitro and in vivo highlighting the use of proper controls and the complications imposed by obesity and sedentary lifestyle. This review suggests that skeletal muscle mitochondria are not necessarily dysfunctional but limited oxygen supply to working muscle creates this misperception. Finally, we propose changes in experimental design to address this question unequivocally. If mitochondrial function is not impaired it suggests that therapeutic interventions and drug development must move away from the organelle and toward the cardiovascular system.
Collapse
Affiliation(s)
- Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Present address: Molecular Physiology Institute, Duke University, Durham, NC 27701, USA.
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Fu S, Meng Y, Lin S, Zhang W, He Y, Huang L, Du H. Transcriptomic responses of hypothalamus to acute exercise in type 2 diabetic Goto-Kakizaki rats. PeerJ 2019; 7:e7743. [PMID: 31579613 PMCID: PMC6764357 DOI: 10.7717/peerj.7743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus has an integral role in energy homeostasis regulation, and its dysfunctions lead to the development of type 2 diabetes (T2D). Physical activity positively affects the prevention and treatment of T2D. However, there is not much information on the adaptive mechanisms of the hypothalamus. In this study, RNA sequencing was used to determine how acute exercise affects hypothalamic transcriptome from both type 2 diabetic Goto-Kakizaki (GK) and control Wistar rats with or without a single session of running (15 m/min for 60 min). Through pairwise comparisons, we identified 957 differentially expressed genes (DEGs), of which 726, 197, and 98 genes were found between GK and Wistar, exercised GK and GK, and exercised Wistar and Wistar, respectively. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that lipid metabolism-related terms and pathways were enriched in GK and exercised GK rats, and nervous system related terms and pathways were enriched in exercised GK and Wistar rats. Furthermore, 45 DEGs were associated with T2D and related phenotypes according to the annotations in the Rat Genome Database. Among these 45 DEGs, several genes (Plin2, Cd36, Lpl, Wfs1, Cck) related to lipid metabolism or the nervous system are associated with the exercise-induced benefits in the hypothalamus of GK rats. Our findings might assist in identifying potential therapeutic targets for T2D prevention and treatment.
Collapse
Affiliation(s)
- Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuhuan Meng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuting He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW. Skeletal muscle energetics are compromised only during high-intensity contractions in the Goto-Kakizaki rat model of type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2019; 317:R356-R368. [PMID: 31188651 PMCID: PMC6732426 DOI: 10.1152/ajpregu.00127.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes (T2D) presents with hyperglycemia and insulin resistance, affecting over 30 million people in the United States alone. Previous work has hypothesized that mitochondria are dysfunctional in T2D and results in both reduced ATP production and glucose disposal. However, a direct link between mitochondrial function and T2D has not been determined. In the current study, the Goto-Kakizaki (GK) rat model of T2D was used to quantify mitochondrial function in vitro and in vivo over a broad range of contraction-induced metabolic workloads. During high-frequency sciatic nerve stimulation, hindlimb muscle contractions at 2- and 4-Hz intensities, the GK rat failed to maintain similar bioenergetic steady states to Wistar control (WC) rats measured by phosphorus magnetic resonance spectroscopy, despite similar force production. Differences were not due to changes in mitochondrial content in red (RG) or white gastrocnemius (WG) muscles (cytochrome c oxidase, RG: 22.2 ± 1.6 vs. 23.3 ± 1.7 U/g wet wt; WG: 10.8 ± 1.1 vs. 12.1 ± 0.9 U/g wet wt; GK vs. WC, respectively). Mitochondria isolated from muscles of GK and WC rats also showed no difference in mitochondrial ATP production capacity in vitro, measured by high-resolution respirometry. At lower intensities (0.25-1 Hz) there were no detectable differences between GK and WC rats in sustained energy balance. There were similar phosphocreatine concentrations during steady-state contraction and postcontractile recovery (τ = 72 ± 6 s GK versus 71 ± 2 s WC). Taken together, these results suggest that deficiencies in skeletal muscle energetics seen at higher intensities are not due to mitochondrial dysfunction in the GK rat.
