1
|
Qi F, Li T, Deng Q, Fan A. The impact of aerobic and anaerobic exercise interventions on the management and outcomes of non-alcoholic fatty liver disease. Physiol Res 2024; 73:671-686. [PMID: 39530904 PMCID: PMC11629946 DOI: 10.33549/physiolres.935244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/25/2024] [Indexed: 12/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder that includes non-alcoholic hepatic steatosis without or with moderate inflammation and non-alcoholic steatohepatitis (NASH), characterized by necroinflammation and a more rapid progression of fibrosis. It is the primary pathological basis for hepatocellular carcinoma. With its prevalence escalating annually, NAFLD has emerged as a global health epidemic, presenting a significant hazard to public health worldwide. Existing studies have shown that physical activity and exercise training have a positive effect on NAFLD. However, the extent to which exercise improves NAFLD depends on the type, intensity, and duration. Therefore, the type of exercise that has the best effect on improving NAFLD remains to be explored. To date, the most valuable discussions involve aerobic and anaerobic exercise. Exercise intervenes in the pathological process of NAFLD by regulating physiological changes in cells through multiple signaling pathways. The review aims to summarize the signaling pathways affected by two different exercise types associated with the onset and progression of NAFLD. It provides a new basis for improving and managing NAFLD in clinical practice.
Collapse
Affiliation(s)
- F Qi
- Chongqing College of International Business and Economics, Southwest University, Chongqing, China, College of Physical Education, Southwest University, Chongqing, China.
| | | | | | | |
Collapse
|
2
|
Mucinski JM, Salvador AF, Moore MP, Fordham TM, Anderson JM, Shryack G, Cunningham RP, Lastra G, Gaballah AH, Diaz-Arias A, Ibdah JA, Rector RS, Parks EJ. Histological improvements following energy restriction and exercise: The role of insulin resistance in resolution of MASH. J Hepatol 2024; 81:781-793. [PMID: 38914313 DOI: 10.1016/j.jhep.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common liver diseases worldwide and is characterized by multi-tissue insulin resistance. The effects of a 10-month energy restriction and exercise intervention on liver histology, anthropometrics, plasma biochemistries, and insulin sensitivity were compared to standard of care (control) to understand mechanisms that support liver health improvements. METHODS Following medical diagnosis of MASH, individuals were randomized to treatment (n = 16) or control (n = 8). Liver fat (magnetic resonance spectroscopy), 18-hour plasma biochemical measurements, and isotopically labeled hyperinsulinemic-euglycemic clamps were completed pre- and post-intervention. Body composition and cardiorespiratory fitness (VO2peak) were also measured mid-intervention. Those in the treatment group were counseled to reduce energy intake and completed supervised, high-intensity interval training (3x/week) for 10 months. Controls continued physician-directed care. RESULTS Treatment induced significant (p <0.05) reductions in body weight, fat mass, and liver injury, while VO2peak (p <0.05) and non-esterified fatty acid suppression (p = 0.06) were improved. Both groups exhibited reductions in total energy intake, hemoglobin A1c, hepatic insulin resistance, and liver fat (p <0.05). Compared to control, treatment induced a two-fold increase in peripheral insulin sensitivity which was significantly related to higher VO2peak and resolution of liver disease. CONCLUSIONS Exercise and energy restriction elicited significant and clinically meaningful treatment effects on liver health, potentially driven by a redistribution of excess nutrients to skeletal muscle, thereby reducing hepatic nutrient toxicity. Clinical guidelines should emphasize the addition of aerobic exercise in lifestyle treatments for the greatest histologic benefit in individuals with advanced MASH. IMPACT AND IMPLICATIONS The mechanisms that underpin histologic improvement in individuals with metabolic dysfunction-associated steatohepatitis (MASH) are not well understood. This study evaluated the relationship between liver and metabolic health, testing how changes in one may affect the other. We investigated the effects of energy restriction and exercise on the association between multi-tissue insulin sensitivity and histologic improvements in participants with biopsy-proven MASH. For the first time, these results show that an improvement in peripheral (but not hepatic) insulin sensitivity and systemic markers of muscle function (i.e. cardiorespiratory fitness) were strongly related to resolution of liver disease. Extrahepatic disposal of substrates and improved fitness levels supported histologic improvement, confirming the addition of exercise as crucial to lifestyle interventions in MASH. CLINICAL TRIAL NUMBER NCT03151798.
Collapse
Affiliation(s)
- Justine M Mucinski
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Amadeo F Salvador
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Mary P Moore
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States
| | - Talyia M Fordham
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Jennifer M Anderson
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Grace Shryack
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; NextGen Precision Health, Columbia, MO 65201, United States
| | - Rory P Cunningham
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States
| | - Guido Lastra
- Endocrinology and Metabolism, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Ayman H Gaballah
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, 65212, United States
| | - Alberto Diaz-Arias
- Boyce & Bynum Pathology Laboratories, Columbia, MO, 65201, United States
| | - Jamal A Ibdah
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States; NextGen Precision Health, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; NextGen Precision Health, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
3
|
Huang M, Yang J, Wang Y, Wu J. Comparative efficacy of different exercise modalities on metabolic profiles and liver functions in non-alcoholic fatty liver disease: a network meta-analysis. Front Physiol 2024; 15:1428723. [PMID: 39376897 PMCID: PMC11457013 DOI: 10.3389/fphys.2024.1428723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Objective Research evidence suggests that exercise is a potent therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Many investigations have delved into the curative potential of diverse exercise regimens on NAFLD. This investigation synthesizes findings from randomized controlled trials via a network meta-analysis to evaluate the efficacy of exercise-based interventions on NAFLD. Methods We conducted a search across five electronic databases (Web of Science, EMBASE, PubMed, SCOPUS, and CNKI)to identify randomized controlled trials (RCTs) comparing the effects of different exercise modalities on metabolic profiles and liver functions in patients with NAFLD. The literature search was comprehensive up to 15, December 2023. The selected studies were subjected to a rigorous quality appraisal and risk of bias analysis in accordance with the Cochrane Handbook's guidelines, version 5.1.0. We employed Stata/MP 17 for the network meta-analysis, presenting effect sizes as standardized mean differences (SMD). Results This study aggregated results from 28 studies, involving a total of 1,606 participants. The network meta-analysis revealed that aerobic exercise was the most effective intervention for improving BMI in patients with NAFLD, demonstrating a significant decrease in BMI (-0.72, 95%CI: -0.98 to -0.46; p < 0.05; Surface Under the Cumulative Ranking (SUCRA) = 79.8%). HIIT was the top intervention for enhancing HDL-C (0.12, 95% CI: 0.04 to 0.20; p < 0.05; SUCRA = 76.1%). Resistance exercise was the most effective for reducing LDL-C (-0.20, 95% CI: -0.33 to -0.06; p < 0.05; SUCRA = 69.7%). Mind-body exercise showed superior effectiveness in improving TC (-0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 89.7%), TG = -0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 99.6%), AST (-8.07, 95% CI: -12.88 to -3.25; p < 0.05; SUCRA = 76.1%), ALT (-12.56, 95% CI: -17.54 to -7.58; p < 0.05; SUCRA = 99.5%), and GGT (-13.77, 95% CI: -22.00 to -5.54; p < 0.05; SUCRA = 81.8%). Conclusion This network meta-analysis demonstrates that exercise interventions positively affect various metabolic profiles and liver functions in NAFLD patients. Mind-body exercises are particularly effective, surpassing other exercise forms in improving metabolic profiles and liver functions. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier registration number CRD42024526332.
Collapse
Affiliation(s)
- Mingming Huang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jiafa Yang
- School of Arts and Sports, Dong-A University, Busan, Republic of Korea
| | - Yihao Wang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jian Wu
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
4
|
Chartrand DJ, Murphy-Després A, Lemieux I, Larose E, Poirier P, Després JP, Alméras N. Effects of 1,144 km of road cycling performed in 7 days: a cardiometabolic imaging study. Am J Physiol Endocrinol Metab 2024; 327:E344-E356. [PMID: 39046280 DOI: 10.1152/ajpendo.00098.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
This cardiometabolic imaging study was designed to document the adaptation of middle-aged recreational cyclists to a large exercise prescription not aiming at weight loss. Eleven middle-aged recreational male cyclists traveled 1,144 km over seven consecutive days. A comprehensive cardiometabolic profile including visceral and ectopic adiposity assessed by magnetic resonance imaging was obtained at baseline and following the exercise week. Cardiorespiratory fitness (CRF) was measured using maximal cardiopulmonary exercise testing. During the week, heart rate was monitored to calculate individual energy expenditure. Baseline characteristics of cyclists were compared with 86 healthy males in the same age range. Cyclists presented higher baseline CRF (+9.2 mL/kg/min, P < 0.0001) and lower subcutaneous (-56.2 mL, P < 0.05) and liver (-3.3%, P < 0.05) fat compared with the reference group. Despite the large energy expenditure during the cycling week, the increase in energy intake limited decreases in body weight (-0.8 ± 0.9 kg, P < 0.05) and body mass index (-0.3 ± 0.3 kg/m2, P < 0.05). Loss of fat mass (-1.5 ± 1.0 kg, P < 0.001) and a trend toward an increased lean mass (+0.8 ± 1.2 kg, P < 0.07) were observed. Visceral adiposity (-14.1 ± 14.2 mL, P < 0.01) and waist circumference (-3.2 ± 1.7 cm, P < 0.0001) decreased, whereas subcutaneous (-2.7 ± 5.1 mL, NS), liver (-0.5 ± 0.9%, NS), and cardiac (-0.3 ± 2.3 mL, NS) fat remained unchanged. This cardiometabolic imaging study documents middle-aged recreational cyclists' subcutaneous and visceral adiposity as well as cardiac and liver fat responses to a large volume of endurance exercise despite an increase in energy intake aimed at limiting weight loss.NEW & NOTEWORTHY Even when being accompanied by a substantial increase in energy intake to compensate energy expenditure and limit weight loss, a large volume of endurance exercise performed within a short period of time is associated with a significant reduction in visceral adiposity. High cardiorespiratory fitness is associated with low levels of liver fat in middle-aged males.
