1
|
Wang Y, Ou Y, Lin X, Liu X, Sun C. Novel application of cyclo(-Phe-Pro) in mitigating aluminum toxicity through oxidative stress alleviation in wheat roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125241. [PMID: 39505104 DOI: 10.1016/j.envpol.2024.125241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Microbial secondary metabolites are crucial in plant-microorganism interactions, regulating plant growth and stress responses. In this study, we found that cyclo(-Phe-Pro), a proline-based cyclic dipeptide secreted by many microorganisms, alleviated aluminum toxicity in wheat roots by increasing root growth, decreasing callose deposition, and decreasing Al accumulation. Cyclo(-Phe-Pro) also significantly reduced Al-induced reactive oxygen species (ROS) with H2O2, O2•-, and •OH levels decreasing by 19.1%, 42.8%, and 17.9% in root tips, thus protecting the plasma membrane from oxidative damage. Although Al stress increased the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) in wheat roots, cyclo(-Phe-Pro) application reduced these enzyme activities. However, compared to the Al treatment, cyclo(-Phe-Pro) application increased DPPH and FRAP activities by 16.8% and 14.9%, indicating increased non-enzymatic antioxidant capacity in wheat roots. We observed that Al caused the oxidation of ascorbate (AsA) and glutathione (GSH) to dehydroascorbate (DHA) and glutathione disulfide (GSSG), respectively. Under Al stress, cyclo(-Phe-Pro) treatment maintained reduced AsA and GSH levels, as well as high AsA/DHA and GSH/GSSG redox pair ratios in wheat roots. High AsA/DHA and GSH/GSSG ratios can reduce Al toxicity by neutralizing free radicals and restoring redox homeostasis via antioxidant properties. These results suggest that cyclo(-Phe-Pro) maintains ASA- and GSH-dependent redox homeostasis to alleviate oxidative and Al stress in wheat roots. Findings of this study establishes a theoretical foundation for using microbial metabolites to mitigate Al toxicity in acidic soils, highlighting their potential in sustainable agriculture.
Collapse
Affiliation(s)
- Yi Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxia Liu
- Zhejiang Provincial Cultivated Land Quality and Fertilizer Administration Station, Hangzhou, 310020, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Justine EE, Lee HJ, Jung KH, Lee YS, Kim YJ. Methane emission mitigation of Paenibacillus yonginensis DCY84 T incorporated with silicate on paddy rice (Oryzae sativa L.) plantation revealed in soil microbiome profiling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177996. [PMID: 39671945 DOI: 10.1016/j.scitotenv.2024.177996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Anthropogenic methane emissions from paddy cultivation contribute to greenhouse gas levels owing to the anaerobic conditions in flooded rice fields, which promotes the activity of methanogenic bacteria. This study explored bioremediation strategies to mitigate methane release through the application of plant growth-promoting rhizobacteria combined with silicate in rice cultivation. Rice seeds were coated with Paenibacillus yonginensis DCY84T, with and without the addition of silicate, prior to sowing. Results revealed notable reduction in methane flux during the peak growth stage of rice in seeds treated with DCY84T (27.215 ± 1.975 mg m-2 h-1), with a further reduction observed when silicate was also applied (23.592 ± 3.112 mg m-2 h-1), compared to untreated seeds (37.305 ± 2.990 mg m-2 h-1). Additionally, treatment with DCY84T (28.24 ± 0.55 g) resulted in an increase in rice yield (p < 0.05), as evidenced by a greater 1000-grain weight compared to both the control group (26.91 ± 0.09 g) and the application of silicate (27.37 ± 0.57 g). The beta diversity of the soil microbial community highlighted distinct differences between the treated and control groups, indicating DCY84T inoculation with or without silicate altered the soil microbial structure. Particularly, the treated groups showed dominance of the phylum Proteobacteria, especially the classes Alphaproteobacteria and Deltaproteobacteria. Furthermore, the addition of silicate to DCY84T-coated rice seeds resulted in a higher abundance of bacterial families, such as Anaerolinaceae, Clostridiceae, and Nitrospirae which compete with methanogens for organic substrates, thereby reducing their methane production. Notably, the DCY84T-silicate treatment group showed higher levels of methane metabolism biomarkers such as formate dehydrogenase within the soil microbiome, which correlated with the observed reduction in methane emissions. These findings suggest that coating rice seeds with DCY84T and silicate prior to sowing effectively mediates methane production and release during rice cultivation by promoting beneficial soil bacterial communities.
Collapse
Affiliation(s)
- Elsa Easter Justine
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Hyo-Jun Lee
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Yoon-Sung Lee
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Suwon-si 16429, Gyeonggi-do, Republic of Korea.
| | - Yeon-Ju Kim
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
3
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
4
|
Wu D, He X, Jiang L, Li W, Wang H, Lv G. Root exudates facilitate the regulation of soil microbial community function in the genus Haloxylon. FRONTIERS IN PLANT SCIENCE 2024; 15:1461893. [PMID: 39363923 PMCID: PMC11446799 DOI: 10.3389/fpls.2024.1461893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Introduction Root exudates act as the "language" of plant-soil communication, facilitating crucial interactions, information exchange, and energy transfer between plants and soil. The interactions facilitated by root exudates between plants and microorganisms in the rhizosphere are crucial for nutrient uptake and stress resilience in plants. However, the mechanism underlying the interaction between root exudates and rhizosphere microorganisms in desert plants under drought conditions remains unclear, especially among closely related species. Methods To reveal the ecological strategies employed by the genus Haloxylon in different habitats. Using DNA extraction and sequencing and UPLC-Q-Tof/MS methods, we studied root exudates and soil microorganisms from two closely related species, Haloxylon ammodendron (HA) and Haloxylon persicum (HP), to assess differences in their root exudates, soil microbial composition, and interactions. Results Significant differences were found in soil properties and root traits between the two species, among which soil water content (SWC) and soil organic carbon (SOC) in rhizosphere and bulk soils (P < 0.05). While the metabolite classification of root exudates was similar, their components varied, with terpenoids being the main differential metabolites. Soil microbial structure and diversity also exhibited significant differences, with distinct key species in the network and differential functional processes mainly related to nitrogen and carbon cycles. Strong correlations were observed between root exudate-mediated root traits, soil microorganisms, and soil properties, although the complex interactions differed between the two closely relative species. The primary metabolites found in the network of HA include sugars and fatty acids, while HP relies on secondary metabolites, steroids and terpenoids. Discussion These findings suggest that root exudates are key in shaping rhizosphere microbial communities, increasing microbial functionality, fostering symbiotic relationships with hosts, and bolstering the resilience of plants to environmental stress.