Collapse
Affiliation(s)
- Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
12
|
Fu S, Meng Y, Zhang W, Wang J, He Y, Huang L, Chen H, Kuang J, Du H. Transcriptomic Responses of Skeletal Muscle to Acute Exercise in Diabetic Goto-Kakizaki Rats. Front Physiol 2019; 10:872. [PMID: 31338039 PMCID: PMC6629899 DOI: 10.3389/fphys.2019.00872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022] Open
Abstract
Physical activity exerts positive effects on glycemic control in type 2 diabetes (T2D), which is mediated in part by extensive metabolic and molecular remodeling of skeletal muscle in response to exercise, while many regulators of skeletal muscle remain unclear. In the present study, we investigated the effects of acute exercise on skeletal muscle transcriptomic responses in the Goto-Kakizaki (GK) rats which can spontaneously develop T2D. The transcriptomes of skeletal muscle from both 8-week-old GK and Wistar rats that underwent a single exercise session (60 min running using an animal treadmill at 15 m/min) or remained sedentary were analyzed by next-generation RNA sequencing. We identified 819 differentially expressed genes in the sedentary GK rats compared with those of the sedentary Wistar rats. After a single bout of running, we found 291 and 598 genes that were differentially expressed in the exercise GK and exercise Wistar rats when compared with the corresponding sedentary rats. By integrating our data and previous studies including RNA or protein expression patterns and transgenic experiments, the downregulated expression of Fasn and upregulated expression of Tbc1d1, Hk2, Lpin1, Ppargc1a, Sorbs1, and Hmox1 might enhance glucose uptake or improve insulin sensitivity to ameliorate hyperglycemia in the exercise GK rats. Our results provide mechanistic insight into the beneficial effects of exercise on hyperglycemia and insulin action in skeletal muscle of diabetic GK rats.
Collapse
Affiliation(s)
- Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuhuan Meng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiajian Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuting He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongmei Chen
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Transcriptome Changes of Skeletal Muscle RNA-Seq Speculates the Mechanism of Postprandial Hyperglycemia in Diabetic Goto-Kakizaki Rats During the Early Stage of T2D. Genes (Basel) 2019; 10:genes10060406. [PMID: 31141985 PMCID: PMC6627578 DOI: 10.3390/genes10060406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
To address how skeletal muscle contributes to postprandial hyperglycemia, we performed skeletal muscle transcriptome analysis of diabetic Goto-Kakizaki (GK) and control Wistar rats by RNA sequencing (RNA-Seq). We obtained 600 and 1785 differentially expressed genes in GK rats compared to those Wistar rats at three and four weeks of age, respectively. Specifically, Tbc1d4, involved in glucose uptake, was significantly downregulated in the skeletal muscle of GK aged both three and four weeks compared to those of age-matched Wistar rats. Pdk4, related to glucose uptake and oxidation, was significantly upregulated in the skeletal muscle of GK aged both three and four weeks compared to that of age-matched Wistar rats. Genes (Acadl, Acsl1 and Fabp4) implicated in fatty acid oxidation were significantly upregulated in the skeletal muscle of GK aged four weeks compared to those of age-matched Wistar rats. The overexpression or knockout of Tbc1d4, Pdk4, Acadl, Acsl1 and Fabp4 has been reported to change glucose uptake and fatty acid oxidation directly in rodents. By taking the results of previous studies into consideration, we speculated that dysregulation of key dysregulated genes (Tbc1d4, Pdk4, Acadl, Acsl1 and Fabp4) may lead to a decrease in glucose uptake and oxidation, and an increase in fatty acid oxidation in GK skeletal muscle at three and four weeks, which may, in turn, contribute to postprandial hyperglycemia. Our research revealed transcriptome changes in GK skeletal muscle at three and four weeks. Tbc1d4, Acadl, Acsl1 and Fabp4 were found to be associated with early diabetes in GK rats for the first time, which may provide a new scope for pathogenesis of postprandial hyperglycemia.
Collapse
|
14
|
Sun S, Sun F, Wang Y. Multi-Level Comparative Framework Based on Gene Pair-Wise Expression Across Three Insulin Target Tissues for Type 2 Diabetes. Front Genet 2019; 10:252. [PMID: 30972105 PMCID: PMC6443994 DOI: 10.3389/fgene.2019.00252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2019] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes (T2D) is known as a disease caused by gene alterations characterized by insulin resistance, thus the insulin-responsive tissues are of great interest for T2D study. It’s of great relevance to systematically investigate commonalities and specificities of T2D among those tissues. Here we establish a multi-level comparative framework across three insulin target tissues (white adipose, skeletal muscle, and liver) to provide a better understanding of T2D. Starting from the ranks of gene expression, we constructed the ‘disease network’ through detecting diverse interactions to provide a well-characterization for disease affected tissues. Then, we applied random walk with restart algorithm to the disease network to prioritize its nodes and edges according to their association with T2D. Finally, we identified a merged core module by combining the clustering coefficient and Jaccard index, which can provide elaborate and visible illumination of the common and specific features for different tissues at network level. Taken together, our network-, gene-, and module-level characterization across different tissues of T2D hold the promise to provide a broader and deeper understanding for T2D mechanism.