Collapse
Affiliation(s)
- Dominic J Chartrand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Adrien Murphy-Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Isabelle Lemieux
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - Eric Larose
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Paul Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
- Faculty of Pharmacy, Université Laval, Québec, Québec, Canada
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
- VITAM-Centre de recherche en santé durable, CIUSSS de la Capitale-Nationale, Québec, Québec, Canada
| | - Natalie Alméras
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
5
|
Stine JG, Hummer B, Smith N, Tressler H, Heinle JW, VanKirk K, Harris S, Moeller M, Luzier G, DiJoseph K, Hussaini Z, Jackson R, Rodgers B, Schreibman I, Stonesifer E, Tondt J, Sica C, Nighot P, Chinchilli VM, Loomba R, Sciamanna C, Schmitz KH, Kimball SR. AMPED study: Protocol for a randomized controlled trial of different doses of aerobic exercise training. Hepatol Commun 2024; 8:e0464. [PMID: 38896071 PMCID: PMC11186820 DOI: 10.1097/hc9.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 06/21/2024] Open
Abstract
Recently renamed, metabolic dysfunction-associated steatotic liver disease remains a leading cause of chronic liver disease worldwide. Regular physical activity is recommended as a treatment for all with this condition because it is highly efficacious, especially when exercise training is undertaken with a specific goal in mind. Despite decades of research demonstrating exercise's efficacy, key questions remain about the mechanism of benefit and most efficacious dose, as well as the independent impact on liver histology. To answer these questions, we present the design of a 16-week randomized controlled clinical trial of 45 adults aged 18-69 years with metabolic dysfunction-associated steatohepatitis. The primary aim of this study is to better understand the dose required and mechanisms to explain how exercise impacts multiple clinical end points in metabolic dysfunction-associated steatohepatitis. The primary outcome is MRI-measured liver fat. Secondary outcomes include other biomarkers of liver fibroinflammation, liver histology, and mechanistic pathways, as well as cardiometabolic risk and quality of life. This is the first study to compare different doses of exercise training to determine if there is a differential impact on imaging and serum biomarkers as well as liver histology.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Division of Gastroenterology & Hepatology, Department of Mediicne, Fatty Liver Program, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Public Health Sciences, The Pennsylvania State University—College of Medicine, Hershey, Pennsylvania, USA
- Cancer Institute, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Breianna Hummer
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Nataliya Smith
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Heather Tressler
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - J. Westley Heinle
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kyra VanKirk
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Sara Harris
- College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Matthew Moeller
- Department of Medicine, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Gavin Luzier
- Department of Medicine, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kara DiJoseph
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Zeba Hussaini
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ryan Jackson
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Brandon Rodgers
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ian Schreibman
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Elizabeth Stonesifer
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Division of Gastroenterology & Hepatology, Department of Mediicne, Fatty Liver Program, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Justin Tondt
- Division of Gastroenterology & Hepatology, Department of Mediicne, Fatty Liver Program, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Family Medicine, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Chris Sica
- College of Medicine, Center for NMR Research, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Prashant Nighot
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, The Pennsylvania State University—College of Medicine, Hershey, Pennsylvania, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
- NAFLD Research Center, University of California San Diego, San Diego, California, USA
| | - Christopher Sciamanna
- Department of Public Health Sciences, The Pennsylvania State University—College of Medicine, Hershey, Pennsylvania, USA
- Department of Medicine, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kathryn H. Schmitz
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scot R. Kimball
- Department of Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Zhang Y, Cao C, Li C, Witt RG, Huang H, Tsung A, Zhang H. Physical exercise in liver diseases. Hepatology 2024:01515467-990000000-00900. [PMID: 38836646 DOI: 10.1097/hep.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Liver diseases contribute to ~2 million deaths each year and account for 4% of all deaths globally. Despite various treatment options, the management of liver diseases remains challenging. Physical exercise is a promising nonpharmacological approach to maintain and restore homeostasis and effectively prevent and mitigate liver diseases. In this review, we delve into the mechanisms of physical exercise in preventing and treating liver diseases, highlighting its effects on improving insulin sensitivity, regulating lipid homeostasis, and modulating immune function. In addition, we evaluate the impact of physical exercise on various liver diseases, including liver ischemia/reperfusion injury, cardiogenic liver disease, metabolic dysfunction-associated steatotic liver disease, portal hypertension, cirrhosis, and liver cancer. In conclusion, the review underscores the effectiveness of physical exercise as a beneficial intervention in combating liver diseases.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chunyan Cao
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chaofan Li
- Department of Medicine, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Russell G Witt
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Division of Hepatology, Center for Immunology and Inflammation, Departments of Molecular Medicine, Medicine, and Surgery at the School of Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Yuan XM, Xiang MQ, Ping Y, Zhang PW, Liu YT, Liu XW, Wei J, Tang Q, Zhang Y. Beneficial Effects of High-Intensity Interval Training and Dietary Changes Intervention on Hepatic Fat Accumulation in HFD-Induced Obese Rats. Physiol Res 2024; 73:273-284. [PMID: 38710057 PMCID: PMC11081183 DOI: 10.33549/physiolres.935195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2025] Open
Abstract
Lifestyle intervention encompassing nutrition and physical activity are effective strategies to prevent progressive lipid deposition in the liver. This study aimed to explore the effect of dietary change, and/or high-intensity interval training (HIIT) on hepatic lipid accumulation in high fat diet (HFD)-induced obese rats. We divided lean rats into lean control (LC) or HIIT groups (LH), and obese rats into obese normal chow diet (ND) control (ONC) or HIIT groups (ONH) and obese HFD control (OHC) or HIIT groups (OHH). We found that dietary or HIIT intervention significantly decreased body weight and the risk of dyslipidemia, prevented hepatic lipid accumulation. HIIT significantly improved mitochondrial fatty acid oxidation through upregulating mitochondrial enzyme activities, mitochondrial function and AMPK/PPARalpha/CPT1alpha pathway, as well as inhibiting hepatic de novo lipogenesis in obese HFD rats. These findings indicate that dietary alone or HIIT intervention powerfully improve intrahepatic storage of fat in diet induced obese rats. Keywords: Obesity, Exercise, Diet, Mitochondrial function, Lipid deposition.
Collapse
Affiliation(s)
- X-M Yuan
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang C, Yan P, Deng J, Li Y, Jiang X, Zhang B. Exercise, weight maintenance, and nonalcoholic fatty liver disease risk: a Chinese cohort study. Front Physiol 2024; 15:1359476. [PMID: 38595644 PMCID: PMC11002183 DOI: 10.3389/fphys.2024.1359476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Background: Exercise has been reported to be associated with a reduced risk of nonalcoholic fatty liver disease (NAFLD), but there is no consensus on the role of weight changes in this association. This study aims to investigate whether the impact of exercise on NAFLD is mainly dependent on weight changes or is inherent to exercise itself. Methods: The study recruited 1671 Chinese NAFLD-free adults in 2019, and collected their exercise habits as well as 3 years of medical examination data including anthropometric measurements, blood biochemistry parameters, and liver ultrasound results. Univariate and multivariate logistic regression models were employed to examine the impact of exercise habits on NAFLD risk, with mediation analysis utilized to estimate the magnitude of the role of weight maintenance in the association between exercise and NAFLD. Results: After adjusting for confounders, moderate to high-intensity exercisers were 1.56 times (95% CIs = 1.09-2.22) more likely to successfully control their body weight, and therefore the weight-controlled group had a lower NAFLD risk of 34.9% (95% CIs = 21.8%-56.0%) compared to the weight-gain group. Mediation analysis reveals that exercise can significantly reduce the risk of NAFLD both through weight maintenance (37.1%) and independent of weight maintenance (62.9%). Conclusion: It might be more crucial to emphasize the adoption of regular moderate to high-intensity exercise for preventing NAFLD in the general population, rather than solely focusing on weight maintenance.
Collapse
Affiliation(s)
- Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Deng
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yujuan Li
- Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Xue Y, Peng Y, Zhang L, Ba Y, Jin G, Liu G. Effect of different exercise modalities on nonalcoholic fatty liver disease: a systematic review and network meta-analysis. Sci Rep 2024; 14:6212. [PMID: 38485714 PMCID: PMC10940706 DOI: 10.1038/s41598-024-51470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/05/2024] [Indexed: 03/18/2024] Open
Abstract
Physical exercise intervention can significantly improve the liver of patients with Non-alcoholic fatty liver disease (NAFLD), but it is unknown which exercise mode has the best effect on liver improvement in NAFLD patients. Therefore, we systematically evaluated the effect of exercise therapy on liver and blood index function of NAFLD patients through network meta-analysis (NMA). Through systematic retrieval of PubMed, Cochrane Library, Web of Science, EBSCO, and CNKI (National Knowledge Infrastructure), two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies by means of databases from inception to January 2023. The NMA was performed using the inconsistency model. A total of 43 studies, 2070 NAFLD patients were included: aerobic training (n = 779), resistance training (n = 159), high-intensity interval training (n = 160), aerobic training + resistance training (n = 96). The results indicate that aerobic training + resistance training could significantly improve serum total cholesterol (TC) (Surface under the cumulative ranking curve (SUCRA) = 71.7), triglyceride (TG) (SUCRA = 96.8), low-density lipoprotein cholesterol (LDL-C) (SUCRA = 86.1) in patients with NAFLD including triglycerides. Aerobic training is the best mode to improve ALT (SUCRA = 83.9) and high-density lipoprotein cholesterol (HDL-C) (SUCRA = 72.3). Resistance training is the best mode to improve aspartate transaminase (AST) (SUCRA = 81.7). Taking various benefits into account, we believe that the best modality of exercise for NAFLD patients is aerobic training + resistance training. In our current network meta-analysis, these exercise methods have different effects on the six indicators of NAFLD, which provides some reference for further formulating exercise prescription for NAFLD patients.
Collapse
Affiliation(s)
- Yaqi Xue
- Beijing Normal University College of Physical Education and Sport, Beijing, China
| | - Yang Peng
- Physical Education Department, Northeastern University, Shenyang, Liaoning, China
| | | | - Yi Ba
- Beijing Normal University College of Physical Education and Sport, Beijing, China
| | - Gang Jin
- Physical Education Department, Northeastern University, Shenyang, Liaoning, China
| | - Ge Liu
- School of Economics and Management, Hebei University of Architecture, Hebei, China.
| |
Collapse
|
10
|
Bórquez JC, Díaz-Castro F, La Fuente FPD, Espinoza K, Figueroa AM, Martínez-Ruíz I, Hernández V, López-Soldado I, Ventura R, Domingo JC, Bosch M, Fajardo A, Sebastián D, Espinosa A, Pol A, Zorzano A, Cortés V, Hernández-Alvarez MI, Troncoso R. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD. Metabolism 2024; 152:155765. [PMID: 38142958 DOI: 10.1016/j.metabol.2023.155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND AND AIM The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.
Collapse
Affiliation(s)
- Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Pino-de La Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Karla Espinoza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Ana María Figueroa
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile
| | - Inma Martínez-Ruíz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Vanessa Hernández
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain
| | - Iliana López-Soldado
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Raúl Ventura
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Joan Carles Domingo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Sebastián
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, Chile; Department of Medical Technology, Faculty of Medicine, University of Chile, Chile
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile.
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Chile; Obesity-induced Accelerated Aging (ObAGE), Universidad de Chile, Chile.
| |
Collapse
|
11
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Jiang H, Zang L. GLP-1/GLP-1RAs: New Options for the Drug Treatment of NAFLD. Curr Pharm Des 2024; 30:100-114. [PMID: 38532322 DOI: 10.2174/0113816128283153231226103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 03/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a global public health concern. Currently, the cornerstone of NAFLD treatment is lifestyle modification and, if necessary, weight loss. However, compliance is a challenge, and this approach alone may not be sufficient to halt and treat the more serious disease development, so medication is urgently needed. Nevertheless, no medicines are approved to treat NAFLD. Glucagon-like peptide-1 (GLP-1) is an enteropeptide hormone that inhibits glucagon synthesis, promotes insulin secretion, and delays gastric emptying. GLP-1 has been found in recent studies to be beneficial for the management of NAFLD, and the marketed GLP-1 agonist drugs have different degrees of effectiveness for NAFLD while lowering blood glucose. In this article, we review GLP-1 and its physiological roles, the pathogenesis of NAFLD, the correlation between NAFLD and GLP-1 signaling, and potential strategies for GLP-1 treatment of NAFLD.
Collapse
Affiliation(s)
- Haoran Jiang
- Laboratory of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linquan Zang
- Laboratory of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
13
|
Keating SE, Sabag A, Hallsworth K, Hickman IJ, Macdonald GA, Stine JG, George J, Johnson NA. Exercise in the Management of Metabolic-Associated Fatty Liver Disease (MAFLD) in Adults: A Position Statement from Exercise and Sport Science Australia. Sports Med 2023; 53:2347-2371. [PMID: 37695493 PMCID: PMC10687186 DOI: 10.1007/s40279-023-01918-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most prevalent chronic liver disease worldwide, affecting 25% of people globally and up to 80% of people with obesity. MAFLD is characterised by fat accumulation in the liver (hepatic steatosis) with varying degrees of inflammation and fibrosis. MAFLD is strongly linked with cardiometabolic disease and lifestyle-related cancers, in addition to heightened liver-related morbidity and mortality. This position statement examines evidence for exercise in the management of MAFLD and describes the role of the exercise professional in the context of the multi-disciplinary care team. The purpose of these guidelines is to equip the exercise professional with a broad understanding of the pathophysiological underpinnings of MAFLD, how it is diagnosed and managed in clinical practice, and to provide evidence- and consensus-based recommendations for exercise therapy in MAFLD management. The majority of research evidence indicates that 150-240 min per week of at least moderate-intensity aerobic exercise can reduce hepatic steatosis by ~ 2-4% (absolute reduction), but as little as 135 min/week has been shown to be effective. While emerging evidence shows that high-intensity interval training (HIIT) approaches may provide comparable benefit on hepatic steatosis, there does not appear to be an intensity-dependent benefit, as long as the recommended exercise volume is achieved. This dose of exercise is likely to also reduce central adiposity, increase cardiorespiratory fitness and improve cardiometabolic health, irrespective of weight loss. Resistance training should be considered in addition to, and not instead of, aerobic exercise targets. The information in this statement is relevant and appropriate for people living with the condition historically termed non-alcoholic fatty liver disease (NAFLD), regardless of terminology.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Room 534, Bd 26B, St Lucia, Brisbane, QLD, 4067, Australia.
| | - Angelo Sabag
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Kate Hallsworth
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ingrid J Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nathan A Johnson
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Li M, Wang H, Zhang XJ, Cai J, Li H. NAFLD: An Emerging Causal Factor for Cardiovascular Disease. Physiology (Bethesda) 2023; 38:0. [PMID: 37431986 DOI: 10.1152/physiol.00013.2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide that poses a significant threat to human health. Cardiovascular disease (CVD) is the leading cause of mortality in NAFLD patients. NAFLD and CVD share risk factors such as obesity, insulin resistance, and type 2 diabetes. However, whether NAFLD is a causal risk factor for CVD remains a matter of debate. This review summarizes the evidence from prospective clinical and Mendelian randomization studies that underscore the potential causal relationship between NAFLD and CVD. The mechanisms of NAFLD contributing to the development of CVD and the necessity of addressing CVD risk while managing NAFLD in clinical practice are also discussed.
