1
|
Di Battista CM, Campos RE, Fischer S. Immature survival and female longevity of Aedes aegypti under natural winter conditions in the temperate region of Argentina. Acta Trop 2024; 261:107507. [PMID: 39689740 DOI: 10.1016/j.actatropica.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The performance of Aedes aegypti was evaluated under natural winter nutritional and thermal conditions in the temperate region of Argentina. Immature stages were reared using leaf litter as a food source. The rearing was structured in three cohorts, the first started in late-fall, the second in early-winter and the last in mid-winter, and in each cohort two treatments were arranged according to solar exposure (sun and shade). The mean monthly temperature during the experiment ranged from 10.1 °C in July to 14.3 °C in the early days of October. Survival in the experiment was low (average 16.2 %), with a maximum (33 %) in mid-winter cohort. Development time from first instar larva to adult emergence varied between 24 and 103 days, was affected by cohort, treatment and their interaction, and showed an inverse relationship with temperature, particularly in the sun treatment. Individuals from the sun treatments of mid-winter and late-fall cohorts had shorter development times. Adult longevity was very low and was only affected by sex, being higher in females (4.5 days) than in males (3.1 days). The results of this work suggest that although immature stages may complete their development and reach the adult stage during the winter in temperate Argentina, females may not survive long enough to reproduce successfully.
Collapse
Affiliation(s)
- Cristian M Di Battista
- Instituto de Limnología "Dr. Raúl A. Ringuelet, CCT La Plata, Universidad Nacional de La Plata-CONICET, Boulevard 120 y 62 No. 1437, La Plata (B 1900), Buenos Aires, Argentina.
| | - Raúl E Campos
- Instituto de Limnología "Dr. Raúl A. Ringuelet, CCT La Plata, Universidad Nacional de La Plata-CONICET, Boulevard 120 y 62 No. 1437, La Plata (B 1900), Buenos Aires, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto IEGEBA (CONICET-UBA), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4to piso. Laboratorio 54. C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Fischer S, De Majo MS, Di Battista C, Campos RE. Effects of temperature and humidity on the survival and hatching response of diapausing and non-diapausing Aedes aegypti eggs. JOURNAL OF INSECT PHYSIOLOGY 2024; 161:104726. [PMID: 39638119 DOI: 10.1016/j.jinsphys.2024.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
In seasonally varying environments, diapause, which is induced by a short photoperiod, favors overwintering of many insects. In Aedine mosquitoes, embryonic diapause is associated with higher survival and resistance to low temperature and humidity. Aedes aegypti, the main vector of dengue and other arboviruses, has recently expanded its distribution towards temperate regions. One of the mechanisms that might have favored this expansion in South America is the ability to induce embryonic diapause. This type of diapause has been recently discovered in populations from Argentina, associated with hatching inhibition and increased amounts of lipids in the eggs. The aim of this study was to assess the four-month survival of diapausing (D) and non-diapausing (ND) eggs stored at different humidity and temperature conditions. Two populations from the temperate region of Argentina were analyzed: one from Buenos Aires (BA), a city with a relatively mild and short winter, and another from San Bernardo (SB), a locality with a harsher and longer winter. For both populations, D and ND eggs were obtained from colonies maintained under 10:14 L:D and 14:10 L:D hours respectively. Eggs were exposed to six different conditions of humidity and temperature for 85 days. After exposure, egg survival and hatching response were analyzed. D eggs showed significantly higher survival at low humidity (both populations), and at medium and high humidity and at low temperatures (SB population). In addition, D eggs showed a significantly lower hatching response at high humidity and low temperatures, and higher proportion of not hatched eggs remaining viable after two immersions under all conditions. D eggs from SB were significantly more tolerant to low temperatures than those from BA. ND eggs from SB were significantly more tolerant to low temperatures, while those from BA were more tolerant to low humidity. Overall, the effect of diapause was a significant increase in the number of not hatched, viable embryos after immersion. Results suggest that the ability of Ae. aegypti to induce egg diapause increases the probability of successful overwintering and further expansion of its distribution range, and as a consequence the risk of arbovirus transmission might increase in temperate areas.
Collapse
Affiliation(s)
- Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 4to piso. Laboratorio 54. C1428EHA, Buenos Aires, Argentina.
| | - María Sol De Majo
- Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón 2, 4to piso. Laboratorio 54. C1428EHA, Buenos Aires, Argentina.
| | - Cristian Di Battista
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62 N° 1437, La Plata (B 1900), Buenos Aires, Argentina.
| | - Raúl E Campos
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62 N° 1437, La Plata (B 1900), Buenos Aires, Argentina
| |
Collapse
|
3
|
Sajadi F, Afifi S, Picinic B, Paluzzi JPV. Mapping Transcript Cell-Specific Localization and Protein Subcellular Localization in the Adult Mosquito Aedes aegypti. Cold Spring Harb Protoc 2024; 2024:pdb.top107698. [PMID: 38087465 DOI: 10.1101/pdb.top107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
This introduction reviews techniques used to examine the distribution and expression of gene transcripts and proteins in a variety of tissues/organs in the medically important global disease vector mosquito, Aedes aegypti Specifically, these methods allow the detection of cell-specific transcript expression by fluorescent in situ hybridization; facilitate immunohistochemical mapping of a protein of interest in whole-mount small tissue/organ samples; examine the subcellular localization of proteins, such as membrane transporters, through sectioning of paraffin-embedded tissue/organ samples; and finally, enable the efficient separation of cytosolic and membrane proteins for western blot analysis without the need for specialized equipment (e.g., ultracentrifuge) in the mosquito Ae. aegypti Such techniques are useful to help answer fundamental questions in mosquito scientific research including (but not limited to) the identification of specific cells in an organ responsible for expressing a receptor of particular interest and necessary for eliciting a response to exogenous signals, including hormones. Moreover, changes in the subcellular localization of specific targets of interest can be assessed both qualitatively and quantitatively, providing insight into transient or long-term physiologically relevant regulation necessary for activity under experimental treatments or varied internal (e.g., development) or external (e.g., environmental stress) factors that might be normally experienced by the organism.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Salwa Afifi
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Britney Picinic
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
4
|
Lara-Ramírez EE, Rivera G, Oliva-Hernández AA, Bocanegra-Garcia V, López JA, Guo X. Unsupervised learning analysis on the proteomes of Zika virus. PeerJ Comput Sci 2024; 10:e2443. [PMID: 39650519 PMCID: PMC11623125 DOI: 10.7717/peerj-cs.2443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/01/2024] [Indexed: 12/11/2024]
Abstract
Background The Zika virus (ZIKV), which is transmitted by mosquito vectors to nonhuman primates and humans, causes devastating outbreaks in the poorest tropical regions of the world. Molecular epidemiology, supported by clustering phylogenetic gold standard studies using sequence data, has provided valuable information for tracking and controlling the spread of ZIKV. Unsupervised learning (UL), a form of machine learning algorithm, can be applied on the datasets without the need of known information for training. Methods In this work, unsupervised Random Forest (URF), followed by the application of dimensional reduction algorithms such as principal component analysis (PCA), Uniform Manifold Approximation and Projection (UMAP), t-distributed stochastic neighbor embedding (t-SNE), and autoencoders were used to uncover hidden patterns from polymorphic amino acid sites extracted on the proteome ZIKV multi-alignments, without the need of an underlying evolutionary model. Results The four UL algorithms revealed specific host and geographical clustering patterns for ZIKV. Among the four dimensionality reduction (DR) algorithms, the performance was better for UMAP. The four algorithms allowed the identification of imported viruses for specific geographical clusters. The UL dimension coordinates showed a significant correlation with phylogenetic tree branch lengths and significant phylogenetic dependence in Abouheif's Cmean and Pagel's Lambda tests (p value < 0.01) that showed comparable performance with the phylogenetic method. This analytical strategy was generalizable to an external large dengue type 2 dataset. Conclusion These UL algorithms could be practical evolutionary analytical techniques to track the dispersal of viral pathogens.
Collapse
Affiliation(s)
- Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Amanda Alejandra Oliva-Hernández
- Laboratorio de Biotecnología Experimental, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Virgilio Bocanegra-Garcia
- Laboratorio de Interacción Ambiente Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Jesús Adrián López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| |
Collapse
|
5
|
Roman A, Koenraadt CJM, Raymond B. Asaia spp. accelerate development of the yellow fever mosquito, Aedes aegypti, via interactions with the vertically transmitted larval microbiome. J Appl Microbiol 2024; 135:lxae261. [PMID: 39419784 DOI: 10.1093/jambio/lxae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
AIMS A wide range of vector control programmes rely on the efficient production and release of male mosquito. Asaia bacteria are described as potential symbionts of several mosquito species but their relationship with Aedes aegypti has never been rigorously tested. Here, we aimed to quantify the benefits of three Asaia species on host development in Ae. aegypti, and the ability of these bacteria to form a stable symbiotic association with growing larvae. METHODS AND RESULTS In order to disentangle direct and indirect effects of Asaia inoculation on host development, experiments used insects with an intact microbiome and those reared in near-aseptic conditions, while we characterized bacterial communities and Asaia densities with culture dependent and independent methods (16S rRNA amplicon sequencing). Neonate larvae were inoculated with Asaia spp. for 24 h, or left as uninoculated controls, all were reared on sterile food. Aseptic larvae were produced by surface sterilization of eggs. Although all Asaia were transient members of the gut community, two species accelerated larval development relative to controls. The two mutualistic species had lasting impacts on the larval microbiome, largely by altering the relative abundance of dominant bacteria, namely Klebsiella and Pseudomonas. Axenic larvae were dominated by Asaia when inoculated with this species but showed slower development than conventionally reared insects, indicating that Asaia alone could not restore normal development. CONCLUSIONS Our results reveal Asaia as a poor mutualist for Ae. aegypti, but with a species-specific positive effect on improving host performance mediated by interactions with other bacteria.
Collapse
Affiliation(s)
- Alessandro Roman
- Centre for Ecology and Conservation, University of Exeter Cornwall campus, Treliever Road, Penryn, TR10 9FE, United Kingdom
- Laboratory of Entomology, Droevendaalsesteeg 1, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | | | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter Cornwall campus, Treliever Road, Penryn, TR10 9FE, United Kingdom
| |
Collapse
|
6
|
da Rocha MM, Codeço CT, da Silva CMFP. Spatiotemporal Evolution of the Yellow Fever Epidemic in Southeast Brazil from 2016 to 2019. Vector Borne Zoonotic Dis 2024; 24:763-772. [PMID: 38813663 DOI: 10.1089/vbz.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Background: Yellow fever (YF) is a zoonotic disease transmitted by mosquitoes among humans and nonhuman primates. Although urban YF is eradicated, the sylvatic YF has reemerged in some areas of Brazil in the twenty-first century. From 2016 to 2019, a sylvatic YF epidemic occurred in Southeast Brazil, where it had been eradicated in the 1940s. Methods: This study's objective was to describe the epidemic in the states of the Southeast region, based on descriptive, cluster, and mobility analyses. Results: Both the descriptive and cluster analyses showed that the YF cases spread from the state of Minas Gerais southward, causing peaks in cases during the summer months. None of the state capitals was included in the clusters, but the connectivity between the municipalities in Greater Metropolitan São Paulo highlighted potential paths of spread. Despite differences in sociodemographic profiles between the Southeast and North of Brazil (the latter region considered endemic), the epidemiological profile was similar, except for patients' occupation, which was not related to rural work in the Southeast. Conclusion: The results contributed to our understanding of the paths by which YF spread across Southeast Brazil and the epidemiological profile in an area that had gone decades without autochthonous cases.