Collapse
Affiliation(s)
- Shaoyan Sun
- School of Mathematics and Statistics, Ludong University, Yantai, China
| | - Fengnan Sun
- Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Bihoreau MT, Dumas ME, Lathrop M, Gauguier D. Genomic regulation of type 2 diabetes endophenotypes: Contribution from genetic studies in the Goto-Kakizaki rat. Biochimie 2017; 143:56-65. [DOI: 10.1016/j.biochi.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|
16
|
Nie J, DuBois DC, Xue B, Jusko WJ, Almon RR. Effects of High-Fat Feeding on Skeletal Muscle Gene Expression in Diabetic Goto-Kakizaki Rats. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017710009. [PMID: 28607540 PMCID: PMC5457139 DOI: 10.1177/1177625017710009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
Abstract
In the present report, we examined the responses of diabetic Goto-Kakizaki (GK) rats and control Wistar-Kyoto (WKY) rats fed either a standard chow or high-fat diet (HFD) from weaning to 20 weeks of age. This comparison included gene expression profiling of skeletal muscle using Affymetrix gene array chips. The expression profiling is interpreted within the context of a wide array of physiological measurements. Genes whose expressions are different between the 2 strains regardless of diet, as well as genes that differ between strains only with HFD, were identified. In addition, genes that were regulated by diet in 1 or both strains were identified. The results suggest that both strains respond to HFD by an increased capacity to oxidize lipid fuels in the musculature but that this adaptation occurs more rapidly in WKY rats. The results also demonstrated an impaired cytokine signalling and heightened inflammatory status in the GK rats.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
17
|
El-Yazbi AF, Abd-Elrahman KS. ROK and Arteriolar Myogenic Tone Generation: Molecular Evidence in Health and Disease. Front Pharmacol 2017; 8:87. [PMID: 28280468 PMCID: PMC5322222 DOI: 10.3389/fphar.2017.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
The myogenic response is an inherent property of resistance arteries that warrants a relatively constant blood flow in response to changes in perfusion pressure and protect delicate organs from vascular insufficiencies and excessive blood flow. This fundamental phenomenon has been extensively studied aiming to elucidate the underlying mechanisms triggering smooth muscle contraction in response to intraluminal pressure elevation, particularly, Rho-associated kinase (ROK)-mediated Ca2+-independent mechanisms. The size of the resistance arteries limits the capacity to examine changes in protein phosphorylation/expression levels associated with ROK signaling. A highly sensitive biochemical detection approach was beneficial in examining the role of ROK in different force generation mechanisms along the course of myogenic constriction. In this mini review, we summarize recent results showing direct evidence for the contribution of ROK in development of myogenic response at the level of mechanotransduction, myosin light chain phosphatase inhibition and dynamic actin cytoskeleton reorganization. We will also present evidence that alterations in ROK signaling could underlie the progressive loss in myogenic response in a rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
| | - Khaled S Abd-Elrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of OttawaOttawa, ON, Canada
| |
Collapse
|
18
|
Abd-Elrahman KS, Colinas O, Walsh EJ, Zhu HL, Campbell CM, Walsh MP, Cole WC. Abnormal myosin phosphatase targeting subunit 1 phosphorylation and actin polymerization contribute to impaired myogenic regulation of cerebral arterial diameter in the type 2 diabetic Goto-Kakizaki rat. J Cereb Blood Flow Metab 2017; 37:227-240. [PMID: 26721393 PMCID: PMC5363741 DOI: 10.1177/0271678x15622463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