Collapse
Affiliation(s)
- Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongmin Wang
- Department of Rehabilitation Medicine, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Tas E, Landes RD, Diaz EC, Bai S, Ou X, Buchmann R, Na X, Muzumdar R, Børsheim E, Dranoff JA. Effects of short-term supervised exercise training on liver fat in adolescents with obesity: a randomized controlled trial. Obesity (Silver Spring) 2023; 31:2740-2749. [PMID: 37731271 PMCID: PMC11519784 DOI: 10.1002/oby.23887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The objective of this study was to quantify the effects of a 4-week, supervised, high-intensity interval training (HIIT) on intrahepatic triglyceride content (IHTG, percentage), cardiorespiratory fitness (CRF), and cardiometabolic markers in adolescents with obesity. METHODS A total of 40 adolescents (age 13-18 y, BMI 36.7 ± 5.8 kg/m2 ) at risk for metabolic dysfunction-associated steatotic liver disease (MASLD) based on obesity and elevated Fibroscan measured controlled attenuation parameter (CAP) scores were randomized to HIIT three times a week for 4 weeks (n = 34) or observation (control; n = 6). Liver magnetic resonance imaging proton-density fat-fraction (MRI-PDFF), CAP, oral glucose tolerance test, serum alanine aminotransferase, dual-energy x-ray absorptiometry, and CRF tests were performed before and after intervention. Within- and between-group differences were compared. RESULTS A total of 13 (38%) and 4 (66%) children had MASLD by MRI-PDFF (IHTG ≥ 5%) in the HIIT and control groups, respectively. The implemented HIIT protocol had no impact on CRF or IHTG (baseline 5.26%, Δ = -0.31 percentage points, 95% CI: -0.77 to 0.15; p = 0.179), but it decreased the 2-h glucose concentration (baseline 116 mg/dL, Δ = -11 mg/dL; 95% CI: -17.6 to -5.5; p < 0.001). When limiting the analysis to participants with MASLD (n = 17), HIIT decreased IHTG (baseline 8.81%, Δ = -1.05 percentage points, 95% CI: -2.08 to -0.01; p = 0.048). Between-group comparisons were not different. CONCLUSIONS The implemented exercise protocol did not reduce IHTG, but it led to modest improvement in markers of cardiometabolic health.
Collapse
Affiliation(s)
- Emir Tas
- Department of Pediatrics, University of Pittsburgh College of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Endocrinology and Diabetes, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Childhood Obesity Prevention, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Reid D. Landes
- Center for Childhood Obesity Prevention, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Eva C. Diaz
- Center for Childhood Obesity Prevention, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
| | - Shasha Bai
- Center for Childhood Obesity Prevention, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xiawei Ou
- Center for Childhood Obesity Prevention, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert Buchmann
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Xiaoxu Na
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Radhika Muzumdar
- Department of Pediatrics, University of Pittsburgh College of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Endocrinology and Diabetes, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elisabet Børsheim
- Center for Childhood Obesity Prevention, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
| | - Jonathan A. Dranoff
- Center for Childhood Obesity Prevention, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
- VA Connecticut Health Center, West Haven, Connecticut, USA
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Li N, Zhang L, Wang X, Zhou Y, Gong L. Exploring exercise-driven inhibition of pyroptosis: novel insights into treating diabetes mellitus and its complications. Front Endocrinol (Lausanne) 2023; 14:1230646. [PMID: 37859981 PMCID: PMC10582706 DOI: 10.3389/fendo.2023.1230646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetes mellitus (DM) and its complications are important, worldwide public health issues, exerting detrimental effects on human health and diminishing both quality of life and lifespan. Pyroptosis, as a new form of programmed cell death, plays a critical role in DM and its complications. Exercise has been shown to be an effective treatment for improving insulin sensitivity or preventing DM. However, the molecular mechanisms underlying the effects of exercise on pyroptosis-related diseases remain elusive. In this review, we provided a comprehensive elucidation of the molecular mechanisms underlying pyroptosis and the potential mechanism of exercise in the treatment of DM and its complications through the modulation of anti-pyroptosis-associated inflammasome pathways. Based on the existing evidence, further investigation into the mechanisms by which exercise inhibits pyroptosis through the regulation of inflammasome pathways holds promising potential for expanding preventive and therapeutic strategies for DM and facilitating the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Nan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Liang Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Xintang Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
17
|
Barrón-Cabrera E, Soria-Rodríguez R, Amador-Lara F, Martínez-López E. Physical Activity Protocols in Non-Alcoholic Fatty Liver Disease Management: A Systematic Review of Randomized Clinical Trials and Animal Models. Healthcare (Basel) 2023; 11:1992. [PMID: 37510432 PMCID: PMC10379178 DOI: 10.3390/healthcare11141992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with other metabolic disease and cardiovascular disease. Regular exercise reduces hepatic fat content and could be the first-line treatment in the management of NAFLD. This review aims to summarize the current evidence of the beneficial effects of exercise training and identify the molecular pathways involved in the response to exercise to define their role in the resolution of NAFLD both in animal and human studies. According to the inclusion criteria, 43 animal studies and 14 RCTs were included in this systematic review. Several exercise modalities were demonstrated to have a positive effect on liver function. Physical activity showed a strong association with improvement in inflammation, and reduction in steatohepatitis and fibrosis in experimental models. Furthermore, both aerobic and resistance exercise in human studies were demonstrated to reduce liver fat, and to improve insulin resistance and blood lipids, regardless of weight loss, although aerobic exercises may be more effective. Resistance exercise is more feasible for patients with NAFLD with poor cardiorespiratory fitness. More effort and awareness should be dedicated to encouraging NAFLD patients to adopt an active lifestyle and benefit from it its effects in order to reduce this growing public health problem.
Collapse
Affiliation(s)
- Elisa Barrón-Cabrera
- Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico
| | - Raúl Soria-Rodríguez
- Program in Physical Activity and Lifestyle, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Fernando Amador-Lara
- Department of Medical Clinics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular and Genomic Biology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| |
Collapse
|
18
|
Stine JG, DiJoseph K, Pattison Z, Harrington A, Chinchilli VM, Schmitz KH, Loomba R. Exercise Training Is Associated With Treatment Response in Liver Fat Content by Magnetic Resonance Imaging Independent of Clinically Significant Body Weight Loss in Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2023; 118:1204-1213. [PMID: 36705333 PMCID: PMC10287833 DOI: 10.14309/ajg.0000000000002098] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Exercise training is crucial in the management of nonalcoholic fatty liver disease (NAFLD); however, whether it can achieve clinically meaningful improvement in liver fat is unclear. We investigated the association between exercise training and the achievement of validated thresholds of MRI-measured treatment response. METHODS Randomized controlled trials in adults with NAFLD were identified through March 2022. Exercise training was compared with no exercise training. The primary outcome was ≥30% relative reduction in MRI-measured liver fat (threshold required for histologic improvement in nonalcoholic steatohepatitis activity, nonalcoholic steatohepatitis resolution, and liver fibrosis stage). Different exercise doses were compared. RESULTS Fourteen studies (551 subjects) met inclusion criteria (mean age 53.3 yrs; body mass index 31.1 kg/m 2 ). Exercise training subjects were more likely to achieve ≥30% relative reduction in MRI-measured liver fat (odds ratio 3.51, 95% confidence interval 1.49-8.23, P = 0.004) than those in the control condition. An exercise dose of ≥750 metabolic equivalents of task min/wk (e.g., 150 min/wk of brisk walking) resulted in significant treatment response (MRI response odds ratio 3.73, 95% confidence interval 1.34-10.41, P = 0.010), but lesser doses of exercise did not. Treatment response was independent of clinically significant body weight loss (>5%). DISCUSSION Independent of weight loss, exercise training is 3 and a half times more likely to achieve clinically meaningful treatment response in MRI-measured liver fat compared with standard clinical care. An exercise dose of at least 750 metabolic equivalents of task-min/wk seems required to achieve treatment response. These results further support the weight-neutral benefit of exercise in all patients with NAFLD.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Public Health Sciences, The Pennsylvania State University-College of Medicine, Hershey, Pennsylvania, USA
- Liver Center, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Cancer Institute, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kara DiJoseph
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Zach Pattison
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Alex Harrington
- College of Medicine, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, The Pennsylvania State University-College of Medicine, Hershey, Pennsylvania, USA
| | - Kathryn H. Schmitz
- Department of Public Health Sciences, The Pennsylvania State University-College of Medicine, Hershey, Pennsylvania, USA
- Cancer Institute, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Kinesiology, The Pennsylvania State University-College of Health and Human Development, University Park, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
- NAFLD Research Center, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
Rebello CJ, Zhang D, Kirwan JP, Lowe AC, Emerson CJ, Kracht CL, Steib LC, Greenway FL, Johnson WD, Brown JC. Effect of exercise training on insulin-stimulated glucose disposal: a systematic review and meta-analysis of randomized controlled trials. Int J Obes (Lond) 2023; 47:348-357. [PMID: 36828899 PMCID: PMC10148910 DOI: 10.1038/s41366-023-01283-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND AND OBJECTIVE The effect of exercise training on whole-body insulin sensitivity has not been systematically summarized. We aimed to summarize the data from randomized controlled trials evaluating the effect of exercise training on insulin action, in adults. SUBJECTS MEDLINE, EMBASE, and CENTRAL databases were searched until January 2021. Randomized controlled trials lasting ≥4 weeks, including adults, and evaluating the effect of exercise on insulin-stimulated glucose disposal measured using the hyperinsulinemic euglycemic clamp, were included. METHODS Three reviewers extracted summary data from published trials. The primary outcome was insulin-stimulated glucose disposal. Standardized weighted mean differences (SMD) in glucose disposal between intervention and control were compared. The PEDro scale was used to assess risk of bias. RESULTS We included 25 trials (36 interventions, N = 851). Exercise increased insulin-stimulated glucose disposal relative to control, SMD = 0.52 (95% confidence interval [CI]: 0.39, 0.65; p < 0.001; I2 = 47%) without significantly suppressing hepatic glucose production. In trials without isotopic tracers, exercise increased glucose disposal (SMD = 0.63; 95% CI: 0.48, 0.77; p < 0.001, I2 = 55%). In trials with isotopic tracers, exercise increased glucose disposal only when tracers were added to the exogenous glucose used for clamping (SMD = 0.34; 95% CI: 0.03, 0.66, p = 0.034. I2 = 0%). In a meta-regression model including aerobic exercise, weight change, and tracer technique, only percent weight change explained between trial heterogeneity (β = 0.069; 95% CI: 0.005, 0.013). The PEDro rating indicated relatively low risk of bias (5.8 ± 0.22). CONCLUSIONS Exercise training for at least four weeks significantly increases insulin-stimulated glucose disposal. Weight loss maximizes the effect and may be needed to improve hepatic insulin sensitivity. Differences in tracer methodology contribute to divergent outcomes and should be considered when assessing conclusions from research examining the effect of exercise on insulin action. REGISTRATION PROSPERO (CRD42019124381).