Collapse
Affiliation(s)
- Deyan Wu
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Lamei Jiang
- College of Life Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
- Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wenjing Li
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Hengfang Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Kumar A, Naroju SP, Kumari N, Arsey S, Kumar D, Gubre DF, Roychowdhury A, Tyagi S, Saini P. The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Microbiol Res 2024; 286:127827. [PMID: 39002396 DOI: 10.1016/j.micres.2024.127827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024]
Abstract
Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress.
Collapse
Affiliation(s)
- Ashok Kumar
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India.
| | - Sai Prakash Naroju
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, USA
| | - Neha Kumari
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Shivani Arsey
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Deepak Kumar
- Plant Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Dilasha Fulchand Gubre
- Department of Crop Improvement, Indian Council of Agricultural Research Indian Institute of Soybean Research, Indore, Madhya Pradesh, India
| | - Abhrajyoti Roychowdhury
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Sachin Tyagi
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| | - Pankaj Saini
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| |
Collapse
|
6
|
Lu L, Liu N, Fan Z, Liu M, Zhang X, Tian J, Yu Y, Lin H, Huang Y, Kong Z. A novel PGPR strain, Streptomyces lasalocidi JCM 3373 T, alleviates salt stress and shapes root architecture in soybean by secreting indole-3-carboxaldehyde. PLANT, CELL & ENVIRONMENT 2024; 47:1941-1956. [PMID: 38369767 DOI: 10.1111/pce.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.
Collapse
Affiliation(s)
- Liang Lu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zihui Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hou-Ji Laboratory in Shanxi province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
7
|
Siqueira JA, Gouveia DG, Nunes-Nesi A, Araújo WL. Two-for-one: root microbiota orchestrates both soil pH and plant nutrition. TRENDS IN PLANT SCIENCE 2024; 29:388-390. [PMID: 38102047 DOI: 10.1016/j.tplants.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Aluminum (Al) toxicity is a crucial limiting factor for crop growth in acid soils. Recently, Liu et al. demonstrated that the root microbiota of rice modulates the responses to Al toxicity and phosphorus limitation, offering intriguing insights into microbiome function and opening new research opportunities.
Collapse
Affiliation(s)
| | - Debora Gonçalves Gouveia
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
8
|
Weigh KV, Batista BD, Hoang H, Dennis PG. Characterisation of Soil Bacterial Communities That Exhibit Chemotaxis to Root Exudates from Phosphorus-Limited Plants. Microorganisms 2023; 11:2984. [PMID: 38138128 PMCID: PMC10745596 DOI: 10.3390/microorganisms11122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The ability to sense and direct movement along chemical gradients is known as 'chemotaxis' and is a common trait among rhizosphere microorganisms, which are attracted to organic compounds released from plant roots. In response to stress, the compounds released from roots can change and may recruit symbionts that enhance host stress tolerance. Decoding this language of attraction could support the development of microbiome management strategies that would enhance agricultural production and sustainability. In this study, we employ a culture-independent bait-trap chemotaxis assay to capture microbial communities attracted to root exudates from phosphorus (P)-sufficient and P-deficient Arabidopsis thaliana Col-0 plants. The captured populations were then enumerated and characterised using flow cytometry and phylogenetic marker gene sequencing, respectively. Exudates attracted significantly more cells than the control but did not differ between P treatments. Relative to exudates from P-sufficient plants, those collected from P-deficient plants attracted a significantly less diverse bacterial community that was dominated by members of the Paenibacillus, which is a genus known to include powerful phosphate solubilisers and plant growth promoters. These results suggest that in response to P deficiency, Arabidopsis exudates attract organisms that could help to alleviate nutrient stress.
Collapse
Affiliation(s)
| | | | | | - Paul G. Dennis
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia (B.D.B.)
| |
Collapse
|
9
|
Liu C, Jiang M, Yuan MM, Wang E, Bai Y, Crowther TW, Zhou J, Ma Z, Zhang L, Wang Y, Ding J, Liu W, Sun B, Shen R, Zhang J, Liang Y. Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils. NATURE FOOD 2023; 4:912-924. [PMID: 37783790 DOI: 10.1038/s43016-023-00848-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Aluminium (Al) toxicity impedes crop growth in acidic soils and is considered the second largest abiotic stress after drought for crops worldwide. Despite remarkable progress in understanding Al resistance in plants, it is still unknown whether and how the soil microbiota confers Al resistance to crops. Here we found that a synthetic community composed of highly Al-resistant bacterial strains isolated from the rice rhizosphere increased rice yield by 26.36% in acidic fields. The synthetic community harvested rhizodeposited carbon for successful proliferation and mitigated soil acidification and Al toxicity through extracellular protonation. The functional coordination between plants and microbes offers a promising way to increase the usage of legacy phosphorus in topsoil. These findings highlight the potential of microbial tools for advancing sustainable agriculture in acidic soils.
