1
|
Wang SJ, Wen DT, Gao YH, Wang JF, Ma XF. Muscular TOR knockdown and endurance exercise ameliorate high salt and age-related skeletal muscle degradation by activating the MTOR-mediated pathway. PLoS One 2025; 20:e0311159. [PMID: 39841657 PMCID: PMC11753686 DOI: 10.1371/journal.pone.0311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/13/2024] [Indexed: 01/24/2025] Open
Abstract
The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet. TOR overexpression yielded similar results to the high salt diet(HSD) alone, with the opposite effect of TOR knockout found in regard to endurance exercise and HSD-induced age-related skeletal muscle degradation. Therefore, the current findings confirm that the muscle TOR gene plays an important role in endurance exercise against HSD-induced age-related skeletal muscle degeneration, as it determines the activity of the mammalian target of rapamycin(MTOR)/SIR2/PGC-1α and MTOR/ATG2/PGC-1α pathways in skeletal muscle.
Collapse
Affiliation(s)
- Shi-jie Wang
- Physical Culture Institute Ludong University, City Yantai, Shandong Province, China
| | - Deng-tai Wen
- Physical Culture Institute Ludong University, City Yantai, Shandong Province, China
| | - Ying-hui Gao
- Physical Culture Institute Ludong University, City Yantai, Shandong Province, China
| | - Jing-feng Wang
- Physical Culture Institute Ludong University, City Yantai, Shandong Province, China
| | - Xing-feng Ma
- Physical Culture Institute Ludong University, City Yantai, Shandong Province, China
| |
Collapse
|
2
|
Kuhnert LRB, Pontes RDFC, Neto JGO, Romão JS, Pinto CEDC, Oliveira KJ. Cinnamon powder intake enhances the effect of caloric restriction on white adipose tissue in male rats. J Mol Histol 2024; 56:19. [PMID: 39627596 DOI: 10.1007/s10735-024-10288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/30/2024] [Indexed: 02/07/2025]
Abstract
Caloric Restriction (CR) and cinnamon promote several benefits, including the modulation of lipid metabolism and body fat mass. We hypothesize that cinnamon may act as a mimetic of restriction or enhance the effects of caloric restriction on adipose tissue. Adult male Wistar rats were divided into Control (CT, n = 8) and Cinnamon (CIN, n = 7), with free access to standard chow; Calorie Restriction (CR, n = 8) and Calorie Restriction with Cinnamon (CIN-CR, n = 7), subjected to a 30% reduction in food intake compared to the average consumption of CT rats. Both CIN groups received 50 mg cinnamon powder (Cinnamomun verum) per kg body mass, by gavage, over 6 weeks. Cinnamon treatment did not alter food intake under either ad libitum or caloric restriction conditions. The CR and CIN-CR groups exhibit lower body mass. Basal glycemia, lipid profile, and triglyceride-glycemic index were similar between groups. The combination of both interventions induced lower visceral white adipose tissue (WAT) mass, and smaller adipocyte diameter in the visceral and subcutaneous WAT compartments, accompanied by reduced expression of genes related to lipid metabolism (Acaca, Fasn, Cd36, Srebf1c), suggesting decreased lipid synthesis. Histological analyses identified a browning phenotype in the CR, CIN, and CIN-CR groups, positive for UCP1 immunostaining. The CR and CIN-CR groups showed lower Atg7 expression, and CIN-CR animals expressed increased levels of Lamp2, suggesting modulation of autophagy. Brown adipose tissue mass and lipid content were not influenced by any intervention. These findings suggest that cinnamon may enhance the effects of caloric restriction in promoting adipocyte metabolic health.
Collapse
Affiliation(s)
- Lia Rafaella Ballard Kuhnert
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Experimental Pathology, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niteroi, RJ, Brazil
| | | | - Jessika Geisebel Oliveira Neto
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Santos Romão
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Carla Eponina de Carvalho Pinto
- Laboratory of Experimental Pathology, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niteroi, RJ, Brazil
| | - Karen Jesus Oliveira
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
3
|
Ersoy U, Altinpinar AE, Kanakis I, Alameddine M, Gioran A, Chondrogianni N, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction induces denervation and skeletal muscle atrophy in mice. Free Radic Biol Med 2024; 224:457-469. [PMID: 39245354 PMCID: PMC7617303 DOI: 10.1016/j.freeradbiomed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As a widespread global issue, protein deficiency hinders development and optimal growth in offspring. Maternal low-protein diet influences the development of age-related diseases, including sarcopenia, by altering the epigenome and organ structure through potential increase in oxidative stress. However, the long-term effects of lactational protein restriction or postnatal lifelong protein restriction on the neuromuscular system have yet to be elucidated. Our results demonstrated that feeding a normal protein diet after lactational protein restriction did not have significant impacts on the neuromuscular system in later life. In contrast, a lifelong low-protein diet induced a denervation phenotype and led to demyelination in the sciatic nerve, along with an increase in the number of centralised nuclei and in the gene expression of atrogenes at 18 months of age, indicating an induced skeletal muscle atrophy. These changes were accompanied by an increase in proteasome activity in skeletal muscle, with no significant alterations in oxidative stress or mitochondrial dynamics markers in skeletal muscle later in life. Thus, lifelong protein restriction may induce skeletal muscle atrophy through changes in peripheral nerves and neuromuscular junctions, potentially contributing to the early onset or exaggeration of sarcopenia.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| | - Moussira Alameddine
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
| | - Mandy Jayne Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Malcolm J Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland.
| | - Aphrodite Vasilaki
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Ortega-Molina A, Lebrero-Fernández C, Sanz A, Calvo-Rubio M, Deleyto-Seldas N, de Prado-Rivas L, Plata-Gómez AB, Fernández-Florido E, González-García P, Vivas-García Y, Sánchez García E, Graña-Castro O, Price NL, Aroca-Crevillén A, Caleiras E, Monleón D, Borrás C, Casanova-Acebes M, de Cabo R, Efeyan A. A mild increase in nutrient signaling to mTORC1 in mice leads to parenchymal damage, myeloid inflammation and shortened lifespan. NATURE AGING 2024; 4:1102-1120. [PMID: 38849535 PMCID: PMC11333293 DOI: 10.1038/s43587-024-00635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Metabolism in cancer and aging Laboratory, Immune System Development And Function Department, Centro de Biología Molecular Severo Ochoa (CBM), Madrid, Spain.
| | - Cristina Lebrero-Fernández
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Metabolism in cancer and aging Laboratory, Immune System Development And Function Department, Centro de Biología Molecular Severo Ochoa (CBM), Madrid, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Calvo-Rubio
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucía de Prado-Rivas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Fernández-Florido
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Yurena Vivas-García
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Sánchez García
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), Department of Basic Medical Sciences, School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Alejandra Aroca-Crevillén
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), Institute of Health Research-INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), MiniAging Research Group, Institute of Health Research-INCLIVA, Valencia, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
5
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Huang S, Lou Y, Wang S, You Q, Jiang Q, Cao S. Association of changes in plant-based diet consumption with all-cause mortality among older adults in China: a prospective study from 2008 to 2019. J Nutr Health Aging 2024; 28:100027. [PMID: 38388116 DOI: 10.1016/j.jnha.2023.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 02/24/2024]
Abstract
OBJECTIVES To examine the association of changes in plant-based diet consumption with all-cause mortality among older adults in China. DESIGN Cohort study. SETTING This cohort study of 11 years used data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), a long-term, nationwide survey covering 23 provinces in China. PARTICIPANTS A total of 7843 older participants aged ≥60 years were included in this study. MEASUREMENTS Changes in plant-based diets consumption (2008-2011) were assessed by 3 graded plant-based diet indices, including an overall plant-based diet index (PDI), a healthful plant-based diet index (hPDI), and an unhealthful plant-based diet index (uPDI). The main outcome was all-cause mortality. Multivariable-adjusted Cox proportional-hazards models were fitted to estimate hazard ratios (HRs) and 95% confidence intervals (95% CIs) of mortality for changes in PDI, hPDI, and uPDI. RESULTS A total of 7843 participants (mean [SD] age, 82.2 [10.9] years; 3588 [45.7%] men) were included in this study. During a median (IQR) of 9 (5-10) years of follow-up, 3749 deaths were documented. Compared with older adults whose plant-based diet indices were relatively stable, older adults with the greatest decrease (quintile 1) in PDI, hPDI, and uPDI had respectively 32% (95% CI, 19%-47%) higher, 21% (95% CI, 9%-33%) higher, and 10% (95% CI, 4%-21%) lower risk of death. Compared with older adults whose diet indices were relatively stable, older adults with the greatest increase (quintile 5) in uPDI had a 13% higher risk of death (95% CI, 1%-21%), while no significant associations of the increased PDI and hPDI with all-cause mortality were observed. CONCLUSION Maintaining the consumption of overall and healthful plant-based diets, and decreasing the consumption of an unhealthful plant-based diet can be beneficial in preventing or delaying premature death among Chinese older adults.