Collapse
Affiliation(s)
- Candida J Rebello
- Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | - Dachuan Zhang
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Adam C Lowe
- Interventional Resources, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Carlante J Emerson
- Interventional Resources, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Chelsea L Kracht
- Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Lori C Steib
- Library and Information Center, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Frank L Greenway
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - William D Johnson
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Justin C Brown
- Cancer Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
20
|
Callegari IOM, Rocha GZ, Oliveira AG. Physical exercise, health, and disease treatment: The role of macrophages. Front Physiol 2023; 14:1061353. [PMID: 37179836 PMCID: PMC10166825 DOI: 10.3389/fphys.2023.1061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Subclinical inflammation is linked to comorbidities and risk factors, consolidating the diagnosis of chronic non-communicable diseases, such as insulin resistance, atherosclerosis, hepatic steatosis, and some types of cancer. In this context, the role of macrophages is highlighted as a marker of inflammation as well as for the high power of plasticity of these cells. Macrophages can be activated in a wide range between classical or proinflammatory, named M1, and alternative or anti-inflammatory, also known as M2 polarization. All nuances between M1 and M2 macrophages orchestrate the immune response by secreting different sets of chemokines, while M1 cells promote Th1 response, the M2 macrophages recruit Th2 and Tregs lymphocytes. In turn, physical exercise has been a faithful tool in combating the proinflammatory phenotype of macrophages. This review proposes to investigate the cellular and molecular mechanisms in which physical exercise can help control inflammation and infiltration of macrophages within the non-communicable diseases scope. During obesity progress, proinflammatory macrophages predominate in adipose tissue inflammation, which reduces insulin sensitivity until the development of type 2 diabetes, progression of atherosclerosis, and diagnosis of non-alcoholic fatty liver disease. In this case, physical activity restores the balance between the proinflammatory/anti-inflammatory macrophage ratio, reducing the level of meta-inflammation. In the case of cancer, the tumor microenvironment is compatible with a high level of hypoxia, which contributes to the advancement of the disease. However, exercise increases the level of oxygen supply, favoring macrophage polarization in favor of disease regression.
Collapse
Affiliation(s)
- Irineu O. M. Callegari
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Alexandre G. Oliveira
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
21
|
Goralska J, Razny U, Gruca A, Zdzienicka A, Micek A, Dembinska-Kiec A, Solnica B, Malczewska-Malec M. Plasma Cytokeratin-18 Fragment Level Reflects the Metabolic Phenotype in Obesity. Biomolecules 2023; 13:biom13040675. [PMID: 37189422 DOI: 10.3390/biom13040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
There is growing interest in the non-invasive identification and monitoring of the outcome of liver damage in obese patients. Plasma cytokeratin-18 (CK-18) fragment levels correlate with the magnitude of hepatocyte apoptosis and have recently been proposed to independently predict the presence of non-alcoholic steatohepatitis (NASH). The aim of the study was to analyze the associations of CK-18 with obesity and related complications: insulin resistance, impaired lipid metabolism and the secretion of hepatokines, adipokines and pro-inflammatory cytokines. The study involved 151 overweight and obese patients (BMI 25-40), without diabetes, dyslipidemia or apparent liver disease. Liver function was assessed based on alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and the fatty liver index (FLI). CK-18 M30 plasma levels, FGF-21, FGF-19 and cytokines were determined by ELISA. CK-18 values >150 U/l were accompanied by high ALT, GGT and FLI, insulin resistance, postprandial hypertriglyceridemia, elevated FGF-21 and MCP-1 and decreased adiponectin. ALT activity was the strongest independent factor influencing high CK-18 plasma levels, even after an adjustment for age, sex and BMI [β coefficient (95%CI): 0.40 (0.19-0.61)]. In conclusion, the applied CK-18 cut-off point at 150 U/l allows to distinguish between two metabolic phenotypes in obesity.
Collapse
Affiliation(s)
- Joanna Goralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Anna Gruca
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Anna Zdzienicka
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Agnieszka Micek
- Institute of Nursing and Midwifery, Jagiellonian University Medical College; Michałowskiego 12, 31-126 Krakow, Poland
| | - Aldona Dembinska-Kiec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Malgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| |
Collapse
|
22
|
Guo Z, Li M, Cai J, Gong W, Liu Y, Liu Z. Effect of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Fat Loss and Cardiorespiratory Fitness in the Young and Middle-Aged a Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4741. [PMID: 36981649 PMCID: PMC10048683 DOI: 10.3390/ijerph20064741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES This systematic review is conducted to evaluate the effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on body composition and cardiorespiratory fitness (CRF) in the young and middle-aged. METHODS Seven databases were searched from their inception to 22 October 2022 for studies (randomized controlled trials only) with HIIT and MICT intervention. Meta-analysis was carried out for within-group (pre-intervention vs. post-intervention) and between-group (HIIT vs. MICT) comparisons for change in body mass (BM), body mass index (BMI), waist circumference (WC), percent fat mass (PFM), fat mass (FM), fat-free mass (FFM), and CRF. RESULTS A total of 1738 studies were retrieved from the database, and 29 studies were included in the meta-analysis. Within-group analyses indicated that both HIIT and MICT can bring significant improvement in body composition and CRF, except for FFM. Between-group analyses found that compared to MICT, HIIT brings significant benefits to WC, PFM, and VO2peak. CONCLUSIONS The effect of HIIT on fat loss and CRF in the young and middle-aged is similar to or better than MICT, which might be influenced by age (18-45 years), complications (obesity), duration (>6 weeks), frequency, and HIIT interval. Despite the clinical significance of the improvement being limited, HIIT appears to be more time-saving and enjoyable than MICT.
Collapse
|
23
|
Huang W, Ruan W, Huo C, Lin Y, Wang T, Dai X, Zhai H, Ma J, Zhang J, Lu J, Zhuang J. The effect of 12 weeks of combined training on hepatic fat content and metabolic flexibility of individuals with non-alcoholic fatty liver disease: Protocol of an open-label, single-center randomized control trial. Front Nutr 2023; 9:1065188. [PMID: 36726820 PMCID: PMC9884837 DOI: 10.3389/fnut.2022.1065188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Metabolic flexibility (MetF) is the capacity of an organism to oxidate substrate according to substrate availability or demand. The mismatch of substrate availability and oxidation may cause ectopic fat accumulation in the muscle and the liver. The objectives of the study are to examine the effect of 12 weeks of combined exercise on hepatic fat reduction and investigate metabolites related to MetF before and after the high-fat diet between individuals with NAFLD and healthy control with an active lifestyle. Methods This study is an open-label, single-center trial randomized controlled clinical study plus a cross-sectional comparison between individuals with NAFLD and healthy control. Individuals with NAFLD were allocated into two groups receiving resistance training (RT) combined with high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). Anthropometric indicators, clinical blood markers about glucose, lipid metabolism, and hepatic fat content (HFC) were assessed before and after the intervention. The metabolomics was also used to investigate the discrepant metabolites and mechanisms related to MetF. Discussion Metabolic flexibility reflects the capacity of an organism to switch the oxidation substrates flexibly, which is associated with ectopic fat accumulation. Our study aimed to explore the discrepant metabolites related to MetF before and after a high-fat diet between individuals with NAFLD and healthy control. In addition, the study also examined the effectiveness of RT combined with HIIT or MICT on hepatic fat reduction and quantificationally analyzed the metabolites related to MetF before and after the intervention. Our results provided a perspective on fatty liver-associated metabolic inactivity. Trial registration ClinicalTrials.gov: ChiCTR2200055110; Registered 31 December 2021, http://www.chictr.org.cn/index.aspx.
Collapse
Affiliation(s)
- Wei Huang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weiqi Ruan
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Cuilan Huo
- Department of Endocrinology, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Yanyu Lin
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Tian Wang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiangdi Dai
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Haonan Zhai
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Jiasheng Ma
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
| | - Jingyi Zhang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jin Lu
- Department of Endocrinology, The First Affiliated Hospital of the Naval Medical University, Shanghai, China,*Correspondence: Jin Lu ✉
| | - Jie Zhuang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China,School of Exercise and Health, Shanghai University of Sport, Shanghai, China,Jie Zhuang ✉
| |
Collapse
|
24
|
Willis SA, Malaikah S, Parry S, Bawden S, Ennequin G, Sargeant JA, Yates T, Webb DR, Davies MJ, Stensel DJ, Aithal GP, King JA. The effect of acute and chronic exercise on hepatic lipid composition. Scand J Med Sci Sports 2023; 33:550-568. [PMID: 36610000 DOI: 10.1111/sms.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Exercise is recommended for those with, or at risk of nonalcoholic fatty liver disease (NAFLD), owing to beneficial effects on hepatic steatosis and cardiometabolic risk. Whilst exercise training reduces total intrahepatic lipid in people with NAFLD, accumulating evidence indicates that exercise may also modulate hepatic lipid composition. This metabolic influence is important as the profile of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) dramatically affect the metabolic consequences of hepatic lipid accumulation; with SFA being especially lipotoxic. Relatedly, obesity and NAFLD are associated with hepatic PUFA depletion and elevated SFA. This review summarizes the acute (single bout) and chronic (exercise training) effects of exercise on hepatic lipid composition in rodents (acute studies: n = 3, chronic studies: n = 13) and humans (acute studies: n = 1, chronic studies: n = 3). An increased proportion of hepatic PUFA after acute and chronic exercise is the most consistent finding of this review. Mechanistically, this may relate to an enhanced uptake of adipose-derived PUFA (reflecting habitual diet), particularly in rodents. A relative decrease in the proportion of hepatic MUFA after chronic exercise is also documented repeatedly, particularly in rodent models with elevated hepatic MUFA. This outcome is related to decreased hepatic stearoyl-CoA desaturase-1 activity in some studies. Findings regarding hepatic SFA are less consistent and limited by the absence of metabolic challenge in rodent models. These findings require confirmation in well-controlled interventions in people with NAFLD. These studies will be facilitated by recently validated magnetic resonance spectroscopy techniques, able to precisely quantify hepatic lipid composition in vivo.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Siôn Parry
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Gaël Ennequin
- Laboratory of Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université of Clermont Auvergne, Clermont-Ferrand, France
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David R Webb
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
25
|
Kavyani Z, Dehghan P, Khani M, Khalafi M, Rosenkranz SK. The effects of camelina sativa oil and high-intensity interval training on liver function and metabolic outcomes in male type 2 diabetic rats. Front Nutr 2023; 10:1102862. [PMID: 36937342 PMCID: PMC10014722 DOI: 10.3389/fnut.2023.1102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives The purpose of this study was to evaluate the independent and combined effects of camelina sativa oil and high-intensity interval training (HIIT) on liver function, and metabolic outcomes in streptozotocin-induced diabetic rats. Methods Forty male Wistar rats were randomly assigned to five equal groups (8 per group): Normal control (NC), diabetic control (DC), diabetic + camelina sativa oil (300 mg/kg by oral gavage per day; D + CSO), diabetic + HIIT (running on a treadmill 5 days/week for 8 weeks; D + HIIT), diabetic + camelina sativa oil + HIIT (D + CSO + HIIT). Results In all three intervention groups (D + CSO, D + HIIT, and D + CSO + HIIT) compared to the DC, hepatic TNF-α, MDA, and histopathology markers, decreased and hepatic PGC-1α, and PPAR-γ increased (p < 0.05). However, the effect of D + CSO was greater than D + HIIT alone. Hepatic TG decreased significantly in D + HIIT and D + CSO + HIIT compared to other groups (p < 0.001). Fasting plasma glucose in all three intervention groups (D + CSO, D + HIIT, and D + CSO + HIIT) and HOMA-IR in D + CSO and D + CSO + HIIT were decreased compared to DC (p < 0.001). Only hepatic TAC and fasting plasma insulin remained unaffected in the three diabetic groups (p < 0.001). Overall, D + CSO + HIIT had the largest effect on all outcomes. Conclusions At the doses and treatment duration used in the current study, combination of CSO and HIIT was beneficial for reducing liver function and metabolic outcomes other than CSO and HIIT alone.
