1
|
Tur EK, Kutlu HB, Sever N, Arı BC, Gözke E. Increased dementia risk in patients with Parkinson's disease attributed to metabolic syndrome. Neurol Sci 2025; 46:733-741. [PMID: 39470904 DOI: 10.1007/s10072-024-07803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION Metabolic syndrome (MetS) manifests resembling pathophysiological mechanisms with Parkinson's disease (PD). Current research on the overall population has emphasized MetS as a freestanding risk factor for cognition. This research aims to explore the impact of MetS on cognition in Parkinson's patients. METHOD We involved subjects identified as having early-stage PD patients. The MetS was diagnosed dependent on parameters overviewed in the National Cholesterol Education Program's Adult Treatment Panel III. The clinical severity and stages in patients with PD were dependent on the disease rating scales. The cognition was evaluated by the Turkısh version of the Montreal Cognitive Assessment Scale (MoCA-TR). The cases were categorized according to cognitive failure: mild cognitive impairment in PD (PD-MCI), and PD dementia (PDD). RESULTS Metabolic syndrome was present in 39.6% of the participants. 22.0% of patients were in the normal cognition, 29.1% in the PD-MCI group, and 48.9% in the PD-D group. The cognitive scores in patients with MetS is considerably lower than MetS negative group. A statistically notable inverse association was detected between fasting blood glucose levels and the visual-spatial/executive functions, naming, language, and orientation scores. The multivariate logistic regression analysis showed individuals with MetS were found to have an 11.308 times higher risk of PD-D (odds ratio [OR]: 11,3, 95% confidence interval [CI]: 1.61-79.2 ). CONCLUSION We discerned the occurrence of MetS in PD raises the possibility of advancing dementia. This suggests that considering MetS in this patient group could contribute to the effective management of dementia.
Collapse
Affiliation(s)
- Esma Kobak Tur
- Department of Neurology, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Hastane Sok. No: 1/8 Içerenköy - Ataşehir, Istanbul, 34752, Turkey.
| | - Helin Berfin Kutlu
- Department of Neurology, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Hastane Sok. No: 1/8 Içerenköy - Ataşehir, Istanbul, 34752, Turkey
| | - Nisa Sever
- Department of Neurology, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Hastane Sok. No: 1/8 Içerenköy - Ataşehir, Istanbul, 34752, Turkey
| | - Buse Cagla Arı
- Department of Neurology, Bahcesehir University Medical Faculty, Istanbul, Turkey
| | - Eren Gözke
- Department of Neurology, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Hastane Sok. No: 1/8 Içerenköy - Ataşehir, Istanbul, 34752, Turkey
| |
Collapse
|
2
|
Fu JT, Huang HT, Chen PC, Kuo YM, Chen PS, Tzeng SF. Exploring the reduction in aquaporin-4 and increased expression of ciliary neurotrophic factor with the frontal-striatal gliosis induced by chronic high-fat dietary stress. J Neurochem 2025; 169:e16236. [PMID: 39374168 DOI: 10.1111/jnc.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
High-fat diet (HFD)-induced obesity induces peripheral inflammation and hypothalamic pathogenesis linking the activation of astrocytes and microglia. Clinical evidence indicates a positive correlation between obesity and psychiatric disorders, such as depression. The connectivity of the frontal-striatal (FS) circuit, involving the caudate putamen (CPu) and anterior cingulate cortex (ACC) within the prefrontal cortex (PFC), is known for its role in stress-induced depression. Thus, there is a need for a thorough investigation into whether chronic obesity-induced gliosis, characterized by the activation of astrocytes and microglia, in these brain regions of individuals with chronic obesity. The results revealed increased S100β+ astrocytes and Iba1+ microglia in the CPu and ACC of male obese mice, along with immune cell accumulation in meningeal lymphatic drainage. Activated GFAP+ astrocytes and Iba1+ microglia were observed in the corpus callosum of obese mice. Gliosis in the CPu and ACC was linked to elevated cleaved caspase-3 levels, indicating potential neural cell death by chronic HFD feeding. There was a loss of myelin and adenomatous polyposis coli (APC)+ oligodendrocytes (OLs) in the corpus callosum, an area known to be linked with injury to the CPu. Additionally, reduced levels of aquaporin-4 (AQP4), a protein associated within the glymphatic systems, were noted in the CPu and ACC, while ciliary neurotrophic factor (CNTF) gene expression was upregulated in these brain regions of obese mice. The in vitro study revealed that high-dose CNTF causing a trend of reduced astrocytic AQP4 expression, but it significantly impaired OL maturation. This pathological evidence highlights that prolonged HFD consumption induces persistent FS gliosis and demyelination in the corpus callosum. An elevated level of CNTF appears to act as a potential regulator, leading to AQP4 downregulation in the FS areas and demyelination in the corpus callosum. This cascade of events might contribute to neural cell damage within these regions and disrupt the glymphatic flow.
Collapse
Affiliation(s)
- Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ting Huang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Dolatshahi M, Commean PK, Rahmani F, Xu Y, Liu J, Hosseinzadeh Kassani S, Naghashzadeh M, Lloyd L, Nguyen C, McBee Kemper A, Hantler N, Ly M, Yu G, Flores S, Ippolito JE, Song SK, Sirlin CB, Dai W, Mittendorfer B, Morris JC, Benzinger TLS, Raji CA. Relationships between abdominal adipose tissue and neuroinflammation with diffusion basis spectrum imaging in midlife obesity. Obesity (Silver Spring) 2025; 33:41-53. [PMID: 39517107 DOI: 10.1002/oby.24188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This study investigated how obesity, BMI ≥ 30 kg/m2, abdominal adiposity, and systemic inflammation relate to neuroinflammation using diffusion basis spectrum imaging. METHODS We analyzed data from 98 cognitively normal midlife participants (mean age: 49.4 [SD 6.2] years; 34 males [34.7%]; 56 with obesity [57.1%]). Participants underwent brain and abdominal magnetic resonance imaging (MRI), blood tests, and amyloid positron emission tomography (PET) imaging. Abdominal visceral and subcutaneous adipose tissue (VAT and SAT, respectively) was segmented, and Centiloids were calculated. Diffusion basis spectrum imaging parameter maps were created using an in-house script, and tract-based spatial statistics assessed white matter differences in high versus low BMI values, VAT, SAT, insulin resistance, systemic inflammation, and Centiloids, with age and sex as covariates. RESULTS Obesity, high VAT, and high SAT were linked to lower axial diffusivity, reduced fiber fraction, and increased restricted fraction in white matter. Obesity was additionally associated with higher hindered fraction and lower fractional anisotropy. Also, individuals with high C-reactive protein showed lower axial diffusivity. Higher restricted fraction correlated with continuous BMI and SAT particularly in male individuals, whereas VAT effects were similar in male and female individuals. CONCLUSIONS The findings suggest that, at midlife, obesity and abdominal fat are associated with reduced brain axonal density and increased inflammation, with visceral fat playing a significant role in both sexes.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul K Commean
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yifei Xu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Mahshid Naghashzadeh
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - LaKisha Lloyd
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Caitlyn Nguyen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abby McBee Kemper
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nancy Hantler
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maria Ly
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gary Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shaney Flores
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California, Los Angeles, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, New York, USA
| | - Bettina Mittendorfer
- Departments of Medicine and Nutrition & Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
4
|
Gosalia J, Spicuzza JMD, Bowlus CK, Pawelczyk JA, Proctor DN. Linking metabolic syndrome, cerebral small vessel disease, and cognitive health: insights from a subclinical population study using TriNetX. GeroScience 2024:10.1007/s11357-024-01456-x. [PMID: 39708217 DOI: 10.1007/s11357-024-01456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
Metabolic syndrome (MetS) has been linked to accelerated cognitive decline and Alzheimer's disease and related dementias (ADRDs) via cerebral small vessel disease (CSVD); however, this relation in MetS without overt cardiometabolic disease comorbidities is unknown and may represent a population amenable to preventative strategies. Our study aimed to determine risk profiles for neurocognitive decline and ADRDs in early-stage MetS with evidence of CSVD using the TriNetX electronic health records (EHR) research network. Patients aged 50 to 80 years old meeting MetS criteria were identified utilizing TriNetX data from 76 healthcare organizations. Propensity score matching controlled for demographic and confounding factors. Cohorts included MetS-only, non-MetS, and a MetS subset with evidence of CSVD (MetS-CSVD) created by clustering relevant ICD-codes for diagnoses, imaging, and lab work. Contingency analyses determined odds of developing neurocognitive decline, ADRDs, and CSVD in MetS vs non-MetS and MetS-CSVD vs. MetS-only, using odd ratios with 95% confidence intervals (p-value < 0.05). After propensity score matching, there were 57,347 men and 52,259 women in each of the MetS and non-MetS cohorts and 2,810 men and 2,862 women in each of the MetS-CSVD and MetS-only cohorts. Compared to non-MetS, the MetS cohort exhibited higher odds of developing neurocognitive decline (men: RR = 1.82, p < 0.001; women: RR = 1.34, p = 0.015) and CSVD (men: RR = 2.83, p < 0.001; women: RR = 2.14, p < 0.001), but only women exhibited significantly higher odds of developing ADRDs (men: RR = 1.13, p = 0.38; women: RR = 1.52, p < 0.001). Compared to MetS-only, the MetS-CSVD showed elevated odds in developing neurocognitive decline (men: RR = 1.81, p = 0.040; women: RR = 1.87, p = 0.018) and ADRDs (men: RR = 2.39, p = 0.009; women: RR = 1.65, p = 0.041). A large, predominantly US, sample of subclinical MetS demonstrated heightened odds for developing neurocognitive decline and ADRDs, with even higher odds when evidence of CSVD was also present. TriNetX facilitated a robust exploration of these associations, and our findings warrant further investigation of interventions that target this subclinical at-risk population.
Collapse
Affiliation(s)
- Jigar Gosalia
- Department of Kinesiology, The Pennsylvania State University, University Park, USA.