Collapse
Affiliation(s)
- Chaoyang Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Meitong Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengting Maggie Yuan
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Zhiyuan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Li Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jixian Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wuxing Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
10
|
Elizabeth George S, Wan Y. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131738. [PMID: 37285788 PMCID: PMC11249206 DOI: 10.1016/j.jhazmat.2023.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The increasing environmental and human health concerns about lead in the environment have stimulated scientists to search for microbial processes as innovative bioremediation strategies for a suite of different contaminated media. In this paper, we provide a compressive synthesis of existing research on microbial mediated biogeochemical processes that transform lead into recalcitrant precipitates of phosphate, sulfide, and carbonate, in a genetic, metabolic, and systematics context as they relate to application in both laboratory and field immobilization of environmental lead. Specifically, we focus on microbial functionalities of phosphate solubilization, sulfate reduction, and carbonate synthesis related to their respective mechanisms that immobilize lead through biomineralization and biosorption. The contributions of specific microbes, both single isolates or consortia, to actual or potential applications in environmental remediation are discussed. While many of the approaches are successful under carefully controlled laboratory conditions, field application requires optimization for a host of variables, including microbial competitiveness, soil physical and chemical parameters, metal concentrations, and co-contaminants. This review challenges the reader to consider bioremediation approaches that maximize microbial competitiveness, metabolism, and the associated molecular mechanisms for future engineering applications. Ultimately, we outline important research directions to bridge future scientific research activities with practical applications for bioremediation of lead and other toxic metals in environmental systems.
Collapse
Affiliation(s)
- S Elizabeth George
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Yongshan Wan
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| |
Collapse
|
11
|
Zeng Q, Man X, Huang Z, Zhuang L, Yang H, Sha Y. Effects of rice blast biocontrol strain Pseudomonas alcaliphila Ej2 on the endophytic microbiome and proteome of rice under salt stress. Front Microbiol 2023; 14:1129614. [PMID: 36960288 PMCID: PMC10027718 DOI: 10.3389/fmicb.2023.1129614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Soil salinity is a prevalent environmental stress in agricultural production. Microbial inoculants could effectively help plants to alleviate salt stress. However, there is little knowledge of the biocontrol strain Pseudomonas alcaliphila Ej2 mechanisms aiding rice plants to reduce the adverse effects caused by salt stress. Methods We performed integrated field and greenhouse experiments, microbial community profiling, and rice proteomic analysis to systematically investigate the Ej2 mechanism of action. Results The results displayed that biocontrol strain Ej2 increased shoot/root length and fresh/dry weight compared with control under salt stress. Meanwhile, strain Ej2 has the ability to control rice blast disease and promote rice growth. Furthermore, the microbial community analysis revealed that the alpha-diversity of Ej2-inoculated plants was higher than the control plants, expect the Shannon index of the bacterial microbiome and the Ej2-inoculated samples clustered and separated from the control samples based on beta-diversity analysis. Importantly, the enriched and specific OTUs after Ej2 inoculation at the genus level were Streptomyces, Pseudomonas, Flavobacterium, and Bacillus. Moreover, we observed that Ej2 inoculation influenced the rice proteomic profile, including metabolism, plant-pathogen interactions, and biosynthesis of unsaturated fatty acids. These results provide comprehensive evidence that Ej2 inoculation induced the rice endophytic microbiome and proteomic profiles to promote plant growth under salt stress. Discussion Understanding the biocontrol strain effects on the endophytic microbiome and rice proteomics will help us better understand the complex interactions between plants and microorganisms under salt stress. Furthermore, unraveling the mechanisms underlying salt tolerance will help us more efficiently ameliorate saline soils.
Collapse
Affiliation(s)
- Qingchao Zeng
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaowu Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Zeyang Huang
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lubo Zhuang
- Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Hanmeng Yang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuexia Sha
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- *Correspondence: Yuexia Sha,
| |
Collapse
|
12
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
13
|
Fadiji AE, Orozco-Mosqueda MDC, Santos-Villalobos SDL, Santoyo G, Babalola OO. Recent Developments in the Application of Plant Growth-Promoting Drought Adaptive Rhizobacteria for Drought Mitigation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223090. [PMID: 36432820 PMCID: PMC9698351 DOI: 10.3390/plants11223090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/21/2023]
Abstract
Drought intensity that has increased as a result of human activity and global warming poses a serious danger to agricultural output. The demand for ecologically friendly solutions to ensure the security of the world's food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. PGPR guarantees the survival of the plant during a drought through a variety of processes including osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among others and these mechanisms also promote the plant's development. In addition, new developments in omics technology have improved our understanding of PGPR, which makes it easier to investigate the genes involved in colonizing plant tissue. Therefore, this review addresses the mechanisms of PGPR in drought stress resistance to summarize the most current omics-based and molecular methodologies for exploring the function of drought-responsive genes. The study discusses a detailed mechanistic approach, PGPR-based bioinoculant design, and a potential roadmap for enhancing their efficacy in combating drought stress.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | | | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2568
| |
Collapse
|
14
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
15
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
16
|
Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops. Int J Mol Sci 2022; 23:ijms23137036. [PMID: 35806037 PMCID: PMC9266936 DOI: 10.3390/ijms23137036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Saline soils are a major challenge in agriculture, and salinization is increasing worldwide due to climate change and destructive agricultural practices. Excessive amounts of salt in soils cause imbalances in ion distribution, physiological dehydration, and oxidative stress in plants. Breeding and genetic engineering methods to improve plant salt tolerance and the better use of saline soils are being explored; however, these approaches can take decades to accomplish. A shorter-term approach to improve plant salt tolerance is to be inoculated with bacteria with high salt tolerance or adjusting the balance of bacteria in the rhizosphere, including endosymbiotic bacteria (living in roots or forming a symbiont) and exosymbiotic bacteria (living on roots). Rhizosphere bacteria promote plant growth and alleviate salt stress by providing minerals (such as nitrogen, phosphate, and potassium) and hormones (including auxin, cytokinin, and abscisic acid) or by reducing ethylene production. Plant growth-promoting rhizosphere bacteria are a promising tool to restore agricultural lands and improve plant growth in saline soils. In this review, we summarize the mechanisms of plant growth-promoting bacteria under salt stress and their applications for improving plant salt tolerance to provide a theoretical basis for further use in agricultural systems.