Collapse
Affiliation(s)
- Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Nutrition Therapy, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Parvin Dehghan,
| | - Mostafa Khani
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Sara K. Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
26
|
Houttu V, Bouts J, Vali Y, Daams J, Grefhorst A, Nieuwdorp M, Holleboom AG. Does aerobic exercise reduce NASH and liver fibrosis in patients with non-alcoholic fatty liver disease? A systematic literature review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1032164. [PMID: 36407307 PMCID: PMC9669057 DOI: 10.3389/fendo.2022.1032164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background Exercise is an effective strategy for the prevention and regression of hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD), but it is unclear whether it can reduce advanced stages of NAFLD, i.e., steatohepatitis and liver fibrosis. Furthermore, it is not evident which modality of exercise is optimal to improve/attenuate NAFLD. Objectives The aim is to systematically review evidence for the effect of aerobic exercise (AE) on NAFLD, in particular non-alcoholic steatohepatitis (NASH) and liver fibrosis. Methods A systematic literature search was conducted in Medline and Embase. Studies were screened and included according to predefined criteria, data were extracted, and the quality was assessed by Cochrane risk of bias tools by two researchers independently according to the protocol registered in the PROSPERO database (CRD42021270059). Meta-analyses were performed using a bivariate random-effects model when there were at least three randomized intervention studies (RCTs) with similar intervention modalities and outcome. Results The systematic review process resulted in an inclusion a total of 24 studies, 18 RCTs and six non-RCTs, encompassing 1014 patients with NAFLD diagnosed by histological or radiological findings. Studies were grouped based on the type of AE: moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT). A total of twelve meta-analyses were conducted. Compared to controls, MICT resulted in a mean difference (MD) in the NAFLD biomarkers alanine transaminase (ALT) and aspartate aminotransferase (AST) of -3.59 (CI: -5.60, -1.59, p<0.001) and -4.05 (CI: -6.39, -1.71, p<0.001), respectively. HIIT resulted in a MD of -4.31 (95% CI: -9.03, 0.41, p=0.07) and 1.02 (95% CI: -6.91, 8.94, p=0.8) for ALT and AST, respectively. Moreover, both AE types compared to controls showed a significantly lower magnetic resonance spectroscopy (MRS) determined liver fat with a MD of -5.19 (95% CI: -7.33, -3.04, p<0.001) and -3.41 (95% CI: -4.74, -2.08, p<0.001), for MICT and HIIT respectively. MICT compared to controls resulted in a significantly higher cardiorespiratory fitness (MD: 4.43, 95% CI: 0.31, 8.55, p=0.03). Conclusion Liver fat is decreased by AE with a concomitant decrease of liver enzymes. AE improved cardiorespiratory fitness. Further studies are needed to elucidate the impact of different types of AE on hepatic inflammation and fibrosis. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier (CRD42021270059).
Collapse
Affiliation(s)
- Veera Houttu
- Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Julia Bouts
- Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Yasaman Vali
- Department of Epidemiology and Data Science, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Joost Daams
- Medical Library, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is often caused by obesity. Currently, moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) are two effective treatments for reducing fat mass in patients with obesity and NAFLD. However, the comparative fat-reducing effects and underlying molecular mechanisms of MICT and HIIT remain unclear. This comprehensive study was performed on male Wistar rats treated with standard diet, high-fat diet, MICT, and HIIT to explore their comparative fat-reducing effects and corresponding molecular mechanisms. HIIT had a greater effect on hepatic vacuolation density and lipid content reduction than MICT, and triglyceride and total cholesterol levels in the serum and the liver demonstrated different sensitivities to different exercise training programs. At the molecular level, both MICT and HIIT altered the processes of fatty acid synthesis, fatty acid transport, fatty acid β-oxidation, and cholesterol synthesis, wherein the transcriptional and translational levels of signaling molecules peroxisome proliferator-activated receptors (PPARs) regulating fatty acid and cholesterol synthesis were strongly changed. Moreover, the metabolic pathways of amino acids, bile acids, and carbohydrates were also affected according to transcriptome analysis, and the changes in the above-mentioned processes in the HIIT group were greater than those in the MICT group. In combination with the search tool for the retrieval of interacting genes/proteins (STRING) analysis and the role of PPARs in lipid metabolism, as well as the expression pattern of PPARs in the MICT and HIIT groups, the MICT-and HIIT-induced fat loss was mediated by the PPAR pathway, causing feedback responses in fatty acid, steroid, amino acid, bile acid, and carbohydrate metabolism, and HIIT had a better fat-reducing effect, which may be initiated by PPAR-α. This study provides a theoretical basis for targeted therapy of patients with obesity and NAFLD.
Collapse
Affiliation(s)
- Xueyan Gu
- Department of Sports and Nutrition, Kunsan National University, Gunsan, Korea; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaocui Ma
- Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Limin Mo
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| | - Qiyu Wang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| |
Collapse
|
28
|
Stierwalt HD, Morris EM, Maurer A, Apte U, Phillips K, Li T, Meers GME, Koch LG, Britton SL, Graf G, Rector RS, Mercer K, Shankar K, Thyfault JP. Rats with high aerobic capacity display enhanced transcriptional adaptability and upregulation of bile acid metabolism in response to an acute high-fat diet. Physiol Rep 2022; 10:e15405. [PMID: 35923133 PMCID: PMC9350427 DOI: 10.14814/phy2.15405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/09/2023] Open
Abstract
Rats selectively bred for the high intrinsic aerobic capacity runner (HCR) or low aerobic capacity runner (LCR) show pronounced differences in susceptibility for high-fat/high sucrose (HFHS) diet-induced hepatic steatosis and insulin resistance, replicating the protective effect of high aerobic capacity in humans. We have previously shown multiple systemic differences in energy and substrate metabolism that impacts steatosis between HCR and LCR rats. This study aimed to investigate hepatic-specific mechanisms of action via changes in gene transcription. Livers of HCR rats had a greater number of genes that significantly changed in response to 3-day HFHS compared with LCR rats (171 vs. 75 genes: >1.5-fold, p < 0.05). HCR and LCR rats displayed numerous baseline differences in gene expression while on a low-fat control diet (CON). A 3-day HFHS diet resulted in greater expression of genes involved in the conversion of excess acetyl-CoA to cholesterol and bile acid (BA) synthesis compared with the CON diet in HCR, but not LCR rats. These results were associated with higher fecal BA loss and lower serum BA concentrations in HCR rats. Exercise studies in rats and mice also revealed higher hepatic expression of cholesterol and BA synthesis genes. Overall, these results suggest that high aerobic capacity and exercise are associated with upregulated BA synthesis paired with greater fecal excretion of cholesterol and BA, an effect that may play a role in protection against hepatic steatosis in rodents.
Collapse
Affiliation(s)
- Harrison D. Stierwalt
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
- Research ServiceKansas City VA Medical CenterKansas CityMissouriUSA
| | - E. Matthew Morris
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | - Adrianna Maurer
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and TherapeuticsUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | | | - Tiangang Li
- Department of PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Grace M. E. Meers
- Division of Gastroenterology and HepatologyUniversity of MissouriColumbiaMissouriUSA
- Division of Nutrition and Exercise PhysiologyColumbiaMissouriUSA
| | - Lauren G. Koch
- Physiology and PharmacologyThe University of ToledoToledoOhioUSA
| | | | - Greg Graf
- Department of Pharmaceutical SciencesSaha Cardiovascular Research Center, University of KentuckyLexingtonKentuckyUSA
| | - R. Scott Rector
- Division of Gastroenterology and HepatologyUniversity of MissouriColumbiaMissouriUSA
- Division of Nutrition and Exercise PhysiologyColumbiaMissouriUSA
- Research ServiceHarry S Truman Memorial VA HospitalColumbiaMissouriUSA
| | - Kelly Mercer
- Arkansas Children's Nutrition CenterUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Kartik Shankar
- Section of Nutrition, Department of PediatricsUniversity of Colorado School of Medicine Anschutz Medical CampusAuroraColoradoUSA
| | - John P. Thyfault
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
- Research ServiceKansas City VA Medical CenterKansas CityMissouriUSA
| |
Collapse
|
29
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. Although environmental factors are major contributors to early onset, children have both shared and unique genetic risk alleles as compared with adults with NAFLD. Treatment relies on reducing environmental risk factors, but many children have persistent diseases. No medications are approved specifically for the treatment of NAFLD, but some anti-obesity or diabetes treatments may be beneficial. Pediatric NAFLD increases the risk of diabetes and other cardiovascular risk factors. Long-term prospective studies are needed to determine the long-term risk of hepatic and non-hepatic morbidity and mortality in adulthood.
Collapse
Affiliation(s)
- Stavra A Xanthakos
- Professor of Pediatrics, Division of Gastroenterology Hepatology and Nutrition, Cincinnati Children's, Department of Pediatrics, Director, Nonalcoholic Steatohepatitis Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
30
|
Engin B, Willis SA, Malaikah S, Sargeant JA, Yates T, Gray LJ, Aithal GP, Stensel DJ, King JA. The effect of exercise training on adipose tissue insulin sensitivity: A systematic review and meta-analysis. Obes Rev 2022; 23:e13445. [PMID: 35319136 DOI: 10.1111/obr.13445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
This systematic review and meta-analysis determined the impact of exercise training on adipose tissue insulin sensitivity in adults. Its scope extended to studies measuring whole-body and localized subcutaneous adipose tissue insulin sensitivity using validated techniques. Consensus from four studies demonstrates that exercise training improved whole-body adipose tissue insulin sensitivity when measured via stable-isotope lipid tracers (rate of appearance suppression in response to hyperinsulinemia). Meta-analysis of 20 studies (26 intervention arms) employing the adipose tissue insulin resistance index (ADIPO-IR) supported these findings (-10.63 [-14.12 to -7.15] pmol·L-1 × mmol·L-1 ). With ADIPO-IR, this response was greater in studies documenting weight loss and shorter sampling time (≤48 h) post-training. Overall, exercise training did not affect whole-body adipose tissue insulin sensitivity in seven studies (11 intervention arms) measuring the suppression of circulating non-esterified fatty acids in response to insulin infusion (1.51 [-0.12 to 3.14]%); however, subgroup analysis identified an enhanced suppression post-training in trials reporting weight loss. From four microdialysis studies, consensus indicates no effect of exercise training on localized (abdominal/femoral) adipose tissue insulin sensitivity, potentially suggesting that enhanced whole-body responses are related to improvements in central adipose depots. However, heterogeneity within microdialysis protocols dictates that findings must be viewed with caution.
Collapse
Affiliation(s)
- Buket Engin
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.,Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Laura J Gray
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| |
Collapse
|
31
|
Batrakoulis A, Jamurtas AZ, Metsios GS, Perivoliotis K, Liguori G, Feito Y, Riebe D, Thompson WR, Angelopoulos TJ, Krustrup P, Mohr M, Draganidis D, Poulios A, Fatouros IG. Comparative Efficacy of 5 Exercise Types on Cardiometabolic Health in Overweight and Obese Adults: A Systematic Review and Network Meta-Analysis of 81 Randomized Controlled Trials. Circ Cardiovasc Qual Outcomes 2022; 15:e008243. [PMID: 35477256 DOI: 10.1161/circoutcomes.121.008243] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although regular exercise is recommended for preventing and treating overweight/obesity, the most effective exercise type for improving cardiometabolic health in individuals with overweight/obesity remains largely undecided. This network meta-analysis aimed to evaluate and rank the comparative efficacy of 5 exercise modalities on cardiometabolic health measures in individuals with overweight/obesity. METHODS A database search was conducted in MEDLINE, Embase, Scopus, and Web of Science from inception up to September 2020. The review focused on randomized controlled trials involving exercise interventions consisting of continuous endurance training, interval training, resistance training, combined aerobic and resistance training (combined training), and hybrid-type training. Exercise interventions aimed to improve somatometric variables, body composition, lipid metabolism, glucose control, blood pressure, cardiorespiratory fitness, and muscular strength. The Cochrane risk of bias tool was used to evaluate eligible studies. A random-effects network meta-analysis was performed within a frequentist framework. The intervention ranking was carried out using a Bayesian model where mean and SD were equal to the respective frequentist estimates. RESULTS A total of 4331 participants (59% female; mean age: 38.7±12.3 years) from 81 studies were included. Combined training was the most effective modality and hybrid-type training the second most effective in improving cardiometabolic health-related outcomes in these populations suggesting a higher efficacy for multicomponent exercise interventions compared to single-component modalities, that is, continuous endurance training, interval training, and resistance training. A subgroup analysis revealed that the effects from different exercise types were mediated by gender. CONCLUSIONS These findings corroborate the latest guidelines on exercise for individuals with overweight/obesity highlighting the importance of a multicomponent exercise approach to improve cardiometabolic health. Physicians and healthcare professionals should consider prescribing multicomponent exercise interventions to adults with overweight/obesity to maximize clinical outcomes. REGISTRATION URL: https://www.crd.york.ac.uk/PROSPERO/; Unique identifier: CRD42020202647.
Collapse
Affiliation(s)
- Alexios Batrakoulis
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| | - Athanasios Z Jamurtas
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| | - Georgios S Metsios
- Department of Nutrition and Dietetics, University of Thessaly, Trikala, Greece (G.S.M.).,Russells Hall Hospital, Rheumatology, Dudley Group NHS Foundation Trust, Dudley, United Kingdom (G.S.M.).,Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom (G.S.M.)
| | | | - Gary Liguori
- College of Health Sciences, University of Rhode Island, Kingston (G.L., D.R.)
| | - Yuri Feito
- American College of Sports Medicine, Indianapolis, IN (Y.F.)
| | - Deborah Riebe
- College of Health Sciences, University of Rhode Island, Kingston (G.L., D.R.)
| | - Walter R Thompson
- College of Education and Human Development, Georgia State University, Atlanta (W.R.T.)
| | - Theodore J Angelopoulos
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington (T.J.A.)