| | - Jocelyn M Delgado Spicuzza
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Christine K Bowlus
- Department of Kinesiology, The Pennsylvania State University, University Park, USA
| | - James A Pawelczyk
- Department of Kinesiology, The Pennsylvania State University, University Park, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, 16801, USA
| | - David N Proctor
- Department of Kinesiology, The Pennsylvania State University, University Park, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, 16801, USA
| |
Collapse
|
5
|
Zhou M, Zhou Y, Jing J, Wang M, Jin A, Cai X, Meng X, Liu T, Wang Y, Wang Y, Pan Y. Insulin resistance and white matter microstructural abnormalities in nondiabetic adult: A population-based study. Int J Stroke 2024; 19:1162-1171. [PMID: 38916129 DOI: 10.1177/17474930241266796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Insulin resistance (IR) is of growing concern yet its association with white matter integrity remains controversial. We aimed to investigate the association between IR and white matter integrity in nondiabetic adults. METHODS This cross-sectional analysis was conducted based on the PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study. A total of 1709 nondiabetic community-dwelling adults with available diffusion-weighted imaging based on brain magnetic resonance imaging and completed oral glucose tolerance test were included. IR was measured noninvasively by insulin sensitivity indices (ISI), including ISIcomposite and ISI0,120, as well as homeostasis model assessment of insulin resistance (HOMA-IR). White matter microstructure abnormalities were identified by diffusion-weighted imaging along with tract-based spatial statistical analysis to compare diffusion metrics between groups. The multivariable linear regression models were applied to measure the association between white matter microstructure abnormalities and IR. RESULTS A total of 1709 nondiabetic individuals with a mean age of 60.8 ± 6.4 years and 54.1% female were included. We found that IR was associated with a significant increase in mean diffusivity, axial diffusivity, and radial diffusivity extensively in cerebral white matter in regions such as the anterior corona radiata, superior corona radiata, anterior limb of internal capsule, external capsule, and body of corpus callosum. The pattern of associations was more marked for ISIcomposite and ISI0,120. However, the effect of IR on white matter integrity was attenuated after, in addition, adjustment for history of hypertension and cardiovascular disease and antihypertensive medication use. CONCLUSION Our findings indicate a significant association between IR and white matter microstructural abnormalities in nondiabetic middle-aged community residents, while these associations were greatly influenced by the history of hypertension and cardiovascular disease, and antihypertensive medication use. Further investigation is needed to clarify the role of IR in white matter integrity, whereas prophylactic strategies of maintaining a low IR status may ameliorate disturbances in white matter integrity. DATA ACCESSIBILITY STATEMENT The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yijun Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xueli Cai
- Department of Neurology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Zuo Q, Song L, Gao X, Cen M, Fu X, Qin S, Wu J. Associations of metabolic syndrome with cognitive function and dementia risk: Evidence from the UK Biobank cohort. Diabetes Obes Metab 2024; 26:6023-6033. [PMID: 39360436 DOI: 10.1111/dom.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
AIM To investigate the associations of metabolic syndrome (MetS) with cognitive function, dementia and its subtypes. METHODS Based on the participants recruited by UK Biobank, this study aims to investigate the associations of MetS with cognitive function, dementia and its subtypes. Generalized estimating equations, Cox proportional risk models, and multiple linear regression models were respectively used to assess associations between MetS and dementia-related outcomes. RESULTS Among the 363,231 participants, 95,713 had MetS at baseline. The results showed that MetS was significantly associated with cognitive function related to fluid intelligence and prospective memory at follow-up. Among participants aged ≥60 years, MetS was correlated with elevated risk of all-cause dementia, particularly vascular dementia (VaD) [hazard ratio 1.115 (95% confidence interval: 1.047, 1.187), hazard ratio 1.393 (95% confidence interval: 1.233, 1.575), respectively]. With increasing MetS components, the risk of all-cause dementia and VaD tended to be elevated. MetS has also been associated with dementia-related structural changes in the brain, including alterations in overall brain volume, white matter volume, grey matter volume and white matter integrity. CONCLUSION MetS was associated with poorer cognitive performance and might increase the risk of all-cause dementia as well as VaD, but the effect on Alzheimer's disease was not significant. Holistic control of the MetS may benefit the prevention and control of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Qianlin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manqiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xihang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shifan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Gong Z, Bilgel M, An Y, Bergeron CM, Bergeron J, Zukley L, Ferrucci L, Resnick SM, Bouhrara M. Cerebral white matter myelination is associated with longitudinal changes in processing speed across the adult lifespan. Brain Commun 2024; 6:fcae412. [PMID: 39697833 PMCID: PMC11653079 DOI: 10.1093/braincomms/fcae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Myelin's role in processing speed is pivotal, as it facilitates efficient neural conduction. Its decline could significantly affect cognitive efficiency during ageing. In this work, myelin content was quantified using our advanced MRI method of myelin water fraction mapping. We examined the relationship between myelin water fraction at the time of MRI and retrospective longitudinal change in processing speed among 121 cognitively unimpaired participants, aged 22-94 years, from the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing (a mean follow-up duration of 4.3 ± 6.3 years) using linear mixed-effects models, adjusting for demographics. We found that higher myelin water fraction values correlated with longitudinally better-maintained processing speed, with particularly significant associations in several white matter regions. Detailed voxel-wise analysis provided further insight into the specific white matter tracts involved. This research underscores the essential role of myelin in preserving processing speed and highlights its potential as a sensitive biomarker for interventions targeting age-related cognitive decline, thereby offering a foundation for preventative strategies in neurological health.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Murat Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Christopher M Bergeron
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jan Bergeron
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Linda Zukley
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Cardamone A, Coppoletta AR, Macrì R, Nucera S, Ruga S, Scarano F, Mollace R, Mollace A, Maurotti S, Micotti E, Carresi C, Musolino V, Gliozzi M, Mollace V. Targeting leptin/CCL3-CCL4 axes in NAFLD/MAFLD: A novel role for BPF in counteracting thalamic inflammation and white matter degeneration. Pharmacol Res 2024; 209:107417. [PMID: 39276957 DOI: 10.1016/j.phrs.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), redefined as Metabolic Associated Fatty Liver Disease (MAFLD), is characterized by an extensive multi-organ involvement. MAFLD-induced systemic inflammatory status and peripheral metabolic alteration lead to an impairment of cerebral function. Herein, we investigated a panel of leptin-related inflammatory mediators as predictive biomarkers of neuroinflammation and evaluated the possible role of Bergamot Polyphenolic Fraction (BPF) in counteracting this MAFLD-induced inflammatory cascade. Male DIAMOND mice were randomly assigned to fed chow diet and tap water or high fat diet with sugar water. Starting from week 16, mice were further divided and treated with vehicle or BPF (50 mg/kg/day), via gavage, until week 30. Magnetic resonance imaging was performed at the baseline and at week 30. Correlation and regression analyses were performed to discriminate the altered lipid metabolism in the onset of cerebral alterations. Steatohepatitis led to an increase in leptin levels, resulting in a higher expression of proinflammatory mediators. The inflammatory biomarkers involved in leptin/CCL3-CCL4 axes were correlated with the altered thalamus energetic metabolism and the white matter degeneration. BPF administration restored leptin level, improved glucose and lipid metabolism, and reduced chronic low-grade inflammatory mediators, resulting in a prevention of white matter degeneration, alterations of thalamus metabolism and brain atrophy. The highlighted positive effect of BPF, mediated by the downregulation of the inflammatory biomarkers involved in leptin/CCL3-CCL4 axes, affording novel elements to candidate BPF for the development of a therapeutic strategy aimed at counteracting MAFLD-related brain inflammation.
Collapse
Affiliation(s)
- Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Annachiara Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy.
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
9
|
Cakir H, Sunar M, Aydın S, Cakir OK, Gursoy E. Structural Brain Alterations in Metabolic Syndrome: A Comprehensive MRI Volumetric Analysis of Subcortical and Associated Structures. Metab Syndr Relat Disord 2024; 22:583-590. [PMID: 38885149 DOI: 10.1089/met.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Objective: This study aims to elucidate the comprehensive effects of metabolic syndrome (MetS) on the structural integrity of subcortical brain regions and associated structures through high-resolution magnetic resonance imaging (MRI) volumetric analysis, thereby contributing to a deeper understanding of the neuroanatomical dimensions of MetS and its potential implications for cognitive functions and overall brain health. Methods: A cross-sectional design was implemented, involving 25 individuals diagnosed with MetS for at least one year and a healthy control group of 15 individuals at a tertiary hospital's family medicine clinic in Eastern Turkey. Participants underwent a high-resolution MRI scan using a 1.5T Siemens Aera scanner. The MRICloud platform was employed for comprehensive segmentation and quantitative analysis of various brain structures. Results: The study revealed significant volumetric reductions in all measured subcortical brain regions among individuals with MetS compared to the control group (all P < 0.05). Notable differences were observed in key structures such as the substantia nigra, corpus callosum, and thalamus. In subcortical structures, the largest volumetric differences were noted in the basal ganglia L (1322.4 mm³), while the most significant percentage differences were seen in the substantia nigra R (25.24%) and caudate nucleus L (21.02%). Conclusion: The findings from this study underscore the significant neuroanatomical changes associated with MetS, manifesting as volumetric reductions in critical subcortical brain areas. These alterations underscore the necessity for further research into the comprehensive influence of MetS on cognitive processes and the potential for early therapeutic interventions.
Collapse
Affiliation(s)
- Hatice Cakir
- Department of Anatomy, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Mukadder Sunar
- Department of Anatomy, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Sonay Aydın
- Department Of Radiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Osman Kagan Cakir
- Department of Family Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ersan Gursoy
- Department of Family Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| |
Collapse
|
10
|
Van Etten EJ, Knoff AA, Colaizzi TA, Knight AR, Milberg WP, Fortier CB, Leritz EC, Salat DH. Association between metabolic syndrome and white matter integrity in young and mid-age post-9/11 adult Veterans. Cereb Cortex 2024; 34:bhae340. [PMID: 39152671 DOI: 10.1093/cercor/bhae340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Metabolic syndrome has been associated with reduced brain white matter integrity in older individuals. However, less is known about how metabolic syndrome might impact white matter integrity in younger populations. This study examined metabolic syndrome-related global and regional white matter integrity differences in a sample of 537 post-9/11 Veterans. Metabolic syndrome was defined as ≥3 factors of: increased waist circumference, hypertriglyceridemia, low high-density lipoprotein cholesterol, hypertension, and high fasting glucose. T1 and diffusion weighted 3 T MRI scans were processed using the FreeSurfer image analysis suite and FSL Diffusion Toolbox. Atlas-based regions of interest were determined from a combination of the Johns Hopkins University atlas and a Tract-Based Spatial Statistics-based FreeSurfer WMPARC white matter skeleton atlas. Analyses revealed individuals with metabolic syndrome (n = 132) had significantly lower global fractional anisotropy than those without metabolic syndrome (n = 405), and lower high-density lipoprotein cholesterol levels was the only metabolic syndrome factor significantly related to lower global fractional anisotropy levels. Lobe-specific analyses revealed individuals with metabolic syndrome had decreased fractional anisotropy in frontal white matter regions compared with those without metabolic syndrome. These findings indicate metabolic syndrome is prevalent in this sample of younger Veterans and is related to reduced frontal white matter integrity. Early intervention for metabolic syndrome may help alleviate adverse metabolic syndrome-related brain and cognitive effects with age.
Collapse
Affiliation(s)
- Emily J Van Etten
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA 02130, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, United States
| | - Aubrey A Knoff
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA 02130, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, United States
| | - Tristan A Colaizzi
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA 02130, United States
| | - Arielle R Knight
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA 02130, United States
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA 02130, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, United States
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA 02130, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, United States
| | - Elizabeth C Leritz
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, United States
- VA Boston Healthcare System, Boston, MA 02130, United States
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA 02130, United States
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA 02130, United States
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA 02130, United States
- Anthinoula A. Martinos Center for Biomedical Imaging, Boston, MA 02129, United States
| |
Collapse
|
11
|
Piedrahíta Palacio N, García Valencia J, Vargas Upegüi CD, López Jaramillo C. Pathophysiological relationships between cognitive deficit in bipolar affective disorder and metabolic syndrome. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2024; 53:376-384. [PMID: 39472221 DOI: 10.1016/j.rcpeng.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/04/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2024]
Abstract
INTRODUCTION AND OBJECTIVES Bipolar disorder (BD) has been related to various cognitive dysfunctions as well as to a high prevalence of metabolic syndrome (MS), which seems to influence the cognitive performance of patients with BD. Therefore, different hypotheses have been generated to try to explain the pathophysiological relationship between cognitive deficit in BD and MS. The objective was to review the current literature regarding the possible pathophysiological explanation of the relationship between BD and MS and its effect on cognitive performance of patients with BD. METHODS A bibliographic search was carried out using MEDLINE, ClinicalKey, EMBASE, Literatura Latino-Americana y del Caribe en Ciencias de la Salud [Latin American and Caribbean Literature in Health Sciences] (LILACS), APA PsycNet, Scopus and Scielo databases, and the Pan-American Medical Electronic Library; using the following search terms: "bipolar disorder"[MeSH Terms] OR "bipolar disorder"[All Fields] OR "mood disorders"[All Fields] AND "cognitive deficit"[MeSH Terms] OR "cognitive deficit"[All Fields] OR "cognitive dysfunction"[All Fields] OR "cognitive impairment"[All Fields] OR "cognitive decline"[All Fields] AND "metabolic syndrome" [MeSH Terms] OR "metabolic abnormalities"[All Fields] OR "metabolic effects"[All Fields] OR "obesity" [All Fields] OR "abdominal obesity" [All Fields] OR "overweight" [All Fields] OR "diabetes" [All Fields] OR "hypertension" [All Fields] AND "antipsychotics" [MeSH Terms] OR "antipsychotics"[All Fields] AND "antidepressants" [MeSH Terms] OR "antidepressants"[All Fields] AND "mood stabilizers" [MeSH Terms] OR "mood stabilizers"[All Fields]. Filters: free full text, full text, from 2001 to 2022. A total of 80 articles in Spanish and English, of any type of design, were selected. Selection and reading were carried out by all the authors. RESULTS AND CONCLUSIONS The various pathophysiological hypotheses proposed, inflammatory, endocrine, drug, environmental and social, suggest that a series of changes at the macro and microcellular level are correlated in patients with BD and MS with a negative effect on cognition of patients both globally and in specific domains, mainly executive function, memory, attention, and perceptual motor skills. Research processes should be continued to explore the various hypotheses that support the relationship between BD, MS and cognition.
Collapse
Affiliation(s)
- Natalia Piedrahíta Palacio
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Jenny García Valencia
- Grupo Académico en Epidemiología Clínica (GRAEPIC), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Cristian David Vargas Upegüi
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carlos López Jaramillo
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
12
|
Li Z, Jiang YY, Long C, Peng X, Tao J, Pu Y, Yue R. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front Endocrinol (Lausanne) 2024; 15:1393253. [PMID: 38800473 PMCID: PMC11116704 DOI: 10.3389/fendo.2024.1393253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-yi Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueheng Pu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Beck D, de Lange AG, Gurholt TP, Voldsbekk I, Maximov II, Subramaniapillai S, Schindler L, Hindley G, Leonardsen EH, Rahman Z, van der Meer D, Korbmacher M, Linge J, Leinhard OD, Kalleberg KT, Engvig A, Sønderby I, Andreassen OA, Westlye LT. Dissecting unique and common variance across body and brain health indicators using age prediction. Hum Brain Mapp 2024; 45:e26685. [PMID: 38647042 PMCID: PMC11034003 DOI: 10.1002/hbm.26685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Ageing is a heterogeneous multisystem process involving different rates of decline in physiological integrity across biological systems. The current study dissects the unique and common variance across body and brain health indicators and parses inter-individual heterogeneity in the multisystem ageing process. Using machine-learning regression models on the UK Biobank data set (N = 32,593, age range 44.6-82.3, mean age 64.1 years), we first estimated tissue-specific brain age for white and gray matter based on diffusion and T1-weighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits, including cardiometabolic, anthropometric, and body composition measures of adipose and muscle tissue from bioimpedance and body MRI, were combined to predict 'body age'. The results showed that the body age model demonstrated comparable age prediction accuracy to models trained solely on brain MRI data. The correlation between body age and brain age predictions was 0.62 for the T1 and 0.64 for the diffusion-based model, indicating a degree of unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried out to quantify the associations between health traits and predicted age discrepancies showed that higher systolic blood pressure and higher muscle-fat infiltration were related to older-appearing body age compared to brain age. Conversely, higher hand-grip strength and muscle volume were related to a younger-appearing body age. Our findings corroborate the common notion of a close connection between somatic and brain health. However, they also suggest that health traits may differentially influence age predictions beyond what is captured by the brain imaging data, potentially contributing to heterogeneous ageing rates across biological systems and individuals.