Collapse
|
7
|
Marques EM, Rocha RL, Brandão CM, Xavier JKAM, Camara MBP, Mendonça CDJS, de Lima RB, Souza MP, Costa EV, Gonçalves RS. Development of an Eco-Friendly Nanogel Incorporating Pectis brevipedunculata Essential Oil as a Larvicidal Agent Against Aedes aegypti. Pharmaceutics 2024; 16:1337. [PMID: 39458666 PMCID: PMC11510620 DOI: 10.3390/pharmaceutics16101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Arboviruses, transmitted by mosquitoes like Aedes aegypti, pose significant public health challenges globally, particularly in tropical regions. The rapid spread and adaptation of viruses such as Dengue, Zika, and Chikungunya have emphasized the need for innovative control methods. Essential oils from plants, such as Pectis brevipedunculata (Gardner) Sch.Bip. (Pb), have emerged as potential alternatives to conventional insecticides. METHODS In this work, we developed an eco-friendly nanogel using a low-energy, solvent-free method, incorporating the copolymer F127 and Carbopol 974p, enriched with a high concentration of essential oil from Pb (EOPb). The resulting nanogel displayed excellent physical stability, maintained under varying temperature conditions. Characterization techniques, including FTIR and DLS, confirmed the stable incorporation of EOPb within the nanogel matrix. RESULTS The in vitro assays against Aedes aegypti larvae revealed that at 500 μg/mL, the mortality rates were 96.0% ± 7.0 after 24 h and 100.0% ± 0.0 after 48 h. The positive control group treated with temefos, achieved 100% mortality at both time points, validating the experimental conditions and providing a benchmark for assessing the efficacy of the nGF2002Pb nanogel. CONCLUSIONS These results indicate that nGF2002Pb demonstrates a pronounced concentration-dependent larvicidal effect against Aedes aegypti, offering an innovative and sustainable approach to arbovirus vector control.
Collapse
Affiliation(s)
- Estela Mesquita Marques
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| | - Raiene Lisboa Rocha
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| | | | - Júlia Karla Albuquerque Melo Xavier
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| | - Marcos Bispo Pinheiro Camara
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| | - Caritas de Jesus Silva Mendonça
- Center for Fuels, Catalysis, and Environment (NCCA), Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil;
| | | | - Melissa Pires Souza
- Postgraduate Program in Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, Brazil; (M.P.S.); (E.V.C.)
| | - Emmanoel Vilaça Costa
- Postgraduate Program in Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, Brazil; (M.P.S.); (E.V.C.)
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, Brazil
| | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| |
Collapse
|
8
|
Hewson R. Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies. Pathogens 2024; 13:909. [PMID: 39452780 PMCID: PMC11510013 DOI: 10.3390/pathogens13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Viral haemorrhagic fevers encompass a diverse group of severe, often life-threatening illnesses caused by viruses from multiple families, including Arenaviridae, Filoviridae, Flaviviridae, Hantaviridae, Nairoviridae, Peribunyaviridae, and Phenuiviridae. Characterised by fever and haemorrhagic symptoms, these diseases challenge public health systems by overwhelming healthcare facilities, complicating diagnostic processes, and requiring extensive resources for containment and treatment, especially in resource-limited settings. This discussion explores the intricate relationships between VHFs and their transmission vectors-both animal and arthropod-and examines the impact of ecological and geographic factors on disease spread. The primary transmission of VHFs typically occurs through direct contact with infected animals or via bites from haematophagous arthropods, facilitating zoonotic and, at times, human-to-human transmission. With an emphasis on the role of diverse wildlife, domesticated animals, and vectors such as mosquitoes and ticks in the epidemiology of VHFs, there is a recognised need for robust surveillance and strategic public health responses to manage outbreaks. This review discusses the necessity of interdisciplinary approaches that integrate virology, ecology, and public health to enhance diagnostic capabilities, develop vaccines and antivirals, and improve outbreak interventions. Exploring the ecological and biological dynamics of VHFs will help bolster a deeper understanding of these emerging viruses and underpin preparation for future outbreaks. The importance of enhanced global cooperation, continuous research, and collaboration to mitigate the public health threats posed by these complex infections is a central theme, serving as a foundational strategy to reinforce worldwide preparedness and response efforts. Future directions include addressing gaps in vaccine development and tailoring public health strategies to the unique challenges of managing VHFs, such as the rapid mutation rates of viruses, the need for cold chain logistics for vaccine distribution, and socio-economic barriers to healthcare access, in order to ensure readiness for and effective response to emerging threats worldwide.
Collapse
Affiliation(s)
- Roger Hewson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
- Virus Reference & Research (Special Pathogens), WHO—Collaborating Centre, Salisbury SP4 0JG, UK
- UK—Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|
9
|
Marmé R, Tomaz F, Sousa CA, Pinto J, Lanzaro GC, Parreira R, Seixas G. Vector Competence of Aedes aegypti from São Tomé and Príncipe for West Nile Virus Transmission. Microorganisms 2024; 12:2038. [PMID: 39458347 PMCID: PMC11509904 DOI: 10.3390/microorganisms12102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The global distribution of Aedes aegypti mosquitoes, particularly in tropical regions, poses a significant public health risk due to their apparent ability to transmit arboviruses such as West Nile virus (WNV). This study aimed to evaluate the vector competence of Ae. aegypti from São Tomé and Príncipe (STP) for the transmission of the WNV PT6.39 strain, considering its potential role as a bridge vector in a region where Culex quinquefasciatus would be the main vector. Aedes aegypti mosquitoes were collected, reared, and experimentally infected with WNV, with viral dissemination and transmission potential assessed 7, 14, and 21 days post infection (dpi). The results showed an increasing trend in infection rates, from 5% at 7 dpi to 35% at 21 dpi, with corresponding dissemination rates of 0%, 100%, and 43%. The transmission rates also increased from 0% at 7 dpi to 67% at 21 dpi, with a maximum transmission efficiency of 10% observed at the final time point. Although Ae. aegypti from STP demonstrated the potential to transmit WNV, the overall transmission efficiency remained relatively low. These findings provide necessary insights into the vector competence of Ae. aegypti in this region, highlighting the importance of continued monitoring and targeted vector control measures to mitigate the risk of potential WNV outbreaks.
Collapse
Affiliation(s)
- Rafael Marmé
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| | - Filipe Tomaz
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| | - Carla A. Sousa
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California, 1089 Veterinary Medicine, 4225 V3 MB, Davis, CA 95616, USA;
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California, 1089 Veterinary Medicine, 4225 V3 MB, Davis, CA 95616, USA;
| | - Ricardo Parreira
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| | - Gonçalo Seixas
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| |
Collapse
|
10
|
Heyrani A, Pourjalil F, Hosseini Z, Shahabi N, Asadipour E. A comprehensive scoping review of global educational strategies and outcomes in aedes-borne disease control. Arch Public Health 2024; 82:176. [PMID: 39380105 PMCID: PMC11459706 DOI: 10.1186/s13690-024-01412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Aedes mosquito is the primary vector of emerging or re-emerging arboviruses that threaten public health worldwide. Many efforts have been made to develop interventions to control the Aedes mosquito. This scoping review was conducted to identify the nature and scope of educational interventions to prevent and control diseases transmitted through the Aedes mosquito. The findings can be used to evaluate, compare, and develop appropriate control strategies. METHODS The present scoping review was conducted in 2023 and used Arksey and O'Malley's approach, which involves five key stages. To search for academic papers, PubMed, Web of Science, Scopus and ScienceDirect databases were used with a combination of keywords about Aedes mosquitoes, educational interventions, and disease prevention and control. The search was not limited by the publication date, yet only included studies published in English. Studies were included that reported the educational interventions about Aedes mosquito control at the community or organizational level. The screening of papers was done based on the PRISMA-ScR guideline. Excel 2019 was used for data analysis. RESULTS Initially, 3,172 papers were extracted, and after screenings and reviews, a total number of 45 final papers were selected. The studies focused on educational interventions. Twenty interventional studies were at the organizational level and 25 at the community level. The latter was the most commonly used strategy. Interventions using educational approaches have achieved sustainable results. Out of the forty-five studies, twenty-one were assessed to have a low risk of bias. CONCLUSIONS The present scoping review evaluates the effectiveness of educational interventions at various community levels for controlling Aedes-borne diseases, emphasizing the need for multidisciplinary collaboration. Controlling Aedes mosquitoes using education and attracting the community's participation is an effective approach to reduce diseases transmitted through Aedes. The development of education at different levels of the community, such as educational and occupational environments, can play a role in the effectiveness of societal education and can be more cost-effective. Maintaining the effect of this approach is challenging because it requires multi-sector and multidisciplinary team participation and active community engagement over the long term. Further research is required to explore the removal of barriers to the implementation of educational interventions and the consistency of effects.
Collapse
Affiliation(s)
- Ali Heyrani
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farzaneh Pourjalil
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hosseini
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Nahid Shahabi
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Elaheh Asadipour
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of medical sciences, Kerman, Iran
| |
Collapse
|
11
|
Gouveia AS, Codeço CT, Ferreira FADS, Cortés JJC, Luz SLB. Diflubenzuron larvicide auto-dissemination: A modeling study. Acta Trop 2024; 258:107325. [PMID: 39032848 DOI: 10.1016/j.actatropica.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Proposing substitutes for Pyriproxyfen (PPF) in the auto-dissemination strategy is essential to ensure the continuity of the strategy in the field, especially in the case of the emergence of populations resistant to this larvicide. One possible substitute among the compounds already in use in Brazil is the larvicide Diflubenzuron (DFB). The equation that defines the proportion of oviposition sites (habitats) contaminated by the auto-dissemination strategy was modified to account for the number of visits required to reach the necessary concentration of DFB for contamination, considering scenarios with varying numbers of oviposition sites and mosquito densities. The dissemination was evaluated in oviposition sites of 2 L, 1.5 L, 1 L, 0.5 L, 0.2 L, and 0.1 L. The minimum concentration of active ingredient (a.i) of DFB required for a commercial product to contaminate at least 50% of oviposition sites was also investigated, along with the impact of other vector control methods, such as the removal/destruction of oviposition sites and the use of insecticides to kill adult 'females, on the auto-dissemination approach. The use of pure DFB compounds enabled contamination efficiency of more than 50% in oviposition sites with a volume of less than 2 L in scenarios with fewer oviposition sites. On the other hand, with the use of the commonly used concentration of the product, similar efficacy was only achieved in oviposition sites of 0.1 L and 0.2 L in medium and high infestation scenarios. Strategies that reduce the number of available oviposition sites work synergistically with the auto-dissemination strategy, making it possible to use less concentrated products and contaminated sites of larger volume. The strategy proved to be resilient in situations of insecticide application according to the concentration of DFB used, abundance of females, and low number of oviposition sites. Increasing the number of dissemination traps on the field also contributes to better results, especially for oviposition sites of 0.5 L and 1 L. The results of the model obtained under the stipulated conditions provide further support for the potential use of DFB as a substitute for PPF in the auto-dissemination strategy.
Collapse
Affiliation(s)
- Ayrton Sena Gouveia
- Núcleo PReV Amazônia - Instituto Leônidas e Maria Deane - Fiocruz Amazônia; Programa de Computação Científica da Fiocruz - Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Cláudia Torres Codeço
- Programa de Computação Científica da Fiocruz - Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Sergio Luiz Bessa Luz
- Núcleo PReV Amazônia - Instituto Leônidas e Maria Deane - Fiocruz Amazônia; Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Sun X, Wang Y, Yuan F, Zhang Y, Kang X, Sun J, Wang P, Lu T, Sae Wang F, Gu J, Wang J, Xia Q, Zheng A, Zou Z. Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Nat Commun 2024; 15:8221. [PMID: 39300135 DOI: 10.1038/s41467-024-52566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The main vectors of Zika virus (ZIKV) and dengue virus (DENV) are Aedes aegypti and Ae. albopictus, with Ae. aegypti being more competent. However, the underlying mechanisms remain unclear. Here, we find Ae. albopictus shows comparable vector competence to ZIKV/DENV with Ae. aegypti by blood-feeding after antibiotic treatment or intrathoracic injection. This suggests that midgut microbiota can influence vector competence. Enterobacter hormaechei_B17 (Eh_B17) is isolated from field-collected Ae. albopictus and conferred resistance to ZIKV/DENV infection in Ae. aegypti after gut-transplantation. Sphingosine, a metabolite secreted by Eh_B17, effectively suppresses ZIKV infection in both Ae. aegypti and cell cultures by blocking viral entry during the fusion step, with an IC50 of approximately 10 μM. A field survey reveals that Eh_B17 preferentially colonizes Ae. albopictus compared to Ae. aegypti. And field Ae. albopictus positive for Eh_B17 are more resistant to ZIKV infection. These findings underscore the potential of gut symbiotic bacteria, such as Eh_B17, to modulate the arbovirus vector competence of Aedes mosquitoes. As a natural antiviral agent, Eh_B17 holds promise as a potential candidate for blocking ZIKV/DENV transmission.