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics (P.K.), University of Southern Denmark, Odense.,Section of Sport and Health Sciences and Danish Institute for Advanced Study (DIAS) (P.K.), University of Southern Denmark, Odense.,Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, United Kingdom (P.K.)
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics (M.M.), University of Southern Denmark, Odense.,Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn (M.M.)
| | - Dimitrios Draganidis
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| | - Athanasios Poulios
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| | - Ioannis G Fatouros
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| |
Collapse
|
32
|
Liu Y, Li Y, Cheng B, Feng S, Zhu X, Chen W, Zhang H. Comparison of visceral fat lipolysis adaptation to high-intensity interval training in obesity-prone and obesity-resistant rats. Diabetol Metab Syndr 2022; 14:62. [PMID: 35501906 PMCID: PMC9063201 DOI: 10.1186/s13098-022-00834-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/OBJECTIVES Visceral obesity is one of the key features of metabolic syndrome. High-intensity interval training (HIIT) could effectively reduce visceral fat, but its effects show strong heterogeneity in populations with different degrees of obesity. The mechanism may be related to the differential adaptation to training between obesity phenotypes, namely obesity prone (OP) and obesity resistant (OR). The aim of the present study was to compare adaptive changes of visceral adipose lipolysis adaptation to HIIT between OP and OR animals and further explore the upstream pathway. METHODS OP and OR Sprague Dawley rats were established after feeding a high-fat diet for 6 weeks; they were then divided into HIIT (H-OP and H-OR) and control (C-OP and C-OR) groups. After 12 weeks of HIIT or a sedentary lifestyle, animals were fasted for 12 h and then sacrificed for histology as well as gene and protein analysis. Visceral adipocytes were isolated without fasting for catecholamine stimulation and β3-adrenergic receptor (β3-AR) blockade in vitro to evaluate the role of upstream pathways. RESULTS After training, there were no differences in weight loss or food intake between OP and OR rats (P > 0.05). However, the visceral fat mass, adipocyte volume, serum triglycerides and liver lipids of OP rats decreased by more than those of OR rats (P < 0.05). Meanwhile, the cell lipolytic capacity and the increase in the expression of β3-AR were higher in the OP compared with OR groups (P < 0.05). Although training did not increase sympathetic nervous system activity (P > 0.05), the cell sensitivity to catecholamine increased significantly in the OP compared with OR groups (P < 0.05). Following blocking β3-AR, the increased sensitivity disappeared. CONCLUSION With HIIT, OP rats lost more visceral fat than OR rats, which was related to stronger adaptive changes in lipolysis. Increased β3-AR expression mediated this adaptation.
Collapse
Affiliation(s)
- Yang Liu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Measurement and Evaluation in Human Movement and Bio-Information, Hebei Normal University, Shijiazhuang, China
| | - Yu Li
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Baishuo Cheng
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Shige Feng
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiangui Zhu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Wei Chen
- Physical Education College, Hebei Normal University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Measurement and Evaluation in Human Movement and Bio-Information, Hebei Normal University, Shijiazhuang, China
| | - Haifeng Zhang
- Physical Education College, Hebei Normal University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Measurement and Evaluation in Human Movement and Bio-Information, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
33
|
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28:528-562. [PMID: 35569886 DOI: 10.1016/j.eprac.2022.03.010] [Citation(s) in RCA: 444] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the diagnosis and management of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) to endocrinologists, primary care clinicians, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology conducted literature searches for relevant articles published from January 1, 2010, to November 15, 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RECOMMENDATION SUMMARY This guideline includes 34 evidence-based clinical practice recommendations for the diagnosis and management of persons with NAFLD and/or NASH and contains 385 citations that inform the evidence base. CONCLUSION NAFLD is a major public health problem that will only worsen in the future, as it is closely linked to the epidemics of obesity and type 2 diabetes mellitus. Given this link, endocrinologists and primary care physicians are in an ideal position to identify persons at risk on to prevent the development of cirrhosis and comorbidities. While no U.S. Food and Drug Administration-approved medications to treat NAFLD are currently available, management can include lifestyle changes that promote an energy deficit leading to weight loss; consideration of weight loss medications, particularly glucagon-like peptide-1 receptor agonists; and bariatric surgery, for persons who have obesity, as well as some diabetes medications, such as pioglitazone and glucagon-like peptide-1 receptor agonists, for those with type 2 diabetes mellitus and NASH. Management should also promote cardiometabolic health and reduce the increased cardiovascular risk associated with this complex disease.
Collapse
Affiliation(s)
- Kenneth Cusi
- Guideine and Algorithm Task Forces Co-Chair, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida
| | - Scott Isaacs
- Guideline and Algorithm Task Forces Co-Chair, Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia
| | - Diana Barb
- University of Florida, Gainesville, Florida
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sonia Caprio
- Yale University School of Medicine, New Haven, Connecticut
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jeffrey I Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai
| | | | - Karl Nadolsky
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Mary E Rinella
- AASLD Representative, University of Pritzker School of Medicine, Chicago, Illinois
| | - Miriam B Vos
- Center for Clinical and Translational Research, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Zobair Younossi
- AASLD Representative, Inova Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
34
|
Babu AF, Csader S, Männistö V, Tauriainen MM, Pentikäinen H, Savonen K, Klåvus A, Koistinen V, Hanhineva K, Schwab U. Effects of exercise on NAFLD using non-targeted metabolomics in adipose tissue, plasma, urine, and stool. Sci Rep 2022; 12:6485. [PMID: 35444259 PMCID: PMC9019539 DOI: 10.1038/s41598-022-10481-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/01/2022] [Indexed: 02/08/2023] Open
Abstract
The mechanisms by which exercise benefits patients with non-alcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, remain poorly understood. A non-targeted liquid chromatography-mass spectrometry (LC–MS)-based metabolomics analysis was used to identify metabolic changes associated with NAFLD in humans upon exercise intervention (without diet change) across four different sample types—adipose tissue (AT), plasma, urine, and stool. Altogether, 46 subjects with NAFLD participated in this randomized controlled intervention study. The intervention group (n = 21) performed high-intensity interval training (HIIT) for 12 weeks while the control group (n = 25) kept their sedentary lifestyle. The participants' clinical parameters and metabolic profiles were compared between baseline and endpoint. HIIT significantly decreased fasting plasma glucose concentration (p = 0.027) and waist circumference (p = 0.028); and increased maximum oxygen consumption rate and maximum achieved workload (p < 0.001). HIIT resulted in sample-type-specific metabolite changes, including accumulation of amino acids and their derivatives in AT and plasma, while decreasing in urine and stool. Moreover, many of the metabolite level changes especially in the AT were correlated with the clinical parameters monitored during the intervention. In addition, certain lipids increased in plasma and decreased in the stool. Glyco-conjugated bile acids decreased in AT and urine. The 12-week HIIT exercise intervention has beneficial ameliorating effects in NAFLD subjects on a whole-body level, even without dietary changes and weight loss. The metabolomics analysis applied to the four different sample matrices provided an overall view on several metabolic pathways that had tissue-type specific changes after HIIT intervention in subjects with NAFLD. The results highlight especially the role of AT in responding to the HIIT challenge, and suggest that altered amino acid metabolism in AT might play a critical role in e.g. improving fasting plasma glucose concentration. Trial registration ClinicalTrials.gov (NCT03995056).
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland
| | - Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anton Klåvus
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland
| | - Ville Koistinen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland.,Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014, Turku, Finland
| | - Kati Hanhineva
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland.,Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014, Turku, Finland
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland. .,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
35
|
Choi HI, Lee MY, Kim H, Oh BK, Lee SJ, Kang JG, Lee SH, Kim BJ, Kim BS, Kang JH, Lee JY, Sung KC. Effect of physical activity on the development and the resolution of nonalcoholic fatty liver in relation to body mass index. BMC Public Health 2022; 22:655. [PMID: 35382785 PMCID: PMC8985384 DOI: 10.1186/s12889-022-13128-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/31/2022] [Indexed: 12/31/2022] Open
Abstract
Background Data on whether physical activity (PA) levels are related to nonalcoholic fatty liver disease (NAFLD) when considering body mass index (BMI) are scarce. We assessed whether PA affects the development or resolution of NAFLD in conjunction with BMI changes. Methods Overall, 130,144 participants who underwent health screening during 2011–2016 were enrolled. According to the PA level in the Korean version of the validated International PA Questionnaire Short Form, participants were classified into the inactive, active, and health-enhancing PA (HEPA) groups. Results In participants with increased BMI, the hazard ratio (HR) and 95% confidence interval after multivariable Cox hazard model for incident NAFLD was 0.97 (0.94–1.01) in the active group and 0.94 (0.89–0.99) in the HEPA group, whereas that for NAFLD resolution was 1.03 (0.92–1.16) and 1.04 (0.88–1.23) (reference: inactive group). With increased BMI, high PA affected only new incident NAFLD. PA enhancement or maintenance of sufficient PA prevented new incident NAFLD. In participants with decreased BMI, the HRs were 0.98 (0.90–1.07) and 0.88 (0.78–0.99) for incident NAFLD and 1.07 (0.98–1.17) and 1.33 (1.18–1.49) for NAFLD resolution in the active and HEPA groups, respectively. With decreased BMI, high PA reduced incident NAFLD and increased NAFLD resolution. Maintenance of sufficient PA led to a considerable resolution of NAFLD. Conclusion In this large longitudinal study, PA prevented incident NAFLD regardless of BMI changes. For NAFLD resolution, sufficient PA was essential along with BMI decrease. Maintaining sufficient PA or increasing the PA level is crucial for NAFLD prevention or resolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13128-6.
Collapse
Affiliation(s)
- Hyo-In Choi
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyunah Kim
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Byeong Kil Oh
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Seung Jae Lee
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Jeong Gyu Kang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Ho Lee
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Byung Jin Kim
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Bum Soo Kim
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Jin Ho Kang
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Jong-Young Lee
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea.
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| |
Collapse
|
36
|
Ghiasi S, Bashiri J, Pourrazi H, Jadidi RP. The effect of high-intensity interval training and CoQ10 administration on hepatic CEACAM1 and PDGFA proteins in diet-induced obese rats. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Association between Physical Activity and Non-Alcoholic Fatty Liver Disease in Adults with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022; 14:nu14051063. [PMID: 35268038 PMCID: PMC8912862 DOI: 10.3390/nu14051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Background: A lifestyle with regular PA (physical activity) and Mediterranean diet has benefits on NAFLD (non-alcoholic fatty liver disease) and MetS (metabolic syndrome). Objectives: To assess the association between physical activity and NAFLD in adults with MetS. Design: Cross-sectional study in 155 participants (40−60 years old) from Balearic Islands and Navarra (Spain) with diagnosis of NAFLD and MetS, and BMI (body mass index) between 27 and 40 Kg/m2. Methods: PA level was categorized into two groups according to weekly METs (metabolic equivalents of tasks). PA was assessed using a validated Minnesota questionnaire and accelerometers. MetS parameters were assessed by blood collection analysis and NAFLD by abdominal MRI (magnetic resonance imaging). Results: Participants with high PA showed more energy expenditure and expended more calories than ingested (−143.9 Kcal/day; p < 0.001). PA was a risk factor for AST (aspartate aminotransferase) (adjusted OR: 7.26; 95% CI: 1.79−29.40) and a protective factor for ALT (alanine aminotransferase) (adjusted OR: 0.24; 95% CI: 0.12−0.48), GGT (gamma-glutamyl transferase) (adjusted OR: 0.52; 95% CI: 0.29−0.94) and IFC-NMR (intrahepatic fat content by nuclear magnetic resonance) (adjusted OR: 0.26; 95% CI: 0.12−0.56) when sociodemographic confounders were considered. Conclusions: NAFLD patients with high PA showed more positive relationship on MetS parameters and liver profile (ALT, GGT, IFC-NMR) than subjects with low PA, but not for AST. Difference between calories ingested and expended influenced this relationship.