Collapse
|
17
|
Lee Y, Balaraju K, Kim SY, Jeon Y. Occurrence of phenotypic variation in Paenibacillus polymyxa E681 associated with sporulation and carbohydrate metabolism. BIOTECHNOLOGY REPORTS 2022; 34:e00719. [PMID: 35686012 PMCID: PMC9171445 DOI: 10.1016/j.btre.2022.e00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/12/2022] [Indexed: 12/02/2022]
Abstract
We report phenotypic variation in P. polymyxa E681 occurred when grown on media. F-type exhibited faster cell growth than B-type after utilization of carbon sources. 2-DE identified proteins involved in various metabolic activities. The motility is mediated via the downregulation of sporulation and flagella production.
We report the phenotypic variation in Paenibacillus polymyxa E681 (E681), a plant growth-promoting rhizobacterium (PGPR) isolated from a winter barley root in Korea. Phenotypic variation (F-type) occurred when E681 (B-type) was grown in the media, and F-type was generated from B-type. B- and F-types were characterized by their morphological, Biolog, and GC-MIDI analyses. F-type cells altered the original biological capacity of B-type cells on endospore and flagella formation, changes in pH in culture, and carbon utilization. In growth curve analysis, B-type variants recovered bacterial growth as the variation occurred after the decline phase, but F-type variants did not. To determine this cause, we conducted comparative proteome analysis between B- and F-types using two-dimensional gel electrophoresis (2-DE). Of the identified proteins, 47% were involved in glycolysis and other metabolic pathways associated with carbohydrate metabolism. Therefore, our findings provide new knowledge on the mechanism of phenotypic variation and insights into agricultural biotechnology.
Collapse
|
18
|
Kour D, Khan SS, Kaur T, Kour H, Singh G, Yadav A, Yadav AN. Drought adaptive microbes as bioinoculants for the horticultural crops. Heliyon 2022; 8:e09493. [PMID: 35647359 PMCID: PMC9130543 DOI: 10.1016/j.heliyon.2022.e09493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 05/14/2022] [Indexed: 12/20/2022] Open
Abstract
Drought stress is among the most destructive stresses for agricultural productivity. It interferes with normal metabolic activities of the plants resulting, a negative impact on physiology and morphology of the plants. The management of drought stress requires various adaptive and alleviation strategies in which stress adaptive microbiomes are exquisite bioresources for plant growth and alleviation of drought stress. Diverse drought adaptive microbes belonging to genera Achromobacter, Arthrobacter, Aspergillus, Bacillus, Pseudomonas, Penicillium and Streptomyces have been reported worldwide. These bioresources exhibit a wide range of mechanisms such as helping plant in nutrient acquisition, producing growth regulators, lowering the levels of stress ethylene, increasing the concentration of osmolytes, and preventing oxidative damage under water deficit environmental conditions. Horticulture is one of the potential agricultural sectors to speed up the economy, poverty and generation of employment for livelihood. The applications of drought adaptive plant growth promoting (PGP) microbes as biofertilizers and biopesticides for horticulture is a potential strategy to improve the productivity and protection of horticultural crops from abiotic and biotic stresses for agricultural sustainability.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Sofia Shareif Khan
- Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu and Kashmir, 180006, India
| | - Gagandeep Singh
- Department of Animal Husbandary, National Dairy Research Institute, Karnal, 132001, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| |
Collapse
|
19
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
20
|
An Evaluation of Aluminum Tolerant Pseudomonas aeruginosa A7 for In Vivo Suppression of Fusarium Wilt of Chickpea Caused by Fusarium oxysporum f. sp. ciceris and Growth Promotion of Chickpea. Microorganisms 2022; 10:microorganisms10030568. [PMID: 35336143 PMCID: PMC8950562 DOI: 10.3390/microorganisms10030568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Chickpea wilt, caused by Fusarium oxysporum f. sp. ciceris, is a disease that decreases chickpea productivity and quality and can reduce its yield by as much as 15%. A newly isolated, moss rhizoid-associated Pseudomonas aeruginosa strain A7, demonstrated strong inhibition of Fusarium oxysporum f. sp. ciceris growth. An in vitro antimicrobial assay revealed A7 to suppress the growth of several fungal and bacterial plant pathogens by secreting secondary metabolites and by producing volatile compounds. In an in vivo pot experiment with Fusarium wilt infection in chickpea, the antagonist A7 exhibited a disease reduction by 77 ± 1.5%, and significantly reduced the disease incidence and severity indexes. Furthermore, A7 promoted chickpea growth in terms of root and shoot length and dry biomass during pot assay. The strain exhibited several traits associated with plant growth promotion, extracellular enzymatic production, and stress tolerance. Under aluminum stress conditions, in vitro growth of chickpea plants by A7 resulted in a significant increase in root length and plant biomass production. Additionally, hallmark genes for antibiotics production were identified in A7. The methanol extract of strain A7 demonstrated antimicrobial activity, leading to the identification of various antimicrobial compounds based on retention time and molecular weight. These findings strongly suggest that the strain’s significant biocontrol potential and plant growth enhancement could be a potential environmentally friendly process in agricultural crop production.