Collapse
Affiliation(s)
- Xiaomei Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Jian Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fanny Sae Wang
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Hafsia S, Barbar T, Alout H, Baudino F, Lebon C, Gomard Y, Wilkinson DA, Fourié T, Mavingui P, Atyame C. Vector competence of Aedes albopictus field populations from Reunion Island exposed to local epidemic dengue viruses. PLoS One 2024; 19:e0310635. [PMID: 39298440 DOI: 10.1371/journal.pone.0310635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne Flavivirus that affects humans worldwide. Aedes albopictus, which is naturally infected with the bacteria Wolbachia, is considered to be a secondary vector of DENV. However, it was responsible for a recent DENV outbreak of unprecedented magnitude in Reunion Island, a French island in the South West Indian Ocean. Moreover, the distribution of the cases during this epidemic showed a spatially heterogeneous pattern across the island, leading to questions about the differential vector competence of mosquito populations from different geographic areas. The aim of this study was to gain a better understanding of the vector competence of the Ae. albopictus populations from Reunion Island for local DENV epidemic strains, while considering their infection by Wolbachia. Experimental infections were conducted using ten populations of Ae. albopictus sampled across Reunion Island and exposed to three DENV strains: one strain of DENV serotype 1 (DENV-1) and two strains of DENV serotype 2 (DENV-2). We analyzed three vector competence parameters including infection rate, dissemination efficiency and transmission efficiency, at different days post-exposition (dpe). We also assessed whether there was a correlation between the density of Wolbachia and viral load/vector competence parameters. Our results show that the Ae. albopictus populations tested were not able to transmit the two DENV-2 strains, while transmission efficiencies up to 40.79% were observed for the DENV-1 strain, probably due to difference in viral titres. Statistical analyses showed that the parameters mosquito population, generation, dpe and area of sampling significantly affect the transmission efficiencies of DENV-1. Although the density of Wolbachia varied according to mosquito population, no significant correlation was found between Wolbachia density and either viral load or vector competence parameters for DENV-1. Our results highlight the importance of using natural mosquito populations for a better understanding of transmission patterns of dengue.
Collapse
Affiliation(s)
- Sarah Hafsia
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Tatiana Barbar
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Haoues Alout
- Unité Mixte de Recherche Animal Santé Territoires Risques Écosystèmes, F-34398, CIRAD/INRAE/Université de Montpellier, Université de Montpellier, Montpellier, France
| | - Fiona Baudino
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Cyrille Lebon
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - David A Wilkinson
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Toscane Fourié
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Célestine Atyame
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| |
Collapse
|
14
|
Chen S, Fang Y, Fujita R, Khater EIM, Li Y, Wang W, Qian P, Huang L, Guo Z, Zhang Y, Li S. An Exploration of the Viral Coverage of Mosquito Viromes Using Meta-Viromic Sequencing: A Systematic Review and Meta-Analysis. Microorganisms 2024; 12:1899. [PMID: 39338573 PMCID: PMC11434593 DOI: 10.3390/microorganisms12091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this review was to delve into the extent of mosquito virome coverage (proportion of viral reads) via meta-viromic sequencing and uncover potential factors of heterogeneity that could impact this coverage. Data sources were PubMed, Web of Science, Embase, Scopus, Science-Direct, Google Scholar, and the China National Knowledge Infrastructure. Pooled coverage was estimated using random-effects modeling, and subgroup analyses further reveal potential heterogeneous factors. Within the three mosquito genera studied, Culex exhibited the highest pooled viral coverage of mosquito viromes at 7.09% (95% CI: 3.44-11.91%), followed by Anopheles at 5.28% (95% CI: 0.45-14.93%), and Aedes at 2.11% (95% CI: 0.58-7.66%). Subgroup analyses showed that multiple processing methods significantly affected the viral coverage of mosquito viromes, especially pre-treatment of mosquito samples with saline buffer/medium and antibiotics prior to DNase/RNase treatment and removal of the host genome prior to RNA library construction. In conclusion, the results of this study demonstrate that the viral coverage of mosquito viromes varies between mosquito genera and that pre-treatment of mosquito samples with saline buffer/medium and antibiotics before DNase/RNase treatment and removing host genomes prior to RNA library construction are critical for the detection of RNA viruses in mosquito vectors using meta-viromic sequencing.
Collapse
Affiliation(s)
- Shenglin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuan Fang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Emad I M Khater
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yuanyuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenya Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Peijun Qian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Lulu Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Zhaoyu Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
15
|
de Jesús Crespo R, Pavlakis A, Breaux J, Riegel C. Discarded vehicle tires and their association with mosquito vector abundance across socioenvironmental gradients in New Orleans, LA. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1240-1250. [PMID: 39096529 DOI: 10.1093/jme/tjae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
Discarded vehicle tires serve as habitat for mosquito vectors. In New Orleans, Louisiana, discarded tires are an increasingly important public concern, especially considering that the city is home to many medically important mosquito species. Discarded tires are known to be associated with mosquito abundance, but how their presence interacts with other socioenvironmental gradients to influence mosquito ecology is poorly understood. Here, we ask whether discarded tire distribution could be explained by social factors, particularly median income, home vacancy and human population density, and whether these factors interact with urban heat islands (UHI) to drive mosquito vector assemblages. We surveyed tire piles across the city and adult mosquitoes in 12 sites, between May and October of 2020. We compared this data with the social indicators selected and UHI estimates. Our results show that median income and human population density were inversely related to tire abundance. Tire abundance was positively associated with Aedes albopictus abundance in places of low heat (LS) severity. Heat was the only predictor for the other monitored species, where high heat corresponded to higher abundance of Aedes aegypti, and LS to higher abundance of Culex quinquefasciatus. Our results suggest that low-income, sparsely populated neighborhoods of New Orleans may be hotspots for discarded vehicle tires, and are associated with higher abundances of at least one medically important mosquito (Ae. albopictus). These findings suggest potential locations for prioritizing source reduction efforts to control mosquito vectors and highlight discarded tires as a potential exposure pathway to unequal disease risk for low-income residents.
Collapse
Affiliation(s)
| | - Alexandros Pavlakis
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| | - Jennifer Breaux
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| | - Claudia Riegel
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| |
Collapse
|
16
|
Chathurangika P, Premadasa LS, Perera SSN, De Silva K. Determining dengue infection risk in the Colombo district of Sri Lanka by inferencing the genetic parameters of Aedes mosquitoes. BMC Infect Dis 2024; 24:944. [PMID: 39251932 PMCID: PMC11385510 DOI: 10.1186/s12879-024-09878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND For decades, dengue has posed a significant threat as a viral infectious disease, affecting numerous human lives globally, particularly in tropical regions, yet no cure has been discovered. The genetic trait of vector competence in Aedes mosquitoes, which facilitates dengue transmission, is difficult to measure and highly sensitive to environmental changes. METHODS In this study we attempt, for the first time in a non-laboratory setting, to quantify the vector competence of Aedes mosquitoes assuming its homogeneity across both species; aegypti and albopictus and across the four Dengue serotypes. Estimating vector competence in relation to varying rainfall patterns was focused in this study to showcase the changes in this vector trait with respect to environmental variables. We quantify it using an existing mathematical model originally developed for malaria in a Bayesian inferencing setup. We conducted this study in the Colombo district of Sri Lanka where the highest number of human populations are threatened with dengue. Colombo district experiences continuous favorable temperature and humidity levels throughout the year creating ideal conditions for Aedes mosquitoes to thrive and transmit the Dengue disease. Therefore we only used the highly variable and seasonal rainfall as the primary environmental variable as it significantly influences the number of breeding sites and thereby impacting the population dynamics of Aedes. RESULTS Our research successfully deduced vector competence values for the four identified seasons based on Monsoon rainfalls experienced in Colombo within a year. We used dengue data from 2009 - 2022 to infer the estimates. These estimated values have been corroborated through experimental studies documented in the literature, thereby validating the malaria model to estimate vector competence for dengue disease. CONCLUSION Our research findings conclude that environmental conditions can amplify vector competence within specific seasons, categorized by their environmental attributes. Additionally, the deduced vector competence offers compelling evidence that it impacts disease transmission, irrespective of geographical location, climate, or environmental factors.
Collapse
Affiliation(s)
- Piyumi Chathurangika
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka
| | - Lakmini S Premadasa
- International Center for the Advancement of Research and Education (I·CARE), Texas Biomedical Research Institute, San Antonio, 78227, TX, USA
| | - S S N Perera
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka
| | - Kushani De Silva
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka.
| |
Collapse
|
17
|
Melo T, Sousa CA, Delacour-Estrella S, Bravo-Barriga D, Seixas G. Characterization of the microbiome of Aedes albopictus populations in different habitats from Spain and São Tomé. Sci Rep 2024; 14:20545. [PMID: 39232089 PMCID: PMC11375178 DOI: 10.1038/s41598-024-71507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
The mosquito microbiome significantly influences vector competence, including in Aedes albopictus, a globally invasive vector. Describing the microbiome and Wolbachia strains of Ae. albopictus from different regions can guide area-specific control strategies. Mosquito samples from Spain and São Tomé were analyzed using 16S rRNA gene sequencing and metagenomic sequencing. Wolbachia infection patterns were observed by sex and population. Female mosquitoes were blood-fed, a factor considered in analyzing their microbiota. Results revealed a dominance of dual Wolbachia infections, strains A and B, in the microbiome of both populations of Ae. albopictus, especially among females. Both populations shared a core microbiome, although 5 and 9 other genera were only present in Spain and São Tomé populations, respectively. Genera like Pelomonas and Nevskia were identified for the first time in Aedes mosquitoes. This study is the first to describe the Ae. albopictus bacteriome in Spain and São Tomé, offering insights for the development of targeted mosquito control strategies. Understanding the specific microbiome composition can help in designing more effective interventions, such as microbiome manipulation and Wolbachia-based approaches, to reduce vector competence and transmission potential of these mosquitoes.
Collapse
Affiliation(s)
- Tiago Melo
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal
| | - Carla Alexandra Sousa
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal
| | - Sarah Delacour-Estrella
- Animal Health Department, The AgriFood Institute of Aragon (IA2), School of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
- Departamento de Investigación y Desarrollo (I+D), Quimera. B.S. Calle Olivo, 14, 50016, La Puebla de Alfindén, Spain
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Córdoba, Spain
| | - Gonçalo Seixas
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal.
| |
Collapse
|
18
|
Yeo H, Lin J, Yeoh TX, Puniamoorthy N. Resolution of cryptic mosquito species through wing morphometrics. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105647. [PMID: 39067583 DOI: 10.1016/j.meegid.2024.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Mosquitoes are medically important insects, and accurate species identification is crucial to understanding vector biology, forming the cornerstone of successful vector control programs. Identification is difficult owing to morphologically similar species. Wing morphometrics can provide a simple, fast, and accurate way to classify species, and using it as a method to differentiate vector species among its cryptic congeners has been underexplored. Using a total of 227 mosquitoes and 20 landmarks per specimen, we demonstrated the utility of wing morphometrics in differentiating species two groups occurring in sympatry - Culex (Culex) vishnui group and Culex (Lophoceraomyia) subgenus, as well as explored population-level variation in the wing shape of Aedes albopictus across habitats. Cytochrome oxidase subunit I (COI) gene region was sequenced to validate the morphological and morphometric identification. Procrustes ANOVA regression and CVA based on wing shape reflected that the wing landmarks across all species differed significantly, and leave-one-out cross validation revealed an overall high accuracy of >97% for the two Culex groups. Wing morphometrics uncovered population-level variation within Aedes albopictus, but cross validation accuracy was low. Overall, we show that wing geomorphometric analysis is able to resolve cryptic Culex species (including vectors) occurring sympatrically, and is a robust tool for identifying mosquitoes reliably.