Collapse
Affiliation(s)
- Shen Huang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Lou
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqi Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqi You
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Jiang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Front Physiol 2024; 14:1326809. [PMID: 38235383 PMCID: PMC10791986 DOI: 10.3389/fphys.2023.1326809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
8
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Aging Hallmarks and Progression and Age-Related Diseases: A Landscape View of Research Advancement. ACS Chem Neurosci 2024; 15:1-30. [PMID: 38095562 PMCID: PMC10767750 DOI: 10.1021/acschemneuro.3c00531] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/04/2024] Open
Abstract
Aging is a dynamic, time-dependent process that is characterized by a gradual accumulation of cell damage. Continual functional decline in the intrinsic ability of living organisms to accurately regulate homeostasis leads to increased susceptibility and vulnerability to diseases. Many efforts have been put forth to understand and prevent the effects of aging. Thus, the major cellular and molecular hallmarks of aging have been identified, and their relationships to age-related diseases and malfunctions have been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent aging-related research. We review the advances in knowledge and delineate trends in research advancements on aging factors and attributes across time and geography. We also review the current concepts related to the major aging hallmarks on the molecular, cellular, and organismic level, age-associated diseases, with attention to brain aging and brain health, as well as the major biochemical processes associated with aging. Major age-related diseases have been outlined, and their correlations with the major aging features and attributes are explored. We hope this review will be helpful for apprehending the current knowledge in the field of aging mechanisms and progression, in an effort to further solve the remaining challenges and fulfill its potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
9
|
Barbero Mazzucca C, Cappellano G, Chiocchetti A. Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:573-587. [PMID: 37138438 DOI: 10.2174/1871527322666230502123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Aging is a gradual decline of physiological function and tissue homeostasis and, in many instances, is related to increased (neuro)-degeneration, together with inflammation, becoming one of the most important risks for developing neurodegenerative diseases. Certain individual nutrients or foods in combination may counteract aging and associated neurodegenerative diseases by promoting a balance between the pro- and anti-inflammatory responses. Thus, nutrition could represent a powerful modulator of this fine balance, other than a modifiable risk factor to contrast inflammaging. This narrative review explores from a broad perspective the impact of nutrition on the hallmarks of aging and inflammation in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis Syndrome (ALS), starting from nutrients up to single foods and complex dietary patterns.
Collapse
Affiliation(s)
- Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
10
|
Xiao CW, Hendry A, Kenney L, Bertinato J. L-Lysine supplementation affects dietary protein quality and growth and serum amino acid concentrations in rats. Sci Rep 2023; 13:19943. [PMID: 37968448 PMCID: PMC10651908 DOI: 10.1038/s41598-023-47321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Single amino acid (AA) supplementations in foods are increasing, however their potential nutritional and physiological impacts are not fully understood. This study examined the effects of L-lysine (Lys) supplementation on protein quality of diets, serum AA concentrations and associations between the ratio of supplemental Lys to dietary protein (X) with body weight gain (BWG) in Sprague-Dawley male rats. Rats were fed one of 10 diets containing either 7% or 20% casein and supplemented with 0% (Control), 1.5%, 3%, 6% Lys or 6% Lys + 3% L-arginine (Arg) (8 rats/diet group) for 1 week. Lys supplementation reduced the protein quality of the casein-based diets (p < 0.01). BWG was reduced by supplemental Lys when X > 0.18. Free Lys supplementation dose-dependently increased serum Lys levels (p < 0.01), while increased protein-bound Lys (1.4% vs 0.52%) had little effect on serum Lys (p > 0.05). In the 7% casein diets, ≥ 1.5% supplemental Lys reduced serum alanine, asparagine, glycine, isoleucine, leucine, serine, tyrosine, valine, carnitine, ornithine, and increased urea. Supplementation of ≥ 3% Lys additionally reduced tryptophan and increased histidine, methionine and α-aminoadipic acid (α-AAA) compared to the Control (p < 0.05). In the 20% casein diets, addition of ≥ 1.5% Lys reduced serum asparagine and threonine, and ≥ 3% Lys reduced leucine, proline, tryptophan, valine, and ornithine, and 6% Lys reduced carnitine, and increased histidine, methionine, and α-AAA. Overall, this study showed that free Lys supplementation in a Lys-sufficient diet reduced the protein quality of the diets and modified the serum concentrations of many amino acids. Excess free Lys intake adversely affected growth and utilization of nutrients due to AA imbalance or antagonism. Overall lower protein intake increases susceptibility to the adverse effects of Lys supplementation.
Collapse
Affiliation(s)
- Chao-Wu Xiao
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Ottawa, ON, K1A 0K9, Canada.
- Food and Nutrition Science Program, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Amy Hendry
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Ottawa, ON, K1A 0K9, Canada
| | - Laura Kenney
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Ottawa, ON, K1A 0K9, Canada
| | - Jesse Bertinato
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Ottawa, ON, K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Gulias JF, Niesi F, Arán M, Correa-García S, Bermúdez-Moretti M. Gcn4 impacts metabolic fluxes to promote yeast chronological lifespan. PLoS One 2023; 18:e0292949. [PMID: 37831681 PMCID: PMC10575530 DOI: 10.1371/journal.pone.0292949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological integrity, which impairs functionality and increases susceptibility to mortality. Dietary restriction, mimicking nutrient scarcity without causing malnutrition, is an intervention known to decelerate the aging process. While various hypotheses have been proposed to elucidate how dietary restriction influences aging, the underlying mechanisms remain incompletely understood. This project aimed to investigate the role of the primary regulator of the general amino acid control (GAAC) pathway, the transcription factor Gcn4, in the aging process of S. cerevisiae cells. Under conditions of amino acid deprivation, which activate Gcn4, the deletion of GCN4 led to a diverse array of physiological changes in the cells. Notably, the absence of Gcn4 resulted in heightened mitochondrial activity, likely contributing to the observed increase in reactive oxygen species (ROS) accumulation. Furthermore, these mutant gcn4Δ cells exhibited reduced ethanol production despite maintaining similar glucose consumption rates, suggesting a pivotal role for Gcn4 in regulating the Crabtree effect. Additionally, there was a marked reduction in trehalose, the storage carbohydrate, within the mutant cells compared to the wild-type strain. The intracellular content of free amino acids also exhibited disparities between the wild-type and GCN4-deficient strains. Taken together, our findings indicate that the absence of GCN4 disrupts cellular homeostasis, triggering significant alterations in interconnected intracellular metabolic pathways. These disruptions have far-reaching metabolic consequences that ultimately culminate in a shortened lifespan.
Collapse
Affiliation(s)
- Juan Facundo Gulias
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Florencia Niesi
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | - Susana Correa-García
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
12
|
Kondo Y, Aoki H, Masuda M, Nishi H, Noda Y, Hakuno F, Takahashi SI, Chiba T, Ishigami A. Moderate protein intake percentage in mice for maintaining metabolic health during approach to old age. GeroScience 2023; 45:2707-2726. [PMID: 37118349 PMCID: PMC10651611 DOI: 10.1007/s11357-023-00797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Nutritional requirements for maintaining metabolic health may vary with each life stage, such as young, middle, and old age. To investigate the appropriate ratio of nutrients, particularly proteins, for maintaining metabolic health while approaching old age, young (6-month-old) and middle-aged (16-month-old) mice were fed isocaloric diets with varying protein percentages (5%, 15%, 25%, 35%, and 45% by calorie ratio) for two months. The low-protein diet developed mild fatty liver, with middle-aged mice showing more lipids than young mice, whereas the moderate-protein diet suppressed lipid contents and lowered the levels of blood glucose and lipids. Self-organizing map (SOM) analysis revealed that plasma amino acid profiles differed depending on age and difference in protein diet and were associated with hepatic triglyceride and cholesterol levels. Results indicate that the moderate protein intake percentages (25% and 35%) are required for maintaining metabolic health in middle-aged mice, which is similar to that in young mice.