Collapse
|
21
|
Lombardino J, Bijlani S, Singh NK, Wood JM, Barker R, Gilroy S, Wang CCC, Venkateswaran K. Genomic Characterization of Potential Plant Growth-Promoting Features of Sphingomonas Strains Isolated from the International Space Station. Microbiol Spectr 2022; 10:e0199421. [PMID: 35019675 PMCID: PMC8754149 DOI: 10.1128/spectrum.01994-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
In an ongoing microbial tracking investigation of the International Space Station (ISS), several Sphingomonas strains were isolated. Based on the 16S rRNA gene sequence, phylogenetic analysis identified the ISS strains as Sphingomonas sanguinis (n = 2) and one strain isolated from the Kennedy Space Center cleanroom (used to assemble various Mars mission spacecraft components) as Sphingomonas paucimobilis. Metagenomic sequence analyses of different ISS locations identified 23 Sphingomonas species. An abundance of shotgun metagenomic reads were detected for S. sanguinis in the location from where the ISS strains were isolated. A complete metagenome-assembled genome was generated from the shotgun reads metagenome, and its comparison with the whole-genome sequences (WGS) of the ISS S. sanguinis isolates revealed that they were highly similar. In addition to the phylogeny, the WGS of these Sphingomonas strains were compared with the WGS of the type strains to elucidate genes that can potentially aid in plant growth promotion. Furthermore, the WGS comparison of these strains with the well-characterized Sphingomonas sp. LK11, an arid desert strain, identified several genes responsible for the production of phytohormones and for stress tolerance. Production of one of the phytohormones, indole-3-acetic acid, was further confirmed in the ISS strains using liquid chromatography-mass spectrometry. Pathways associated with phosphate uptake, metabolism, and solubilization in soil were conserved across all the S. sanguinis and S. paucimobilis strains tested. Furthermore, genes thought to promote plant resistance to abiotic stress, including heat/cold shock response, heavy metal resistance, and oxidative and osmotic stress resistance, appear to be present in these space-related S. sanguinis and S. paucimobilis strains. Characterizing these biotechnologically important microorganisms found on the ISS and harnessing their key features will aid in the development of self-sustainable long-term space missions in the future. IMPORTANCESphingomonas is ubiquitous in nature, including the anthropogenically contaminated extreme environments. Members of the Sphingomonas genus have been identified as potential candidates for space biomining beyond earth. This study describes the isolation and identification of Sphingomonas members from the ISS, which are capable of producing the phytohormone indole-3-acetic acid. Microbial production of phytohormones will help future in situ studies, grow plants beyond low earth orbit, and establish self-sustainable life support systems. Beyond phytohormone production, stable genomic elements of abiotic stress resistance, heavy metal resistance, and oxidative and osmotic stress resistance were identified, rendering the ISS Sphingomonas isolate a strong candidate for biotechnology-related applications.
Collapse
Affiliation(s)
| | - Swati Bijlani
- University of Southern California, Los Angeles, California, USA
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason M. Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Richard Barker
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Gilroy
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Clay C. C. Wang
- University of Southern California, Los Angeles, California, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
22
|
Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S, Orozco-Mosqueda MDC, Santoyo G, Loeza-Lara PD. Teamwork to Survive in Hostile Soils: Use of Plant Growth-Promoting Bacteria to Ameliorate Soil Salinity Stress in Crops. Microorganisms 2022; 10:150. [PMID: 35056599 PMCID: PMC8781547 DOI: 10.3390/microorganisms10010150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.
Collapse
Affiliation(s)
- Rafael Jiménez-Mejía
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ricardo I. Medina-Estrada
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Santos Carballar-Hernández
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Uruapan 60170, Mexico;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58030, Mexico;
| | - Pedro D. Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| |
Collapse
|
23
|
Roy S, Chakraborty AP, Chakraborty R. Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. PHYSIOLOGIA PLANTARUM 2021; 173:1657-1681. [PMID: 34549441 DOI: 10.1111/ppl.13570] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity severely affects plant growth and development and imparts inevitable losses to crop productivity. Increasing the concentration of salts in the vicinity of plant roots has severe consequences at the morphological, biochemical, and molecular levels. These include loss of chlorophyll, decrease in photosynthetic rate, reduction in cell division, ROS generation, inactivation of antioxidative enzymes, alterations in phytohormone biosynthesis and signaling, and so forth. The association of microorganisms, viz. plant growth-promoting rhizobacteria, endophytes, and mycorrhiza, with plant roots constituting the root microbiome can confer a greater degree of salinity tolerance in addition to their inherent ability to promote growth and induce defense mechanisms. The mechanisms involved in induced stress tolerance bestowed by these microorganisms involve the modulation of phytohormone biosynthesis and signaling pathways (including indole acetic acid, gibberellic acid, brassinosteroids, abscisic acid, and jasmonic acid), accumulation of osmoprotectants (proline, glycine betaine, and sugar alcohols), and regulation of ion transporters (SOS1, NHX, HKT1). Apart from this, salt-tolerant microorganisms are known to induce the expression of salt-responsive genes via the action of several transcription factors, as well as by posttranscriptional and posttranslational modifications. Moreover, the potential of these salt-tolerant microflora can be employed for sustainably improving crop performance in saline environments. Therefore, this review will briefly focus on the key responses of plants under salinity stress and elucidate the mechanisms employed by the salt-tolerant microorganisms in improving plant tolerance under saline environments.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Darjeeling, West Bengal, India
| |
Collapse
|
24
|
Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. [PMID: 34759901 PMCID: PMC8573356 DOI: 10.3389/fmicb.2021.743512] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Drought stress is an alarming constraint to plant growth, development, and productivity worldwide. However, plant-associated bacteria, fungi, and viruses can enhance stress resistance and cope with the negative impacts of drought through the induction of various mechanisms, which involve plant biochemical and physiological changes. These mechanisms include osmotic adjustment, antioxidant enzyme enhancement, modification in phytohormonal levels, biofilm production, increased water and nutrient uptake as well as increased gas exchange and water use efficiency. Production of microbial volatile organic compounds (mVOCs) and induction of stress-responsive genes by microbes also play a crucial role in the acquisition of drought tolerance. This review offers a unique exploration of the role of plant-associated microorganisms-plant growth promoting rhizobacteria and mycorrhizae, viruses, and their interactions-in the plant microbiome (or phytobiome) as a whole and their modes of action that mitigate plant drought stress.