Collapse
Affiliation(s)
- Huiqing Yeo
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Jiawei Lin
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tze Xuan Yeoh
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
19
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
20
|
Brito RMDM, de Melo MF, Fernandes JV, Valverde JG, Matta Guedes PM, de Araújo JMG, Nascimento MSL. Acute Chikungunya Virus Infection Triggers a Diverse Range of T Helper Lymphocyte Profiles. Viruses 2024; 16:1387. [PMID: 39339863 PMCID: PMC11437511 DOI: 10.3390/v16091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus causing acute febrile illness with severe joint pain, often leading to chronic arthralgia. This study investigated the adaptive immune responses during the early stages of symptomatic acute CHIKV infection, focusing on the transcription factors and cytokines linked to Th1, Th2, Th17, and Treg cells. Thirty-six individuals were enrolled: nine healthy controls and 27 CHIKV-positive patients confirmed by qRT-PCR. Blood samples were analyzed for the mRNA expression of transcription factors (Tbet, GATA3, FoxP3, STAT3, RORγt) and cytokines (IFN-γ, IL-4, IL-17, IL-22, TGF-β, IL-10). The results showed the significant upregulation of Tbet, GATA3, FoxP3, STAT3, and RORγt in CHIKV-positive patients, with RORγt displaying the highest increase. Correspondingly, cytokines IFN-γ, IL-4, IL-17, and IL-22 were upregulated, while TGF-β was downregulated. Principal component analysis (PCA) confirmed the distinct immune profiles between CHIKV-positive and healthy individuals. A correlation analysis indicated that higher Tbet expression correlated with a lower viral load, whereas FoxP3 and TGF-β were associated with higher viral loads. Our study sheds light on the intricate immune responses during acute CHIKV infection, characterized by a mixed Th1, Th2, Th17, and Treg response profile. These results emphasize the complex interplay between different adaptive immune responses and how they may contribute to the pathogenesis of Chikungunya fever.
Collapse
Affiliation(s)
| | - Marília Farias de Melo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Joanna Gardel Valverde
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
21
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
22
|
Mushtaq I, Sarwar MS, Munzoor I. A comprehensive review of Wolbachia-mediated mechanisms to control dengue virus transmission in Aedes aegypti through innate immune pathways. Front Immunol 2024; 15:1434003. [PMID: 39176079 PMCID: PMC11338905 DOI: 10.3389/fimmu.2024.1434003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
The Dengue virus (DENV), primarily spread by Aedes aegypti and also by Aedes albopictus in some regions, poses significant global health risks. Alternative techniques are urgently needed because the current control mechanisms are insufficient to reduce the transmission of DENV. Introducing Wolbachia pipientis into Ae. aegypti inhibits DENV transmission, however, the underlying mechanisms are still poorly understood. Innate immune effector upregulation, the regulation of autophagy, and intracellular competition between Wolbachia and DENV for lipids are among the theories for the mechanism of inhibition. Furthermore, mainly three immune pathways Toll, IMD, and JAK/STAT are involved in the host for the suppression of the virus. These pathways are activated by Wolbachia and DENV in the host and are responsible for the upregulation and downregulation of many genes in mosquitoes, which ultimately reduces the titer of the DENV in the host. The functioning of these immune pathways depends upon the Wolbachia, host, and virus interaction. Here, we summarize the current understanding of DENV recognition by the Ae. aegypti's immune system, aiming to create a comprehensive picture of our knowledge. Additionally, we investigated how Wolbachia regulates the activation of multiple genes associated with immune priming for the reduction of DENV.
Collapse
|
23
|
Abdalgader T, Zheng Z, Banerjee M, Zhang L. The timeline of overseas imported cases acts as a strong indicator of dengue outbreak in mainland China. CHAOS (WOODBURY, N.Y.) 2024; 34:083106. [PMID: 39213011 DOI: 10.1063/5.0204336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The emergence of dengue viruses in new, susceptible human populations worldwide is increasingly influenced by a combination of local and global human movements and favorable environmental conditions. While various mathematical models have explored the impact of environmental factors on dengue outbreaks, the significant role of human mobility both internationally and domestically in transmitting the disease has been less frequently addressed. In this context, we introduce a modeling framework that integrates the effects of international travel-induced imported cases, climatic conditions, and local human movements to assess the spatiotemporal dynamics of dengue transmission. Utilizing the generation matrix method, we calculate the basic reproduction number and its sensitivity to various model parameters. Through numerical simulations using data on climate, human mobility, and reported dengue cases in mainland China, our model demonstrates a good agreement with observed data upon validation. Our findings reveal that while climatic conditions are a key driver for the rapid dengue transmission, human mobility plays a crucial role in its local spread. Importantly, the model highlights the significant impact of imported cases from overseas on the initiation of dengue outbreaks and their contribution to increasing the disease incidence rate by 34.6%. Furthermore, the analysis identifies that dengue cases originating from regions, such as Cambodia and Myanmar internationally, and Guangzhou and Xishuangbanna domestically, have the potential to significantly increase the disease burden in mainland China. These insights emphasize the critical need to include data on imported cases and domestic travel patterns in disease outbreak models to improve the precision of predictions, thereby enhancing dengue prevention, surveillance, and response strategies.
Collapse
Affiliation(s)
- Tarteel Abdalgader
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
- Department of Mathematics, Faculty of Education, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - Zhoumin Zheng
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
24
|
Virgillito C, Longo E, De Marco CM, Serini P, Zucchelli MV, Montarsi F, Severini F, Rosà R, Da Re D, Filipponi F, Manica M, Palmer J, Bartumeus F, Della Torre A, Caputo B. Involving citizen scientists in monitoring arthropod vectors of human and zoonotic diseases: The case of Mosquito Alert in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174847. [PMID: 39025142 DOI: 10.1016/j.scitotenv.2024.174847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Citizen science has been particularly effective in gathering reliable, timely, large-scale data on the presence and distributions of animal species, including mosquito vectors of human and zoonotic pathogens. This involves the participation of citizen scientists in research projects, with success strongly dependent on the capacity to disseminate project information and engage citizen scientists to contribute their time. Mosquito Alert is a citizen science that aids in the system surveillances of vector mosquitoes. It involves citizen scientists providing expert-validated photos of targeted mosquitoes, along with records of bites and breeding sites. Since 2020 the system has been disseminated throughout Europe. This article uses models to analyze the effect of promotion activities carried out by the Mosquito Alert ITALIA team from October 2020 to December 2022 on the number of citizen scientists recruited and engaged in the project, and their performance in mosquito identification. Results show a high level of citizen scientist recruitment (N > 18.000; 37 % of overall European participants). This was achieved mostly through articles generated by ad hoc press releases detailing the app's goals and functioning. Press releases were more effective when carried out at the beginning and end of the mosquito season and when mosquito's public health significance was emphasized. Despite the high number of records received (N > 20.000), only 30 % of registered participants sent records, and the probability of a participant sending a record dropped off quickly over time after first registering. Among participants who contributed, ∼50 % sent 1 record, ∼30 % ≥3 and 4 % >10 records. Participants showed good capacity to identify mosquitoes and improve identification skills with app usage. The results will be valuable for anyone interested in evaluating citizen science, as participation and engagement are seldom quantitatively assessed. Our results are also useful for designing dissemination and education strategies in citizen science projects associated with arthropod vector monitoring.
Collapse
Affiliation(s)
- C Virgillito
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Roma, Italy
| | - E Longo
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Roma, Italy; Center Agriculture Food Environment, University of Trento, San Michele all'Adige, TN, Italy
| | - C M De Marco
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Roma, Italy
| | - P Serini
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Roma, Italy
| | | | - F Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padua, Italy
| | - F Severini
- Istituto Superiore di Sanità (ISS), Rome, Italy
| | - R Rosà
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, TN, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - D Da Re
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, TN, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - F Filipponi
- National Research Council - Institute for Environmental Geology and Geoengineering (CNR-IGAG), Montelibretti, RM, Italy
| | - M Manica
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - J Palmer
- Universitat Pompeu Fabra, Barcelona, Spain
| | - F Bartumeus
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Girona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - A Della Torre
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Roma, Italy
| | - B Caputo
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Roma, Italy.
| |
Collapse
|
25
|
Veiga J, Garrido M, Garrigós M, Chagas CRF, Martínez-de la Puente J. A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites. Animals (Basel) 2024; 14:2019. [PMID: 39061481 PMCID: PMC11274142 DOI: 10.3390/ani14142019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an invasive mosquito species with a global distribution. This species has populations established in most continents, being considered one of the 100 most dangerous invasive species. Invasions of mosquitoes such as Ae. albopictus could facilitate local transmission of pathogens, impacting the epidemiology of some mosquito-borne diseases. Aedes albopictus is a vector of several pathogens affecting humans, including viruses such as dengue virus, Zika virus and Chikungunya virus, as well as parasites such as Dirofilaria. However, information about its competence for the transmission of parasites affecting wildlife, such as avian malaria parasites, is limited. In this literature review, we aim to explore the current knowledge about the relationships between Ae. albopictus and avian Plasmodium to understand the role of this mosquito species in avian malaria transmission. The prevalence of avian Plasmodium in field-collected Ae. albopictus is generally low, although studies have been conducted in a small proportion of the affected countries. In addition, the competence of Ae. albopictus for the transmission of avian malaria parasites has been only proved for certain Plasmodium morphospecies under laboratory conditions. Therefore, Ae. albopictus may play a minor role in avian Plasmodium transmission in the wild, likely due to its mammal-biased blood-feeding pattern and its reduced competence for the development of different avian Plasmodium. However, further studies considering other avian Plasmodium species and lineages circulating under natural conditions should be carried out to properly assess the vectorial role of Ae. albopictus for the Plasmodium species naturally circulating in its distribution range.
Collapse
Affiliation(s)
- Jesús Veiga
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
| | - Mario Garrido
- Department of Parasitology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
| | - Marta Garrigós
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
| | | | - Josué Martínez-de la Puente
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
26
|
de La Roque DGL, Santos EV, Policastro LR, da Costa PNM, Evaristo M, Yamamoto AY, Giomo DB, Torres PMA, Gentil DCD, Minto ECM, Slavov SN, Fonseca V, Dos Santos Barros CR, Martins AJ, Calado RT, Passos LMR, Elias MC, Sampaio SC, Giovanetti M, Covas DT, Alcântara LCJ, Kashima S. Exploring the Chikungunya virus landscape in a dengue-endemic Brazilian area. J Infect Public Health 2024; 17:102442. [PMID: 38820892 PMCID: PMC11187577 DOI: 10.1016/j.jiph.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 06/02/2024] Open
Abstract
We aimed to describe the landscape, including molecular, epidemiological, and clinical aspects of CHIKV infections in the Ribeirao Preto region, an area endemic to dengue. We randomly screened 3744 plasma samples that had undergone DENV diagnosis to evaluate CHIKV-RNA using an in-house RT-PCR assay. Positive samples were followed clinically, and RNA samples were submitted to whole genome sequencing. Seventeen cases (0.5 %) were positive for CHIKV-RNA despite being negative for DENV-RNA. Notably, half of the patients experienced prolonged arthralgia lasting more than 90 days. Compared with the healthy control group, leukopenia and thrombocytopenia were observed in all CHIKV-positive individuals with statistically significant P values (P < 0.0001 and P = 0.0003, respectively). The genomic analysis revealed that the CHIKV strains being studied are classified within the East-Central-South-African (ECSA) genotype. This analysis identified new mutations, E1: K211E and E2: V264A, while the previously known mutation E1: A226V was not detected among these strains. This study highlights the need for epidemiological surveillance and preparedness for potential CHIKV epidemics in Brazil, particularly where other arboviruses co-circulate.