Collapse
Affiliation(s)
- Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Hitoshi Aoki
- Research and Development Division, Nichirei Foods Inc, Chiba, 261-0002, Japan
| | - Masato Masuda
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroki Nishi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Noda
- Department of Animal Facility, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Saitama, 359-1192, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
13
|
Munoz MD, Zamudio A, McCann M, Gil V, Xu P, Liew CW. Activation of brown adipose tissue by a low-protein diet ameliorates hyperglycemia in a diabetic lipodystrophy mouse model. Sci Rep 2023; 13:11808. [PMID: 37479751 PMCID: PMC10362023 DOI: 10.1038/s41598-023-37482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023] Open
Abstract
Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IRFKO (adipose-specific insulin receptor knockout) in this study. We have previously shown that IRFKO mice have profound insulin resistance, hyperglycemia, and whitening of interscapular brown adipose tissue (BAT), closely mimicking the phenotypes in lipoatrophic diabetic patients. Here, we demonstrate that 14-day of LPD (5.1% kcal from protein) feeding is sufficient to reduce postprandial blood glucose, improve insulin resistance, and normalize glucose tolerance in the IRFKO mice. This profound metabolic improvement is associated with BAT activation and increase in whole body energy expenditure. To confirm, we showed that surgical denervation of BAT attenuated the beneficial metabolic effects of LPD feeding in IRFKO mice, including the 'browning' effects on BAT and the glucose-ameliorating results. However, BAT denervation failed to affect the body weight-lowering effects of LPD. Together, our results imply a therapeutic potential to use LPD for the treatment of lipoatrophic diabetes.
Collapse
Affiliation(s)
- Marcos David Munoz
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alexa Zamudio
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Maximilian McCann
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Victoria Gil
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Pingwen Xu
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA.
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Kogot-Levin A, Riahi Y, Abramovich I, Mosenzon O, Agranovich B, Kadosh L, Ben-Haroush Schyr R, Kleiman D, Hinden L, Cerasi E, Ben-Zvi D, Bernal-Mizrachi E, Tam J, Gottlieb E, Leibowitz G. Mapping the metabolic reprogramming induced by sodium-glucose cotransporter 2 inhibition. JCI Insight 2023; 8:e164296. [PMID: 36809274 PMCID: PMC10132155 DOI: 10.1172/jci.insight.164296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging.
Collapse
Affiliation(s)
- Aviram Kogot-Levin
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yael Riahi
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ifat Abramovich
- The laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology Haifa, Israel
| | - Ofri Mosenzon
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Agranovich
- The laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology Haifa, Israel
| | - Liat Kadosh
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, and
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, and
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erol Cerasi
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, and
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Gottlieb
- The laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology Haifa, Israel
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Munoz M, Zamudio A, McCann M, Gil V, Xu P, Liew CW. Activation of brown adipose tissue by a low-protein diet ameliorates hyperglycemia in a diabetic lipodystrophy mouse model. RESEARCH SQUARE 2023:rs.3.rs-2701883. [PMID: 37034803 PMCID: PMC10081364 DOI: 10.21203/rs.3.rs-2701883/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IR FKO (adipose-specific insulin receptor knockout) in this study. We have previously shown that IR FKO mice have profound insulin resistance, hyperglycemia, and whitenng of interscapular brown adipose tissue (BAT), closely mimicking the phenotypes in lipoatrophic diabetic patients. Here, we demonstrate that 14-day of LPD (5.1% kcal from protein) feeding is sufficient to reduce postprandial blood glucose, improve insulin resistance, and normalize glucose tolerance in the IR FKO mice. This profound metabolic improvement is associated with BAT activation and increase in whole body energy expenditure. To confirm, we showed that surgical denervation of BAT attenuated the beneficial metabolic effects of LPD feeding in IR FKO mice, including the 'browning' effects on BAT and the glucose-ameliorating results. However, BAT denervation failed to affect the body weight-lowering effects of LPD. Together, our results imply a therapeutic potential to use LPD for the treatment of lipoatrophic diabetes.
Collapse
|
16
|
Díaz A, Vázquez-Roque R, Carreto-Meneses K, Moroni-González D, Moreno-Rodríguez JA, Treviño S. Polyoxidovanadates as a pharmacological option against brain aging. J Chem Neuroanat 2023; 129:102256. [PMID: 36921908 DOI: 10.1016/j.jchemneu.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
The world population is aging rapidly, and chronic diseases associated are cardiometabolic syndrome, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are typical hallmarks in them. Polyoxidovanadates (POVs) have shown interesting pharmacological actions against chronic diseases. This work aimed to evaluate the POV effect on hippocampal neuroinflammation, redox balance, and recognition memory in the aging of rats. Rats 18 months old were administered a daily dose of sodium metavanadate (MV), decavanadate (DV), Metformin (Metf), or MetfDeca for two months. Results showed that short-term and long-term recognition memory improved by 28 % and 16 % (DV), 19 % and 20 % (Metf), and 21 % and 27 % (MetfDeca). In hippocampi, reactive oxygen species, IL-1β, and TNF-α, after DV, Metf, and MetfDeca decreased at similar concentrations to young adult control, while lipid peroxidation substantially ameliorated. Additionally, superoxide dismutase and catalase activity increased by 41 % and 42 % (DV), 39 % and 41 % (Metf), and 75 % and 73 % (MetfDeca). POV treatments reduced Nrf2 and GFAP immunoreactivity in CA1 (70-87.5 %), CA3 (60-80 %), and DG (57-89 %). Metformin treatment showed a minor effect, while MV treatment did not improve any parameters. Although DV, Metf, and MetfDeca treatments showed similar results, POVs doses were 16-fold fewer than Metformin. In conclusion, DV and MetfDeca could be pharmacological options to reduce age-related neuronal damage.
Collapse
Affiliation(s)
- Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South. FC91, University City, Puebla C.P. 72560, Mexico
| | - Rubén Vázquez-Roque
- Neuropsychiatry laboratory, Physiology Institute, University Autonomous of Puebla, 14 South. University City, Puebla C.P. 72560, Mexico
| | - Karen Carreto-Meneses
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla C.P. 72560, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla C.P. 72560, Mexico
| | - José Albino Moreno-Rodríguez
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla C.P. 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla C.P. 72560, Mexico.
| |
Collapse
|
17
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
18
|
Panyard DJ, Yu B, Snyder MP. The metabolomics of human aging: Advances, challenges, and opportunities. SCIENCE ADVANCES 2022; 8:eadd6155. [PMID: 36260671 PMCID: PMC9581477 DOI: 10.1126/sciadv.add6155] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 05/02/2023]
Abstract
As the global population becomes older, understanding the impact of aging on health and disease becomes paramount. Recent advancements in multiomic technology have allowed for the high-throughput molecular characterization of aging at the population level. Metabolomics studies that analyze the small molecules in the body can provide biological information across a diversity of aging processes. Here, we review the growing body of population-scale metabolomics research on aging in humans, identifying the major trends in the field, implicated biological pathways, and how these pathways relate to health and aging. We conclude by assessing the main challenges in the research to date, opportunities for advancing the field, and the outlook for precision health applications.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Yuskaitis CJ, Modasia JB, Schrötter S, Rossitto LA, Groff KJ, Morici C, Mithal DS, Chakrabarty RP, Chandel NS, Manning BD, Sahin M. DEPDC5-dependent mTORC1 signaling mechanisms are critical for the anti-seizure effects of acute fasting. Cell Rep 2022; 40:111278. [PMID: 36044864 PMCID: PMC9508617 DOI: 10.1016/j.celrep.2022.111278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Caloric restriction and acute fasting are known to reduce seizures but through unclear mechanisms. mTOR signaling has been suggested as a potential mechanism for seizure protection from fasting. We demonstrate that brain mTORC1 signaling is reduced after acute fasting of mice and that neuronal mTORC1 integrates GATOR1 complex-mediated amino acid and tuberous sclerosis complex (TSC)-mediated growth factor signaling. Neuronal mTORC1 is most sensitive to withdrawal of leucine, arginine, and glutamine, which are dependent on DEPDC5, a component of the GATOR1 complex. Metabolomic analysis reveals that Depdc5 neuronal-specific knockout mice are resistant to sensing significant fluctuations in brain amino acid levels after fasting. Depdc5 neuronal-specific knockout mice are resistant to the protective effects of fasting on seizures or seizure-induced death. These results establish that acute fasting reduces seizure susceptibility in a DEPDC5-dependent manner. Modulation of nutrients upstream of GATOR1 and mTORC1 could offer a rational therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinita B Modasia
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Schrötter
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Leigh-Ana Rossitto
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karenna J Groff
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Morici
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Divakar S Mithal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Section of Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Kokoreva AS, Isakova EP, Tereshina VM, Klein OI, Gessler NN, Deryabina YI. The Effect of Different Substrates on the Morphological Features and Polyols Production of Endomyces magnusii Yeast during Long-Lasting Cultivation. Microorganisms 2022; 10:microorganisms10091709. [PMID: 36144311 PMCID: PMC9506286 DOI: 10.3390/microorganisms10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The study on the influence of different glucose concentrations (2%, 0.5%, and 0.2%) and glycerol (1%) on the morphological and physiological features, as well as the composition of soluble carbohydrates, was performed using Endomyces magnusii yeast. Two-factor analysis of variance with repetitions to process the data of the cell size changes showed that the substrate type affected cell size the most. The cells with 2% glucose were 30–35% larger than those growing on glycerol. The decrease in the initial glucose concentration up to 0.5–0.2% slightly changed the cell length. However, even in the logarithmic growth phase pseudo-mycelium of two to four cells appeared in the cultures when using low glucose, unlike those using glycerol. Throughout the whole experiment, more than 90% of the populations remained viable on all of the substrates tested. The ability for colony formation decreased during aging. Nevertheless, at the three-week stage, upon substrate restriction (0.2% glucose), it was twice higher than those under the other conditions. The respiration rate also decreased and exceeded not more than 10% of that in the logarithmic phase. By the end of the experiment, the cyanide-sensitive respiration share decreased up to 40% for all types of substrates. The study of soluble cytosol carbohydrates showed that the cultures using 2% glucose and 1% glycerol contained mainly arabitol and mannitol, while at low glucose concentrations they were substituted for inositol. The formation of inositol is supposed to be related to pseudo-mycelium formation. The role of calorie restriction in the regulation of carbohydrate synthesis and the composition in the yeast and its biotechnological application is under consideration.