Collapse
Affiliation(s)
- Dani Beck
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Mental Health and Substance AbuseDiakonhjemmet HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Ann‐Marie G. de Lange
- Department of PsychologyUniversity of OsloOsloNorway
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Tiril P. Gurholt
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Irene Voldsbekk
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Ivan I. Maximov
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Sivaniya Subramaniapillai
- Department of PsychologyUniversity of OsloOsloNorway
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
| | - Louise Schindler
- Department of PsychologyUniversity of OsloOsloNorway
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
| | - Guy Hindley
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Esten H. Leonardsen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Zillur Rahman
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Max Korbmacher
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Jennifer Linge
- AMRA Medical ABLinköpingSweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring SciencesLinköping UniversityLinköpingSweden
| | - Olof D. Leinhard
- AMRA Medical ABLinköpingSweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring SciencesLinköping UniversityLinköpingSweden
| | | | - Andreas Engvig
- Department of Endocrinology, Obesity and Preventive Medicine, Section of Preventive CardiologyOslo University HospitalOsloNorway
| | - Ida Sønderby
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of Oslo
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of Oslo
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of Oslo
| |
Collapse
|
14
|
Cao HL, Wei W, Meng YJ, Deng RH, Li XJ, Deng W, Liu YS, Tang Z, Du XD, Greenshaw AJ, Li ML, Li T, Guo WJ. Interactions between overweight/obesity and alcohol dependence impact human brain white matter microstructure: evidence from DTI. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01760-9. [PMID: 38403735 DOI: 10.1007/s00406-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024]
Abstract
There is inconsistent evidence for an association of obesity with white matter microstructural alterations. Such inconsistent findings may be related to the cumulative effects of obesity and alcohol dependence. This study aimed to investigate the possible interactions between alcohol dependence and overweight/obesity on white matter microstructure in the human brain. A total of 60 inpatients with alcohol dependence during early abstinence (44 normal weight and 16 overweight/obese) and 65 controls (42 normal weight and 23 overweight/obese) were included. The diffusion tensor imaging (DTI) measures [fractional anisotropy (FA) and radial diffusivity (RD)] of the white matter microstructure were compared between groups. We observed significant interactive effects between alcohol dependence and overweight/obesity on DTI measures in several tracts. The DTI measures were not significantly different between the overweight/obese and normal-weight groups (although widespread trends of increased FA and decreased RD were observed) among controls. However, among the alcohol-dependent patients, the overweight/obese group had widespread reductions in FA and widespread increases in RD, most of which significantly differed from the normal-weight group; among those with overweight/obesity, the alcohol-dependent group had widespread reductions in FA and widespread increases in RD, most of which were significantly different from the control group. This study found significant interactive effects between overweight/obesity and alcohol dependence on white matter microstructure, indicating that these two controllable factors may synergistically impact white matter microstructure and disrupt structural connectivity in the human brain.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Ya-Jing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ren-Hao Deng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhen Tang
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang-Dong Du
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Wan-Jun Guo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
| |
Collapse
|
15
|
Burzynska AZ, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Mendez Colmenares A, Kramer AF, Li K, Lee J, Lee P, Thomas ML. Correlates of axonal content in healthy adult span: Age, sex, myelin, and metabolic health. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100203. [PMID: 38292016 PMCID: PMC10827486 DOI: 10.1016/j.cccb.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
As the emerging treatments that target grey matter pathology in Alzheimer's Disease have limited effectiveness, there is a critical need to identify new neural targets for treatments. White matter's (WM) metabolic vulnerability makes it a promising candidate for new interventions. This study examined the age and sex differences in estimates of axonal content, as well the associations of with highly prevalent modifiable health risk factors such as metabolic syndrome and adiposity. We estimated intra-axonal volume fraction (ICVF) using the Neurite Orientation Dispersion and Density Imaging (NODDI) in a sample of 89 cognitively and neurologically healthy adults (20-79 years). We showed that ICVF correlated positively with age and estimates of myelin content. The ICVF was also lower in women than men, across all ages, which difference was accounted for by intracranial volume. Finally, we found no association of metabolic risk or adiposity scores with the current estimates of ICVF. In addition, the previously observed adiposity-myelin associations (Burzynska et al., 2023) were independent of ICVF. Although our findings confirm the vulnerability of axons to aging, they suggest that metabolic dysfunction may selectively affect myelin content, at least in cognitively and neurologically healthy adults with low metabolic risk, and when using the specific MRI techniques. Future studies need to revisit our findings using larger samples and different MRI approaches, and identify modifiable factors that accelerate axonal deterioration as well as mechanisms linking peripheral metabolism with the health of myelin.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - David B. Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, IL, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Jang YJ, Choi MG, Yoo BJ, Lee KJ, Jung WB, Kim SG, Park SA. Interaction Between a High-Fat Diet and Tau Pathology in Mice: Implications for Alzheimer's Disease. J Alzheimers Dis 2024; 97:485-506. [PMID: 38108353 DOI: 10.3233/jad-230927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Obesity is a modifiable risk factor for Alzheimer's disease (AD). However, its relation with tau pathology (i.e., aberrant tau protein behavior in tauopathies such as AD) has been inconclusive. OBJECTIVE This study investigated the interaction between a high-fat diet (HFD) and tau pathology in adult male mice. METHODS Transgenic mice overexpressing human P301S Tau (those with the pathology) and wild-type (WT) littermates were subjected to behavioral tests, functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and western blotting analysis to investigate the effects of prolonged HFD versus regular diet during adulthood. RESULTS HFD increased body weight in both WT and P301S mice but had minimal effect on blood glucose levels. The brain response to HFD was tau genotype-specific. WT mice exhibited decreased recognition memory and enhanced network connectivity in fMRI, while P301S mice exhibited white matter tract disorganization in DTI as the sole significant finding. The reduction of insulin receptor β, insulin downstream signaling, neuronal nuclear protein, CD68-positive phagocytic activity, and myelin basic protein level were confined to the cortex of WT mice. In contrast to P301S mice, WT mice showed significant changes in the tau protein and its phosphorylation levels along with increased soluble neurofilament light levels in the hippocampus. CONCLUSIONS HFD-induced brain dysfunction and pathological changes were blunted in mice with the pathology and more profound in healthy mice. Our findings highlight the need to consider this interaction between obesity and tau pathology when tailoring treatment strategies for AD and other tauopathies.
Collapse
Affiliation(s)
- Yu Jung Jang
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Min Gyu Choi
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Byung Jae Yoo
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Jae Lee
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
17
|
Petersen M, Hoffstaedter F, Nägele FL, Mayer C, Schell M, Rimmele DL, Zyriax BC, Zeller T, Kühn S, Gallinat J, Fiehler J, Twerenbold R, Omidvarnia A, Patil KR, Eickhoff SB, Thomalla G, Cheng B. A latent clinical-anatomical dimension relating metabolic syndrome to brain structure and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529531. [PMID: 36865285 PMCID: PMC9980040 DOI: 10.1101/2023.02.22.529531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The link between metabolic syndrome (MetS) and neurodegenerative as well cerebrovascular conditions holds substantial implications for brain health in at-risk populations. This study elucidates the complex relationship between MetS and brain health by conducting a comprehensive examination of cardiometabolic risk factors, cortical morphology, and cognitive function in 40,087 individuals. Multivariate, data-driven statistics identified a latent dimension linking more severe MetS to widespread brain morphological abnormalities, accounting for up to 71% of shared variance in the data. This dimension was replicable across sub-samples. In a mediation analysis we could demonstrate that MetS-related brain morphological abnormalities mediated the link between MetS severity and cognitive performance in multiple domains. Employing imaging transcriptomics and connectomics, our results also suggest that MetS-related morphological abnormalities are linked to the regional cellular composition and macroscopic brain network organization. By leveraging extensive, multi-domain data combined with a dimensional stratification approach, our analysis provides profound insights into the association of MetS and brain health. These findings can inform effective therapeutic and risk mitigation strategies aimed at maintaining brain integrity.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Felix Hoffstaedter
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Felix L. Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - D. Leander Rimmele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Birgit-Christiane Zyriax
- Midwifery Science-Health Services Research and Prevention, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Martinistraße 52, 20251 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Raphael Twerenbold
- Department of Cardiology, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Martinistraße 52, 20251 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Amir Omidvarnia
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Kaustubh R. Patil
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Simon B. Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
18
|
Koutsonida M, Koskeridis F, Markozannes G, Kanellopoulou A, Mousas A, Ntotsikas E, Ioannidis P, Aretouli E, Tsilidis KK. Metabolic syndrome and cognitive deficits in the Greek cohort of Epirus Health Study. Neurol Sci 2023; 44:3523-3533. [PMID: 37162663 PMCID: PMC10495510 DOI: 10.1007/s10072-023-06835-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Metabolic syndrome is considered an important risk factor for cognitive decline and dementia. However, the evidence in middle-aged individuals is still conflicting. The aim of the study was to explore the association between metabolic syndrome and its individual components with cognitive function and to investigate possible interaction between sex, age and genetic predisposition for metabolic syndrome and Alzheimer's disease in a middle-aged Greek cohort. METHODS A total of 2,077 healthy adults (mean age: 46.7 years) were included in the primary cross-sectional analysis and 305 of them in secondary prospective analyses. Metabolic syndrome was defined by the revised National Cholesterol Education-Adult Treatment Panel III and the International Diabetes Federation criteria. Cognitive function was measured primarily with the Trail Making, Verbal fluency and Logical Memory test, and in secondary prospective analyses with online versions of Posner cueing task, an emotional recognition task, Corsi block-tapping task and Stroop task. RESULTS Multivariable linear regressions showed an association of metabolic syndrome with lower performance in attention (β=1.62 seconds, 95% CI=0.20, 3.04) and memory (β=-0.62 words, 95% CI=-1.19, -0.05) that could be driven by associations with elevated fasting glucose and abdominal obesity. Similar associations were observed in the secondary prospective analyses. CONCLUSION In summary, metabolic syndrome was associated with cognitive deficits in domains related with the cognitive profile of vascular cognitive impairment.
Collapse
Affiliation(s)
- Myrto Koutsonida
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Fotios Koskeridis
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Afroditi Kanellopoulou
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Abdou Mousas
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Evangelos Ntotsikas
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Panagiotis Ioannidis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Aretouli
- Department of Psychology, School of Social Sciences, University of Ioannina, Ioannina, Greece.
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
19
|
Wang Y, Mou YK, Wang HR, Song XY, Wei SZ, Ren C, Song XC. Brain response in asthma: the role of "lung-brain" axis mediated by neuroimmune crosstalk. Front Immunol 2023; 14:1240248. [PMID: 37691955 PMCID: PMC10484342 DOI: 10.3389/fimmu.2023.1240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
In addition to typical respiratory symptoms, patients with asthma are frequently accompanied by cognitive decline, mood disorders (anxiety and depression), sleep disorders, olfactory disorders, and other brain response manifestations, all of which worsen asthma symptoms, form a vicious cycle, and exacerbate the burden on families and society. Therefore, studying the mechanism of neurological symptoms in patients with asthma is necessary to identify the appropriate preventative and therapeutic measures. In order to provide a comprehensive reference for related research, we compiled the pertinent literature, systematically summarized the latest research progress of asthma and its brain response, and attempted to reveal the possible "lung-brain" crosstalk mechanism and treatment methods at the onset of asthma, which will promote more related research to provide asthmatic patients with neurological symptoms new hope.