Collapse
Affiliation(s)
- Debora Glenda Lima de La Roque
- Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; Medical School of Ribeirão Preto, Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Lucca Rocha Policastro
- Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; Medical School of Ribeirão Preto, Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Mariane Evaristo
- Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | - Denise Bergamaschi Giomo
- Divisão de Vigilância Epidemiológica/Departamento de Vigilância em Saúde, Ribeirão Preto, Brazil
| | | | | | | | | | - Vagner Fonseca
- Pan-American Health Organization (PAHO)/World Health Organization (WHO), USA
| | | | | | - Rodrigo Tocantins Calado
- Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; Medical School of Ribeirão Preto, Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Rome, Italy; Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil; Climate Amplified Diseases and Epidemics (CLIMADE), Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; Medical School of Ribeirão Preto, Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Luiz Carlos Júnior Alcântara
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil; Climate Amplified Diseases and Epidemics (CLIMADE), Brazil
| | - Simone Kashima
- Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; Medical School of Ribeirão Preto, Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
27
|
Robinson A, Versteeg B, Abdurahman OS, Clatworthy I, Shuka G, Debela D, Hordofa G, Reis de Oliveira Gomes L, Abraham Aga M, Dumessa G, Sarah V, Macleod D, Last A, Burton MJ, Logan JG. Field- and laboratory-based studies on correlates of Chlamydia trachomatis transmission by Musca sorbens: Determinants of fly-eye contact and investigations into fly carriage of elementary bodies. PLoS Negl Trop Dis 2024; 18:e0012280. [PMID: 38954734 PMCID: PMC11249242 DOI: 10.1371/journal.pntd.0012280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/15/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Musca sorbens (Diptera: Muscidae) flies are thought to be vectors of the blinding eye disease trachoma, carrying the bacterium Chlamydia trachomatis (Ct) between the eyes of individuals. While their role as vectors has been convincingly demonstrated via randomised controlled trials in The Gambia, studies of fly-borne trachoma transmission remain scant and as such our understanding of their ability to transmit Ct remains poor. We examined fly-eye contact and caught eye-seeking flies from 494 individuals (79% aged ≤9 years) in Oromia, Ethiopia. Ct-carrying flies (harbouring Ct DNA) were found to cluster spatially in and nearby to households in which at least one resident had Ct infection. Fly-eye contact was positively associated with the presence of trachoma (disease), lower human body weight and increased human body temperature. Studies of laboratory-reared M. sorbens indicated that Ct is found both externally and internally following feeds on Ct culture, with scanning electron microscopy revealing how Ct bodies can cling to fly hairs (setae). Testing for Ct on field-caught M. sorbens found fly 'bodies' (thorax, wings and abdomen) to consistently test positive for Ct while legs and heads were infrequently Ct-positive. These studies strongly support the role of M. sorbens as vectors of trachoma and highlight the need for improved understanding of fly-borne trachoma transmission dynamics and vector competence.
Collapse
Affiliation(s)
- Ailie Robinson
- Department of Disease Control, LSHTM, London, United Kingdom
| | - Bart Versteeg
- International Centre for Eye Health, Clinical Research Department, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Knowledge Institute of the Dutch Association of Medical Specialists, Utrecht, The Netherlands
| | - Oumer Shafi Abdurahman
- International Centre for Eye Health, Clinical Research Department, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- The Fred Hollows Foundation Ethiopia, Addis Ababa, Ethiopia
| | | | - Gemeda Shuka
- The Fred Hollows Foundation Ethiopia, Addis Ababa, Ethiopia
| | - Dereje Debela
- The Fred Hollows Foundation Ethiopia, Addis Ababa, Ethiopia
| | | | | | | | | | | | - David Macleod
- International Centre for Eye Health, Clinical Research Department, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- MRC International Statistics and Epidemiology Group, LSHTM, London, United Kingdom
| | - Anna Last
- International Centre for Eye Health, Clinical Research Department, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Matthew J Burton
- International Centre for Eye Health, Clinical Research Department, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- National Institute for Health Research Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - James G Logan
- Department of Disease Control, LSHTM, London, United Kingdom
- Arctech Innovation Ltd, Dagenham, United Kingdom
| |
Collapse
|
28
|
Onyango MG, Payne AF, Stout J, Dieme C, Kuo L, Kramer LD, Ciota AT. Aedes albopictus saliva contains a richer microbial community than the midgut. Parasit Vectors 2024; 17:267. [PMID: 38918848 PMCID: PMC11197185 DOI: 10.1186/s13071-024-06334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Past findings demonstrate that arthropods can egest midgut microbiota into the host skin leading to dual colonization of the vertebrate host with pathogens and saliva microbiome. A knowledge gap exists on how the saliva microbiome interacts with the pathogen in the saliva. To fill this gap, we need to first define the microbial composition of mosquito saliva. METHODS The current study aimed at analyzing and comparing the microbial profile of Aedes albopictus saliva and midgut as well as assessing the impact of Zika virus (ZIKV) infection on the midgut and saliva microbial composition. Colony-reared Ae. albopictus strains were either exposed to ZIKV infectious or noninfectious bloodmeal. At 14 ays postinfection, the 16S V3-V4 hypervariable rRNA region was amplified from midgut and saliva samples and sequenced on an Illumina MiSeq platform. The relative abundance and diversity of midgut and saliva microbial taxa were assessed. RESULTS We observed a richer microbial community in the saliva compared with the midgut, yet some of the microbial taxa were common in the midgut and saliva. ZIKV infection did not impact the microbial diversity of midgut or saliva. Further, we identified Elizabethkingia spp. in the Ae. albopictus saliva. CONCLUSIONS This study provides insights into the microbial community of the Ae. albopictus saliva as well as the influence of ZIKV infection on the microbial composition of its midgut and saliva. The identification of Elizabethkingia spp., an emerging pathogen of global health significance, in Ae. albopictus saliva is of medical importance. Future studies to assess the interactions between Ae. albopictus saliva microbiome and ZIKV could lead to novel strategies for developing transmission barrier tools.
Collapse
Affiliation(s)
- Maria G Onyango
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, Texas, 79409-3131, USA.
| | - Anne F Payne
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Jessica Stout
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Constentin Dieme
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Lili Kuo
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Laura D Kramer
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alexander T Ciota
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| |
Collapse
|
29
|
Garcia-Van Smévoorde M, Calvez E, Quétel I, Dollin C, Breurec S, Vega-Rúa A. Ingestion of amoxicillin-clavulanic acid at therapeutic concentration during blood meal impacts Aedes aegypti microbiota and dengue virus transmission. Sci Rep 2024; 14:13701. [PMID: 38871831 DOI: 10.1038/s41598-024-64221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Dengue virus (DENV), mainly transmitted by Aedes aegypti mosquitoes, is the most prevalent arbovirus worldwide, representing a public health problem in tropical and subtropical countries. In these areas, antibiotic consumption rises which may impact both mosquito microbiota and dengue transmission. Here, we assessed how the ingestion by Ae. aegypti of therapeutic concentrations of amoxicillin-clavulanic Acid association (Amox/Clav), a broad-spectrum antibiotic used to treat febrile symptoms worldwide, impacted its microbiota. We also evaluated whether simultaneous ingestion of antibiotic and DENV impacted Ae. aegypti ability to transmit this virus. We found that Amox/Clav ingestion impacted microbiota composition in Ae. aegypti and we confirmed such impact in field-collected mosquitoes. Furthermore, we observed that Amox/Clav ingestion enhanced DENV dissemination and transmission by this mosquito at 21 days post-DENV exposure. These findings increase our understanding of factors linked to human hosts that may influence dengue transmission dynamics in regions with mass-drug administration programs.
Collapse
Affiliation(s)
- Margot Garcia-Van Smévoorde
- Vector Control Research Laboratory, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur de La Guadeloupe, 97139, Les Abymes, Guadeloupe, France
| | - Elodie Calvez
- Vector Control Research Laboratory, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur de La Guadeloupe, 97139, Les Abymes, Guadeloupe, France
| | - Isaure Quétel
- Microbial Ecosystems Interaction Laboratory, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur de La Guadeloupe, 97139, Les Abymes, Guadeloupe, France
| | - Christelle Dollin
- Vector Control Research Laboratory, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur de La Guadeloupe, 97139, Les Abymes, Guadeloupe, France
| | - Sébastien Breurec
- Microbial Ecosystems Interaction Laboratory, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur de La Guadeloupe, 97139, Les Abymes, Guadeloupe, France
- Department of Clinical Microbiology, University Hospitals of Guadeloupe, 97159, Pointe-À-Pitre/Les Abymes, Guadeloupe, France
- Faculty of Medecine Hyacinthe Bastaraud, University of the Antilles, 97110, Pointe-À-Pitre, Guadeloupe, France
- INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, 97139, Les Abymes, Guadeloupe, France
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, 34394, Montpellier, France
| | - Anubis Vega-Rúa
- Vector Control Research Laboratory, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur de La Guadeloupe, 97139, Les Abymes, Guadeloupe, France.
| |
Collapse
|
30
|
Wang S, Huang Y, Wang F, Han Q, Ren N, Wang X, Cui Y, Yuan Z, Xia H. A cell atlas of the adult female Aedes aegypti midgut revealed by single-cell RNA sequencing. Sci Data 2024; 11:587. [PMID: 38839790 PMCID: PMC11153528 DOI: 10.1038/s41597-024-03432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Aedes aegypti is a primary vector for transmitting various arboviruses, including Yellow fever, dengue and Zika virus. The mosquito midgut is the principal organ for blood meal digestion, nutrient absorption and the initial site of arbovirus infection. Although a previous study delineated midgut's transcriptome of Ae. aegypti at the single-nucleus resolution, there still lacks an established protocol for isolating and RNA sequencing of single cells of Ae. aegypti midgut, which is required for investigating arbovirus-midgut interaction at the single-cell level. Here, we established an atlas of the midgut cells for Ae. aegypti by single-cell RNA sequencing. We annotated the cell clusters including intestinal stem cells/enteroblasts (ISC/EB), cardia cells (Cardia), enterocytes (EC, EC-like), enteroendocrine cells (EE), visceral muscle (VM), fat body cells (FBC) and hemocyte cells (HC). This study will provide a foundation for further studies of arbovirus infection in mosquito midgut at the single-cell level.
Collapse
Affiliation(s)
- Shunlong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Fei Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Qian Han
- Hainan One Health Key Laboratory, Hainan University, Haikou, 570228, China
| | - Nanjie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, 06520, USA.
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
31
|
Benz U, Traore MM, Revay EE, Traore AS, Prozorov AM, Traoré I, Junnila A, Cui L, Saldaitis A, Kone AS, Yakovlev RV, Ziguime Y, Gergely P, Samake S, Keita A, Müller GC, Weitzel T, Rothe C. Effect of textile colour on vector mosquito host selection: a simulated field study in Mali, West Africa. J Travel Med 2024; 31:taae049. [PMID: 38498330 DOI: 10.1093/jtm/taae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The effect of clothing colour on the biting rates of different vector mosquito species is not well understood. Studies under tropical field conditions are lacking. This study aimed to determine the influence of clothing colours on mosquito biting rates in rural and suburban settings in West Africa. METHODS We performed a simulated field study in a suburban and a rural site in Mali using Mosquito-Magnet traps utilizing CO2 and other attractants, which were covered with black, white, and black/white striped textile sheets covers. These targets operated continuously for 10 consecutive days with bright nights (around full moon) and 10 consecutive days with dark nights (around new moon). Trapped mosquitoes were collected and catch rates counted hourly. Mosquitoes were morphologically identified to the species complex level (Anopheles gambiae s.l. and Culex pipiens s.l.) or species level (Aedes aegypti). A subset of Anopheles specimens were further identified by molecular methods. RESULTS Under bright-night conditions, An. gambiae s.l. was significantly more attracted to black targets than to white and striped targets; during dark nights, no target preference was noted. During bright nights, Cx. pipiens s.l. was significantly more attracted to black and striped targets than to white targets; a similar trend was noted during dark nights (not significant). For day-active Ae. aegypti, striped targets were more attractive than the other targets and black were more attractive than white targets. CONCLUSIONS The study firstly demonstrated that under field conditions in Mali, West Africa, mosquito catch rates were influenced by different clothing colours, depending on mosquito species and light conditions. Overall, light colours were least attractive to host-seeking mosquitoes. Using white or other light-coloured clothing can potentially reduce bite exposure and risk of disease transmission in endemic tropical regions.