Collapse
Affiliation(s)
- Anastasia S. Kokoreva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-954-4008
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya, 7/2, 117312 Moscow, Russia
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
21
|
The Effects of Nutrient Signaling Regulators in Combination with Phytocannabinoids on the Senescence-Associated Phenotype in Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23158804. [PMID: 35955938 PMCID: PMC9368899 DOI: 10.3390/ijms23158804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Identifying effective anti-aging compounds is a cornerstone of modern longevity, aging, and skin-health research. There is considerable evidence of the effectiveness of nutrient signaling regulators such as metformin, resveratrol, and rapamycin in longevity and anti-aging studies; however, their potential protective role in skin aging is controversial. In light of the increasing appearance of phytocannabinoids in beauty products without rigorous research on their rejuvenation efficacy, we decided to investigate the potential role of phytocannabinoids in combination with nutrient signaling regulators in skin rejuvenation. Utilizing CCD-1064Sk skin fibroblasts, the effect of metformin, triacetylresveratrol, and rapamycin combined with phytocannabinoids on cellular viability, functional activity, metabolic function, and nuclear architecture was tested. We found triacetylresveratrol combined with cannabidiol increased the viability of skin fibroblasts (p < 0.0001), restored wound-healing functional activity (p < 0.001), reduced metabolic dysfunction, and ameliorated nuclear eccentricity and circularity in senescent fibroblasts (p < 0.01). Conversely, metformin with or without phytocannabinoids did not show any beneficial effects on functional activity, while rapamycin inhibited cell viability (p < 0.01) and the speed of wound healing (p < 0.001). Therefore, triacetylresveratrol and cannabidiol can be a valuable source of biologically active substances used in aging and more studies using animals to confirm the efficacy of cannabidiol combined with triacetylresveratrol should be performed.
Collapse
|
22
|
Herpich C, Müller-Werdan U, Norman K. Role of plant-based diets in promoting health and longevity. Maturitas 2022; 165:47-51. [PMID: 35914402 DOI: 10.1016/j.maturitas.2022.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Western-style obesity-promoting diets are associated with increased inflammation, higher disease incidence and mortality. In contrast, plant-based diets (PBDs), which incorporate large amounts of vegetables and fruit, legumes, whole grains and only a small amount of meat, are generally associated with better health and lower mortality. This narrative review summarizes the evidence on health and life span in adults adhering to PBDs and discusses the potentially longevity-promoting mechanism of PBDs as well as limitations due to nutrient deficiencies. Epidemiologic studies consistently report lower mortality rates in adults who adhering to PBDs when compared with people whose diet regularly includes meat. PBDs are associated with many health benefits, such as improved metabolic and inflammatory profile. In turn, the incidence of cardiovascular disease is lower in adults consuming PBDs, which contributes to their better health. The health-promoting effects of PBDs are still not entirely clear but most likely multifactorial and include modulation of the gut microbiome. The interest in possible longevity-promoting mechanisms of PBDs has increased in recent years, as many characteristics of PBDs such as protein restriction and restriction of certain amino acids are known to extend the life span. While there is ample evidence from animal studies, large-scale human studies, which also provide insight into the specific mechanisms of the effect of PBDs on longevity, are missing. However, due to the lower protein content of PBDs, there appears to be an age limit for the anticipated health effects, as adults over 65 require larger amounts of protein.
Collapse
Affiliation(s)
- Catrin Herpich
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Geriatrics and Medical Gerontology, Berlin, Germany
| | - Ursula Müller-Werdan
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Geriatrics and Medical Gerontology, Berlin, Germany; Evangelisches Geriatriezentrum Berlin gGmbH, Berlin, Germany
| | - Kristina Norman
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Geriatrics and Medical Gerontology, Berlin, Germany; German Institute for Human Nutrition Potsdam-Rehbrücke, Department of Nutrition and Gerontology, 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Xie D, Huang J, Zhang Q, Zhao S, Xue H, Yu QQ, Sun Z, Li J, Yang X, Shao M, Pang D, Jiang P. Comprehensive evaluation of caloric restriction-induced changes in the metabolome profile of mice. Nutr Metab (Lond) 2022; 19:41. [PMID: 35761356 PMCID: PMC9235101 DOI: 10.1186/s12986-022-00674-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/12/2022] [Indexed: 12/19/2022] Open
Abstract
Objects Caloric restriction (CR) is known to extend lifespan and exert a protective effect on organs, and is thus a low-cost and easily implemented approach to the health maintenance. However, there have been no studies that have systematically evaluated the metabolic changes that occur in the main tissues affected by CR. This study aimed to explore the target tissues metabolomic profile in CR mice. Methods Male C57BL/6J mice were randomly allocated to the CR group (n = 7) and control group (n = 7). A non-targeted gas chromatography–mass spectrometry approach and multivariate analysis were used to identify metabolites in the main tissues (serum, heart, liver, kidney, cortex, hippocampus, lung, muscle, and white adipose) in model of CR. Results We identified 10 metabolites in the heart that showed differential abundance between the 2 groups, along with 9 in kidney, 6 in liver, 6 in lung, 6 in white adipose, 4 in hippocampus, 4 in serum, 3 in cortex, and 2 in muscle. The most significantly altered metabolites were amino acids (AAs) (glycine, aspartic acid, l-isoleucine, l-proline, l-aspartic acid, l-serine, l-hydroxyproline, l-alanine, l-valine, l-threonine, l-glutamic acid, and l-phenylalanine) and fatty acids (FAs) (palmitic acid, 1-monopalmitin, glycerol monostearate, docosahexaenoic acid, 16-octadecenoic acid, oleic acid, stearic acid, and hexanoic acid). These metabolites were associated with 7 different functional pathways related to the metabolism of AAs, lipids, and energy. Conclusion Our results provide insight into the specific metabolic changes that are induced by CR and can serve as a reference for physiologic studies on how CR improves health and extends lifespan.
Collapse
Affiliation(s)
- Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Jinxi Huang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Zhang
- Clinical Laboratory, Tengzhou Central People's Hospital, Tengzhou, 277500, China
| | - Shiyuan Zhao
- Jining First People's Hospital, Jining Medical University, Jiankang Road, Jining, 272000, China
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Department of Oncology, Jining First People's Hospital, Jining, 272000, China
| | - Zhuohao Sun
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Jing Li
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Xiumei Yang
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Minglei Shao
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China
| | - Deshui Pang
- Department of Endocrinology, Tengzhou Central People's Hospital, Xingtan Road, Tengzhou, 277500, China.