Collapse
Affiliation(s)
- Mousami Poudel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - Lilian A. S. Costa
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Yiming Meng
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | | | - Karen A. Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Samuel J. Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
25
|
Mishra P, Mishra J, Arora NK. Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review. Microbiol Res 2021; 252:126861. [PMID: 34521049 DOI: 10.1016/j.micres.2021.126861] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/16/2023]
Abstract
Soil salinity has emerged as a great threat to the agricultural ecosystems throughout the globe. Many continents of the globe are affected by salinity and crop productivity is severely affected. Anthropogenic activities leading to the degradation of agricultural land have also accelerated the rate of salinization in arid and semi-arid regions. Several approaches are being evaluated for remediating saline soil and restoring their productivity. Amongst these, utilization of plant growth promoting bacteria (PGPB) has been marked as a promising tool. This greener approach is suitable for simultaneous reclamation of saline soil and improving the productivity. Salt-tolerant PGPB utilize numerous mechanisms that affect physiological, biochemical, and molecular responses in plants to cope with salt stress. These mechanisms include osmotic adjustment by ion homeostasis and osmolyte accumulation, protection from free radicals by the formation of free radicals scavenging enzymes, oxidative stress responses and maintenance of growth parameters by the synthesis of phytohormones and other metabolites. As salt-tolerant PGPB elicit better plant survival under salinity, they are the potential candidates for enhancing agricultural productivity. The present review focuses on the various mechanisms used by PGPB to improve plant health under salinity. Recent developments and prospects to facilitate better understanding on the functioning of PGPB for ameliorating salt stress in plants are emphasized.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| |
Collapse
|
26
|
Abulfaraj AA, Jalal RS. Use of plant growth-promoting bacteria to enhance salinity stress in soybean ( Glycine max L.) plants. Saudi J Biol Sci 2021; 28:3823-3834. [PMID: 34220237 PMCID: PMC8241701 DOI: 10.1016/j.sjbs.2021.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 12/04/2022] Open
Abstract
The effects of three rhizobacterial isolates namely Pseudomonas fluorescens (M1), Pseudomonas putida (M2) and Bacillus subtilis (M3) were examined to enhance growth and chemical components such as chlorophyll and proline of three cultivars of soybean (Glycine max L.) under two levels of salinity stress (S1 = 200 mM and S2 = 400 mM of NaCl salt). Several morphological and physiological parameters were investigated. The highest mean values of final germination percent (FGP) were registered in cultivar Crawford (95%) followed by Giza111 cultivar (93%) in the presence of P. fluorescens, while, FGP of Clark was 85%. Mean germination time was decreased by the application of P. fluorescens or P. putida in both salt stressed and unstressed traits. All growth parameters were significantly decreased by salinity treatments, particularly at S2. A significant increase in stem length and shoot fresh weight was recorded in plants treated with P. fluorescens. This enhancing trend was followed by the application of P. putida then B. subtilis. Chlorophyll contents and plant soluble proteins were decreased, while proline content was increased as compared with control treatment. Results showed that the salt tolerant cultivar, Crawford, may have a better tolerance strategy against oxidative damages by increasing antioxidant enzymes activities under high salinity stress. These results suggest that salt induced oxidative stress in soybean is generally counteracted by enzymatic defense systems stimulated under harsh conditions. Our results showed that inoculation with plant growth-promoting rhizobacterial (PGPR) alleviated the harmful effects of salinity stress on soybean cultivars. The diversity in the phylogenetic relationship and in the level of genetic among cultivars was assessed by SDS-PAGE and RAPD markers. Among the polymorphism bands, only few were found to be useful as positive or negative markers associated with salt stress. The maximum number of bands (17) was recorded in Crawford, while the minimum number of bands (11) was recorded in Clark. Therefore, the ISSR can be used to identify alleles associated with the salt stress in soybean germplasm.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Silica Particles Trigger the Exopolysaccharide Production of Harsh Environment Isolates of Growth-Promoting Rhizobacteria and Increase Their Ability to Enhance Wheat Biomass in Drought-Stressed Soils. Int J Mol Sci 2021; 22:ijms22126201. [PMID: 34201354 PMCID: PMC8229586 DOI: 10.3390/ijms22126201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
In coming decades, drought is expected to expand globally owing to increased evaporation and reduced rainfall. Understanding, predicting, and controlling crop plants’ rhizosphere has the potential to manipulate its responses to environmental stress. Our plant growth-promoting rhizobacteria (PGPR) are isolated from a natural laboratory, ‘The Evolution Canyon’, Israel, (EC), from the wild progenitors of cereals, where they have been co-habituating with their hosts for long periods of time. The study revealed that commercial TM50 silica particles (SN) triggered the PGPR production of exopolysaccharides (EPS) containing D-glucuronate (D-GA). The increased EPS content increased the PGPR water-holding capacity (WHC) and osmotic pressure of the biofilm matrix, which led to enhanced plant biomass in drought-stressed growth environments. Light- and cryo-electron- microscopic studies showed that, in the presence of silica (SN) particles, bacterial morphology is changed, indicating that SNs are associated with significant reprogramming in bacteria. The findings encourage the development of large-scale methods for isolate formulation with natural silicas that ensure higher WHC and hyperosmolarity under field conditions. Osmotic pressure involvement of holobiont cohabitation is also discussed.
Collapse
|
28
|
Genome-Wide Analysis, Evolutionary History and Response of ALMT Family to Phosphate Starvation in Brassica napus. Int J Mol Sci 2021; 22:ijms22094625. [PMID: 33924853 PMCID: PMC8125224 DOI: 10.3390/ijms22094625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Low phosphorus (P) availability is one of the major constraints to plant growth, particularly in acidic soils. A possible mechanism for enhancing the use of sparsely soluble P forms is the secretion of malate in plants by the aluminum-activated malate transporter (ALMT) gene family. Despite its significance in plant biology, the identification of the ALMT gene family in oilseed rape (Brassica napus; B. napus), an allotetraploid crop, is unveiled. Herein, we performed genome-wide identification and characterization of ALMTs in B. napus, determined their gene expression in different tissues and monitored transcriptional regulation of BnaALMTs in the roots and leaves at both a sufficient and a deficient P supply. Thirty-nine BnaALMT genes were identified and were clustered into five branches in the phylogenetic tree based on protein sequences. Collinearity analysis revealed that most of the BnaALMT genes shared syntenic relationships among BnaALMT members in B. napus, which suggested that whole-genome duplication (polyploidy) played a major driving force for BnaALMTs evolution in addition to segmental duplication. RNA-seq analyses showed that most BnaALMT genes were preferentially expressed in root and leaf tissues. Among them, the expression of BnaC08g13520D, BnaC08g15170D, BnaC08g15180D, BnaC08g13490D, BnaC08g13500D, BnaA08g26960D, BnaC05g14120D, BnaA06g12560D, BnaC05g20630D, BnaA07g02630D, BnaA04g15700D were significantly up-regulated in B. napus roots and leaf at a P deficient supply. The current study analyzes the evolution and the expression of the ALMT family in B. napus, which will help in further research on their role in the enhancement of soil P availability by secretion of organic acids.