Collapse
Affiliation(s)
- Ursula Benz
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, Munich, Germany
| | - Mohamad M Traore
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Edita E Revay
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Amadou S Traore
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Alexey M Prozorov
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Issa Traoré
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Amy Junnila
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Aidas Saldaitis
- Department of Entomology, State Nature Research Centre, Institute of Ecology, Vilnius, Lithuania
| | - Aboubakr S Kone
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Roman V Yakovlev
- Department of Ecology, Altai State University, Barnaul, Russian Federation
| | - Younoussa Ziguime
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Petrányi Gergely
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Siriman Samake
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Alou Keita
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Günter C Müller
- Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Thomas Weitzel
- Travel Medicine Program, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Camilla Rothe
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, Munich, Germany
| |
Collapse
|
32
|
de Oliveira JC, de Melo Katak R, Muniz VA, de Oliveira MR, Rocha EM, da Silva WR, do Carmo EJ, Roque RA, Marinotti O, Terenius O, Astolfi-Filho S. Bacteria isolated from Aedes aegypti with potential vector control applications. J Invertebr Pathol 2024; 204:108094. [PMID: 38479456 DOI: 10.1016/j.jip.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
Highly anthropophilic and adapted to urban environments, Aedes aegypti mosquitoes are the main vectors of arboviruses that cause human diseases such as dengue, zika, and chikungunya fever, especially in countries with tropical and subtropical climates. Microorganisms with mosquitocidal and larvicidal activities have been suggested as environmentally safe alternatives to chemical or mechanical mosquito control methods. Here, we analyzed cultivable bacteria isolated from all stages of the mosquito life cycle for their larvicidal activity against Ae. aegypti. A total of 424 bacterial strains isolated from eggs, larvae, pupae, or adult Ae. aegypti were analyzed for the pathogenic potential of their crude cultures against larvae of this same mosquito species. Nine strains displayed larvicidal activity comparable to the strain AM65-52, reisolated from commercial BTi-based product VectoBac® WG. 16S rRNA gene sequencing revealed that the set of larvicidal strains contains two representatives of the genus Bacillus, five Enterobacter, and two Stenotrophomonas. This study demonstrates that some bacteria isolated from Ae. aegypti are pathogenic for the mosquito from which they were isolated. The data are promising for developing novel bioinsecticides for the control of these medically important mosquitoes.
Collapse
Affiliation(s)
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo - ESALQ - USP, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multiuser Laboratory, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | | | - Edson Júnior do Carmo
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden.
| | - Spartaco Astolfi-Filho
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| |
Collapse
|
33
|
Laranjeira C, Pereira M, Oliveira R, Barbosa G, Fernandes C, Bermudi P, Resende E, Fernandes E, Nogueira K, Andrade V, Quintanilha JA, dos Santos JA, Chiaravalloti-Neto F. Automatic mapping of high-risk urban areas for Aedes aegypti infestation based on building facade image analysis. PLoS Negl Trop Dis 2024; 18:e0011811. [PMID: 38829905 PMCID: PMC11192312 DOI: 10.1371/journal.pntd.0011811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/21/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Dengue, Zika, and chikungunya, whose viruses are transmitted mainly by Aedes aegypti, significantly impact human health worldwide. Despite the recent development of promising vaccines against the dengue virus, controlling these arbovirus diseases still depends on mosquito surveillance and control. Nonetheless, several studies have shown that these measures are not sufficiently effective or ineffective. Identifying higher-risk areas in a municipality and directing control efforts towards them could improve it. One tool for this is the premise condition index (PCI); however, its measure requires visiting all buildings. We propose a novel approach capable of predicting the PCI based on facade street-level images, which we call PCINet. METHODOLOGY Our study was conducted in Campinas, a one million-inhabitant city in São Paulo, Brazil. We surveyed 200 blocks, visited their buildings, and measured the three traditional PCI components (building and backyard conditions and shading), the facade conditions (taking pictures of them), and other characteristics. We trained a deep neural network with the pictures taken, creating a computational model that can predict buildings' conditions based on the view of their facades. We evaluated PCINet in a scenario emulating a real large-scale situation, where the model could be deployed to automatically monitor four regions of Campinas to identify risk areas. PRINCIPAL FINDINGS PCINet produced reasonable results in differentiating the facade condition into three levels, and it is a scalable strategy to triage large areas. The entire process can be automated through data collection from facade data sources and inferences through PCINet. The facade conditions correlated highly with the building and backyard conditions and reasonably well with shading and backyard conditions. The use of street-level images and PCINet could help to optimize Ae. aegypti surveillance and control, reducing the number of in-person visits necessary to identify buildings, blocks, and neighborhoods at higher risk from mosquito and arbovirus diseases.
Collapse
Affiliation(s)
- Camila Laranjeira
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Pereira
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raul Oliveira
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
| | - Gerson Barbosa
- Pasteur Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Camila Fernandes
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
| | - Patricia Bermudi
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
| | - Ester Resende
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Fernandes
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Keiller Nogueira
- Computer Science and Mathematics, University of Stirling, Stirling, United Kingdom
| | - Valmir Andrade
- Epidemiologic Surveillance Center, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | | | - Jefersson A. dos Santos
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
34
|
Beranek MD, Giayetto O, Fischer S, Diaz A. Assessment of Mayaro virus vector competence of the mosquito Aedes aegypti (Linnaeus, 1762) populations in Argentine using dose-response assays. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:234-243. [PMID: 38489505 DOI: 10.1111/mve.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
Mayaro virus (MAYV; Alphavirus: Togaviridae) is an emerging pathogen in Latin America, causing fever and polyarthritis. Sporadic outbreaks of MAYV have occurred in the region, with reported human cases being imported to Europe and North America. Although primarily a risk for those residing in the Amazon basin's tropical forests, recent reports highlight that urbanization would increase the risk of MAYV transmission in Latin America. Urban emergence depends on human susceptibility and the ability of mosquitos like Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) to transmit MAYV. Despite the absence of active MAYV transmission in Argentine, the risk of introduction is substantial due to human movement and the presence of Ae. aegypti in the region. This study aimed to evaluate the susceptibility of different Argentine Ae. aegypti populations to MAYV genotype L (MAYV-L) using dose-response assays and determine barriers to virus infection, dissemination and transmission. Immature mosquito stages were collected in Buenos Aires, Córdoba and Rosario cities. Female Ae. aegypti (F2) were orally infected by feeding on five concentrations of MAYV-L, ranging from 1.0 to 6.0 log10 PFU/mL. Abdomens, legs and saliva were analysed using viral plaque assays. Results revealed that MAYV-L between infection and dissemination were associated with viral doses rather than the population origin. Infection rates varied between 3% and 65%, with a 50% infectious dose >5.5 log10 PFU/mL. Dissemination occurred at 39%, with a 50% dissemination dose of ~6.0 log10 PFU/mL. Dissemination among infected mosquitoes ranged from 60% to 86%, and transmission from disseminated mosquitoes ranged from 11% to 20%. Argentine Ae. aegypti populations exhibited a need for higher viral doses of MAYV-L than those typically found in humans to become infected. In addition, only a small proportion of infected mosquitoes were capable of transmitting the virus. Understanding MAYV transmission in urban areas is crucial for public health interventions.
Collapse
Affiliation(s)
- Mauricio Daniel Beranek
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Octavio Giayetto
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución Instituto de Ecología, Genética y Evolución de Buenos Aires, Facultad de Ciencias Exactas Físicas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrián Diaz
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
35
|
Keirsebelik MSG, David MR, Pavan MG, Couto-Lima D, Palomino M, Rahman RU, Hoffmann AA, Bahia AC, Caljon G, Maciel-de-Freitas R. Dengue Virus Serotype 1 Effects on Mosquito Survival Differ among Geographically Distinct Aedes aegypti Populations. INSECTS 2024; 15:393. [PMID: 38921108 PMCID: PMC11203567 DOI: 10.3390/insects15060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The mosquito Aedes aegypti is distributed worldwide and is recognized as the primary vector for dengue in numerous countries. To investigate whether the fitness cost of a single DENV-1 isolate varies among populations, we selected four Ae. aegypti populations from distinct localities: Australia (AUS), Brazil (BRA), Pakistan (PAK), and Peru (PER). Utilizing simple methodologies, we concurrently assessed survival rates and fecundity. Overall, DENV-1 infection led to a significant decrease in mosquito survival rates, with the exception of the PER population. Furthermore, infected Ae. aegypti from PAK, the population with the lowest infection rate among those tested, exhibited a noteworthy reduction in egg laying. These findings collectively suggest that local mosquito-virus adaptations may influence dengue transmission in endemic settings.
Collapse
Affiliation(s)
- Milan S. G. Keirsebelik
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 1, 2610 Wilrijk-Antwerp, Belgium;
| | - Mariana R. David
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
| | - Márcio Galvão Pavan
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
| | - Dinair Couto-Lima
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
| | - Miriam Palomino
- Laboratorio de Referência Nacional de Entomologia, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima 15072, Peru;
| | - Rafi Ur Rahman
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan;
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, 3052 Melbourne, Australia;
| | - Ana C. Bahia
- Laboratório de Bioquímica de Insetos e Parasitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21040-900, Brazil;
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 1, 2610 Wilrijk-Antwerp, Belgium;
| | - Rafael Maciel-de-Freitas
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (M.S.G.K.); (M.R.D.); (M.G.P.); (D.C.-L.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
36
|
Muharromah AF, Carvajal TM, Regilme MAF, Watanabe K. Fine-scale adaptive divergence and population genetic structure of Aedes aegypti in Metropolitan Manila, Philippines. Parasit Vectors 2024; 17:233. [PMID: 38769579 PMCID: PMC11107013 DOI: 10.1186/s13071-024-06300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines. METHODS We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays. RESULTS We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales. CONCLUSIONS Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Thaddeus M Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, 1004, Manila, Philippines
| | - Maria Angenica F Regilme
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan.
| |
Collapse
|
37
|
Rakotonirina A, Dauga C, Pol M, Hide M, Vuth L, Ballan V, Kilama S, Russet S, Marcombe S, Boyer S, Pocquet N. Speciation patterns of Aedes mosquitoes in the Scutellaris Group: a mitochondrial perspective. Sci Rep 2024; 14:10930. [PMID: 38740928 DOI: 10.1038/s41598-024-61573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The Scutellaris Group of Aedes comprises 47 mosquito species, including Aedes albopictus. While Ae. albopictus is widely distributed, the other species are mostly found in the Asia-Pacific region. Evolutionary history researches of Aedes species within the Scutellaris Group have mainly focused on Ae. albopictus, a species that raises significant public health concerns, neglecting the other species. In this study, we aimed to assess genetic diversity and estimate speciation times of several species within the Scutellaris Group. Mosquitoes were therefore collected from various Asia-Pacific countries. Their mitochondrial cytochrome c oxidase subunit 1 (cox1) and subunit 3 (cox3) sequences were analyzed alongside those of other Scutellaris Group species available in the GenBank database. To estimate the divergence time, we analyzed 1849 cox1 gene sequences from 21 species, using three species (Aedes aegypti, Aedes notoscriptus and Aedes vigilax) as outgroups. We found that most of the speciation dates occurred during the Paleogene and the Neogene periods. A separation between the Scutellaris Subgroup and the Albopictus Subgroup occurred approximately 64-61 million years ago (MYA). We also identified a split between species found in Asia/Micronesia and those collected in Melanesia/Polynesia approximately 36-35 MYA. Our findings suggest that the speciation of Aedes species within the Scutellaris Group may be driven by diversity in mammalian hosts, climate and environmental changes, and geological dynamics rather than human migration.