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jiankang Road, Jining, 272000, China.
| |
Collapse
|
24
|
McKenzie BA, Chen FL, Gruen ME, Olby NJ. Canine Geriatric Syndrome: A Framework for Advancing Research in Veterinary Geroscience. Front Vet Sci 2022; 9:853743. [PMID: 35529834 PMCID: PMC9069128 DOI: 10.3389/fvets.2022.853743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Biological aging is the single most important risk factor for disease, disability, and ultimately death in geriatric dogs. The effects of aging in companion dogs also impose significant financial and psychological burdens on their human caregivers. The underlying physiologic processes of canine aging may be occult, or early signs of aging may be ignored because of the misconception that biological aging is natural and therefore inevitable. The ability to detect, quantify, and mitigate the deleterious processes of canine aging would greatly enhance veterinary preventative medicine and animal welfare. In this paper we propose a new conceptual framework for aging in dogs, the Canine Geriatric Syndrome (CGS). CGS consists of the multiple, interrelated physical, functional, behavioral, and metabolic changes that characterize canine aging as well as the resulting clinical manifestations, including frailty, diminished quality of life, and age-associated disease. We also identify potential key components of a CGS assessment tool, a clinical instrument that would enable veterinarians to diagnose CGS and would facilitate the development and testing of interventions to prolong healthspan and lifespan in dogs by directly targeting the biological mechanisms of aging. There are many gaps in our knowledge of the mechanisms and phenotype of aging in dogs that must be bridged before a CGS assessment tool can be deployed. The conceptual framework of CGS should facilitate identifying these gaps and should stimulate research to better characterize the processes and effects of aging in dogs and to identify the most promising preventative strategies to target these.
Collapse
Affiliation(s)
| | - Frances L. Chen
- Cellular Longevity Inc., dba Loyal, San Francisco, CA, United States
| | - Margaret E. Gruen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Natasha J. Olby
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
25
|
FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. Nat Commun 2022; 13:1897. [PMID: 35393401 PMCID: PMC8991228 DOI: 10.1038/s41467-022-29499-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice. Conversely, mice lacking FGF21 fail to exhibit metabolic responses to protein restriction in early life, and in later life exhibit early onset of age-related weight loss, reduced physical performance, increased frailty, and reduced lifespan. These data demonstrate that protein restriction in aging male mice exerts marked beneficial effects on lifespan and metabolic health and that a single metabolic hormone, FGF21, is essential for the anti-aging effect of this dietary intervention.
Collapse
|
26
|
Song B, Xia W, Li T, Liu R. Mitochondria is involved in combination of blueberry and apple peel extracts synergistically ameliorating lifespan and oxidative stress in Caenorhabditis elegans. Food Funct 2022; 13:8204-8213. [DOI: 10.1039/d2fo00474g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial function is closely related to the body's oxidative stress level and lifespan. Our previous research demonstrated that the combination of blueberry extracts (BE) and apple peel extracts (APE) could...
Collapse
|
27
|
Khan MS, Spann RA, Münzberg H, Yu S, Albaugh VL, He Y, Berthoud HR, Morrison CD. Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients 2021; 13:4103. [PMID: 34836357 PMCID: PMC8620426 DOI: 10.3390/nu13114103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Feeding behavior is guided by multiple competing physiological needs, as animals must sense their internal nutritional state and then identify and consume foods that meet nutritional needs. Dietary protein intake is necessary to provide essential amino acids and represents a specific, distinct nutritional need. Consistent with this importance, there is a relatively strong body of literature indicating that protein intake is defended, such that animals sense the restriction of protein and adaptively alter feeding behavior to increase protein intake. Here, we argue that this matching of food consumption with physiological need requires at least two concurrent mechanisms: the first being the detection of internal nutritional need (a protein need state) and the second being the discrimination between foods with differing nutritional compositions. In this review, we outline various mechanisms that could mediate the sensing of need state and the discrimination between protein-rich and protein-poor foods. Finally, we briefly describe how the interaction of these mechanisms might allow an animal to self-select between a complex array of foods to meet nutritional needs and adaptively respond to changes in either the external environment or internal physiological state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.S.K.); (R.A.S.); (H.M.); (S.Y.); (V.L.A.); (Y.H.); (H.-R.B.)
| |
Collapse
|
28
|
Latimer MN, Sonkar R, Mia S, Frayne IR, Carter KJ, Johnson CA, Rana S, Xie M, Rowe GC, Wende AR, Prabhu SD, Frank SJ, Rosiers CD, Chatham JC, Young ME. Branched chain amino acids selectively promote cardiac growth at the end of the awake period. J Mol Cell Cardiol 2021; 157:31-44. [PMID: 33894212 PMCID: PMC8319101 DOI: 10.1016/j.yjmcc.2021.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Essentially all biological processes fluctuate over the course of the day, manifesting as time-of-day-dependent variations with regards to the way in which organ systems respond to normal behaviors. For example, basic, translational, and epidemiologic studies indicate that temporal partitioning of metabolic processes governs the fate of dietary nutrients, in a manner in which concentrating caloric intake towards the end of the day is detrimental to both cardiometabolic and cardiovascular parameters. Despite appreciation that branched chain amino acids impact risk for obesity, diabetes mellitus, and heart failure, it is currently unknown whether the time-of-day at which dietary BCAAs are consumed influence cardiometabolic/cardiovascular outcomes. Here, we report that feeding mice a BCAA-enriched meal at the end of the active period (i.e., last 4 h of the dark phase) rapidly increases cardiac protein synthesis and mass, as well as cardiomyocyte size; consumption of the same meal at the beginning of the active period (i.e., first 4 h of the dark phase) is without effect. This was associated with a greater BCAA-induced activation of mTOR signaling in the heart at the end of the active period; pharmacological inhibition of mTOR (through rapamycin) blocked BCAA-induced augmentation of cardiac mass and cardiomyocyte size. Moreover, genetic disruption of the cardiomyocyte circadian clock abolished time-of-day-dependent fluctuations in BCAA-responsiveness. Finally, we report that repetitive consumption of BCAA-enriched meals at the end of the active period accelerated adverse cardiac remodeling and contractile dysfunction in mice subjected to transverse aortic constriction. Thus, our data demonstrate that the timing of BCAA consumption has significant implications for cardiac health and disease.
Collapse
Affiliation(s)
- Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ravi Sonkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Isabelle Robillard Frayne
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada
| | - Karen J Carter
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher A Johnson
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samir Rana
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Glenn C Rowe
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada
| | - John C Chatham
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
29
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Song B, Zheng B, Li T, Liu RH. SKN-1 is involved in combination of apple peels and blueberry extracts synergistically protecting against oxidative stress in Caenorhabditis elegans. Food Funct 2021; 11:5409-5419. [PMID: 32469357 DOI: 10.1039/d0fo00891e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased consumption of fruits and vegetables is associated with reduced risk of age-related functional declines and chronic diseases, primarily attributed to their bioactive phytochemicals. Apples and blueberries are rich in phytochemicals with a wide range of biological activities and health benefits. Our previous research has shown the combination of apple peel extracts (APE) and blueberry extracts (BE) can synergistically promote the lifespan of Caenorhabditis elegans (C. elegans). The objectives of this study were to determine whether the extension of lifespan was involved in regulation of oxidative stress, and to explore the underlying mechanisms of action. The results showed that the combination of APE and BE could synergistically ameliorate oxidative stress by improving antioxidant enzyme activities and enhancing resistance to paraquat. Meanwhile, treatment with APE plus BE could down-regulate the overexpression of reactive oxygen species (ROS) and affect the expression of antioxidant related genes, including sod-3, cat-1, ctl-1, skn-1, mev-1 and isp-1. However, administration with APE plus BE abolished the extension of the lifespan of skn-1(zu135) mutants, and inhibited the expression of skn-1 downstream genes, including gcs-1, gst-4 and gst-7. In addition, supplementation with APE plus BE could promote the migration of SKN-1 into the nucleus, which eliminated improvement to ROS and paraquat. In conclusion, the combination of APE and BE could synergistically protect against oxidative stress in C. elegans via the SKN-1/Nrf2 pathway. This study provided the theoretical basis to explore the combination of phytochemicals in the prevention of aging regulated by oxidative stress.