Collapse
|
38
|
Sabag A, Barr L, Armour M, Armstrong A, Baker CJ, Twigg SM, Chang D, Hackett DA, Keating SE, George J, Johnson NA. The Effect of High-intensity Interval Training vs Moderate-intensity Continuous Training on Liver Fat: A Systematic Review and Meta-Analysis. J Clin Endocrinol Metab 2022; 107:862-881. [PMID: 34724062 DOI: 10.1210/clinem/dgab795] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Non-alcoholic fatty liver disease, characterized by excess fat accumulation in the liver, is considered the hepatic manifestation of metabolic syndrome. Recent findings have shown that high-intensity interval training (HIIT) can reduce liver fat but it is unclear whether this form of exercise is superior to traditional moderate-intensity continuous training (MICT). OBJECTIVE The aim of this systematic review was to determine the effect of HIIT vs MICT on liver fat in adults. A secondary aim was to investigate the interaction between total weekly exercise volume and exercise-related energy expenditure and change in liver fat. METHODS Relevant databases were searched up to December 2020 for randomized trials, comparing HIIT to control, MICT to control, or HIIT to MICT. Studies were excluded if they did not implement 2 or more weeks' intervention or assess liver fat using magnetic resonance-based techniques. Weighted mean differences and 95% CIs were calculated. Regression analyses were undertaken to determine the interaction between weekly exercise volume in minutes and kilocalories (kcal) with change in liver fat content. RESULTS Of the 28 268 studies screened, 19 were included involving 745 participants. HIIT and MICT both elicited moderate reductions in liver fat content when compared to control (HIIT: -2.85%, 95% CI, -4.86 to -0.84, P = .005, I2 = 0%, n = 114, low-certainty evidence; MICT: -3.14%, 95% CI, -4.45 to -1.82, P < .001, I2 = 5.2%, n = 533, moderate-certainty evidence). There was no difference between HIIT and MICT (-0.34%, 95% CI, -2.20 to 1.52, P = .721, I2 = 0%, n = 177, moderate-certainty evidence). Neither total exercise volume in minutes (β = .0002, SE = 0.0017, Z = 0.13, P = .89) nor exercise-related energy expenditure in kcal (β = .0003, SE = 0.0002, Z = 1.21, P = .23) were related to changes in liver fat content. CONCLUSION HIIT elicits comparable improvements in liver fat to MICT despite often requiring less energy and time commitment. Further studies should be undertaken to assess the relative importance of aerobic exercise prescription variables, such as intensity, on liver fat.
Collapse
Affiliation(s)
- Angelo Sabag
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales 2145, Australia
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales 2560, Australia
| | - Loren Barr
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales 2560, Australia
| | - Mike Armour
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales 2145, Australia
- Medical Research Institute of New Zealand (MRINZ), Newtown, Wellington 6021, New Zealand
| | - Alex Armstrong
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Callum J Baker
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2006Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2006Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales 2145, Australia
| | - Daniel A Hackett
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Shelley E Keating
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research and Westmead Hospital, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Nathan A Johnson
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
39
|
Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. LIVERS 2022; 2:30-76. [DOI: 10.3390/livers2010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Eleonora Croce
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Davide Di Benedetto
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
40
|
Moore TM, Terrazas A, Strumwasser AR, Lin AJ, Zhu X, Anand ATS, Nguyen CQ, Stiles L, Norheim F, Lang JM, Hui ST, Turcotte LP, Zhou Z. Effect of voluntary exercise upon the metabolic syndrome and gut microbiome composition in mice. Physiol Rep 2021; 9:e15068. [PMID: 34755487 PMCID: PMC8578881 DOI: 10.14814/phy2.15068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.
Collapse
Affiliation(s)
- Timothy M. Moore
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony Terrazas
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Xiaopeng Zhu
- Division of Pediatric EndocrinologyDepartment of Pediatrics UCLA Children's Discovery and Innovation InstituteDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of Endocrinology and Metabolism. Zhongshan HospitalFudan UniversityShanghaiP.R.China
| | - Akshay T. S. Anand
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Frode Norheim
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of NutritionFaculty of MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jennifer M. Lang
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Simon T. Hui
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
41
|
Johnson NA, Sultana RN, Brown WJ, Bauman AE, Gill T. Physical activity in the management of obesity in adults: A position statement from Exercise and Sport Science Australia. J Sci Med Sport 2021; 24:1245-1254. [PMID: 34531124 DOI: 10.1016/j.jsams.2021.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
This Position Statement examines the evidence for physical activity in weight and adiposity loss, prevention of weight and adiposity gain, and in weight regain in adults, and provides guidance on implications for exercise practitioners. Research evidence indicates that >150 min but preferably 300 min per week of aerobic activity of at least moderate intensity is required to prevent weight and adiposity gain, and at least the upper end of this range of activity to prevent weight regain after weight loss. For meaningful weight and total adiposity loss, a minimum of 300-420 min per week of aerobic activity of at least moderate intensity is required. The evidence around the volume of aerobic physical activity required to reduce central adiposity is emerging, and research suggests that it may be substantially less than that required for weight loss. The impact of high-intensity physical activity and resistance exercise for weight management is uncertain. During consultations for weight management, exercise practitioners should advise that metabolic and cardiovascular health benefits can be achieved with physical activity at any weight, and irrespective of weight change.
Collapse
Affiliation(s)
- Nathan A Johnson
- Discipline of Exercise and Sport Science, Sydney School of Health Sciences, Sydney University, Australia; Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Sydney University, Australia.
| | - Rachelle N Sultana
- Discipline of Exercise and Sport Science, Sydney School of Health Sciences, Sydney University, Australia; Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Sydney University, Australia
| | - Wendy J Brown
- School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Adrian E Bauman
- Prevention Research Collaboration, School of Public Health, Sydney University, Australia
| | - Tim Gill
- Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Sydney University, Australia
| |
Collapse
|
42
|
Babu AF, Csader S, Lok J, Gómez-Gallego C, Hanhineva K, El-Nezami H, Schwab U. Positive Effects of Exercise Intervention without Weight Loss and Dietary Changes in NAFLD-Related Clinical Parameters: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13093135. [PMID: 34579012 PMCID: PMC8466505 DOI: 10.3390/nu13093135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022] Open
Abstract
One of the focuses of non-alcoholic fatty liver disease (NAFLD) treatment is exercise. Randomized controlled trials investigating the effects of exercise without dietary changes on NAFLD-related clinical parameters (liver parameters, lipid metabolism, glucose metabolism, gut microbiota, and metabolites) were screened using the PubMed, Scopus, Web of Science, and Cochrane databases on 13 February 2020. Meta-analyses were performed on 10 studies with 316 individuals who had NAFLD across three exercise regimens: aerobic exercise, resistance training, and a combination of both. No studies investigating the role of gut microbiota and exercise in NAFLD were found. A quality assessment via the (RoB)2 tool was conducted and potential publication bias, statistical outliers, and influential cases were identified. Overall, exercise without significant weight loss significantly reduced the intrahepatic lipid (IHL) content (SMD: −0.76, 95% CI: −1.04, −0.48) and concentrations of alanine aminotransaminase (ALT) (SMD: −0.52, 95% CI: −0.90, −0.14), aspartate aminotransaminase (AST) (SMD: −0.68, 95% CI: −1.21, −0.15), low-density lipoprotein cholesterol (SMD: −0.34, 95% CI: −0.66, −0.02), and triglycerides (TG) (SMD: −0.59, 95% CI: −1.16, −0.02). The concentrations of high-density lipoprotein cholesterol, total cholesterol (TC), fasting glucose, fasting insulin, and glycated hemoglobin were non-significantly altered. Aerobic exercise alone significantly reduced IHL, ALT, and AST; resistance training alone significantly reduced TC and TG; a combination of both exercise types significantly reduced IHL. To conclude, exercise overall likely had a beneficial effect on alleviating NAFLD without significant weight loss. The study was registered at PROSPERO: CRD42020221168 and funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 813781.
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland
| | - Susanne Csader
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland
- Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20500 Turku, Finland
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: ; Tel.: +358-403552791
| |
Collapse
|
43
|
Mattioni Maturana F, Soares RN, Murias JM, Schellhorn P, Erz G, Burgstahler C, Widmann M, Munz B, Thiel A, Nieß AM. Responders and non-responders to aerobic exercise training: beyond the evaluation of V˙O2max. Physiol Rep 2021; 9:e14951. [PMID: 34409753 PMCID: PMC8374384 DOI: 10.14814/phy2.14951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023] Open
Abstract
The evaluation of the maximal oxygen uptake ( V ˙ O 2 max ) following exercise training is the classical assessment of training effectiveness. Research has lacked in investigating whether individuals that do not respond to the training intervention ( V ˙ O 2 max ), also do not improve in other health-related parameters. We aimed to investigate the cardiovascular and metabolic adaptations (i.e., performance, body composition, blood pressure, vascular function, fasting blood markers, and resting cardiac function and morphology) to exercise training among participants who showed different levels of V ˙ O 2 max responsiveness. Healthy sedentary participants engaged in a 6-week exercise training program, three times a week. Our results showed that responders had a greater increase in peak power output, second lactate threshold, and microvascular responsiveness, whereas non-responders had a greater increase in cycling efficiency. No statistical differences were observed in body composition, blood pressure, fasting blood parameters, and resting cardiac adaptations. In conclusion, our study showed, for the first time, that in addition to the differences in the V ˙ O 2 max , a greater increase in microvascular responsiveness in responders compared to non-responders was observed. Additionally, responders and non-responders did not show differences in the adaptations on metabolic parameters. There is an increasing need for personalized training prescription, depending on the target clinical outcome.
Collapse
Affiliation(s)
- Felipe Mattioni Maturana
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| | | | - Juan M. Murias
- Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
| | - Philipp Schellhorn
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
| | - Gunnar Erz
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
| | | | - Manuel Widmann
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| | - Barbara Munz
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| | - Ansgar Thiel
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
- Institute of Sports ScienceEberhard Karls University TübingenTübingenGermany
| | - Andreas M. Nieß
- Sports Medicine DepartmentUniversity Hospital of TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| |
Collapse
|
44
|
Battista F, Ermolao A, van Baak MA, Beaulieu K, Blundell JE, Busetto L, Carraça EV, Encantado J, Dicker D, Farpour-Lambert N, Pramono A, Bellicha A, Oppert JM. Effect of exercise on cardiometabolic health of adults with overweight or obesity: Focus on blood pressure, insulin resistance, and intrahepatic fat-A systematic review and meta-analysis. Obes Rev 2021; 22 Suppl 4:e13269. [PMID: 33960110 PMCID: PMC8365642 DOI: 10.1111/obr.13269] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
This systematic review examined the impact of exercise intervention programs on selected cardiometabolic health indicators in adults with overweight or obesity. Three electronic databases were explored for randomized controlled trials (RCTs) that included adults with overweight or obesity and provided exercise-training interventions. Effects on blood pressure, insulin resistance (homeostasis model of insulin resistance, HOMA-IR), and magnetic resonance measures of intrahepatic fat in exercise versus control groups were analyzed using random effects meta-analyses. Fifty-four articles matched inclusion criteria. Exercise training reduced systolic and diastolic blood pressure (mean difference, MD = -2.95 mmHg [95% CI -4.22, -1.68], p < 0.00001, I2 = 63% and MD = -1.93 mmHg [95% CI -2.73, -1.13], p < 0.00001, I2 = 54%, 60 and 58 study arms, respectively). Systolic and diastolic blood pressure decreased also when considering only subjects with hypertension. Exercise training significantly decreased HOMA-IR (standardized mean difference, SMD = -0.34 [-0.49, -0.18], p < 0.0001, I2 = 48%, 37 study arms), with higher effect size in subgroup of patients with type 2 diabetes (SMD = -0.50 [95% CI: -0.83, -0.17], p = 0.003, I2 = 39%). Intrahepatic fat decreased significantly after exercise interventions (SMD = -0.59 [95% CI: -0.78, -0.41], p < 0.00001, I2 = 0%), with a larger effect size after high-intensity interval training. In conclusion, exercise training is effective in improving cardiometabolic health in adults with overweight or obesity also when living with comorbitidies.