Collapse
Affiliation(s)
- Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
20
|
Burzynska AZ, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Colmenares AM, Hiner G, Kramer AF, Li K, Lee J, Lee P, Oh SH, Umland S, Thomas ML. Metabolic syndrome and adiposity: Risk factors for decreased myelin in cognitively healthy adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100180. [PMID: 38162292 PMCID: PMC10757180 DOI: 10.1016/j.cccb.2023.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 01/03/2024]
Abstract
Metabolic syndrome (MetS) is a cluster of conditions that affects ∼25% of the global population, including excess adiposity, hyperglycemia, dyslipidemia, and elevated blood pressure. MetS is one of major risk factors not only for chronic diseases, but also for dementia and cognitive dysfunction, although the underlying mechanisms remain poorly understood. White matter is of particular interest in the context of MetS due to the metabolic vulnerability of myelin maintenance, and the accumulating evidence for the importance of the white matter in the pathophysiology of dementia. Therefore, we investigated the associations of MetS risk score and adiposity (combined body mass index and waist circumference) with myelin water fraction measured with myelin water imaging. In 90 cognitively and neurologically healthy adults (20-79 years), we found that both high MetS risk score and adiposity were correlated with lower myelin water fraction in late-myelinating prefrontal and associative fibers, controlling for age, sex, race, ethnicity, education and income. Our findings call for randomized clinical trials to establish causality between MetS, adiposity, and myelin content, and to explore the potential of weight loss and visceral adiposity reduction as means to support maintenance of myelin integrity throughout adulthood, which could open new avenues for prevention or treatment of cognitive decline and dementia.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - David B Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Grace Hiner
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, IL, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| | - Samantha Umland
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Michael L Thomas
- Michael Thomas, Department of Psychology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Kobiec T, Mardaraz C, Toro-Urrego N, Kölliker-Frers R, Capani F, Otero-Losada M. Neuroprotection in metabolic syndrome by environmental enrichment. A lifespan perspective. Front Neurosci 2023; 17:1214468. [PMID: 37638319 PMCID: PMC10447983 DOI: 10.3389/fnins.2023.1214468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Metabolic syndrome (MetS) is defined by the concurrence of different metabolic conditions: obesity, hypertension, dyslipidemia, and hyperglycemia. Its incidence has been increasingly rising over the past decades and has become a global health problem. MetS has deleterious consequences on the central nervous system (CNS) and neurological development. MetS can last several years or be lifelong, affecting the CNS in different ways and treatments can help manage condition, though there is no known cure. The early childhood years are extremely important in neurodevelopment, which extends beyond, encompassing a lifetime. Neuroplastic changes take place all life through - childhood, adolescence, adulthood, and old age - are highly sensitive to environmental input. Environmental factors have an important role in the etiopathogenesis and treatment of MetS, so environmental enrichment (EE) stands as a promising non-invasive therapeutic approach. While the EE paradigm has been designed for animal housing, its principles can be and actually are applied in cognitive, sensory, social, and physical stimulation programs for humans. Here, we briefly review the central milestones in neurodevelopment at each life stage, along with the research studies carried out on how MetS affects neurodevelopment at each life stage and the contributions that EE models can provide to improve health over the lifespan.
Collapse
Affiliation(s)
- Tamara Kobiec
- Facultad de Psicología, Centro de Investigaciones en Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Claudia Mardaraz
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rodolfo Kölliker-Frers
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
22
|
Sadler JR, Thapaliya G, Ranganath K, Gabay A, Chen L, Smith KR, Osorio RS, Convit A, Carnell S. Paediatric obesity and metabolic syndrome associations with cognition and the brain in youth: Current evidence and future directions. Pediatr Obes 2023; 18:e13042. [PMID: 37202148 PMCID: PMC10826337 DOI: 10.1111/ijpo.13042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Obesity and components of the metabolic syndrome (MetS) are associated with differences in brain structure and function and in general and food-related cognition in adults. Here, we review evidence for similar phenomena in children and adolescents, with a focus on the implications of extant research for possible underlying mechanisms and potential interventions for obesity and MetS in youth. Current evidence is limited by a relative reliance on small cross-sectional studies. However, we find that youth with obesity and MetS or MetS components show differences in brain structure, including alterations in grey matter volume and cortical thickness across brain regions subserving reward, cognitive control and other functions, as well as in white matter integrity and volume. Children with obesity and MetS components also show some evidence for hyperresponsivity of food reward regions and hyporesponsivity of cognitive control circuits during food-related tasks, altered brain responses to food tastes, and altered resting-state connectivity including between cognitive control and reward processing networks. Potential mechanisms for these findings include neuroinflammation, impaired vascular reactivity, and effects of diet and obesity on myelination and dopamine function. Future observational research using longitudinal measures, improved sampling strategies and study designs, and rigorous statistical methods, promises to further illuminate dynamic relationships and causal mechanisms. Intervention studies targeted at modifiable biological and behavioural factors associated with paediatric obesity and MetS can further inform mechanisms, as well as test whether brain and behaviour can be altered for beneficial outcomes.
Collapse
Affiliation(s)
- Jennifer R. Sadler
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kushi Ranganath
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Gabay
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly R. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - Antonio Convit
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Boccara E, Golan S, Beeri MS. The association between regional adiposity, cognitive function, and dementia-related brain changes: a systematic review. Front Med (Lausanne) 2023; 10:1160426. [PMID: 37457589 PMCID: PMC10349176 DOI: 10.3389/fmed.2023.1160426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Background Adiposity has been previously associated with cognitive impairment and Alzheimer's disease and related disorders (ADRD). Body mass index (BMI) is the most common measure of global adiposity, but inconsistent results were found since it is a global measurement. BMI does not represent regional fat distribution which differs between sexes, race, and age. Regional fat distribution may contribute differently to cognitive decline and Alzheimer's disease (AD)-related brain changes. Fat-specific targeted therapies could lead to personalized improvement of cognition. The goal of this systematic review is to explore whether regional fat depots, rather than central obesity, should be used to understand the mechanism underlying the association between adiposity and brain. Methods This systematic review included 33 studies in the English language, conducted in humans aged 18 years and over with assessment of regional adiposity, cognitive function, dementia, and brain measures. We included only studies that have assessed regional adiposity using imaging technics and excluded studies that were review articles, abstract only or letters to editor. Studies on children and adolescents, animal studies, and studies of patients with gastrointestinal diseases were excluded. PubMed, PsychInfo and web of science were used as electronic databases for literature search until November 2022. Results Based on the currently available literature, the findings suggest that different regional fat depots are likely associated with increased risk of cognitive impairment, brain changes and dementia, especially AD. However, different regional fat depots can have different cognitive outcomes and affect the brain differently. Visceral adipose tissue (VAT) was the most studied regional fat, along with liver fat through non-alcoholic fatty liver disease (NAFLD). Pancreatic fat was the least studied regional fat. Conclusion Regional adiposity, which is modifiable, may explain discrepancies in associations of global adiposity, brain, and cognition. Specific regional fat depots lead to abnormal secretion of adipose factors which in turn may penetrate the blood brain barrier leading to brain damage and to cognitive decline.
Collapse
Affiliation(s)
- Ethel Boccara
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Sapir Golan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Intzandt B, Sanami S, Huck J, Villeneuve S, Bherer L, Gauthier CJ. Sex-specific relationships between obesity, physical activity, and gray and white matter volume in cognitively unimpaired older adults. GeroScience 2023; 45:1869-1888. [PMID: 36781598 PMCID: PMC10400512 DOI: 10.1007/s11357-023-00734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Independently, obesity and physical activity (PA) influence cerebral structure in aging, yet their interaction has not been investigated. We examined sex differences in the relationships among PA, obesity, and cerebral structure in aging with 340 participants who completed magnetic resonance imaging (MRI) acquisition to quantify grey matter volume (GMV) and white matter volume (WMV). Height and weight were measured to calculate body mass index (BMI). A PA questionnaire was used to estimate weekly Metabolic Equivalents. The relationships between BMI, PA, and their interaction on GMV Regions of Interest (ROIs) and WMV ROIs were examined. Increased BMI was associated with higher GMV in females, an inverse U relationship was found between PA and GMV in females, and the interaction indicated that regardless of BMI greater PA was associated with enhanced GMV. Males demonstrated an inverse U shape between BMI and GMV, and in males with high PA and had normal weight demonstrated greater GMV than normal weight low PA revealed by the interaction. WMV ROIs had a linear relationship with moderate PA in females, whereas in males, increased BMI was associated with lower WMV as well as a positive relationship with moderate PA and WMV. Males and females have unique relationships among GMV, PA and BMI, suggesting sex-aggregated analyses may lead to biased or non-significant results. These results suggest higher BMI, and PA are associated with increased GMV in females, uniquely different from males, highlighting the importance of sex-disaggregated models. Future work should include other imaging parameters, such as perfusion, to identify if these differences co-occur in the same regions as GMV.
Collapse
Affiliation(s)
- Brittany Intzandt
- School of Graduate Studies, Concordia University, Montreal, H3G 1N1 Canada
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, H3W 1W6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
| | - Safa Sanami
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
| | - Julia Huck
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montreal, H4H 1R3 Canada
- STOP-AD Centre, Montreal Canada, Montreal, H4H 1R3 Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, H3A 1Y2 Montreal Canada, Montreal, Canada
| | - Louis Bherer
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, H3W 1W6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Département de Médecine, Université de Montréal, Montreal, H3T 1J4 Canada
| | - Claudine J. Gauthier
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
- Département de Médecine, Université de Montréal, Montreal, H3T 1J4 Canada
- Department of Physics, Concordia University, Montreal, H3G 1M8 Canada
| |
Collapse
|
25
|
Walter KR, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer's Disease mouse model. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:302-320. [PMID: 36194703 PMCID: PMC11040461 DOI: 10.1080/00952990.2022.2119571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/06/2022]
Abstract
Background: Prenatal alcohol exposure (PAE) causes behavioral deficits and increases risk of metabolic diseases. Alzheimer's Disease (AD) is a neurodegenerative disease that has a higher risk in adults with metabolic diseases. Both present with persistent neuroinflammation.Objectives: We tested whether PAE exacerbates AD-related cognitive decline in a mouse model (3xTg-AD; presenilin/amyloid precursor protein/tau), and assessed associations among cognition, metabolic impairment, and microglial reactivity.Methods: Alcohol-exposed (ALC) pregnant 3xTg-AD mice received 3 g/kg alcohol from embryonic day 8.5-17.5. We evaluated recognition memory and associative memory (fear conditioning) in 8-10 males and females per group at 3 months of age (3mo), 7mo, and 11mo, then assessed glucose tolerance, body composition, and hippocampal microglial activation at 12mo.Results: ALC females had higher body weights than controls from 5mo (p < .0001). Controls showed improved recognition memory at 11mo compared with 3mo (p = .007); this was not seen in ALC mice. Older animals froze more during fear conditioning than younger, and ALC mice were hyper-responsive to the fear-related cue (p = .017). Fasting blood glucose was lower in ALC males and higher in ALC females than controls. Positive associations occurred between glucose and fear-related context (p = .04) and adiposity and fear-related cue (p = .0002) in ALC animals. Hippocampal microglial activation was higher in ALC than controls (p < .0001); this trended to correlate with recognition memory.Conclusions: ALC animals showed age-related cognitive impairments that did not interact with AD risk but did correlate with metabolic dysfunction and somewhat with microglial activation. Thus, metabolic disorders may be a therapeutic target for people with FASDs.
Collapse
Affiliation(s)
- Kathleen R. Walter
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Dane K. Ricketts
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Brandon H. Presswood
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| |
Collapse
|
26
|
Kroll JL, Ritz T. Asthma, the central nervous system, and neurocognition: Current findings, potential mechanisms, and treatment implications. Neurosci Biobehav Rev 2023; 146:105063. [PMID: 36708797 DOI: 10.1016/j.neubiorev.2023.105063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Accumulating behavioral evidence suggests that asthma is associated with cognitive deficits. A number of studies have identified potential biological contributions to cognition in asthma; however, mechanistic pathways of central nervous system (CNS) involvement in asthma are yet to be established. We therefore conducted a literature review to identify studies examining potential CNS contributions to cognition in asthma. In this review, we discuss our general understanding of the CNS in asthma in the context of cognitive performance and outline a working model of mechanistic pathways linking the proposed neural influences of asthma pathology with cognition. To this extent, we incorporate neural, behavioral, psychological, social and environmental factors. Finally, we underscore the clinical significance of the CNS and neurocognitive sequelae in asthma, highlighting potential opportunities for routine monitoring, therapeutic intervention, and recommend key areas for future research.