Collapse
Affiliation(s)
- Bingbing Song
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Bisheng Zheng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China. and Guangdong ERA Food & Life Health Research Institute, Guangzhou, 510530, China and Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Tong Li
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Hepowit NL, Macedo JKA, Young LEA, Liu K, Sun RC, MacGurn JA, Dickson RC. Enhancing lifespan of budding yeast by pharmacological lowering of amino acid pools. Aging (Albany NY) 2021; 13:7846-7871. [PMID: 33744865 PMCID: PMC8034917 DOI: 10.18632/aging.202849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/21/2021] [Indexed: 04/20/2023]
Abstract
The increasing prevalence of age-related diseases and resulting healthcare insecurity and emotional burden require novel treatment approaches. Several promising strategies seek to limit nutrients and promote healthy aging. Unfortunately, the human desire to consume food means this strategy is not practical for most people but pharmacological approaches might be a viable alternative. We previously showed that myriocin, which impairs sphingolipid synthesis, increases lifespan in Saccharomyces cerevisiae by modulating signaling pathways including the target of rapamycin complex 1 (TORC1). Since TORC1 senses cellular amino acids, we analyzed amino acid pools and identified 17 that are lowered by myriocin treatment. Studying the methionine transporter, Mup1, we found that newly synthesized Mup1 traffics to the plasma membrane and is stable for several hours but is inactive in drug-treated cells. Activity can be restored by adding phytosphingosine to culture medium thereby bypassing drug inhibition, thus confirming a sphingolipid requirement for Mup1 activity. Importantly, genetic analysis of myriocin-induced longevity revealed a requirement for the Gtr1/2 (mammalian Rags) and Vps34-Pib2 amino acid sensing pathways upstream of TORC1, consistent with a mechanism of action involving decreased amino acid availability. These studies demonstrate the feasibility of pharmacologically inducing a state resembling amino acid restriction to promote healthy aging.
Collapse
Affiliation(s)
- Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jessica K. A. Macedo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lyndsay E. A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan University, Chengdu 610000, Sichuan, P. R. China
| | - Ramon C. Sun
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
32
|
Richardson NE, Konon EN, Schuster HS, Mitchell AT, Boyle C, Rodgers AC, Finke M, Haider LR, Yu D, Flores V, Pak HH, Ahmad S, Ahmed S, Radcliff A, Wu J, Williams EM, Abdi L, Sherman DS, Hacker T, Lamming DW. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. NATURE AGING 2021; 1:73-86. [PMID: 33796866 PMCID: PMC8009080 DOI: 10.1038/s43587-020-00006-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Protein restricted (PR) diets promote health and longevity in many species. While the precise components of a PR diet that mediate the beneficial effects to longevity have not been defined, we recently showed that many metabolic effects of PR can be attributed to reduced dietary levels of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine. Here, we demonstrate that restricting dietary BCAAs increases the survival of two different progeroid mouse models, delays frailty and promotes the metabolic health of wild-type C57BL/6J mice when started in midlife, and leads to a 30% increase in lifespan and a reduction in frailty in male, but not female, wild-type mice when fed lifelong. Our results demonstrate that restricting dietary BCAAs can increase healthspan and longevity in mice, and suggest that reducing dietary BCAAs may hold potential as a translatable intervention to promote healthy aging.
Collapse
Affiliation(s)
- Nicole E. Richardson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth N. Konon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Haley S. Schuster
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Alexis T. Mitchell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Colin Boyle
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | | | - Megan Finke
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Lexington R. Haider
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Deyang Yu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Victoria Flores
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Soha Ahmad
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Sareyah Ahmed
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Abigail Radcliff
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Jessica Wu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Elizabeth M. Williams
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Lovina Abdi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Dawn S. Sherman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Timothy Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
33
|
Yashin AI, Wu D, Arbeev K, Yashkin AP, Akushevich I, Bagley O, Duan M, Ukraintseva S. Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:357-379. [PMID: 34825130 PMCID: PMC8612394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan. METHODS Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDIT3) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS). RESULTS Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study. CONCLUSION Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Collapse
|
34
|
Lee JY, Kennedy BK, Liao CY. Mechanistic target of rapamycin signaling in mouse models of accelerated aging. J Gerontol A Biol Sci Med Sci 2020; 75:64-72. [PMID: 30900725 DOI: 10.1093/gerona/glz059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an essential nutrient-sensing kinase that integrates and regulates a number of fundamental cellular processes required for cell growth, cell motility, translation, metabolism, and autophagy. mTOR signaling has been implicated in the progression of many human diseases, and its dysregulation has been reported in several pathological processes, especially in age-related human diseases and mouse models of accelerated aging. In addition, many studies have demonstrated that the regulation of mTOR activity has a beneficial effect on longevity in several mouse models of aging. However, not all mouse models of accelerated aging show positive effects on aging-associated phenotypes in response to targeting mTOR signaling. Here, we review the effects of interventions that modulate mTOR signaling on aging-related phenotypes in different mouse models of accelerated aging and discuss their implications with respect to aging and aging-related disorders.
Collapse
Affiliation(s)
- Jin Young Lee
- Buck Institute for Research on Aging, Novato, California
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, California
- Department of Biochemistry and Physiology, National University of Singapore, Singapore
- Centre for Healthy Ageing, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, California
| |
Collapse
|
35
|
Song B, Zheng B, Li T, Liu RH. Raspberry extract ameliorates oxidative stress in Caenorhabditis elegans via the SKN-1/Nrf2 pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
36
|
Gensous N, Garagnani P, Santoro A, Giuliani C, Ostan R, Fabbri C, Milazzo M, Gentilini D, di Blasio AM, Pietruszka B, Madej D, Bialecka-Debek A, Brzozowska A, Franceschi C, Bacalini MG. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: a pilot study from the NU-AGE project. GeroScience 2020; 42:687-701. [PMID: 31981007 PMCID: PMC7205853 DOI: 10.1007/s11357-019-00149-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Mediterranean diet has been proposed to promote healthy aging, but its effects on aging biomarkers have been poorly investigated. We evaluated the impact of a 1-year Mediterranean-like diet in a pilot study including 120 elderly healthy subjects from the NU-AGE study (60 Italians, 60 Poles) by measuring the changes in their epigenetic age, assessed by Horvath's clock. We observed a trend towards epigenetic rejuvenation of participants after nutritional intervention. The effect was statistically significant in the group of Polish females and in subjects who were epigenetically older at baseline. A genome-wide association study of epigenetic age changes after the intervention did not return significant (adjusted p value < 0.05) loci. However, we identified small-effect alleles (nominal p value < 10-4), mapping in genes enriched in pathways related to energy metabolism, regulation of cell cycle, and of immune functions. Together, these findings suggest that Mediterranean diet can promote epigenetic rejuvenation but with country-, sex-, and individual-specific effects, thus highlighting the need for a personalized approach to nutritional interventions.
Collapse
Affiliation(s)
- Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy.
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, S-141 86, Stockholm, Sweden.
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Maddalena Milazzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | | | - Barbara Pietruszka
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Dawid Madej
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agata Bialecka-Debek
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Brzozowska
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum - University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky Univeristy, Nizhny Novgorod, Russia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Plant-based diets are associated with better health and longevity. Veganism is a strict form of vegetarianism, which has gained increasing attention in recent years. This review will focus on studies addressing mortality and health-span in vegans and vegetarians and discuss possible longevity-enhancing mechanisms. RECENT FINDINGS Studies in vegans are still limited. Epidemiologic studies consistently show lower disease rates, such as lower incidence of cancer and cardiovascular disease, but mortality rates are comparable with rates in vegetarians and occasional meat eaters. Reasons for following strict vegan diets differ, which may affect diet quality, and thus health and life-span. New insights into some characteristics of veganism, such as protein restriction or restriction in certain amino acids (leucine or methionine) show potentially life-span-enhancing potential. Veganism improves insulin resistance and dyslipidemia and associated abnormalities. Gut microbiota as mediator of dietary impact on host metabolism is more diverse in vegans and has been suggested to be a health-promoting factor. Vegan diets do not fulfill the requirements of children, pregnant women or old individuals who should receive adequate supplements. SUMMARY There is substantial evidence that plant-based diets are associated with better health but not necessarily lower mortality rates. The exact mechanisms of health promotion by vegan diets are still not entirely clear but most likely multifactorial. Reasons for and quality of the vegan diet should be assessed in longevity studies.