The myogenic response of cerebral resistance arterial smooth muscle to intraluminal pressure elevation is a key physiological mechanism regulating blood flow to the brain. Rho-associated kinase plays a critical role in the myogenic response by activating Ca2+ sensitization mechanisms: (i) Rho-associated kinase inhibits myosin light chain phosphatase by phosphorylating its targeting subunit myosin phosphatase targeting subunit 1 (at T855), augmenting 20 kDa myosin regulatory light chain (LC20) phosphorylation and force generation; and (ii) Rho-associated kinase stimulates cytoskeletal actin polymerization, enhancing force transmission to the cell membrane. Here, we tested the hypothesis that abnormal Rho-associated kinase-mediated myosin light chain phosphatase regulation underlies the dysfunctional cerebral myogenic response of the Goto-Kakizaki rat model of type 2 diabetes. Basal levels of myogenic tone, LC20, and MYPT1-T855 phosphorylation were elevated and G-actin content was reduced in arteries of pre-diabetic 8-10 weeks Goto-Kakizaki rats with normal serum insulin and glucose levels. Pressure-dependent myogenic constriction, LC20, and myosin phosphatase targeting subunit 1 phosphorylation and actin polymerization were suppressed in both pre-diabetic Goto-Kakizaki and diabetic (18-20 weeks) Goto-Kakizaki rats, whereas RhoA, ROK2, and MYPT1 expression were unaffected. We conclude that abnormal Rho-associated kinase-mediated Ca2+ sensitization contributes to the dysfunctional cerebral myogenic response in the Goto-Kakizaki model of type 2 diabetes.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Olaia Colinas
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Emma J Walsh
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Hai-Lei Zhu
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Christine M Campbell
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael P Walsh
- The Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - William C Cole
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
19
|
Sárközy M, Szűcs G, Fekete V, Pipicz M, Éder K, Gáspár R, Sója A, Pipis J, Ferdinandy P, Csonka C, Csont T. Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats. Cardiovasc Diabetol 2016; 15:110. [PMID: 27496100 PMCID: PMC4975916 DOI: 10.1186/s12933-016-0424-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
Background There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. Methods Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein–protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. Results Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein–protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. Conclusions Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0424-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Veronika Fekete
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Andrea Sója
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | | | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
20
|
Impairment of synaptic development in the hippocampus of diabetic Goto-Kakizaki rats. Int J Dev Neurosci 2016; 53:58-67. [PMID: 27444810 DOI: 10.1016/j.ijdevneu.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 12/28/2022] Open
Abstract
Insulin receptor signaling has been shown to regulate essential aspects of CNS function such as synaptic plasticity and neuronal survival. To elucidate its roles during CNS development in vivo, we examined the synaptic and cognitive development of the spontaneously diabetic Goto-Kakizaki (GK) rats in the present study. GK rats are non-obese models of type 2 diabetes established by selective inbreeding of Wistar rats based on impaired glucose tolerance. Though they start exhibiting only moderate hyperglycemia without changes in plasma insulin levels from 3 weeks postnatally, behavioral alterations in the open-field as well as significant impairments in memory retention compared with Wistar rats were observed at 10 weeks and were worsened at 20 weeks. Alterations in insulin receptor signaling and signs of insulin resistance were detected in the GK rat hippocampus at 3 weeks, as early as in other insulin-responsive peripheral tissues. Significant reduction of an excitatory postsynaptic scaffold protein, PSD95, was found at 5w and later in the hippocampus of GK rats due to the absence of a two-fold developmental increase of this protein observed in Wistar control rats between 3 and 20w. In the GK rat hippocampus, NR2A which is a NMDA receptor subunit selectively anchored to PSD95 was also reduced. In contrast, both NR2B and its anchoring protein, SAP102, showed similar developmental profiles in Wistar and GK rats with expression peaks at 2 and 3w. The results suggest that early alterations in insulin receptor signaling in the GK rat hippocampus may affect cognitive performance by suppressing synaptic maturation.