Collapse
Affiliation(s)
- Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie.
| | - Catherine Dauga
- Arboriruses and Insect Vectors Laboratory, Institut Pasteur Paris, Paris, France
| | - Morgane Pol
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Mallorie Hide
- Maladies Infectieuses et Vecteurs: écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Linavin Vuth
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Valentine Ballan
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sosiasi Kilama
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sylvie Russet
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sébastien Marcombe
- Vector Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
- Vector Control Consulting-South East Asia SOLE CO., LTD., Vientiane, Lao PDR
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Department of Global Health, Institut Pasteur, CNRS UMR2000, Paris, France
| | - Nicolas Pocquet
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| |
Collapse
|
38
|
Liu S, Wang X, Wang F, Zaman W, Yang C, Huang D, Ma H, Wang J, Liu Q, Yuan Z, Xia H. Evaluating the mosquito vector range for two orthobunyaviruses: Oya virus and Ebinur Lake virus. Parasit Vectors 2024; 17:204. [PMID: 38715075 PMCID: PMC11077878 DOI: 10.1186/s13071-024-06295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Siyuan Liu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wahid Zaman
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cihan Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Doudou Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haixia Ma
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hubei Jiangxia Laboratory, Wuhan, China.
| |
Collapse
|
39
|
Garambois C, Boulesteix M, Fablet M. Effects of Arboviral Infections on Transposable Element Transcript Levels in Aedes aegypti. Genome Biol Evol 2024; 16:evae092. [PMID: 38695057 PMCID: PMC11110940 DOI: 10.1093/gbe/evae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
Transposable elements are mobile repeated sequences found in all genomes. Transposable elements are controlled by RNA interference pathways in most organisms, and this control involves the PIWI-interacting RNA pathway and the small interfering RNA pathway, which is also known to be the first line of antiviral defense in invertebrates. Using Drosophila, we recently showed that viral infections result in the modulation of transposable element transcript levels through modulation of the small RNA repertoire. The Aedes aegypti mosquito is of particular interest because almost half of its genome is made of transposable elements, and it is described as a major vector of viruses (such as the dengue [DENV], Zika [ZIKV], and chikungunya [CHIKV] arboviruses). Moreover, Aedes mosquitoes are unique among insects in that the PIWI-interacting RNA pathway is also involved in the somatic antiviral response, in addition to the transposable element control and PIWI-interacting RNA pathway genes expanded in the mosquito genome. For these reasons, we studied the impacts of viral infections on transposable element transcript levels in A. aegypti samples. We retrieved public datasets corresponding to RNA-seq data obtained from viral infections by DENV, ZIKV, and CHIKV in various tissues. We found that transposable element transcripts are moderately modulated following viral infection and that the direction of the modulation varies greatly across tissues and viruses. These results highlight the need for an in-depth investigation of the tightly intertwined interactions between transposable elements and viruses.
Collapse
Affiliation(s)
- Chloé Garambois
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Matthieu Boulesteix
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Marie Fablet
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
40
|
Xiao X, Gao Q, Wang LY, Zhang YF, Luo YP. Photoactivated 9-methylacridine destroys midgut tissues of Aedes aegypti larvae by targeting ROS-mediated apoptosis in the mitochondrial pathway of midgut cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112893. [PMID: 38531303 DOI: 10.1016/j.jphotobiol.2024.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
An aromatic ring-containing compound with a wide range of biological activities, 9-methylacridine (AD-9-Me) is a precursor for the synthesis of various drugs. However, its photoactivation properties and mechanism of damage as a photo activator against Aedes aegypti are unknown. The toxic effects of AD-9-Me on Aedes aegypti mosquitoes were determined under light and non-light conditions. The results showed that the toxicity of AD-9-Me to mosquito larvae was significantly higher than that of the dark treatment after 24 h of light exposure; AD-9-Me was mainly distributed in the midgut of larvae, after 24 h of treatment, it can cause an increase in calcium ion concentration, reactive oxygen species (ROS) eruption and ROS accumulation by blocking the ROS elimination pathway in midgut cells. This in turn caused an increase in protein carbonyl and malondialdehyde (MDA) content, a decrease in mitochondrial membrane potential (MMP), a disruption of the barrier function of midgut tissues, a significant decrease in midgut weight and chitin content, which induced the up-regulation of AeDronc, AeCaspase8 and AeCaspase7 genes, leading to apoptotic cell death. In this study, we confirmed that AD-9-Me has photoactivation activity and mainly acts on the midgut of mosquito larvae, which can generate a large amount of ROS in the cells of the midgut and induce apoptosis to occur, resulting in the disruption of the function of the tissues of mosquito larvae, accelerating the death and delaying the development of the mosquito larvae.
Collapse
Affiliation(s)
- Xian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiang Gao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lan-Ying Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yun-Fei Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yan-Ping Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
41
|
Abbas H, Sajid MS, Rizwan HM, Tahir UB, Farooqi SH, Iqbal Z, Malik MA, Yaseen K, Maqbool M, Raza FA, Raza M, Fouad D, Ataya FS. Exploring mosquito abundance and Plasmodium infection through nested-PCR: implications for disease surveillance and control. Sci Rep 2024; 14:9871. [PMID: 38684775 PMCID: PMC11058852 DOI: 10.1038/s41598-024-60662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
The Plasmodium is responsible for malaria which poses a major health threat, globally. This study is based on the estimation of the relative abundance of mosquitoes, and finding out the correlations of meteorological parameters (temperature, humidity and rainfall) with the abundance of mosquitoes. In addition, this study also focused on the use of nested PCR (species-specific nucleotide sequences of 18S rRNA genes) to explore the Plasmodium spp. in female Anopheles. In the current study, the percentage relative abundance of Culex mosquitoes was 57.65% and Anopheles 42.34% among the study areas. In addition, the highest number of mosquitoes was found in March in district Mandi Bahauddin at 21 °C (Tmax = 27, Tmin = 15) average temperature, 69% average relative humidity and 131 mm rainfall, and these climatic factors were found to affect the abundance of the mosquitoes, directly or indirectly. Molecular analysis showed that overall, 41.3% of the female Anopheles pools were positive for genus Plasmodium. Among species, the prevalence of Plasmodium (P.) vivax (78.1%) was significantly higher than P. falciparum (21.9%). This study will be helpful in the estimation of future risk of mosquito-borne diseases along with population dynamic of mosquitoes to enhance the effectiveness of vector surveillance and control programs.
Collapse
Affiliation(s)
- Haider Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan.
- Department of Pathobiology (Parasitology Section), KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-Campus, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Muhammad S Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hafiz M Rizwan
- Department of Pathobiology (Parasitology Section), KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-Campus, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Urfa B Tahir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shahid H Farooqi
- Department of Clinical Sciences (Medicine Section), KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-Campus, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Zeeshan Iqbal
- Department of Animal Sciences (Livestock Section), KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-Campus, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad A Malik
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kashaf Yaseen
- Institute of Microbiology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mahvish Maqbool
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Faiz A Raza
- Health Research Institute, National Institute of Health, Research Centre, , King Edward Medical University, Lahore, 54000, Pakistan
| | - Mohsin Raza
- Department of Basic Sciences (Physiology Section), KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-Campus, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
42
|
Willoughby JR, McKenzie BA, Ahn J, Steury TD, Lepzcyk CA, Zohdy S. Assessing and managing the risk of Aedes mosquito introductions via the global maritime trade network. PLoS Negl Trop Dis 2024; 18:e0012110. [PMID: 38598547 PMCID: PMC11034661 DOI: 10.1371/journal.pntd.0012110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The global shipping network (GSN) has been suggested as a pathway for the establishment and reintroduction of Aedes aegypti and Aedes albopictus primarily via the tire trade. We used historical maritime movement data in combination with an agent-based model to understand invasion risk in the United States Gulf Coast and how the risk of these invasions could be reduced. We found a strong correlation between the total number of cargo ship arrivals at each port and likelihood of arrival by both Ae. aegypti and Ae. albopictus. Additionally, in 2012, 99.2% of the arrivals into target ports had most recently visited ports likely occupied by both Ae. aegypti and Ae. albopictus, increasing risk of Aedes invasion. Our model results indicated that detection and removal of mosquitoes from containers when they are unloaded effectively reduced the probability of mosquito populations establishment even when the connectivity of ports increased. To reduce the risk of invasion and reintroduction of Ae. aegypti and Ae. albopictus, surveillance and control efforts should be employed when containers leave high risk locations and when they arrive in ports at high risk of establishment.
Collapse
Affiliation(s)
- Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Benjamin A. McKenzie
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
- Geospatial Research, Analysis, and Services Program, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, United States of America
| | - Jordan Ahn
- Geospatial Research, Analysis, and Services Program, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, United States of America
| | - Todd D. Steury
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Christopher A. Lepzcyk
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Sarah Zohdy
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
43
|
Li B, Wang D, Xie X, Chen X, Liang G, Xing D, Zhao T, Wu J, Zhou X, Li C. Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses 2024; 16:525. [PMID: 38675868 PMCID: PMC11054288 DOI: 10.3390/v16040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
E-20-monooxygenase (E20MO) is an enzymatic product of the shade (shd) locus (cytochrome p450, E20MO). Initially discovered in Drosophila, E20MO facilitates the conversion of ecdysone (E) into 20-hydroxyecdysone (20E) and is crucial for oogenesis. Prior research has implicated 20E in growth, development, and insecticide resistance. However, little attention has been given to the association between the E20MO gene and DENV2 infection. The transcriptome of Ae. aegypti cells (Aag2 cells) infected with DENV2 revealed the presence of the E20MO gene. The subsequent quantification of E20MO gene expression levels in Aag2 cells post-DENV infection was carried out. A CRISPR/Cas9 system was utilized to create an E20MO gene knockout cell line (KO), which was then subjected to DENV infection. Analyses of DENV2 copies in KO and wild-type (WT) cells were conducted at different days post-infection (dpi). Plasmids containing E20MO were constructed and transfected into KO cells, with pre- and post-transfection viral copy comparisons. Gene expression levels of E20MO increased after DENV infection. Subsequently, a successful generation of an E20MO gene knockout cell line and the verification of code-shifting mutations at both DNA and RNA levels were achieved. Furthermore, significantly elevated DENV2 RNA copies were observed in the mid-infection phase for the KO cell line. Viral RNA copies were lower in cells transfected with plasmids containing E20MO, compared to KO cells. Through knockout and plasmid complementation experiments in Aag2 cells, the role of E20MO in controlling DENV2 replication was demonstrated. These findings contribute to our understanding of the intricate biological interactions between mosquitoes and arboviruses.