Collapse
Affiliation(s)
- Kristina Norman
- Department of Nutrition and Gerontology, German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal
- Research Group on Geriatrics, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- Institute of Nutritional Science, University of Potsdam
| | - Susanne Klaus
- Institute of Nutritional Science, University of Potsdam
- Department of Physiology and Energy Metabolism, German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| |
Collapse
|
38
|
D’Aquila P, De Rango F, Guarasci F, Mandalà M, Corsonello A, Bellizzi D, Passarino G. Multi-Tissue DNA Methylation Remodeling at Mitochondrial Quality Control Genes According to Diet in Rat Aging Models. Nutrients 2020; 12:nu12020460. [PMID: 32059421 PMCID: PMC7071227 DOI: 10.3390/nu12020460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/20/2022] Open
Abstract
An adequate mitochondrial quality control system ensures the maintenance of a healthy mitochondrial pool so as to slow down the progressive accumulation of damage affecting mitochondrial function during aging and diseases. The amount and quality of nutrients availability were demonstrated to induce a process of bioenergetics adaptation by influencing the above system via epigenetic modifications. Here, we analyzed DNA samples from differently-aged rats fed a standard or low-calorie diet to evaluate tissue-specific changes in DNA methylation of CpG sites falling within Polg, Polg2, Tfam, Fis1, and Opa1 genes. We found significant changes according to age and tissue type and the administration of the low-calorie diet is responsible for a prevalent increase in DNA methylation levels. Particularly, this increase was more appreciable when this diet was administered during adulthood and at old age. Regression analysis demonstrated that DNA methylation patterns of the analyzed genes were negatively correlated with their expression levels. Data we obtained provide the first evidence about changes in DNA methylation patterns of genes involved in the mitochondrial biogenesis in response to specific diets and demonstrated that epigenetic modifications are involved in the modulation of mitochondrial dynamics driven by age and nutrition.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.M.); (D.B.); (G.P.)
- Correspondence: (P.D.); (F.D.R.); Tel.: +39-0984492934 (P.D.); +39-0984492933 (F.D.R.)
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.M.); (D.B.); (G.P.)
- Correspondence: (P.D.); (F.D.R.); Tel.: +39-0984492934 (P.D.); +39-0984492933 (F.D.R.)
| | - Francesco Guarasci
- Italian National Research Center on Aging, 87100 Cosenza, Italy; (F.G.); (A.C.)
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.M.); (D.B.); (G.P.)
| | - Andrea Corsonello
- Italian National Research Center on Aging, 87100 Cosenza, Italy; (F.G.); (A.C.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.M.); (D.B.); (G.P.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.M.); (D.B.); (G.P.)
| |
Collapse
|
39
|
Bellantuono I, de Cabo R, Ehninger D, Di Germanio C, Lawrie A, Miller J, Mitchell SJ, Navas-Enamorado I, Potter PK, Tchkonia T, Trejo JL, Lamming DW. A toolbox for the longitudinal assessment of healthspan in aging mice. Nat Protoc 2020; 15:540-574. [PMID: 31915391 PMCID: PMC7002283 DOI: 10.1038/s41596-019-0256-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
The number of people aged over 65 is expected to double in the next 30 years. For many, living longer will mean spending more years with the burdens of chronic diseases such as Alzheimer's disease, cardiovascular disease, and diabetes. Although researchers have made rapid progress in developing geroprotective interventions that target mechanisms of aging and delay or prevent the onset of multiple concurrent age-related diseases, a lack of standardized techniques to assess healthspan in preclinical murine studies has resulted in reduced reproducibility and slow progress. To overcome this, major centers in Europe and the United States skilled in healthspan analysis came together to agree on a toolbox of techniques that can be used to consistently assess the healthspan of mice. Here, we describe the agreed toolbox, which contains protocols for echocardiography, novel object recognition, grip strength, rotarod, glucose tolerance test (GTT) and insulin tolerance test (ITT), body composition, and energy expenditure. The protocols can be performed longitudinally in the same mouse over a period of 4-6 weeks to test how candidate geroprotectors affect cardiac, cognitive, neuromuscular, and metabolic health.
Collapse
Affiliation(s)
- I Bellantuono
- Department of Oncology and Metabolism, Healthy Lifespan Institute and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing, University of Sheffield, Sheffield, UK.
| | - R de Cabo
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - D Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1, Bonn, Germany
| | - C Di Germanio
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - A Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - J Miller
- Robert and Arlene KogodCenter on Aging, Mayo Clinic, Rochester, MN, USA
| | - S J Mitchell
- Department of Molecular Medicine, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - I Navas-Enamorado
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - P K Potter
- Department of Biological and Life Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxfordshire, UK
| | - T Tchkonia
- Robert and Arlene KogodCenter on Aging, Mayo Clinic, Rochester, MN, USA
| | - J L Trejo
- Department of Translational Neuroscience, Cajal Institute (CSIC), Madrid, Spain
| | - D W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
40
|
Song B, Zheng B, Li T, Liu RH. Raspberry extract promoted longevity and stress toleranceviathe insulin/IGF signaling pathway and DAF-16 inCaenorhabditis elegans. Food Funct 2020; 11:3598-3609. [DOI: 10.1039/c9fo02845e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increased consumption of fruits and vegetables is associated with a reduced risk of age-related functional decline and chronic diseases, which is primarily attributed to phytochemicals.
Collapse
Affiliation(s)
- Bingbing Song
- School of Food Sciences and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Bisheng Zheng
- School of Food Sciences and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Guangdong ERA Food & Life Health Research Institute
| | - Tong Li
- Department of Food Science
- Stocking Hall
- Cornell University
- Ithaca
- USA
| | - Rui Hai Liu
- Department of Food Science
- Stocking Hall
- Cornell University
- Ithaca
- USA
| |
Collapse
|
41
|
Song B, Wang H, Xia W, Zheng B, Li T, Liu RH. Combination of apple peel and blueberry extracts synergistically induced lifespan extension via DAF-16 in Caenorhabditis elegans. Food Funct 2020; 11:6170-6185. [DOI: 10.1039/d0fo00718h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apples and blueberries are rich in phytochemicals with a wide range of biological activities and health benefits. Our research found that the combination of apple peel extracts and blueberry extracts could synergistically promote the lifespan via DAF-16 in C. elegans.
Collapse
Affiliation(s)
- Bingbing Song
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)
- School of Food Sciences and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Hong Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)
- School of Food Sciences and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Wen Xia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)
- School of Food Sciences and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)
- School of Food Sciences and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Tong Li
- Department of Food Science
- Cornell University
- Ithaca
- USA
| | - Rui Hai Liu
- Department of Food Science
- Cornell University
- Ithaca
- USA
| |
Collapse
|
42
|
Current nutritional and pharmacological anti-aging interventions. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165612. [PMID: 31816437 DOI: 10.1016/j.bbadis.2019.165612] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Aging is the main risk factor for chronic diseases and disablement in human societies with a great impact in social and health care expenditures. So far, aging and, eventually, death are unavoidable. Nevertheless, research efforts on aging-associated diseases with the aim not only to extend life span but also to increment health span in an attempt to delay, stop and even reverse the aging process have not stopped growing. Caloric restriction extends both health and life span in several short-lived experimental models and has brought to light the role of different molecular effectors involved in nutrient sensing pathways and longevity. This opens the possibility of modulating these molecular effectors also in humans to increase longevity and health span. The difficulty to implement caloric restricted diets in humans has led to the development of new bearable diets such as time-restricted feeding, intermittent fasting or diets with limited amounts of some nutrients and to the search of pharmacological agents, targeted to the effectors that mediate the extension of life and health span in response to these anti-aging diets. Pharmacological approaches that eliminate senescent cells or prevent primary causes of aging such as telomere attrition also emerge as potential anti-aging strategies. In the present article, we review these possible nutritional and pharmacological interventions designed to mitigate and/or delay the aging process and to increase health and life span.