Collapse
|
21
|
Devanathan S, Whitehead TD, Fettig N, Gropler RJ, Nemanich S, Shoghi KI. Sexual dimorphism in myocardial acylcarnitine and triglyceride metabolism. Biol Sex Differ 2016; 7:25. [PMID: 27182432 PMCID: PMC4866274 DOI: 10.1186/s13293-016-0077-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/24/2016] [Indexed: 01/22/2023] Open
Abstract
Background Cardiovascular disease is the leading cause of death among diabetic patients. Importantly, recent data highlight the apparent sexual dimorphism in the pathogenesis of cardiovascular disease in diabetics with respect to both frequency- and age-related risk factors. The disposition to cardiovascular disease among diabetic patients has been attributed, at least in part, to excess lipid supply to the heart culminating in lipotoxicity of the heart and downstream derangements. A confounding factor in obese animal models of diabetes is that increased peripheral lipid availability to the heart can induce cardio-metabolic remodeling independent of the underlying pathophysiology of diabetes, thus masking the diabetic phenotype. To that end, we hypothesized that the use of non-obese diabetic (NOD) animal models will reveal metabolic signatures of diabetes in a sex-specific manner. Methods To test this hypothesis, male and female NOD Goto-Kakizaki (GK) rats were used to assess the expression profile of 84 genes involved in lipid metabolism. In parallel, targeted lipidomics analysis was performed to characterize sex differences in homeostasis of non-esterified fatty acids (NEFA), acylcarnitines (AC), and triglycerides (TG). Results Our analysis revealed significant sex differences in the expression of a broad range of genes involved in transport, activation, and utilization of lipids. Furthermore, NOD male rats exhibited enhanced oxidative metabolism and accumulation of TG, whereas female NOD rats exhibited reduced TG content coupled with accumulation of AC species. Multi-dimensional statistical analysis identified saturated AC16:0, AC18:0, and AC20:0 as dominant metabolites in mediating sex differences in AC metabolism. Confocal microscopy of rat cardiomyocytes exposed to AC14:0, AC16:0, and AC18:0 confirmed induction of ROS with AC18:0 being more potent followed by AC14:0. Conclusion Overall, we demonstrate sex differences in myocardial AC and TG metabolism with implications for therapy and diagnosis of diabetic cardiovascular disease. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0077-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sriram Devanathan
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Timothy D Whitehead
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Nicole Fettig
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Robert J Gropler
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA.,Department of Medicine, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Samuel Nemanich
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Kooresh I Shoghi
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA.,Department of Biomedical Engineering, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| |
Collapse
|
22
|
Xue B, Nie J, Wang X, DuBois DC, Jusko WJ, Almon RR. Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats. GENE REGULATION AND SYSTEMS BIOLOGY 2015; 9:15-26. [PMID: 26309393 PMCID: PMC4533846 DOI: 10.4137/grsb.s25172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/24/2015] [Accepted: 06/17/2015] [Indexed: 12/15/2022]
Abstract
Development and progression of type 2 diabetes is a complex interaction between genetics and environmental influences. High dietary fat is one environmental factor that is conducive to the development of insulin-resistant diabetes. In the present report, we compare the responses of lean poly-genic, diabetic Goto-Kakizaki (GK) rats to those of control Wistar-Kyoto (WKY) rats fed a high fat diet from weaning to 20 weeks of age. This comparison included a wide array of physiological measurements along with gene expression profiling of abdominal adipose tissue using Affymetrix gene array chips. Animals of both strains fed a high fat diet or a normal diet were sacrificed at 4, 8, 12, 16, and 20 weeks for this comparison. The microarray analysis revealed that the two strains developed different adaptations to increased dietary fat. WKY rats decrease fatty acid synthesis and lipogenic processes whereas GK rats increase lipid elimination. However, on both diets the major differences between the two strains remained essentially the same. Specifically relative to the WKY strain, the GK strain showed lipoatrophy, chronic inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Xi Wang
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| |
Collapse
|
23
|
Wang X, DuBois DC, Sukumaran S, Ayyar V, Jusko WJ, Almon RR. Variability in Zucker diabetic fatty rats: differences in disease progression in hyperglycemic and normoglycemic animals. Diabetes Metab Syndr Obes 2014; 7:531-41. [PMID: 25419150 PMCID: PMC4234283 DOI: 10.2147/dmso.s69891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Both obesity and chronic inflammation are often associated with insulin resistance and type 2 diabetes. The Zucker diabetic fatty (ZDF) rat (fa/fa) is an obese animal model frequently used in type 2 diabetes research. The current study determines whether chronic administration (from 5 weeks of age through 24 weeks of age) of salsalate, a salicylate with anti-inflammatory properties, would be effective in mitigating diabetes disease progression in ZDF rats. Although a trend existed for lower blood glucose in the salsalate-treated group, significant differences were obscured by high animal-level variability. However, even in the non-drug-treated group, not all ZDF rats became diabetic as expected. Therefore, animals were parsed into two groups, regardless of drug treatment: normoglycemic ZDF rats, which maintained blood glucose profiles identical to nondiabetic Zucker lean rats (ZLRs), and hyperglycemic ZDF rats, which exhibited progressive elevation in blood glucose. To ascertain the differences between ZDF rats that became hyperglycemic and those that did not, relevant physiological indices and expression levels of adiponectin, tumor necrosis factor-α, interleukin-6, and glucocorticoid-induced leucine zipper messenger RNAs in adipose tissue were measured at sacrifice. Plasma C-reactive protein concentrations and expression levels of cytokine and glucocorticoid-induced leucine zipper messenger RNAs suggested more prevalent chronic inflammation in hyperglycemic animals. Early elevation of the insulin-sensitizing adipokine, adiponectin, was present in both ZDF groups, with the rate of its age-related decline faster in hyperglycemic animals. The most marked difference between the two groups of ZDF animals was in insulin output. Although the two ZDF populations had very similar elevated plasma insulin concentrations for the first 10 weeks, after that time, plasma insulin decreased markedly in the animals that became hyperglycemic, whereas it remained high in the normoglycemic ZDF rats. Thus, hyperglycemic ZDF animals exhibit both insulin resistance and progressive beta cell failure, whereas normoglycemic ZDF rats exhibit a lesser degree of insulin resistance that does not progress to beta cell failure. In these respects, the normoglycemic ZDF rats appear to revert back to a phenotype that strongly resembles that of nondiabetic Zucker fatty rats from which they were derived.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Vivaswath Ayyar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| |
Collapse
|
24
|
Kang HJ, Chang M, Kang CM, Park YS, Yoon BJ, Kim TH, Yun CW. The expression of PHO92 is regulated by Gcr1, and Pho92 is involved in glucose metabolism in Saccharomyces cerevisiae. Curr Genet 2014; 60:247-53. [PMID: 24850134 DOI: 10.1007/s00294-014-0430-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/09/2014] [Accepted: 05/05/2014] [Indexed: 11/30/2022]
Abstract
Ydr374c (Pho92) contains a YTH domain in its C-terminal region and is a human YTHDF2 homologue. Previously, we reported that Pho92 regulates phosphate metabolism by regulating PHO4 mRNA stability. In this study, we found that growth of the ∆pho92 strain on SG media was slower than that of the wild type and that PHO92 expression was up-regulated by non-fermentable carbon sources, such as ethanol and glycerol, but not by fermentable carbon sources. Furthermore, two conserved Gcr1-binding regions were identified in the upstream, untranslated region of PHO92. Gcr1 is an important factor involved in the coordinated regulation of glycolytic gene expression. Mutation of two Gcr1-binding sites of the PHO92 upstream region resulted in a growth defect on SD media. Finally, mutagenesis of the Gcr1-binding sites of the PHO92 upstream region and deletion of GCR1 resulted in up-regulation of PHO92, and this resulted from inhibition of PHO4 mRNA degradation. Based on these results, we suggest that Gcr1 regulates the expression of PHO92, and Pho92 is involved in glucose metabolism.
Collapse
Affiliation(s)
- Hyun-Jun Kang
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J 2014; 457:391-400. [PMID: 24206186 DOI: 10.1042/bj20130862] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The homologue of human YTHDF2, Ydr374c (Pho92), is the only protein that has a YTH (YT521-B homology) domain in Saccharomyces cerevisiae. Based on microarray analysis, genes involved in the phosphate signal transduction (PHO) pathway were up-regulated in the Δpho92 strain, as were genes regulated by Pho4, which is an important transcription factor in the PHO pathway. To identify the exact mechanism of Pho92 action with respect to phosphate metabolism, we investigated the effect of Pho92 on PHO4 expression. The half-life of PHO4 mRNA was increased in the Δpho92 strain; this phenotype was also observed in the deletion mutants UPF1 and POP2, which are components of the NMD (nonsense-mediated decay) pathway and the Pop2-Ccr4-Not deadenylase complex respectively. Pho92 interacts physically with Pop2 of the Pop2-Ccr4-Not deadenylase complex. Furthermore, Pho92 binding to the 3'-UTR of PHO4 was dependent on the phosphate concentration. Deletion of the PHO4 3'-UTR resulted in PHO4 mRNA resistance to Pho92-dependent degradation. The results of the present study indicate that Pho92 regulates Pho4 expression at the post-transcriptional level via the regulation of mRNA stability. Taken together, Pho92 participates in cellular phosphate metabolism, specifically via the regulation of PHO4 mRNA stability by binding to the 3'-UTR in a phosphate-dependent manner.
Collapse
|
26
|
Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks. Sci Rep 2014; 3:2268. [PMID: 23881262 PMCID: PMC3721080 DOI: 10.1038/srep02268] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 11/09/2022] Open
Abstract
T2DM is complex in its dynamical dependence on multiple tissues, disease states, and factors' interactions. However, most existing work devoted to characterizing its pathophysiology from one static tissue, individual factors, or single state. Here we perform a spatio-temporal analysis on T2DM by developing a new form of molecular network, i.e. 'differential expression network' (DEN), which can reflect phenotype differences at network level. Static DENs show that three tissues (white adipose, skeletal muscle, and liver) all suffer from severe inflammation and perturbed metabolism, among which metabolic functions are seriously affected in liver. Dynamical analysis on DENs reveals metabolic function changes in adipose and liver are consistent with insulin resistance (IR) deterioration. Close investigation on IR pathway identifies 'disease interactions', revealing that IR deterioration is earlier than that on SlC2A4 in adipose and muscle. Our analysis also provides evidence that rising of insulin secretion is the root cause of IR in diabetes.