Collapse
Affiliation(s)
- Juliet L Kroll
- Department of Psychology, Southern Methodist University, Dallas, TX, USA; Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
27
|
Andica C, Kamagata K, Takabayashi K, Kikuta J, Kaga H, Someya Y, Tamura Y, Kawamori R, Watada H, Taoka T, Naganawa S, Aoki S. Neuroimaging findings related to glymphatic system alterations in older adults with metabolic syndrome. Neurobiol Dis 2023; 177:105990. [PMID: 36621631 DOI: 10.1016/j.nbd.2023.105990] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The glymphatic system is a glial-based perivascular network that promotes brain metabolic waste clearance. Reduced glymphatic flow has been observed in rat models of type 2 diabetes and hypertension, indicating the role of vascular risk factors in the glymphatic system. However, little is known about how vascular risk factors affect the human glymphatic system. The present study aims to assess the relationships between metabolic syndrome (MetS), a cluster of vascular risk factors, and the glymphatic system function using diffusion magnetic resonance imaging (MRI)-based measures of water diffusivity in the glymphatic compartments, including the brain interstitial space and perivascular spaces around the deep medullary vein. We hypothesized that vascular risk factors are associated with glymphatic dysfunction, leading to cognitive impairment in older adults. METHODS This cross-sectional study assessed 61 older adults (age range, 65-82 years) who had participated in the Bunkyo Health Study, including 15 healthy controls (mean age, 70.87 ± 4.90 years) and 46 individuals with MetS (mean age, 71.76 ± 4.61 years). Fractional volume of extracellular-free water (FW) and an index of diffusion tensor imaging along the perivascular space (DTI-ALPS) were used as indirect indicators of water diffusivity in the interstitial extracellular and perivenous spaces of white matter, respectively. RESULTS After adjusting for age, sex, years of education, total Fazekas scale, Pittsburgh sleep quality index (PSQI) score, and intracranial volume (ICV), a significantly (P = 0.030; Cohen's d = 1.01) higher FW was observed in individuals with MetS than in the healthy controls. Furthermore, individuals with MetS had a significantly (P = 0.031; Cohen's d = 0.86) lower ALPS index than the healthy controls, with age, sex, years of education, total Fazekas scale, PSQI score, ICV, fractional anisotropy, and mean diffusivity included as confounding factors. Higher FW was significantly associated with lower ALPS index (r = -0.37; P = 0.004). Multiple linear regression (MLR) with backward elimination analyses showed that higher diastolic blood pressure (BP; standardized β = 0.33, P = 0.005) was independently associated with higher FW, whereas higher fasting plasma glucose levels (standardized β = -0.63, P = 0.002) or higher Brinkman index of cigarette consumption cumulative amount (standardized β = -0.27, P = 0.022) were associated with lower ALPS index. The lower ALPS index (standardized β, 0.28; P = 0.040) was associated with poorer global cognitive performance, which was determined using the Japanese version of the Montreal Cognitive Assessment (MOCA-J) scores. Finally, partial correlation analyses showed a significant correlation between higher FW and lower MOCA-J scores (r = -0.35; P = 0.025) and between higher FW and higher diastolic BP (r = 0.32, P = 0.044). CONCLUSION The present study shows the changes in diffusion MRI-based measures reflected by the higher FW and lower ALPS index in older adults with MetS, possibly due to the adverse effect of vascular risk factors on the glymphatic system. Our findings also indicate the associations between the diffusion MRI-based measures and elevated diastolic BP, hyperglycemia, smoking habit, and poorer cognitive performance. However, owing to the limitations of this study, the results should be cautiously interpreted.
Collapse
Affiliation(s)
- Christina Andica
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan; Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideyoshi Kaga
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shigeki Aoki
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan; Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
28
|
Cui Y, Tang TY, Lu CQ, Ju S. Insulin Resistance and Cognitive Impairment: Evidence From Neuroimaging. J Magn Reson Imaging 2022; 56:1621-1649. [PMID: 35852470 DOI: 10.1002/jmri.28358] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023] Open
Abstract
Insulin is a peptide well known for its role in regulating glucose metabolism in peripheral tissues. Emerging evidence from human and animal studies indicate the multifactorial role of insulin in the brain, such as neuronal and glial metabolism, glucose regulation, and cognitive processes. Insulin resistance (IR), defined as reduced sensitivity to the action of insulin, has been consistently proposed as an important risk factor for developing neurodegeneration and cognitive impairment. Although the exact mechanism of IR-related cognitive impairment still awaits further elucidation, neuroimaging offers a versatile set of novel contrasts to reveal the subtle cerebral abnormalities in IR. These imaging contrasts, including but not limited to brain volume, white matter (WM) microstructure, neural function and brain metabolism, are expected to unravel the nature of the link between IR, cognitive decline, and brain abnormalities, and their changes over time. This review summarizes the current neuroimaging studies with multiparametric techniques, focusing on the cerebral abnormalities related to IR and therapeutic effects of IR-targeting treatments. According to the results, brain regions associated with IR pathophysiology include the medial temporal lobe, hippocampus, prefrontal lobe, cingulate cortex, precuneus, occipital lobe, and the WM tracts across the globe. Of these, alterations in the temporal lobe are highly reproducible across different imaging modalities. These structures have been known to be vulnerable to Alzheimer's disease (AD) pathology and are critical in cognitive processes such as memory and executive functioning. Comparing to asymptomatic subjects, results are more mixed in patients with metabolic disorders such as type 2 diabetes and obesity, which might be attributed to a multifactorial mechanism. Taken together, neuroimaging, especially MRI, is beneficial to reveal early abnormalities in cerebral structure and function in insulin-resistant brain, providing important evidence to unravel the underlying neuronal substrate that reflects the cognitive decline in IR. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Koutsonida M, Markozannes G, Bouras E, Aretouli E, Tsilidis KK. Metabolic syndrome and cognition: A systematic review across cognitive domains and a bibliometric analysis. Front Psychol 2022; 13:981379. [PMID: 36438337 PMCID: PMC9682181 DOI: 10.3389/fpsyg.2022.981379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
The aim of this review is to investigate the association between metabolic syndrome (MetS) and cognitive decline in distinct cognitive domains, and to perform a complementary study description through the bibliometric analysis. PubMed and Scopus databases were searched from inception to 15 December 2021 to identify longitudinal studies that examined the association of MetS with incident decline, in order to prevent reverse causality. The Preferred Reporting Items for Systematic Review and Meta-Analysis checklist was used to conduct the present systematic review. Thirty studies were included and results were analyzed across the cognitive domains of global cognition, memory, executive functions, attention, visuoconstructive abilities, and language. The majority of the studies reviewed did not report statistically significant results for most cognitive domains investigated, and decline in specific cognitive domains was not consistently associated with the presence of MetS. Meta-analyses were not conducted due to the high degree of between-study heterogeneity regarding the MetS definitions, the cognitive domains examined, the specific tests used for each cognitive domain and the different measures of association used. Bibliometric analysis revealed that most studies are conducted by research teams from USA and China, and that cognitive tasks that reflect real-life abilities are rarely examined. Future studies should employ larger sample sizes, longer follow-up periods, a global consensus for MetS definition and standardized tests of the above mentioned cognitive domains as well as problem-solving tasks with high sensitivity and specificity to clarify the impact of MetS on cognition and its underlying mechanisms.
Collapse
Affiliation(s)
- Myrto Koutsonida
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Aretouli
- Department of Psychology, School of Social Sciences, University of Ioannina, Ioannina, Greece
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Eleni Aretouli,
| | - Konstantinos K. Tsilidis
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- *Correspondence: Konstantinos K. Tsilidis,
| |
Collapse
|
30
|
Subramaniapillai S, Suri S, Barth C, Maximov II, Voldsbekk I, van der Meer D, Gurholt TP, Beck D, Draganski B, Andreassen OA, Ebmeier KP, Westlye LT, de Lange AG. Sex- and age-specific associations between cardiometabolic risk and white matter brain age in the UK Biobank cohort. Hum Brain Mapp 2022; 43:3759-3774. [PMID: 35460147 PMCID: PMC9294301 DOI: 10.1002/hbm.25882] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiometabolic risk (CMR) factors are associated with accelerated brain aging and increased risk for sex-dimorphic illnesses such as Alzheimer's disease (AD). Yet, it is unknown how CMRs interact with sex and apolipoprotein E-ϵ4 (APOE4), a known genetic risk factor for AD, to influence brain age across different life stages. Using age prediction based on multi-shell diffusion-weighted imaging data in 21,308 UK Biobank participants, we investigated whether associations between white matter Brain Age Gap (BAG) and body mass index (BMI), waist-to-hip ratio (WHR), body fat percentage (BF%), and APOE4 status varied (i) between males and females, (ii) according to age at menopause in females, and (iii) across different age groups in males and females. We report sex differences in associations between BAG and all three CMRs, with stronger positive associations among males compared to females. Independent of APOE4 status, higher BAG (older brain age relative to chronological age) was associated with greater BMI, WHR, and BF% in males, whereas in females, higher BAG was associated with greater WHR, but not BMI and BF%. These divergent associations were most prominent within the oldest group of females (66-81 years), where greater BF% was linked to lower BAG. Earlier menopause transition was associated with higher BAG, but no interactions were found with CMRs. In conclusion, the findings point to sex- and age-specific associations between CMRs and brain age. Incorporating sex as a factor of interest in studies addressing CMR may promote sex-specific precision medicine, consequently improving health care for both males and females.
Collapse
Affiliation(s)
- Sivaniya Subramaniapillai
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of Psychology, Faculty of ScienceMcGill UniversityMontrealQuebecCanada
- Department of PsychologyUniversity of OsloOsloNorway
| | - Sana Suri
- Department of PsychiatryUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Ivan I. Maximov
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Irene Voldsbekk
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| | - Dani Beck
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | | | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Ann‐Marie G. de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychiatryUniversity of OxfordOxfordUK
| |
Collapse
|
31
|
Malik R, Kalra S, Bhatia S, Harrasi AA, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed Pharmacother 2022; 152:113168. [PMID: 35701303 DOI: 10.1016/j.biopha.2022.113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia is defined as a gradual cognitive impairment that interferes with everyday tasks, and is a leading cause of dependency, disability, and mortality. According to the current scenario, millions of individuals worldwide have dementia. This review provides with an overview of dementia before moving on to its subtypes (neurodegenerative and non-neurodegenerative) and pathophysiology. It also discusses the incidence and severity of dementia, focusing on Alzheimer's disease with its different hypotheses such as Aβ cascade hypothesis, Tau hypothesis, inflammatory hypothesis, cholinergic and oxidative stress hypothesis. Alzheimer's disease is the most common type and a progressive neurodegenerative illness distinct by neuronal loss and resulting cognitive impairment, leading to dementia. Alzheimer's disease (AD) is considered the most familiar neurodegenerative dementias that affect mostly older population. There are still no disease-modifying therapies available for any dementias at this time, but there are various methods for lowering the risk to dementia patients by using suitable diagnostic and evaluation methods. Thereafter, the management and treatment of primary risk elements of dementia are reviewed. Finally, the future perspectives of dementia (AD) focusing on the impact of the new treatment are discussed.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim Meraya
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK.
| |
Collapse
|
32
|
García-García I, Michaud A, Jurado MÁ, Dagher A, Morys F. Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes. Rev Endocr Metab Disord 2022; 23:833-843. [PMID: 35059979 DOI: 10.1007/s11154-021-09706-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a preventable risk factor for cerebrovascular disorders and it is associated with cerebral grey and white matter changes. Specifically, individuals with obesity show diminished grey matter volume and thickness, which seems to be more prominent among fronto-temporal regions in the brain. At the same time, obesity is associated with lower microstructural white matter integrity, and it has been found to precede increases in white matter hyperintensity load. To date, however, it is unclear whether these findings can be attributed solely to obesity or whether they are a consequence of cardiometabolic complications that often co-exist with obesity, such as low-grade systemic inflammation, hypertension, insulin resistance, or dyslipidemia. In this narrative review we aim to provide a comprehensive overview of the potential impact of obesity and a number of its cardiometabolic consequences on brain integrity, both separately and in synergy with each other. We also identify current gaps in knowledge and outline recommendations for future research.
Collapse
Affiliation(s)
- Isabel García-García
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| | | | - María Ángeles Jurado
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Filip Morys
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
33
|
Zeighami Y, Dadar M, Daoust J, Pelletier M, Biertho L, Bouvet-Bouchard L, Fulton S, Tchernof A, Dagher A, Richard D, Evans A, Michaud A. Impact of Weight Loss on Brain Age: Improved Brain Health Following Bariatric Surgery. Neuroimage 2022; 259:119415. [PMID: 35760293 DOI: 10.1016/j.neuroimage.2022.119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
Individuals living with obesity tend to have increased brain age, reflecting poorer brain health likely due to grey and white matter atrophy related to obesity. However, it is unclear if older brain age associated with obesity can be reversed following weight loss and cardiometabolic health improvement. The aim of this study was to assess the impact of weight loss and cardiometabolic improvement following bariatric surgery on brain health, as measured by change in brain age estimated based on voxel-based morphometry (VBM) measurements. We used three distinct datasets to perform this study: 1) CamCAN dataset to train the brain age prediction model, 2) Human Connectome Project (HCP) dataset to investigate whether individuals with obesity have greater brain age than individuals with normal weight, and 3) pre-surgery, as well as 4, 12, and 24 month post-surgery data from participants (n=87, age: 44.0±9.2 years, BMI: 43.9±4.2 kg/m2) who underwent a bariatric surgery to investigate whether weight loss and cardiometabolic improvement as a result of bariatric surgery lowers the brain age. As expected, our results from the HCP dataset showed a higher brain age for individuals with obesity compared to individuals with normal weight (T-value = 7.08, p-value < 0.0001). We also found significant improvement in brain health, indicated by a decrease of 2.9 and 5.6 years in adjusted delta age at 12 and 24 months following bariatric surgery compared to baseline (p-value < 0.0005 for both). While the overall effect seemed to be driven by a global change across all brain regions and not from a specific region, our exploratory analysis showed lower delta age in certain brain regions (mainly in somatomotor, visual, and ventral attention networks) at 24 months. This reduced age was also associated with post-surgery improvements in BMI, systolic/diastolic blood pressure, and HOMA-IR (T-valueBMI=4.29, T-valueSBP=4.67, T-valueDBP=4.12, T-valueHOMA-IR=3.16, all p-values < 0.05). In conclusion, these results suggest that obesity-related brain health abnormalities (as measured by delta age) might be reversed by bariatric surgery-induced weight loss and widespread improvements in cardiometabolic alterations.