Collapse
|
29
|
Characterization of physiological responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis. Symbiosis 2020. [DOI: 10.1007/s13199-020-00733-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Kaushal M. Insights Into Microbially Induced Salt Tolerance and Endurance Mechanisms (STEM) in Plants. Front Microbiol 2020; 11:1518. [PMID: 32982994 PMCID: PMC7479176 DOI: 10.3389/fmicb.2020.01518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Salt stress threatens the achievement of sustainable global food security goals by inducing secondary stresses, such as osmotic, ionic, and oxidative stress, that are detrimental to plant growth and productivity. Various studies have reported the beneficial roles of microbes in ameliorating salt stress in plants. This review emphasizes salt tolerance and endurance mechanisms (STEM) in microbially inoculated (MI) plants that ensure plant growth and survival. Well-established STEM have been documented in MI plants and include conglomeration of osmolytes, antioxidant barricading, recuperating nutritional status, and ionic homeostasis. This is achieved via involvement of P solubilization, siderophore production, nitrogen fixation, selective ion absorption, volatile organic compound production, exopolysaccharide production, modifications to plant physiological processes (photosynthesis, transpiration, and stomatal conductance), and molecular alterations to alter various biochemical and physiological processes. Salt tolerance and endurance mechanism in MI plants ensures plant growth by improving nutrient uptake and maintaining ionic homeostasis, promoting superior water use efficiency and osmoprotection, enhancing photosynthetic efficiency, preserving cell ultrastructure, and reinforcing antioxidant metabolism. Molecular research in MI plants under salt stress conditions has found variations in the expression profiles of genes such as HKT1, NHX, and SOS1 (ion transporters), PIPs and TIPs (aquaporins), RBCS, RBCL (RuBisCo subunits), Lipoxygenase2 [jasmonic acid (JA) signaling], ABA (abscisic acid)-responsive gene, and APX, CAT, and POD (involved in antioxidant defense). Proteomic analysis in arbuscular mycorrhizal fungi-inoculated plants revealed upregulated expression of signal transduction proteins, including Ca2+ transporter ATPase, calcium-dependent protein kinase, calmodulin, and energy-related proteins (NADH dehydrogenase, iron-sulfur protein NADH dehydrogenase, cytochrome C oxidase, and ATP synthase). Future research should focus on the role of stress hormones, such as JA, salicylic acid, and brassinosteroids, in salt-stressed MI plants and how MI affects the cell wall, secondary metabolism, and signal transduction in host plants.
Collapse
Affiliation(s)
- Manoj Kaushal
- Plant Production and Plant Health, International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
| |
Collapse
|
31
|
Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, Bhatti F, Koser R, Rahman S, Jan AT. Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Front Microbiol 2020; 11:1952. [PMID: 32973708 PMCID: PMC7468593 DOI: 10.3389/fmicb.2020.01952] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022] Open
Abstract
Agriculture plays an important role in a country's economy. The sector is challenged by many stresses, which led to huge loss in plant productivity worldwide. The ever-increasing population, rapid urbanization with shrinking agricultural lands, dramatic change in climatic conditions, and extensive use of agrochemicals in agricultural practices that caused environmental disturbances confront mankind of escalating problems of food security and sustainability in agriculture. Escalating environmental problems and global hunger have led to the development and adoption of genetic engineering and other conventional plant breeding approaches in developing stress-tolerant varieties of crops. However, these approaches have drawn flaws in their adoption as the process of generating tolerant varieties takes months to years in bringing the technology from the lab to the field. Under such scenario, sustainable and climate-smart agricultural practices that avail bacterial usage open the avenues in fulfilling the incessant demand for food for the global population. Ensuring stability on economic fronts, bacteria minimizes plant salt uptake by trapping ions in their exopolysaccharide matrix besides checking the expression of Na+/H+ and high-affinity potassium transporters. Herein we describe information on salinity stress and its effect on plant health as well as strategies adopted by plant growth-promoting rhizobacteria (PGPR) in helping plants to overcome salinity stress and in mitigating loss in overall plant productivity. It is believed that acquisition of advanced knowledge of plant-beneficial PGPR will help in devising strategies for sustainable, environment-friendly, and climate-smart agricultural technologies for adoption in agriculture to overcome the constrained environmental conditions.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Farhana Latief Dar
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Iqra Farooq
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Farha Bhatti
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rubina Koser
- Department of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, India
| | - Arif Tasleem Jan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| |
Collapse
|
32
|
Prudêncio de Araújo VLV, Lira Junior MA, Souza Júnior VSD, de Araújo Filho JC, Cury Fracetto FJ, Andreote FD, de Araujo Pereira AP, Mendes Júnior JP, Rêgo Barros FMD, Monteiro Fracetto GG. Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiol Res 2020; 240:126564. [PMID: 32759024 DOI: 10.1016/j.micres.2020.126564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 11/15/2022]
Abstract
World climate change has triggered soil water stress and imposed limitations on agricultural production. Plant growth-promoting bacteria (PGPBs) have been an efficient strategy to improve the biological supply and growth of plants under distinct abiotic stress conditions. We hypothesized that the soils from a temporary pond may harbor PGPBs with potential strains which increase maize tolerance to water deficit. We studied rhizosphere and bulk soil of Mimosa bimucronata in a temporary pond from semiarid Northeast Brazil to access strains with characteristics to promote plant growth and mitigate abiotic stress for maize crop. We isolated 355 bacterial isolates, from which 96 were selected based on the morphophysiological characterization to assess IAA production (42 % produced over 50 μg mL-1 of IAA), calcium phosphate solubilization (with one isolate achieving medium IS), biofilm and exopolysaccharides production (66 % and 98 % of isolates, respectively). Based on these mechanisms, the 30 most promising bacterial isolates were selected to assess biological nitrogen fixation (74 % of the isolates showed nitrogenase activity greater than 20 C2H4.h-1.mg-1), ACC deaminase activity (80 % of isolates) and growth in medium with reduced water activity (8 % of isolates grew in medium with water activity (Aw) of 0.844). We sequenced the 16S rRNA gene from the seven most promising isolates in in vitro and in vivo assays, which were identified as Staphylococcus edaphicus, Bacillus wiedmannii, Micrococcus yunnanensis, Streptomyces alboflavus, Streptomyces alboflavus, Bacillus wiedmanni and Bacillus cereus. In vivo, eleven isolates and three bacterial consortia did not differ from the control with nutrient solution, for total leaf area and root dry mass of maize. S. alboflavus (BS43) had the best in vivo results, not differing from the control with nutrient solution. We highlight the unpublished potential of Staphylococcus edaphicus and Streptomyces alboflavus in promoting the growth of plants under water stress. In addition, it is the first report of bacteria isolated from a temporary pond in the Brazilian semiarid which promoting plant growth attributes and development.