Collapse
|
27
|
Ochiai M, Kuroda T, Matsuo T. Increased muscular triglyceride content and hyperglycemia in Goto-Kakizaki rat are decreased by egg white hydrolysate. Int J Food Sci Nutr 2014; 65:495-501. [DOI: 10.3109/09637486.2013.879288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Wang X, DuBois DC, Cao Y, Jusko WJ, Almon RR. Diabetes disease progression in Goto-Kakizaki rats: effects of salsalate treatment. Diabetes Metab Syndr Obes 2014; 7:381-9. [PMID: 25120374 PMCID: PMC4128793 DOI: 10.2147/dmso.s65818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study investigates the antidiabetic effects of salsalate on disease progression of diabetes in non-obese diabetic Goto-Kakizaki (GK) rats, an experimental model of type 2 diabetes. Salsalate was formulated in rat chow (1,000 ppm) and used to feed rats from 5 to 21 weeks of age. At 5 weeks of age, GK and Wistar (WIS) control rats were subdivided into four groups, each composed of six rats: GK rats with standard diet (GK-C); GK rats with salsalate-containing diet (GK-S); WIS rats with standard diet (WIS-C); and WIS rats with salsalate-containing diet (WIS-S). The GK-C rats (167.2±11.6 mg/dL) showed higher blood glucose concentrations than WIS-C rats (133.7±4.9 mg/dL, P<0.001) at the beginning of the experiment, and had substantially elevated blood glucose from an age of 15 weeks until sacrifice at 21 weeks (341.0±133.6 mg/dL). The GK-S rats showed an almost flat profile of blood glucose from 4 weeks (165.1±11.0 mg/dL) until sacrifice at 21 weeks of age (203.7±22.2 mg/dL). While this difference in blood glucose between 4 and 21 weeks in GK-S animals was significant, blood glucose at 21 weeks was significantly lower in GK-S compared to GK-C animals. At sacrifice, salsalate decreased plasma insulin (GK-S =1.0±0.3; GK-C =2.0±0.3 ng/mL, P<0.001) and increased plasma adiponectin concentrations (GK-S =15.9±0.7; GK-C =9.7±2.0 μg/mL, P<0.001). Salsalate also lowered total cholesterol in GK-S rats (96.1±8.5 mg/dL) compared with GK-C rats (128.0±11.4 mg/dL, P<0.001). Inflammation-related genes (Ifit1 and Iigp1) exhibited much higher mRNA expression in GK-C rats than WIS-C rats in liver, adipose, and muscle tissues, while salsalate decreased the Ifit1 and Iigp1 mRNA only in adipose tissue. These results suggest that salsalate acts to both increase adiponectin and decrease adipose tissue-based inflammation while preventing type 2 diabetes disease progression in GK rats.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Debra C DuBois
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yanguang Cao
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Richard R Almon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Correspondence: Richard R Almon, Department of Biological Sciences, 107 Hochstetter Hall, University at Buffalo, Buffalo, NY 14260, USA, Tel +1 716 645 4907, Fax +1 716 645 2975, Email
| |
Collapse
|
29
|
Zhang R, Yan C, Zhou X, Qian B, Li F, Sun Y, Shi C, Li B, Saito S, Horimoto K, Zhou H. Association of Rev-erbα in adipose tissues with Type 2 diabetes mellitus amelioration after gastric bypass surgery in Goto-Kakizaki rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R134-46. [PMID: 23637135 DOI: 10.1152/ajpregu.00520.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We estimated the key molecules related to Type 2 diabetes mellitus (T2DM) in adipose, liver, and muscle tissues, from nonobese diabetic Goto-Kakizaki (GK) rats and their Wistar controls, by computationally analyzing the expression profiles in open source data. With the aid of information from previous reports, Rev-erbα in adipose tissue emerged as one of the most plausible candidates. Here, in animal models, including GK rats surgically treated to ameliorate T2DM, we examined the association of Rev-erbα in adipose tissue with T2DM progression. After analyses of the Rev-erbα mRNA expression in the adipose tissue of our animal models, we compared the Rev-erbα protein expression levels in the adipose, liver, and muscle tissues of GK and Wistar controls at the ages of 1 mo (M), 3M, and 6M. The Rev-erbα protein levels in adipose tissue showed a distinctive pattern, with the negative correlation of an increasing trend in GK rats, and a decreasing trend in Wistar rats during aging, from those in liver and muscle tissues. Moreover, dysregulation of the circadian Rev-erbα expression in the adipose tissue of 6-mo-old GK rats was also observed. In particular, we ameliorated T2DM in GK rats by gastric bypass surgery, and revealed that T2DM amelioration in diabetic GK rats was associated with improved circadian Rev-erbα expression, in a comparison between the surgically treated and untreated GK rats. The roles of Rev-erbα in adipose tissue were further investigated by observations of Rev-erbα-related molecules, with reference to previous reports.