Collapse
|
43
|
Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4033. [PMID: 31795697 DOI: 10.1121/1.5132707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The influence of dietary nutrient intake on the onset and trajectory of hearing loss during aging and in mediating protection from challenges such as noise is an important relationship yet to be fully appreciated. Dietary intake provides essential nutrients that support basic cellular processes related to influencing cellular stress response, immune response, cardiometabolic status, neural status, and psychological well-being. Dietary quality has been shown to alter risk for essentially all chronic health conditions including hearing loss and tinnitus. Evidence of nutrients with antioxidant, anti-inflammatory, and anti-ischemic properties, and overall healthy diet quality as otoprotective strategies are slowly accumulating, but many questions remain unanswered. In this article, the authors will discuss (1) animal models in nutritional research, (2) evidence of dietary nutrient-based otoprotection, and (3) consideration of confounds and limitations to nutrient and dietary study in hearing sciences. Given that there are some 60 physiologically essential nutrients, unraveling the intricate biochemistry and multitude of interactions among nutrients may ultimately prove infeasible; however, the wealth of available data suggesting healthy nutrient intake to be associated with improved hearing outcomes suggests the development of evidence-based guidance regarding diets that support healthy hearing may not require precise understanding of all possible interactions among variables. Clinical trials evaluating otoprotective benefits of nutrients should account for dietary quality, noise exposure history, and exercise habits as potential covariates that may influence the efficacy and effectiveness of test agents; pharmacokinetic measures are also encouraged.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
44
|
Abstract
Mechanisms underlying aging of the skin dermis are poorly understood. Now, two studies (Marsh et al., 2018; Salzer et al., 2018) describe complementary approaches to this question: Salzer et al. show that aging dermal fibroblasts lose defined identity in a diet-influenced fashion, and Marsh et al. reveal that fibroblast loss over time is compensated by membrane expansion rather than proliferation, resulting in decreased cellular density.
Collapse
Affiliation(s)
- Sarah E Millar
- Departments of Dermatology and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Brown-Borg HM, Rakoczy S, Wonderlich JA, Borg KE, Rojanathammanee L. Metabolic adaptation of short-living growth hormone transgenic mice to methionine restriction and supplementation. Ann N Y Acad Sci 2019; 1418:118-136. [PMID: 29722030 DOI: 10.1111/nyas.13687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/17/2018] [Accepted: 02/26/2018] [Indexed: 01/07/2023]
Abstract
Extension of mammalian health and life span has been achieved using various dietary interventions. We previously reported that restricting dietary methionine (MET) content extends life span only when growth hormone signaling is intact (no life span increase in GH deficiency or GH resistance). To understand the metabolic responses of altered dietary MET in the context of accelerated aging (high GH), the current study evaluated MET and related pathways in short-living GH transgenic (GH Tg) and wild-type mice following 8 weeks of restricted (0.16%), low (0.43%), or enriched (1.3%) MET consumption. Liver MET metabolic enzymes were suppressed in GH Tg compared to diet-matched wild-type mice. MET metabolite levels were differentially affected by GH status and diet. SAM:SAH ratios were markedly higher in GH Tg mice. Glutathione levels were lower in both genotypes consuming 0.16% MET but reduced in GH Tg mice when compared to wild type. Tissue thioredoxin and glutaredoxin were impacted by diet and GH status. The responsiveness to the different MET diets is reflected across many metabolic pathways indicating the importance of GH signaling in the ability to discriminate dietary amino acid levels and alter metabolism and life span.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Joseph A Wonderlich
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota.,Department of Psychology, George Mason University, Fairfax, Virginia
| | - Kurt E Borg
- Education Resources, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Lalida Rojanathammanee
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota.,School of Sports Science, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
46
|
Hill CM, Morrison CD. The Protein Leverage Hypothesis: A 2019 Update for Obesity. Obesity (Silver Spring) 2019; 27:1221. [PMID: 31339002 DOI: 10.1002/oby.22568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Cristal M Hill
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
47
|
Ozkurede U, Kala R, Johnson C, Shen Z, Miller RA, Garcia GG. Cap-independent mRNA translation is upregulated in long-lived endocrine mutant mice. J Mol Endocrinol 2019; 63:123-138. [PMID: 31357177 PMCID: PMC6691957 DOI: 10.1530/jme-19-0021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
It has been hypothesized that transcriptional changes associated with lower mTORC1 activity in mice with reduced levels of growth hormone and insulin-like growth factor 1 are responsible for the longer healthy lifespan of these mutant mice. Cell lines and tissues from these mice show alterations in the levels of many proteins that cannot be explained by corresponding changes in mRNAs. Such post-transcriptional modulation may be the result of preferential mRNA translation by the cap-independent translation of mRNA bearing the N6-methyl-adenosine (m6A) modification. The long-lived endocrine mutants - Snell dwarf, growth hormone receptor deletion and pregnancy-associated plasma protein-A knockout - all show increases in the N6-adenosine-methyltransferases (METTL3/14) that catalyze 6-methylation of adenosine (m6A) in the 5' UTR region of select mRNAs. In addition, these mice have elevated levels of YTH domain-containing protein 1 (YTHDF1), which recognizes m6A and promotes translation by a cap-independent mechanism. Consistently, multiple proteins that can be translated by the cap-independent mechanism are found to increase in these mice, including DNA repair and mitochondrial stress response proteins, without changes in corresponding mRNA levels. Lastly, a drug that augments cap-independent translation by inhibition of cap-dependent pathways (4EGI-1) was found to elevate levels of the same set of proteins and able to render cells resistant to several forms of in vitro stress. Augmented translation by cap-independent pathways facilitated by m6A modifications may contribute to the stress resistance and increased healthy longevity of mice with diminished GH and IGF-1 signals.
Collapse
Affiliation(s)
- Ulas Ozkurede
- Department of Pathology, Ann Arbor, Michigan 48109, USA
| | - Rishabh Kala
- Department of Pathology, Ann Arbor, Michigan 48109, USA
| | - Cameron Johnson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science and the Arts, Ann Arbor, Michigan 48109, USA
| | - Ziqian Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science and the Arts, Ann Arbor, Michigan 48109, USA
| | - Richard A. Miller
- Department of Pathology, Ann Arbor, Michigan 48109, USA
- University of Michigan Geriatrics Center, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
48
|
Some naturally occurring compounds that increase longevity and stress resistance in model organisms of aging. Biogerontology 2019; 20:583-603. [DOI: 10.1007/s10522-019-09817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
|
49
|
Jung JW, Macalino SJY, Cui M, Kim JE, Kim HJ, Song DG, Nam SH, Kim S, Choi S, Lee JW. Transmembrane 4 L Six Family Member 5 Senses Arginine for mTORC1 Signaling. Cell Metab 2019; 29:1306-1319.e7. [PMID: 30956113 DOI: 10.1016/j.cmet.2019.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
Abstract
The mechanistic target of rapamycin complex (mTORC1) is a signaling hub on the lysosome surface, responding to lysosomal amino acids. Although arginine is metabolically important, the physiological arginine sensor that activates mTOR remains unclear. Here, we show that transmembrane 4 L six family member 5 (TM4SF5) translocates from plasma membrane to lysosome upon arginine sufficiency and senses arginine, culminating in mTORC1/S6K1 activation. TM4SF5 bound active mTOR upon arginine sufficiency and constitutively bound amino acid transporter SLC38A9. TM4SF5 binding to the cytosolic arginine sensor Castor1 decreased upon arginine sufficiency, thus allowing TM4SF5-mediated sensing of metabolic amino acids. TM4SF5 directly bound free L-arginine via its extracellular loop possibly for the efflux, being supported by mutant study and homology and molecular docking modeling. Therefore, we propose that lysosomal TM4SF5 senses and enables arginine efflux for mTORC1/S6K1 activation, and arginine-auxotroph in hepatocellular carcinoma may be targeted by blocking the arginine sensing using anti-TM4SF5 reagents.
Collapse
Affiliation(s)
- Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, South Korea
| | - Stephani Joy Y Macalino
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Minghua Cui
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Dae-Geun Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do 25451, South Korea
| | - Seo Hee Nam
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Jung Weon Lee
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, South Korea; Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
50
|
Nutrient Sensing and Redox Balance: GCN2 as a New Integrator in Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5730532. [PMID: 31249645 PMCID: PMC6556294 DOI: 10.1155/2019/5730532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/21/2019] [Indexed: 02/05/2023]
Abstract
Aging is a complex process in which the accumulation of molecular, cellular, and organism dysfunction increases the probability of death. Several pieces of evidence have revealed a contribution of stress responses in aging and in aging-related diseases, in particular, the key role of signaling pathways associated to nutritional stress. Here, we review the possible interplay between amino acid sensing and redox balance maintenance mediated by the nutritional sensor general control nonderepressive 2 (GCN2). We discuss this new dimension of nutritional stress sensing consequences, standing out GCN2 as a central coordinator of key cellular processes that assure healthy homeostasis in the cell, raising GCN2 as a novel interesting target, that when activated, could imply pleiotropic benefits, particularly GCN2 intervention and its new unexplored therapeutic role as a player in the aging process.
Collapse
|