Collapse
Affiliation(s)
- Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - Mahsa Dadar
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Justine Daoust
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Laurent Biertho
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Léonie Bouvet-Bouchard
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM, Department of Nutrition, Université de Montréal, Montreal Diabetes Research Center, Montreal, QC, Canada
| | - André Tchernof
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Denis Richard
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Alan Evans
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Andréanne Michaud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
34
|
Andica C, Kamagata K, Uchida W, Takabayashi K, Shimoji K, Kaga H, Someya Y, Tamura Y, Kawamori R, Watada H, Hori M, Aoki S. White matter fiber-specific degeneration in older adults with metabolic syndrome. Mol Metab 2022; 62:101527. [PMID: 35691528 PMCID: PMC9234232 DOI: 10.1016/j.molmet.2022.101527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Metabolic syndrome (MetS) is defined as a complex of interrelated risk factors for type 2 diabetes and cardiovascular disease, including glucose intolerance, abdominal obesity, hypertension, and dyslipidemia. Studies using diffusion tensor imaging (DTI) have reported white matter (WM) microstructural abnormalities in MetS. However, interpretation of DTI metrics is limited primarily due to the challenges of modeling complex WM structures. The present study used fixel-based analysis (FBA) to assess the effect of MetS on the fiber tract-specific WM microstructure in older adults and its relationship with MetS-related measurements and cognitive and locomotor functions to better understand the pathophysiology of MetS. METHODS Fixel-based metrics, including microstructural fiber density (FD), macrostructural fiber-bundle cross-section (FC), and a combination of FD and FC (FDC), were evaluated in 16 healthy controls (no components of MetS; four men; mean age, 71.31 ± 5.06 years), 57 individuals with premetabolic syndrome (preMetS; one or two components of MetS; 29 men; mean age, 72.44 ± 5.82 years), and 46 individuals with MetS (three to five components of MetS; 27 men; mean age, 72.15 ± 4.97 years) using whole-brain exploratory FBA. Tract of interest (TOI) analysis was then performed using TractSeg across 14 selected WM tracts previously associated with MetS. The associations between fixel-based metrics and MetS-related measurements, neuropsychological, and locomotor function tests were also analyzed in individuals with preMetS and MetS combined. In addition, tensor-based metrics (i.e., fractional anisotropy [FA] and mean diffusivity [MD]) were compared among the groups using tract-based spatial statistics (TBSS) analysis. RESULTS In whole-brain FBA, individuals with MetS showed significantly lower FD, FC, and FDC compared with healthy controls in WM areas, such as the splenium of the corpus callosum (CC), corticospinal tract (CST), middle cerebellar peduncle (MCP), and superior cerebellar peduncle (SCP). Meanwhile, in fixel-based TOI, significantly reduced FD was observed in individuals with preMetS and MetS in the anterior thalamic radiation, CST, SCP, and splenium of the CC compared with healthy controls, with relatively greater effect sizes observed in individuals with MetS. Compared with healthy controls, significantly reduced FC and FDC were only demonstrated in individuals with MetS, including regions with loss of FD, inferior cerebellar peduncle, inferior fronto-occipital fasciculus, MCP, and superior longitudinal fasciculus part I. Furthermore, negative correlations were observed between FD and Brinkman index of cigarette consumption cumulative amount and between FC or FDC and the Trail Making Test (parts B-A), which is a measure of executive function, waist circumference, or low-density lipoprotein cholesterol. Finally, TBSS analysis revealed that FA and MD were not significantly different among all groups. CONCLUSIONS The FBA results demonstrate that substantial axonal loss and atrophy in individuals with MetS and early axonal loss without fiber-bundle morphological changes in those with preMetS within the WM tracts are crucial to cognitive and motor function. FBA also clarified the association between executive dysfunction, abdominal obesity, hyper-low-density lipoprotein cholesterolemia, smoking habit, and compromised WM neural tissue microstructure in MetS.
Collapse
Affiliation(s)
- Christina Andica
- Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, 279-0013, Japan; Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Keigo Shimoji
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Hideyoshi Kaga
- Sportology Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-0034, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-0034, Japan; Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan; Department of Radiology, Toho University Omori Medical Center, Ota, Tokyo, 143-8541, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
35
|
Cai M, Jacob MA, van Loenen MR, Bergkamp M, Marques J, Norris DG, Duering M, Tuladhar AM, de Leeuw FE. Determinants and Temporal Dynamics of Cerebral Small Vessel Disease: 14-Year Follow-Up. Stroke 2022; 53:2789-2798. [PMID: 35506383 PMCID: PMC9389939 DOI: 10.1161/strokeaha.121.038099] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The aim of this study is to investigate the temporal dynamics of small vessel disease (SVD) and the effect of vascular risk factors and baseline SVD burden on progression of SVD with 4 neuroimaging assessments over 14 years in patients with SVD. METHODS Five hundred three patients with sporadic SVD (50-85 years) from the ongoing prospective cohort study (RUN DMC [Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort]) underwent baseline assessment in 2006 and follow-up in 2011, 2015, and 2020. Vascular risk factors and magnetic resonance imaging markers of SVD were evaluated. Linear mixed-effects model and negative binomial regression model were used to examine the determinants of temporal dynamics of SVD markers. RESULTS A total of 382 SVD patients (mean [SD] 64.1 [8.4]; 219 men and 163 women) who underwent at least 2 serial brain magnetic resonance imaging scans were included, with mean (SD) follow-up of 11.15 (3.32) years. We found a highly variable temporal course of SVD. Mean (SD) WMH progression rate was 0.6 (0.74) mL/y (range, 0.02-4.73 mL/y) and 13.6% of patients had incident lacunes (1.03%/y) over the 14-year follow-up. About 4% showed net WMH regression over 14 years, whereas 38 out of 361 (10.5%), 5 out of 296 (2%), and 61 out of 231 (26%) patients showed WMH regression for the intervals 2006 to 2011, 2011 to 2015, and 2015 to 2020, respectively. Of these, 29 (76%), 5 (100%), and 57 (93%) showed overall progression across the 14-year follow-up, and the net overall WMH change between first and last scan considering all participants was a net average WMH progression over the 14-year period. Older age was a strong predictor for faster WMH progression and incident lacunes. Patients with mild baseline WMH rarely progressed to severe WMH. In addition, both baseline burden of SVD lesions and vascular risk factors independently and synergistically predicted WMH progression, whereas only baseline SVD burden predicted incident lacunes over the 14-year follow-up. CONCLUSIONS SVD shows pronounced progression over time, but mild WMH rarely progresses to clinically severe WMH. WMH regression is noteworthy during some magnetic resonance imaging intervals, although it could be overall compensated by progression over the long follow-up.
Collapse
Affiliation(s)
- Mengfei Cai
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| | - Mina A Jacob
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| | - Mark R van Loenen
- Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.R.v.L., J.M., D.G.N.)
| | - Mayra Bergkamp
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| | - José Marques
- Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.R.v.L., J.M., D.G.N.)
| | - David G Norris
- Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.R.v.L., J.M., D.G.N.)
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Switzerland (M.D.)
| | - Anil M Tuladhar
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| | - Frank-Erik de Leeuw
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| |
Collapse
|
36
|
Smith SM, Pjetri E, Friday WB, Presswood BH, Ricketts DK, Walter KR, Mooney SM. Aging-Related Behavioral, Adiposity, and Glucose Impairments and Their Association following Prenatal Alcohol Exposure in the C57BL/6J Mouse. Nutrients 2022; 14:1438. [PMID: 35406051 PMCID: PMC9002573 DOI: 10.3390/nu14071438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
People that experience prenatal alcohol exposure (PAE) may have behavioral and metabolic impairments, and it is unclear whether these remain stable or change with age. We assessed behavioral and metabolic endpoints across the lifespan in a mouse model of fetal alcohol spectrum disorder (FASD). Pregnant C57BL/6J mice received alcohol (ALC; 3 g/kg) or maltose-dextrin (control, CON) daily from embryonic day 8.5 to 17.5. Offspring were tested on accelerating rotarod, Y-maze, novel object recognition, and fear conditioning at 6 weeks and 10 and 17 months; females were also tested at 24 months. Body composition, fasting glucose, and glucose clearance were assessed at 18 months. Female but not male ALC mice had greater adiposity than age-matched CON from 7 months onward. At 18 months, male but not female ALC mice had reduced glucose clearance and ALC mice were more likely to have elevated fasting glucose. In the rotarod training session, ALC females performed worse than CON. In the Y-maze, significant exposure-age interactions affected ALC performance in both sexes versus age-match CON. For fear conditioning, all animals acquired the task and froze more at older ages. In both the context and cued tasks, there were exposure-age interactions and ALC animals frozen less than CON at 10 months. Correlation analysis revealed that fasting glucose and glucose clearance correlated with % of body fat in ALC but not in CON mice. Additionally, glucose intolerance and % body fat negatively correlated with performance in the rotarod, context learning, and novel object recognition tasks in ALC but not CON mice. All mice exhibit worsening of behavioral performance as they age, and PAE did not further exacerbate this. ALC but not CON mice displayed adiposity and glucose intolerance that correlate with their cognitive impairments, suggesting that these may be mechanistically related in PAE. Findings emphasize that FASD should be considered a whole-body disorder.
Collapse
Affiliation(s)
- Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; (E.P.); (W.B.F.); (B.H.P.); (D.K.R.); (K.R.W.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Eneda Pjetri
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; (E.P.); (W.B.F.); (B.H.P.); (D.K.R.); (K.R.W.)
| | - Walter B. Friday
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; (E.P.); (W.B.F.); (B.H.P.); (D.K.R.); (K.R.W.)
| | - Brandon H. Presswood
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; (E.P.); (W.B.F.); (B.H.P.); (D.K.R.); (K.R.W.)
| | - Dane K. Ricketts
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; (E.P.); (W.B.F.); (B.H.P.); (D.K.R.); (K.R.W.)
| | - Kathleen R. Walter
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; (E.P.); (W.B.F.); (B.H.P.); (D.K.R.); (K.R.W.)
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; (E.P.); (W.B.F.); (B.H.P.); (D.K.R.); (K.R.W.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
37
|
He C, Li Q, Cui Y, Gao P, Shu W, Zhou Q, Wang L, Li L, Lu Z, Zhao Y, Ma H, Chen X, Jia H, Zheng H, Yang G, Liu D, Tepel M, Zhu Z. Recurrent moderate hypoglycemia accelerates the progression of cognitive deficits through impairment of TRPC6/GLUT3 pathway in diabetic APP/PS1 mice. JCI Insight 2022; 7:154595. [PMID: 35077394 PMCID: PMC8983129 DOI: 10.1172/jci.insight.154595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, the most effective strategy for dealing with Alzheimer’s disease (AD) is delaying the onset of dementia. Severe hypoglycemia is strongly associated with dementia; however, the effects of recurrent moderate hypoglycemia (RH) on the progression of cognitive deficits in patients with diabetes with genetic susceptibility to AD remain unclear. Here, we report that insulin-controlled hyperglycemia slightly aggravated AD-type pathologies and cognitive impairment; however, RH significantly increased neuronal hyperactivity and accelerated the progression of cognitive deficits in streptozotocin-induced (STZ-induced) diabetic APP/PS1 mice. Glucose transporter 3–mediated (GLUT3-mediated) neuronal glucose uptake was not significantly altered under hyperglycemia but was markedly reduced by RH, which induced excessive mitochondrial fission in the hippocampus. Overexpression of GLUT3, specifically in the dentate gyrus (DG) area of the hippocampus, enhanced mitochondrial function and improved cognitive deficits. Activation of the transient receptor potential channel 6 (TRPC6) increased GLUT3-mediated glucose uptake in the brain and alleviated RH-induced cognitive deficits, and inactivation of the Ca2+/AMPK pathway was responsible for TRPC6-induced GLUT3 inhibition. Taken together, RH impairs brain GLUT3-mediated glucose uptake and further provokes neuronal mitochondrial dysfunction by inhibiting TRPC6 expression, which then accelerates progression of cognitive deficits in diabetic APP/PS1 mice. Avoiding RH is essential for glycemic control in patients with diabetes, and TRPC6/GLUT3 represents potent targets for delaying the onset of dementia in patients with diabetes.
Collapse
Affiliation(s)
- Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Wentao Shu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center, Army Medical University, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Hongbo Jia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Gangyi Yang
- Endocrine Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Martin Tepel
- Odense University Hospital, Department of Nephrology, University of Southern Denmark, Institute for Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research, Odense, Denmark
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing Institute for Brain and Intelligence, Chongqing, China
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS) is a cluster of cardiovascular disease risk factors that are related to several adverse health outcomes, including poor cognitive function. This review seeks to summarize and critically review select recent findings on the association between MetS and cognition. RECENT FINDINGS MetS was associated with lower domain-specific and global cognitive function in most cross-sectional studies, but findings from longitudinal studies are not consistent. The associations varied depending on age, sex, cognitive test, genetic susceptibility, and the duration of follow-up in prospective studies. MetS was associated with a higher risk of mild cognitive impairment (MCI) and progression from MCI to dementia, particularly vascular dementia. Among MetS components, high blood pressure, high waist circumference, and hyperglycemia were the strongest predictors of cognitive function. MetS is associated with higher risk of cognitive impairment. Research is needed on how preventing or treating MetS affects cognition.