Collapse
Affiliation(s)
- Francesca Battista
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padua, Italy
| | - Andrea Ermolao
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padua, Italy
| | - Marleen A van Baak
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Kristine Beaulieu
- Appetite Control and Energy Balance Research Group (ACEB), School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - John E Blundell
- Appetite Control and Energy Balance Research Group (ACEB), School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Luca Busetto
- Obesity Management Task Force (OMTF), European Association for the Study of obesity (EASO).,Department of Medicine, University of Padova, Padua, Italy
| | - Eliana V Carraça
- Faculdade de Educação Física e Desporto, CIDEFES, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Jorge Encantado
- APPsyCI - Applied Psychology Research Center Capabilities & Inclusion, ISPA - University Institute, Lisbon, Portugal
| | - Dror Dicker
- Obesity Management Task Force (OMTF), European Association for the Study of obesity (EASO).,Department of Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nathalie Farpour-Lambert
- Obesity Management Task Force (OMTF), European Association for the Study of obesity (EASO).,Obesity Prevention and Care Program Contrepoids, Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Adriyan Pramono
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Alice Bellicha
- INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Sorbonne University, Paris, France.,UFR SESS-STAPS, University Paris-Est Créteil, Créteil, France
| | - Jean-Michel Oppert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière hospital, Department of Nutrition, Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| |
Collapse
|
45
|
Fredrickson G, Barrow F, Dietsche K, Parthiban P, Khan S, Robert S, Demirchian M, Rhoades H, Wang H, Adeyi O, Revelo XS. Exercise of high intensity ameliorates hepatic inflammation and the progression of NASH. Mol Metab 2021; 53:101270. [PMID: 34118476 PMCID: PMC8255932 DOI: 10.1016/j.molmet.2021.101270] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology ranging from simple fatty liver to non-alcoholic steatohepatitis (NASH). Notably, immune cell-driven inflammation is a key mechanism in the transition from fatty liver to the more serious NASH. Although exercise training is effective in ameliorating obesity-related diseases, the underlying mechanisms of the beneficial effects of exercise remain unclear. It is unknown whether there is an optimal modality and intensity of exercise to treat NAFLD. The objective of this study was to determine whether high-intensity interval training (HIIT) or moderate-intensity continuous training (MIT) is more effective at ameliorating the progression of NASH. Methods Wild-type mice were fed a high-fat, high-carbohydrate (HFHC) diet for 6 weeks and left sedentary (SED) or assigned to either an MIT or HIIT regimen using treadmill running for an additional 16 weeks. MIT and HIIT groups were pair-fed to ensure that energy intake was similar between the exercise cohorts. To determine changes in whole-body metabolism, we performed insulin and glucose tolerance tests, indirect calorimetry, and magnetic resonance imaging. NASH progression was determined by triglyceride accumulation, expression of inflammatory genes, and histological assessment of fibrosis. Immune cell populations in the liver were characterized by cytometry by time-of-flight mass spectrometry, and progenitor populations within the bone marrow were assessed by flow cytometry. Finally, we analyzed the transcriptional profile of the liver by bulk RNA sequencing. Results Compared with SED mice, both HIIT and MIT suppressed weight gain, improved whole-body metabolic parameters, and ameliorated the progression of NASH by reducing hepatic triglyceride levels, inflammation, and fibrosis. However, HIIT was superior to MIT at reducing adiposity, improving whole-body glucose tolerance, and ameliorating liver steatosis, inflammation, and fibrosis, without any changes in body weight. Improved NASH progression in HIIT mice was accompanied by a substantial decrease in the frequency of pro-inflammatory infiltrating, monocyte-derived macrophages in the liver and reduced myeloid progenitor populations in the bone marrow. Notably, an acute bout of MIT or HIIT exercise had no effect on the intrahepatic and splenic immune cell populations. In addition, bulk mRNA sequencing of the entire liver tissue showed a pattern of gene expression confirming that HIIT was more effective than MIT in improving liver inflammation and lipid biosynthesis. Conclusions Our data suggest that exercise lessens hepatic inflammation during NASH by reducing the accumulation of hepatic monocyte-derived inflammatory macrophages and bone marrow precursor cells. Our findings also indicate that HIIT is superior to MIT in ameliorating the disease in a dietary mouse model of NASH. High-intensity is more effective than moderate-intensity exercise at reducing NASH. High-intensity exercise lowers the infiltration of inflammatory macrophages in the liver. Reduced macrophage accumulation was associated with lower progenitor cells.
Collapse
Affiliation(s)
- Gavin Fredrickson
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fanta Barrow
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katrina Dietsche
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Preethy Parthiban
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sacha Robert
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maya Demirchian
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hailey Rhoades
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haiguang Wang
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Oyedele Adeyi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xavier S Revelo
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
46
|
Maier S, Wieland A, Cree-Green M, Nadeau K, Sullivan S, Lanaspa MA, Johnson RJ, Jensen T. Lean NAFLD: an underrecognized and challenging disorder in medicine. Rev Endocr Metab Disord 2021; 22:351-366. [PMID: 33389543 PMCID: PMC8893229 DOI: 10.1007/s11154-020-09621-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Classically, Non-Alcoholic Fatty Liver Disease (NAFLD) has been thought to be driven by excessive weight gain and obesity. The overall greater awareness of this disorder has led to its recognition in patients with normal body mass index (BMI). Ongoing research has helped to better understand potential causes of Lean NAFLD, the risks for more advanced disease, and potential therapies. Here we review the recent literature on prevalence, risk factors, severity of disease, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sheila Maier
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Wieland
- Division of Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Melanie Cree-Green
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen Nadeau
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shelby Sullivan
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Jensen
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA.
- Division of Endocrinology, University of Colorado, Denver, Denver, CO, USA.
| |
Collapse
|
47
|
Effect of exercise intervention dosage on reducing visceral adipose tissue: a systematic review and network meta-analysis of randomized controlled trials. Int J Obes (Lond) 2021; 45:982-997. [PMID: 33558643 DOI: 10.1038/s41366-021-00767-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/03/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Visceral adipose tissue (VAT) are deleterious fat deposits in the human body and can be effectively reduced by exercise intervention. Despite well-established exercise prescriptions are available, the effective dosage of exercise for reducing VAT requires verification. OBJECTIVES The aims of this systematic review and meta-analysis were to determine the most effective exercise dosage (modality, intensity, duration, and amount) for decreasing VAT. METHODS Nine databases (EMBASE, Medline, Cochrane Central Register of Controlled Trial, PubMed, CINAHL, Scopus, Web of Science, Airiti Library, and PerioPath) were systematically searched for randomized controlled trials that objectively assessed VAT. The arms of included studies covered with different exercise modalities and dosage. Relevant databases were searched through February 2020. RESULTS Of the 34 studies (n = 1962) included in systematic review, 32 (n = 1900) were pooled for pairwise or network meta-analysis. The results indicated that high-intensity interval training (SMD -0.39, 95% CI -0.60 to -0.18) and aerobic exercise (SMD -0.26, 95% CI -0.38 to -0.13) of at least moderate intensity were beneficial for reducing VAT. By contrast, resistance exercise, aerobic exercise combined with resistance exercise, and sprint interval training had no significant effects. No difference in VAT reduction was observed between exercising more or less than 150 min per week. Meta-regression revealed that the effect of VAT reduction was not significantly influenced by an increase in the duration of or amount of exercise in an exercise program. The effective dosage of exercise for reducing VAT was three times per week for 12 to 16 weeks, while duration per session for aerobic exercise was 30-60 min, and either less than 30 min or 30-60 min of high-intensity interval training accomplished sufficient energy expenditure to impact VAT. CONCLUSIONS These results can inform exercise prescriptions given to the general population for improving health by reducing VAT.
Collapse
|
48
|
Su H, Liu D, Shao J, Li Y, Wang X, Gao Q. Aging Liver: Can Exercise be a Better Way to Delay the Process than Nutritional and Pharmacological Intervention? Focus on Lipid Metabolism. Curr Pharm Des 2021; 26:4982-4991. [PMID: 32503400 DOI: 10.2174/1381612826666200605111232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nowadays, the world is facing a common problem that the population aging process is accelerating. How to delay metabolic disorders in middle-aged and elderly people, has become a hot scientific and social issue worthy of attention. The liver plays an important role in lipid metabolism, and abnormal lipid metabolism may lead to liver diseases. Exercise is an easily controlled and implemented intervention, which has attracted extensive attention in improving the health of liver lipid metabolism in the elderly. This article reviewed the body aging process, changes of lipid metabolism in the aging liver, and the mechanism and effects of different interventions on lipid metabolism in the aging liver, especially focusing on exercise intervention. METHODS A literature search was performed using PubMed-NCBI, EBSCO Host and Web of Science, and also a report from WHO. In total, 143 studies were included from 1986 to 15 February 2020. CONCLUSION Nutritional and pharmacological interventions can improve liver disorders, and nutritional interventions are less risky relatively. Exercise intervention can prevent and improve age-related liver disease, especially the best high-intensity interval training intensity and duration is expected to be one of the research directions in the future.
Collapse
Affiliation(s)
- Hao Su
- The School of Sport Science, Beijing Sport University, Beijing, China
| | - Dongsen Liu
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jia Shao
- The Graduate School, Beijing Sport University, Beijing, China
| | - Yinuo Li
- The Graduate School, Beijing Sport University, Beijing, China
| | - Xiaoxia Wang
- The School of Physical Education and Art Education, Beijing Technology and Business University, Beijing, China
| | - Qi Gao
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
49
|
Maturana FM, Schellhorn P, Erz G, Burgstahler C, Widmann M, Munz B, Soares RN, Murias JM, Thiel A, Nieß AM. Individual cardiovascular responsiveness to work-matched exercise within the moderate- and severe-intensity domains. Eur J Appl Physiol 2021; 121:2039-2059. [PMID: 33811557 PMCID: PMC8192395 DOI: 10.1007/s00421-021-04676-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
Purpose We investigated the cardiovascular individual response to 6 weeks (3×/week) of work-matched within the severe-intensity domain (high-intensity interval training, HIIT) or moderate-intensity domain (moderate-intensity continuous training, MICT). In addition, we analyzed the cardiovascular factors at baseline underlying the response variability. Methods 42 healthy sedentary participants were randomly assigned to HIIT or MICT. We applied the region of practical equivalence-method for identifying the levels of responders to the maximal oxygen uptake (V̇O2max) response. For investigating the influence of cardiovascular markers, we trained a Bayesian machine learning model on cardiovascular markers. Results Despite that HIIT and MICT induced significant increases in V̇O2max, HIIT had greater improvements than MICT (p < 0.001). Greater variability was observed in MICT, with approximately 50% classified as “non-responder” and “undecided”. 20 “responders”, one “undecided” and no “non-responders” were observed in HIIT. The variability in the ∆V̇O2max was associated with initial cardiorespiratory fitness, arterial stiffness, and left-ventricular (LV) mass and LV end-diastolic diameter in HIIT; whereas, microvascular responsiveness and right-ventricular (RV) excursion velocity showed a significant association in MICT. Conclusion Our findings highlight the critical influence of exercise-intensity domains and biological variability on the individual V̇O2max response. The incidence of “non-responders” in MICT was one third of the group; whereas, no “non-responders” were observed in HIIT. The incidence of “responders” was 11 out of 21 participants in MICT, and 20 out of 21 participants in HIIT. The response in HIIT showed associations with baseline fitness, arterial stiffness, and LV-morphology; whereas, it was associated with RV systolic function in MICT.
Collapse
Affiliation(s)
- Felipe Mattioni Maturana
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany.
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Philipp Schellhorn
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
| | - Gunnar Erz
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
| | | | - Manuel Widmann
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Barbara Munz
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Ansgar Thiel
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute of Sports Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas M Nieß
- Sports Medicine Department, University Hospital of Tübingen, Tübingen, Germany
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Khalafi M, Symonds ME. The impact of high intensity interval training on liver fat content in overweight or obese adults: A meta-analysis. Physiol Behav 2021; 236:113416. [PMID: 33823178 DOI: 10.1016/j.physbeh.2021.113416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
Liver fat is a marker of the metabolic derangements associated with obesity for which exercise training is a potential therapy. We therefore performed a systematic meta-analysis to investigate the effect of high intensity interval training (HIIT) on liver fat content in overweight or obese adults with metabolic disorders. PubMed, Scopus, Web of Science and the Cochrane were searched up to October 2020 for HIIT vs. Control (CON) or HIIT vs. moderate intensity interval training (MICT) studies on liver fat content in overweight and obese individuals with metabolic disorders. Standardized mean differences (SMD) and 95% confidence intervals (95% CIs) were calculated. Ten studies involving 333 participants were included in the meta-analysis. Based on studies that directly compared HIIT and CON (6 studies), HIIT was beneficial for promoting a reduction in liver fat [-0.51 (95% CI: -0.85 to -0.17), p = 0.003]. However, there were no significant evidence for an effect of HIIT on liver fat [-0.07 (95% CI: -0.33 to 0.19), p = 0.59], when compared with MICT (7 studies). These results suggest that a HIIT could induce improvements in liver fat of overweight and obese adults with metabolic disorders despite no weight loss.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
| | - Michael E Symonds
- The Early Life Research Unit, Academic Division of Child Health and Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|