Collapse
Affiliation(s)
- Bo Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoli Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guorui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
44
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
45
|
Silalahi CN, Yasin A, Chen ME, Ahmad I, Neoh KB. Behavioral responses and life history traits of Taiwanese and Indonesian populations of Aedes aegypti surviving deltamethrin-clothianidin treatment. Parasit Vectors 2024; 17:117. [PMID: 38454517 PMCID: PMC10921677 DOI: 10.1186/s13071-024-06189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) capitalizes on the natural behavior of mosquitoes because Aedes aegypti commonly seeks indoor resting sites after a blood meal. This behavior allows mosquitoes to be exposed to insecticide-treated surfaces and subsequently killed. Combinations of deltamethrin and clothianidin with different modes of action have shown promise in IRS, effectively targeting both susceptible and pyrethroid-resistant malaria vectors. However, the effects of this approach on Aedes mosquitoes remain unclear. The present study tested the effects of deltamethrin-clothianidin mixture treatment on behavioral responses and life history traits of Taiwanese and Indonesian populations of Ae. aegypti. METHODS We adopted an excito-repellent approach to explore the behavioral responses of pyrethroid-resistant Ae. aegypti populations from Indonesia and Taiwan to a deltamethrin-clothianidin mixture used in contact irritancy and non-contact repellency treatments. We further evaluated the life history traits of surviving mosquitoes (i.e., delayed mortality after 7-day post-treatment, longevity, fecundity, and egg hatching) and investigated the potential transgenerational hormetic effects of insecticide exposure (i.e., development rate and survival of immatures and adult mosquitos). RESULTS All tested field populations of Ae. aegypti displayed strong contact irritancy responses; the percentage of escape upon insecticide exposure ranged from 38.8% to 84.7%. However, repellent effects were limited, with the escape percentage ranging from 4.3% to 48.9%. We did not observe immediate knockdown or mortality after 24 h, and less than 15% of the mosquitoes exhibited delayed mortality after a 7-day exposure period. However, the carryover effects of insecticide exposure on the survival of immature mosquitoes resulted in approximately 25% higher immature mortality than that in the control. By contrast, we further documented stimulated survivor reproduction and accelerated transgenerational immature development resulting from the sublethal effects of the insecticide mixture. In particular, the number of eggs laid by treated (both treatments) female mosquitoes increased by at least 60% compared with that of eggs laid by control female mosquitoes. CONCLUSIONS IRS with deltamethrin-clothianidin effectively deters Aedes mosquitoes from entering residential areas and thereby reduces mosquito bites. However, the application rate (deltamethrin: 25 mg/m2; clothianidin: 200 mg/m2) may be insufficient to effectively kill Aedes mosquitoes. Insecticide response appears to vary across mosquito species; their behavioral and physiological responses to sublethal doses have crucial implications for mosquito control programs.
Collapse
Affiliation(s)
| | - Aqsa Yasin
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., 402, Taichung, Taiwan
| | - Mei-Er Chen
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., 402, Taichung, Taiwan
| | - Intan Ahmad
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., 402, Taichung, Taiwan.
| |
Collapse
|
46
|
Silva DMFD, Curcio JSD, Silva LDC, Sousa FBD, Anunciação CE, Furlaneto SMSI, Silva VPSM, Garcia-Zapata MTA, Silveira-Lacerda EDP. Detection of arboviruses in Aedes aegypti through transovarian analysis: A study in Goiânia, Goiás. Rev Soc Bras Med Trop 2024; 57:e004002023. [PMID: 38422343 PMCID: PMC10890825 DOI: 10.1590/0037-8682-0280-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/10/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Arboviral diseases are a group of infectious diseases caused by viruses transmitted by arthropods, mainly mosquitoes. These diseases, such as those caused by the dengue (DENV), Zika (ZIKV), chikungunya (CHIKV), and yellow fever (YFV) viruses, have a significant impact worldwide. In this context, entomological surveillance plays a crucial role in the control and prevention of arboviruses by providing essential information on the presence, distribution, and activity of vector mosquitoes. Based on entomological surveillance, transovarian transmission provides information regarding the maintenance and dissemination of arboviruses. The objective of this study was to detect these arboviruses in Goiânia, Goiás, and analyze the occurrence of transovarian transmission. METHODS Aedes aegypti eggs were collected from different regions of Goiânia and cultivated under controlled laboratory conditions until the emergence of adult mosquitoes. Adult females were grouped into pools containing their heads and thoraxes. These pools were subsequently evaluated using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS A total of 157 pools (N=1570) were analyzed, with two pools testing positive for CHIKV and one pool testing positive for ZIKV, indicating that the offspring resulting from transovarian transmission are potentially infectious. CONCLUSIONS In summary, the demonstration of the vertical transmission mechanisms of CHIKV and ZIKV in A. aegypti serves as an alert to health authorities, as these diseases are still underreported, and their primary urban vector has likely acquired this capacity, contributing to the dissemination of these infections.
Collapse
|
47
|
Gabiane G, Bohers C, Mousson L, Obadia T, Dinglasan RR, Vazeille M, Dauga C, Viglietta M, Yébakima A, Vega-Rúa A, Gutiérrez Bugallo G, Gélvez Ramírez RM, Sonor F, Etienne M, Duclovel-Pame N, Blateau A, Smith-Ravin J, De Lamballerie X, Failloux AB. Evaluating vector competence for Yellow fever in the Caribbean. Nat Commun 2024; 15:1236. [PMID: 38336944 PMCID: PMC10858021 DOI: 10.1038/s41467-024-45116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The mosquito-borne disease, Yellow fever (YF), has been largely controlled via mass delivery of an effective vaccine and mosquito control interventions. However, there are warning signs that YF is re-emerging in both Sub-Saharan Africa and South America. Imported from Africa in slave ships, YF was responsible for devastating outbreaks in the Caribbean. In Martinique, the last YF outbreak was reported in 1908 and the mosquito Aedes aegypti was incriminated as the main vector. We evaluated the vector competence of fifteen Ae. aegypti populations for five YFV genotypes (Bolivia, Ghana, Nigeria, Sudan, and Uganda). Here we show that mosquito populations from the Caribbean and the Americas were able to transmit the five YFV genotypes, with YFV strains for Uganda and Bolivia having higher transmission success. We also observed that Ae. aegypti populations from Martinique were more susceptible to YFV infection than other populations from neighboring Caribbean islands, as well as North and South America. Our vector competence data suggest that the threat of re-emergence of YF in Martinique and the subsequent spread to Caribbean nations and beyond is plausible.
Collapse
Affiliation(s)
- Gaelle Gabiane
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
- Université des Antilles, Ecole Doctorale 589, Schœlcher, Martinique, Marseille, France
| | - Chloé Bohers
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Marseille, France
- Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, Paris, France
| | - Rhoel R Dinglasan
- University of Florida, Department of Infectious Diseases & Immunology and Emerging Pathogens Institute, College of Veterinary Medicine, Gainesville, FL, USA
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Catherine Dauga
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Marine Viglietta
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | | | - Anubis Vega-Rúa
- Institut Pasteur de Guadeloupe, Laboratory of Vector Control Research, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, Guadeloupe, Marseille, France
| | - Gladys Gutiérrez Bugallo
- Institut Pasteur de Guadeloupe, Laboratory of Vector Control Research, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, Guadeloupe, Marseille, France
- Department of Vector Control, Center for Research, Diagnostic, and Reference, Institute of Tropical Medicine Pedro Kouri, Havana, Cuba
| | - Rosa Margarita Gélvez Ramírez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas, Fundación INFOVIDA, Bucaramanga, Colombia
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection, Marseille, France
| | - Fabrice Sonor
- Centre de Démoustication et de Recherches Entomologiques, Lutte antivectorielle, Martinique, Marseille, France
- Agence Régionale de Santé, Direction de la Santé Publique, Martinique, Marseille, France
| | - Manuel Etienne
- Centre de Démoustication et de Recherches Entomologiques, Lutte antivectorielle, Martinique, Marseille, France
| | - Nathalie Duclovel-Pame
- Agence Régionale de Santé, Direction de la Santé Publique, Martinique, Marseille, France
| | - Alain Blateau
- Agence Régionale de Santé, Direction de la Santé Publique, Martinique, Marseille, France
| | - Juliette Smith-Ravin
- Groupe de recherche Biospheres Université des Antilles, Campus de Schœlcher, Martinique, Marseille, France
| | - Xavier De Lamballerie
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection, Marseille, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France.
| |
Collapse
|
48
|
Zhu Y, Yu X, Jiang L, Wang Y, Shi X, Cheng G. Advances in research on arboviral acquisition from hosts to mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101141. [PMID: 37977238 DOI: 10.1016/j.cois.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Arboviral acquisition is a critical step in virus transmission. In this review, we present an overview of the interactions between viruses and host blood-derived factors, highlighting the diverse ways in which they interact. Moreover, the review outlines the impact of host blood on gut barriers during viral acquisition, emphasizing the crucial role of this physiological process in virus dissemination. Additionally, the review investigates the responses of symbioses to invading arboviruses, providing insights into the dynamic reactions of these vital relationships to the presence of arboviruses.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| | - Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
49
|
Costa-da-Silva AL, Cabal S, Lopez K, Boloix J, Rodriguez BG, Marrero KM, Bellantuono AJ, DeGennaro M. Female Aedes aegypti mosquitoes use communal cues to manage population density at breeding sites. Commun Biol 2024; 7:143. [PMID: 38297108 PMCID: PMC10830494 DOI: 10.1038/s42003-024-05830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Where a female mosquito lays her eggs creates the conditions for reproductive success. Here we identify a communal behavior among ovipositing female mosquitoes. When choosing equal breeding sites, gravid Aedes aegypti aggregate more often than expected. This aggregation occurs when water contact is restricted and does not require the presence of eggs. Instead, the aggregation is regulated by the number of females present at the breeding site. Using assays with both occupied and empty oviposition sites, we show that the Orco olfactory co-receptor and a carbon dioxide receptor, Gr3, detect the presence of mosquitoes. orco mutants aggregate more often in empty sites, suggesting attractive olfactory cues influence females to associate with one another. Gr3 mutant females do not prefer either site, suggesting that the CO2 receptor is necessary to evaluate mosquito population density at breeding sites. Further, raising CO2 levels is sufficient to cause wild-type mosquitoes to avoid empty oviposition sites. Our results demonstrate that female mosquitoes can regulate their own population density at breeding sites using attractive and repellent communal cues.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Silvia Cabal
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Kristian Lopez
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Jean Boloix
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Brian Garcia Rodriguez
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Kaylee M Marrero
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
50
|
Herath JMMK, De Silva WAPP, Weeraratne TC, Karunaratne SHPP. Breeding Habitat Preference of the Dengue Vector Mosquitoes Aedes aegypti and Aedes albopictus from Urban, Semiurban, and Rural Areas in Kurunegala District, Sri Lanka. J Trop Med 2024; 2024:4123543. [PMID: 38318417 PMCID: PMC10843871 DOI: 10.1155/2024/4123543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Elimination of vector mosquito larvae and their breeding environments is an effective strategy in dengue disease control. Present study examined larval density and water quality in breeding habitats and container preference of dengue vectors Ae. aegypti and Ae. albopictus. Larval surveys were conducted monthly in urban, semiurban, and rural sites in Kurunegala, Sri Lanka, from January 2019 to December 2021. Larval densities were recorded under the following three categories: type of container (16 types), type of material (6 types), and location (indoor/outdoor). Breeding preference ratios (BPRs) were calculated using Index of Available Containers and the Index of Contribution to Breeding Sites. Out of 19,234 wet containers examined, larval stages were found in 1,043 habitats. Ae. albopictus larvae were in all three areas whereas Ae. aegypti larvae were restricted to urban areas. Highest number of wet containers and highest positivity were reported from urban followed by semiurban. In general, discarded nondegradable items were the most frequent and mostly positive breeding sites. For Ae. aegypti, the most preferred breeding sites were gutters and concrete slabs. Ae. albopictus mostly preferred concrete slabs in urban areas and tyres in semiurban and rural areas. Material types such as rubber and concrete were mostly preferred by Ae. aegypti whereas ceramic was preferred by Ae. albopictus. Although plastic was the most available material type in all study sites, preference to plastic was low except for urban Ae. albopictus. Both species preferred urban indoor breeding habitats although outdoor breeding was preferred by Ae. albopictus in rural areas. Larval densities of Ae. aegypti and semiurban Ae. albopictus significantly correlated with the BPR of the container type and material type. Dengue vector larvae were found in a 6.7-9.4 pH range. Total dissolved solids and alkalinity positively correlated with preference. Information generated can be successfully used in waste management and public education for effective vector control.
Collapse
Affiliation(s)
- J. M. Manel K. Herath
- Entomological Surveillance Unit, Office of Regional Director of Health Services, Kurunegala, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Thilini C. Weeraratne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|