Collapse
Affiliation(s)
- Rui Zhang
- Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Almon RR, Dubois DC, Sukumaran S, Wang X, Xue B, Nie J, Jusko WJ. Effects of high fat feeding on liver gene expression in diabetic goto-kakizaki rats. GENE REGULATION AND SYSTEMS BIOLOGY 2012; 6:151-68. [PMID: 23236253 PMCID: PMC3516129 DOI: 10.4137/grsb.s10371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effects of high fat diet (HFD) on obesity and, subsequently, on diabetes are highly variable and modulated by genetics in both humans and rodents. In this report, we characterized the response of Goto-Kakizaki (GK) rats, a spontaneous polygenic model for lean diabetes and healthy Wistar-Kyoto (WKY) controls, to high fat feeding from weaning to 20 weeks of age. Animals fed either normal diet or HFD were sacrificed at 4, 8, 12, 16 and 20 weeks of age and a wide array of physiological measurements were made along with gene expression profiling using Affymetrix gene array chips. Mining of the microarray data identified differentially regulated genes (involved in inflammation, metabolism, transcription regulation, and signaling) in diabetic animals, as well as the response of both strains to HFD. Functional annotation suggested that HFD increased inflammatory differences between the two strains. Chronic inflammation driven by heightened innate immune response was identified to be present in GK animals regardless of diet. In addition, compensatory mechanisms by which WKY animals on HFD resisted the development of diabetes were identified, thus illustrating the complexity of diabetes disease progression.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; New York State Center of Excellence in Bioinformatics and Life Sciences
| | | | | | | | | | | | | |
Collapse
|
31
|
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:125-59. [PMID: 22893405 DOI: 10.1007/978-1-62703-068-7_9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), Université Paris-Diderot, CNRS EAC 4413, Paris, France.
| | | | | | | | | |
Collapse
|
32
|
Cao Y, Dubois DC, Sun H, Almon RR, Jusko WJ. Modeling diabetes disease progression and salsalate intervention in Goto-Kakizaki rats. J Pharmacol Exp Ther 2011; 339:896-904. [PMID: 21903749 DOI: 10.1124/jpet.111.185686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) arises owing to insulin resistance and β-cell dysfunction. Chronic inflammation is widely identified as a cause of T2DM. The Goto-Kakizaki (GK) rat is a spontaneous rodent model for T2DM with chronic inflammation. The purpose of this study was to characterize diabetes progression in GK rats and evaluate the potential role of the anti-inflammatory agent salsalate. The GK rats were divided into control groups (n = 6) and salsalate treatment groups (n = 6), which were fed a salsalate-containing diet from 5 to 21 weeks of age. Blood glucose and salicylate concentrations were measured once a week. Glucose concentrations showed a biphasic increase in which the first phase started at approximately 5 weeks, resulting in an increase by 15 to 25 mg/dl and a second phase at 14 to 15 weeks with an upsurge of more than 100 mg/dl. A mechanism-based model was proposed to describe the natural diabetes progression and salsalate pharmacodynamics by using a population method in S-ADAPT. Two transduction cascades were applied to mimic the two T2DM components: insulin resistance and β-cell dysfunction. Salsalate suppressed both disease factors by a fraction of 0.622 on insulin resistance and 0.134 on β-cell dysfunction. The substantial alleviation of diabetes by salsalate supports the hypothesis that chronic inflammation is a pathogenic factor of diabetes in GK rats. In addition, body weight and food intake were measured and further modeled by a mechanism-based growth model. Modeling results suggest that salsalate reduces weight gain by enhancing metabolic rate and energy expenditure in both GK and Wister-Kyoto rats.
Collapse
Affiliation(s)
- Yanguang Cao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|