Collapse
|
39
|
Cui C, Zhao Y, Cui D, Li N, Pan J, Shen W. In vivo evaluation of the levator ani muscle in primiparous women using diffusion tensor imaging and fiber tractography. Int J Gynaecol Obstet 2021; 157:663-670. [PMID: 34492120 DOI: 10.1002/ijgo.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/11/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To characterize the levator ani muscle (LAM) injury after first vaginal delivery and investigate the clinical application of diffusion tensor imaging (DTI) and fiber tractography in evaluating the LAM. METHODS Fifty-eight primiparous women at 6 weeks after vaginal delivery and 27 nulliparous women as controls underwent T2-weighted sequence and DTI sequence of the pelvic floor. A LAM scoring system was used to characterize the morphological changes. Fiber tractography of each major subdivision of LAM was performed, followed by assessment of the quality of fiber tracking. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), fiber volume, and length were calculated. RESULTS Puborectalis and iliococcygeus injuries were observed in 30/58 (51.7%) and 10/58 (17.2%) primiparae, respectively. No LAM defects were identified in the control group. For the puborectalis, the FA values were lower (P = 0.010) and ADC values were higher (P = 0.024) in the primiparous group than in the control group. For the iliococcygeus, the fiber volume values were lower in the primiparous group than in the control group (P = 0.004). CONCLUSION Vaginal delivery can result in LAM injury at the puborectalis. DTI parameters can assist in the quantitative diagnosis of the LAM injury.
Collapse
Affiliation(s)
- Can Cui
- Department of Radiology, Affiliated JinHua Hospital, ZheJiang University School of Medicine (JinHua Municipal Central Hospital), JinHua, China
| | - Yujiao Zhao
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| | - Dawei Cui
- Department of Obstetrics and Gynecology, Affiliated JinHua Hospital, ZheJiang University School of Medicine (JinHua Municipal Central Hospital), JinHua, China
| | - Na Li
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiangfeng Pan
- Department of Radiology, Affiliated JinHua Hospital, ZheJiang University School of Medicine (JinHua Municipal Central Hospital), JinHua, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
40
|
Canfora F, Calabria E, Cuocolo R, Ugga L, Buono G, Marenzi G, Gasparro R, Pecoraro G, Aria M, D'Aniello L, Mignogna MD, Adamo D. Burning Fog: Cognitive Impairment in Burning Mouth Syndrome. Front Aging Neurosci 2021; 13:727417. [PMID: 34475821 PMCID: PMC8406777 DOI: 10.3389/fnagi.2021.727417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 01/25/2023] Open
Abstract
Background: Due to its common association with chronic pain experience, cognitive impairment (CI) has never been evaluated in patients with burning mouth syndrome (BMS). The purpose of this study is to assess the prevalence of CI in patients with BMS and to evaluate its relationship with potential predictors such as pain, mood disorders, blood biomarkers, and white matter changes (WMCs). Methods: A case-control study was conducted by enrolling 40 patients with BMS and an equal number of healthy controls matched for age, gender, and education. Neurocognitive assessment [Mini Mental State Examination (MMSE), Digit Cancellation Test (DCT), the Forward and Backward Digit Span task (FDS and BDS), Corsi Block-Tapping Test (CB-TT), Rey Auditory Verbal Learning Test (RAVLT), Copying Geometric Drawings (CGD), Frontal Assessment Battery (FAB), and Trail Making A and B (TMT-A and TMT-B)], psychological assessment [Hamilton Rating Scale for Depression and Anxiety (HAM-D and HAM-A), Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and 36-Item Short Form Health Survey (SF-36)], and pain assessment [Visual Analogic Scale (VAS), Total Pain Rating index (T-PRI), Brief Pain Inventory (BPI), and Pain DETECT Questionnaire (PD-Q)] were performed. In addition, blood biomarkers and MRI of the brain were recorded for the detection of Age-Related WMCs (ARWMCs). Descriptive statistics, the Mann-Whitney U-test, the Pearson Chi-Squared test and Spearman's correlation analysis were used. Results: Patients with BMS had impairments in most cognitive domains compared with controls (p < 0.001**) except in RAVLT and CGD. The HAM-D, HAM-A, PSQI, ESS, SF-36, VAS, T-PRI, BPI and PD-Q scores were statistically different between BMS patients and controls (p < 0.001**) the WMCs frequency and ARWMC scores in the right temporal (RT) and left temporal (LT) lobe were higher in patients with BMS (p = 0.023*). Conclusions: Meanwhile, BMS is associated with a higher decline in cognitive functions, particularly attention, working memory, and executive functions, but other functions such as praxis-constructive skills and verbal memory are preserved. The early identification of CI and associated factors may help clinicians to identify patients at risk of developing time-based neurodegenerative disorders, such as Alzheimer's disease (AD) and vascular dementia (VD), for planning the early, comprehensive, and multidisciplinary assessment and treatment.
Collapse
Affiliation(s)
- Federica Canfora
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Elena Calabria
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Buono
- Department of Diagnostical Morphological and Functional, University of Naples "Federico II", Naples, Italy
| | - Gaetano Marenzi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Roberta Gasparro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Pecoraro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples "Federico II", Naples, Italy
| | - Luca D'Aniello
- Department of Economics and Statistics, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Daniela Adamo
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
41
|
Huang L, Zhang Q, Tang T, Yang M, Chen C, Tao J, Liang S. Abnormalities of Brain White Matter in Type 2 Diabetes Mellitus: A Meta-Analysis of Diffusion Tensor Imaging. Front Aging Neurosci 2021; 13:693890. [PMID: 34421572 PMCID: PMC8378805 DOI: 10.3389/fnagi.2021.693890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: The study aimed to conduct a meta-analysis to determine the abnormalities of white matter in patients with type 2 diabetes mellitus (T2DM) by identifying the consistency of diffusion tensor imaging (DTI). Method: The literature for DTI comparing patients with T2DM with controls published before October 30, 2020, were reviewed in PubMed, Web of Science, Embase, CNKI, and Wan Fang databases. The meta-analysis was performed using the activation likelihood estimation (ALE) method, including 12 reports and 381 patients with T2DM. Results: The meta-analysis identified 10 white matter regions that showed a consistent reduction of fractional anisotropy (FA) in patients with T2DM, including genu of the corpus callosum, the body of corpus callosum, bilateral anterior corona radiata, bilateral superior corona radiata, bilateral cingulum, and bilateral superior fronto-occipital fasciculus. Conclusion: This study revealed the abnormal characteristics of white matter in T2DM, which would be helpful to understand the underlying neuropathological and physiological mechanisms of T2DM and provide evidence for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Li Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tong Tang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minguang Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
42
|
Rashid B, Poole VN, Fortenbaugh FC, Esterman M, Milberg WP, McGlinchey RE, Salat DH, Leritz EC. Association between metabolic syndrome and resting-state functional brain connectivity. Neurobiol Aging 2021; 104:1-9. [PMID: 33951557 PMCID: PMC8225583 DOI: 10.1016/j.neurobiolaging.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023]
Abstract
The objective of this study is to examine whether metabolic syndrome (MetS), the clustering of 3 or more cardiovascular risk factors, disrupts the resting-state functional connectivity (FC) of the large-scale cortical brain networks. Resting-state functional magnetic resonance imaging data were collected from seventy-eight middle-aged and older adults living with and without MetS (27 MetS; 51 non-MetS). FC maps were derived from the time series of intrinsic activity in the large-scale brain networks by correlating the spatially averaged time series with all brain voxels using a whole-brain seed-based FC approach. Participants with MetS showed hyperconnectivity across the core brain regions with evidence of loss of modularity when compared with non-MetS individuals. Furthermore, patterns of higher between-network MetS-related effects were observed across most of the seed regions in both right and left hemispheres. These findings indicate that MetS is associated with altered intrinsic communication across core neural networks and disrupted between-network connections across the brain due to the co-occurring vascular risk factors in MetS.
Collapse
Affiliation(s)
- Barnaly Rashid
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA.
| | - Victoria N Poole
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Francesca C Fortenbaugh
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Michael Esterman
- National Center for PTSD, VA Boston Healthcare System, Boston, MA; Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - William P Milberg
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Regina E McGlinchey
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - David H Salat
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
| | - Elizabeth C Leritz
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Zeighami Y, Iceta S, Dadar M, Pelletier M, Nadeau M, Biertho L, Lafortune A, Tchernof A, Fulton S, Evans A, Richard D, Dagher A, Michaud A. Spontaneous neural activity changes after bariatric surgery: A resting-state fMRI study. Neuroimage 2021; 241:118419. [PMID: 34302967 DOI: 10.1016/j.neuroimage.2021.118419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metabolic disorders associated with obesity could lead to alterations in brain structure and function. Whether these changes can be reversed after weight loss is unclear. Bariatric surgery provides a unique opportunity to address these questions because it induces marked weight loss and metabolic improvements which in turn may impact the brain in a longitudinal fashion. Previous studies found widespread changes in grey matter (GM) and white matter (WM) after bariatric surgery. However, findings regarding changes in spontaneous neural activity following surgery, as assessed with the fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity of neural activity (ReHo), are scarce and heterogenous. In this study, we used a longitudinal design to examine the changes in spontaneous neural activity after bariatric surgery (comparing pre- to post-surgery), and to determine whether these changes are related to cardiometabolic variables. METHODS The study included 57 participants with severe obesity (mean BMI=43.1 ± 4.3 kg/m2) who underwent sleeve gastrectomy (SG), biliopancreatic diversion with duodenal switch (BPD), or Roux-en-Y gastric bypass (RYGB), scanned prior to bariatric surgery and at follow-up visits of 4 months (N = 36), 12 months (N = 29), and 24 months (N = 14) after surgery. We examined fALFF and ReHo measures across 1022 cortical and subcortical regions (based on combined Schaeffer-Xiao parcellations) using a linear mixed effect model. Voxel-based morphometry (VBM) based on T1-weighted images was also used to measure GM density in the same regions. We also used an independent sample from the Human Connectome Project (HCP) to assess regional differences between individuals who had normal-weight (N = 46) or severe obesity (N = 46). RESULTS We found a global increase in the fALFF signal with greater increase within dorsolateral prefrontal cortex, precuneus, inferior temporal gyrus, and visual cortex. This effect was more significant 4 months after surgery. The increase within dorsolateral prefrontal cortex, temporal gyrus, and visual cortex was more limited after 12 months and only present in the visual cortex after 24 months. These increases in neural activity measured by fALFF were also significantly associated with the increase in GM density following surgery. Furthermore, the increase in neural activity was significantly related to post-surgery weight loss and improvement in cardiometabolic variables, such as blood pressure. In the independent HCP sample, normal-weight participants had higher global and regional fALFF signals, mainly in dorsolateral/medial frontal cortex, precuneus and middle/inferior temporal gyrus compared to the obese participants. These BMI-related differences in fALFF were associated with the increase in fALFF 4 months post-surgery especially in regions involved in control, default mode and dorsal attention networks. CONCLUSIONS Bariatric surgery-induced weight loss and improvement in metabolic factors are associated with widespread global and regional increases in neural activity, as measured by fALFF signal. These findings alongside the higher fALFF signal in normal-weight participants compared to participants with severe obesity in an independent dataset suggest an early recovery in the neural activity signal level after the surgery.
Collapse
Affiliation(s)
- Yashar Zeighami
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Sylvain Iceta
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Mahsa Dadar
- CERVO Brain Research Center, Centre intégré universitaire santé et services sociaux de la Capitale Nationale, Université Laval, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Mélanie Nadeau
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Laurent Biertho
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Annie Lafortune
- Département de chirurgie générale, Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - André Tchernof
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Alan Evans
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Denis Richard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Andréanne Michaud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
44
|
Daoust J, Schaffer J, Zeighami Y, Dagher A, García-García I, Michaud A. White matter integrity differences in obesity: A meta-analysis of diffusion tensor imaging studies. Neurosci Biobehav Rev 2021; 129:133-141. [PMID: 34284063 DOI: 10.1016/j.neubiorev.2021.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/17/2023]
Abstract
Some Diffusion Tensor Imaging studies have shown a loss of white matter (WM) integrity linked to impaired cognitive function in obese individuals. However, inconsistent WM integrity changes have been reported. We aimed to identify which WM tracts show consistent changes with obesity. We conducted a systematic search to find studies examining the association between obesity-related measures and Fractional Anisotropy (FA) or Mean Diffusivity. We performed a meta-analysis with FA datasets using Anisotropic Effect Size-Signed Differential Mapping software. The meta-analysis showed that increased obesity measurements were related to reduced FA in the genu of the corpus callosum. We validated our findings using an independent sample from the Human Connectome Project dataset, which supports lower FA in this region in individuals with obesity compared to those with normal weight (p = 0.028). Our findings provide evidence that obesity is associated with reduced WM integrity in the genu of the corpus callosum, a tract linking frontal areas involved in executive function. Future studies are needed on the mechanisms linking obesity with loss of WM integrity.
Collapse
Affiliation(s)
- Justine Daoust
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; School of Nutrition, Université Laval, 2325 rue de l'Université, Québec, Québec, G1V 0A6, Canada
| | - Joelle Schaffer
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Yashar Zeighami
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Isabel García-García
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
| | - Andréanne Michaud
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; School of Nutrition, Université Laval, 2325 rue de l'Université, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
45
|
Similar Theory of Mind Deficits in Community Dwelling Older Adults with Vascular Risk Profile and Patients with Mild Cognitive Impairment: The Case of Paradoxical Sarcasm Comprehension. Brain Sci 2021; 11:brainsci11050627. [PMID: 34068226 PMCID: PMC8153105 DOI: 10.3390/brainsci11050627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Recent studies deal with disorders and deficits caused by vascular syndrome in efforts for prediction and prevention. Cardiovascular health declines with age due to vascular risk factors, and this leads to an increasing risk of cognitive decline. Mild cognitive impairment (MCI) is defined as the negative cognitive changes beyond what is expected in normal aging. The purpose of the study was to compare older adults with vascular risk factors (VRF), MCI patients, and healthy controls (HC) in social cognition and especially in theory of mind ability (ToM). The sample comprised a total of 109 adults, aged 50 to 85 years (M = 66.09, SD = 9.02). They were divided into three groups: (a) older adults with VRF, (b) MCI patients, and (c) healthy controls (HC). VRF and MCI did not differ significantly in age, educational level or gender as was the case with HC. Specifically, for assessing ToM, a social inference test was used, which was designed to measure sarcasm comprehension. Results showed that the performance of the VRF group and MCI patients is not differentiated, while HC performed higher compared to the other two groups. The findings may imply that the development of a vascular disorder affecting vessels of the brain is associated from its “first steps” to ToM decline, at least regarding specific aspects of it, such as paradoxical sarcasm understanding.
Collapse
|
46
|
Zhou C, Li J, Dong M, Ping L, Lin H, Wang Y, Wang S, Gao S, Yu G, Cheng Y, Xu X. Altered White Matter Microstructures in Type 2 Diabetes Mellitus: A Coordinate-Based Meta-Analysis of Diffusion Tensor Imaging Studies. Front Endocrinol (Lausanne) 2021; 12:658198. [PMID: 34012420 PMCID: PMC8127836 DOI: 10.3389/fendo.2021.658198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is often accompanied by cognitive decline and depressive symptoms. Numerous diffusion tensor imaging (DTI) studies revealed microstructural white matter (WM) abnormalities in T2DM but the findings were inconsistent. The present study aimed to conduct a coordinate-based meta-analysis (CBMA) to identify statistical consensus of DTI studies in T2DM. Methods We performed a systematic search on relevant studies that reported fractional anisotropy (FA) differences between T2DM patients and healthy controls (HC). The anisotropic effect size seed-based d mapping (AES-SDM) approach was used to explore WM alterations in T2DM. A meta-regression was then used to analyze potential influences of sample characteristics on regional FA changes. Results A total of eight studies that comprised 245 patients and 200 HC, along with 52 coordinates were extracted. The meta-analysis identified FA reductions in three clusters including the left inferior network, the corpus callosum (CC), and the left olfactory cortex. Besides, FA in the CC was negatively correlated with body mass index (BMI) in the patients group. Conclusions T2DM could lead to subtle WM microstructural alterations, which might be associated with cognitive deficits or emotional distress symptoms. This provides a better understanding of the pathophysiology of neurodegeneration and complications in T2DM. Systematic Review Registration Registered at PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number: CRD42020218737.
Collapse
Affiliation(s)
- Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China
| | - Jie Li
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, China
| | - Man Dong
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Hao Lin
- School of Mental Health, Jining Medical University, Jining, China
| | - Yuxin Wang
- School of Mental Health, Jining Medical University, Jining, China
| | - Shuting Wang
- School of Mental Health, Jining Medical University, Jining, China
| | - Shuo Gao
- School of Mental Health, Jining Medical University, Jining, China
| | - Ge Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
47
|
Wikgren J, Nokia MS, Mäkinen E, Koch LG, Britton SL, Kainulainen H, Lensu S. Rats with elevated genetic risk for metabolic syndrome exhibit cognitive deficiencies when young. Physiol Behav 2021; 236:113417. [PMID: 33838202 DOI: 10.1016/j.physbeh.2021.113417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 04/05/2021] [Indexed: 01/26/2023]
Abstract
Metabolic syndrome (MetS) is a known risk factor for cognitive decline. Using polygenic rat models selectively bred for high and low intrinsic exercise capacity and simultaneously modelling as low and high innate risk factor for MetS respectively, we have previously shown that adult animals with lower exercise capacity/higher MetS risk perform poorly in tasks requiring flexible cognition. However, it is not known whether these deficits in cognition are present already at young age. Also, it is unclear whether the high risk genome is related also to lower-level cognition, such as sensory gating measured as prepulse inhibition. In this study, young and adult (5-8 weeks and ~9 months) rats selectively bred for 36 generations as High-Capacity Runners (HCR) or Low-Capacity Runners (LCR) were tested for behavior in an open field task, modulation of startle reflex, and spatial learning in a T-maze. HCR rats were more active in the open field than LCR rats independent of age. Responses to the startle stimulus habituated to the same extent in LCR compared to HCR rats when young, but as adults, stronger habituation was seen in the HCR animals. The prepulse inhibition of startle response was equally strong in young HCR and LCR animals but the effect was shorter lasting in HCR animals. In T-maze, adult HCR animals unexpectedly showed attenuated learning, but we interpret this finding to stem from differences in motivation rather than learning ability. Overall, in the LCR rats with the risk genome for poor aerobic fitness and MetS, indications of compromised cognitive function are present already at a young age.
Collapse
Affiliation(s)
- Jan Wikgren
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland.
| | - Miriam S Nokia
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine & Life Sciences, Toledo, OH, 2801 W. Bancroft, Toledo OH 43606-3390, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, 1500 E Medical Center Drive, Ann Arbor, MI 48109-5048, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, 7744 MS II, 1137 E, Catherine St., Ann Arbor, MI 48109-5622, USA
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Sanna Lensu
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
48
|
Variation of HbA1c affects cognition and white matter microstructure in healthy, young adults. Mol Psychiatry 2021; 26:1399-1408. [PMID: 31467393 DOI: 10.1038/s41380-019-0504-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 01/08/2023]
Abstract
The metabolic serum marker HbA1c has been associated with both impaired cognitive performance and altered white matter integrity in patients suffering from diabetes mellitus. However, it remains unclear if higher levels of HbA1c might also affect brain structure and function in healthy subjects. With the present study we therefore aimed to investigate the relationship between HbA1c levels and cognitive performance as well as white matter microstructure in healthy, young adults. To address this question, associations between HbA1c and cognitive measures (NIH Cognition Toolbox) as well as DTI-derived imaging measures of white matter microstructure were investigated in a publicly available sample of healthy, young adults as part of the Humane Connectome Project (n = 1206, mean age = 28.8 years, 45.5% male). We found that HbA1c levels (range 4.1-6.3%) were significantly inversely correlated with measures of cognitive performance. Higher HbA1c levels were associated with significant and widespread reductions in fractional anisotropy (FA) controlling for age, sex, body mass index, ethnicity, and education. FA reductions were furthermore found to covary with measures of cognitive performance. The same pattern of results could be observed in analyses restricted to participants with HBA1c levels below 5.7%. The present study demonstrates that low-grade HbA1c variation below diagnostic threshold for diabetes is related to both cognitive performance and white matter integrity in healthy, young adults. These findings highlight the detrimental impact of metabolic risk factors on brain physiology and underscore the importance of intensified preventive measures independent of the currently applied diagnostic HbA1c cutoff scores.
Collapse
|
49
|
Képes Z, Aranyi C, Forgács A, Nagy F, Kukuts K, Hascsi Z, Esze R, Somodi S, Káplár M, Varga J, Emri M, Garai I. Glucose-level dependent brain hypometabolism in type 2 diabetes mellitus and obesity. Eur J Hybrid Imaging 2021; 5:3. [PMID: 34181137 PMCID: PMC8218076 DOI: 10.1186/s41824-021-00097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic syndrome and its individual components lead to wide-ranging consequences, many of which affect the central nervous system. In this study, we compared the [18F]FDG regional brain metabolic pattern of participants with type 2 diabetes mellitus (T2DM) and non-DM obese individuals. METHODS In our prospective study, 51 patients with controlled T2DM (ages 50.6 ± 8.0 years) and 45 non-DM obese participants (ages 52.0 ± 9.6 years) were enrolled. Glucose levels measured before PET/CT examination (pre-PET glucose) as well as laboratory parameters assessing glucose and lipid status were determined. NeuroQ application (NeuroQTM 3.6, Syntermed, Philips) was used to evaluate regional brain metabolic differences. [18F]FDG PET/CT (AnyScan PC, Mediso) scans, estimating brain metabolism, were transformed to MNI152 brain map after T1 registration and used for SPM-based group comparison of brain metabolism corrected for pre-PET glucose, and correlation analysis with laboratory parameters. RESULTS NeuroQ analysis did not reveal significant regional metabolic defects in either group. Voxel-based group comparison revealed significantly (PFWE<0.05) decreased metabolism in the region of the precuneus and in the right superior frontal gyrus (rSFG) in the diabetic group as compared to the obese patients. Data analysis corrected for pre-PET glucose level showed a hypometabolic difference only in the rSFG in T2DM. Voxel-based correlation analysis showed significant negative correlation of the metabolism in the following brain regions with pre-PET glucose in diabetes: precuneus, left posterior orbital gyrus, right calcarine cortex and right orbital part of inferior frontal gyrus; whilst in the obese group only the right rolandic (pericentral) operculum proved to be sensitive to pre-PET glucose level. CONCLUSIONS To our knowledge, this is the first study to perform pre-PET glucose level corrected comparative analysis of brain metabolism in T2DM and obesity. We also examined the pre-PET glucose level dependency of regional cerebral metabolism in the two groups separately. Large-scale future studies are warranted to perform further correlation analysis with the aim of determining the effects of metabolic disturbances on brain metabolism.
Collapse
Affiliation(s)
- Z. Képes
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - Cs. Aranyi
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - A. Forgács
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| | - F. Nagy
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| | - K. Kukuts
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| | - Zs. Hascsi
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| | - R. Esze
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - S. Somodi
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - M. Káplár
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - J. Varga
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - M. Emri
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - I. Garai
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| |
Collapse
|
50
|
Che Mohd Nassir CMN, Mohamad Ghazali M, Ahmad Safri A, Jaffer U, Abdullah WZ, Idris NS, Muzaimi M. Elevated Circulating Microparticle Subpopulations in Incidental Cerebral White Matter Hyperintensities: A Multimodal Study. Brain Sci 2021; 11:133. [PMID: 33498429 PMCID: PMC7909442 DOI: 10.3390/brainsci11020133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Asymptomatic (or "silent") manifestations of cerebral small vessel disease (CSVD) are widely recognized through incidental findings of white matter hyperintensities (WMHs) as a result of magnetic resonance imaging (MRI). This study aims to examine the potential associations of surrogate markers for the evaluation of white matter integrity in CSVD among asymptomatic individuals through a battery of profiling involving QRISK2 cardiocerebrovascular risk prediction, neuroimaging, neurocognitive evaluation, and microparticles (MPs) titers. Sixty asymptomatic subjects (mean age: 39.83 ± 11.50 years) with low to moderate QRISK2 scores were recruited and underwent neurocognitive evaluation for memory and cognitive performance, peripheral venous blood collection for enumeration of selected MPs subpopulations, and 3T MRI brain scan with specific diffusion MRI (dMRI) sequences inclusive of diffusion tensor imaging (DTI). WMHs were detected in 20 subjects (33%). Older subjects (mean age: 46.00 ± 12.00 years) had higher WMHs prevalence, associated with higher QRISK2 score and reduced processing speed. They also had significantly higher mean percentage of platelet (CD62P)- and leukocyte (CD62L)-derived MPs. No association was found between reduced white matter integrity-especially at the left superior longitudinal fasciculus (LSLF)-with age and neurocognitive function; however, LSLF was associated with higher QRISK2 score, total MPs, and CD62L- and endothelial cell-derived MPs (CD146). Therefore, this study establishes these multimodal associations as potential surrogate markers for "silent" CSVD manifestations in the well-characterized cardiocerebrovascular demographic of relatively young, neurologically asymptomatic adults. Furthermore, to the best of our knowledge, this study is the first to exhibit elevated MP counts in asymptomatic CSVD (i.e., CD62P and CD62L), which warrants further delineation.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
| | - Usman Jaffer
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
| | - Wan Zaidah Abdullah
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Nur Suhaila Idris
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|