Collapse
Affiliation(s)
| | - Mario Andrade Lira Junior
- Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, Pernambuco, 52171-900, Brazil.
| | | | - José Coelho de Araújo Filho
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa Solos), Unidade de Execução de Pesquisa (UEP), Recife, Pernambuco, 51020-240, Brazil.
| | - Felipe José Cury Fracetto
- Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, Pernambuco, 52171-900, Brazil.
| | - Fernando Dini Andreote
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciência do Solo, Piracicaba, São Paulo, 13400-970, Brazil.
| | | | | | - Felipe Martins do Rêgo Barros
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciência do Solo, Piracicaba, São Paulo, 13400-970, Brazil.
| | | |
Collapse
|
33
|
Kumar Arora N, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P, Bharti C. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 2020; 26:69-82. [PMID: 33133684 PMCID: PMC7584680 DOI: 10.1016/j.jare.2020.07.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background The collective impact of climate change and soil salinity is continuously increasing the degraded lands across the globe, bringing agricultural productivity and food security under stress. The high concentration of salts in saline soils impose osmotic, ionic, oxidative and water stress in plants. Biological solutions can be the most reliable and sustainable approach to ensure food security and limit the use of agro-chemicals. Aim of Review Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR) are emerging as efficient biological tools to mitigate the toxic effects of high salt concentrations and improve the growth of plants, simultaneously remediating the degraded saline soils. The review explains the role of HT-PGPR in mitigating the salinity stress in plants through diverse mechanisms and concurrently leading to improvement of soil quality. Key Scientific Concepts of Review HT-PGPR are involved in alleviating the salinity stress in plants through a number of mechanisms evoking multipronged physiological, biochemical and molecular responses. These include changes in expression of defense-related proteins, exopolysaccharides synthesis, activation of antioxidant machinery, accumulation of osmolytes, maintaining the Na+ kinetics and improving the levels of phytohormones and nutrient uptake in plants. The modification of signaling by HT-PGPR inoculation under stress conditions elicits induced systemic resistance in plants which further prepares them against salinity stress. The role of microbial-mechanisms in remediating the saline soil through structural and compositional improvements is also important. Development of novel bioinoculants for saline soils based on the concepts presented in the review can be a sustainable approach in improving productivity of affected agro-ecosystems and simultaneously remediating them.
Collapse
Affiliation(s)
- Naveen Kumar Arora
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Tahmish Fatima
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Jitendra Mishra
- DST-CPR, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Isha Mishra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Sushma Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Renu Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Maya Verma
- Uttar Pradesh Pollution Control Board (UPPCB), Lucknow, UP, India
| | - Ankita Bhattacharya
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Priyanka Verma
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Priya Mishra
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| | - Chanda Bharti
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
| |
Collapse
|
34
|
Mahdi I, Fahsi N, Hafidi M, Allaoui A, Biskri L. Plant Growth Enhancement using Rhizospheric Halotolerant Phosphate Solubilizing Bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 Isolated from Chenopodium quinoa Willd. Microorganisms 2020; 8:E948. [PMID: 32599701 PMCID: PMC7356859 DOI: 10.3390/microorganisms8060948] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Plant growth-promoting rhizobacteria represent a promising solution to enhancing agricultural productivity. Here, we screened phosphate solubilizing bacteria from the rhizospheric soil of Chenopodium quinoa Willd and assessed their plant-growth promoting rhizobacteria (PGPR) properties including production of indole-3-acetic acid (IAA), siderophores, hydrogen cyanide (HCN), ammonia and extracellular enzymes. We also investigated their tolerance to salt stress and their capacity to form biofilms. Two isolated strains, named QA1 and QF11, solubilized phosphate up to 346 mg/L, produced IAA up to 795.31 µg/mL, and tolerated up to 2 M NaCl in vitro. 16S rRNA and Cpn60 gene sequencing revealed that QA1 and QF11 belong to the genus Bacillus licheniformis and Enterobacter asburiae, respectively. In vivo, early plant growth potential showed that quinoa seeds inoculated either with QA1 or QF11 displayed higher germination rates and increased seedling growth. Under saline irrigation conditions, QA1 enhanced plant development/growth. Inoculation with QA1 increased leaf chlorophyll content index, enhanced P and K+ uptake and decreased plant Na+ uptake. Likewise, plants inoculated with QF11 strain accumulated more K+ and had reduced Na+ content. Collectively, our findings support the use of QA1 and QF11 as potential biofertilizers.
Collapse
Affiliation(s)
- Ismail Mahdi
- Medical Application Interface Center (CIAM), Mohammed VI Polytechnic University (UM6P), 43150 Benguérir, Morocco; (I.M.); (N.F.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, 40000 Marrakesh, Morocco;
| | - Nidal Fahsi
- Medical Application Interface Center (CIAM), Mohammed VI Polytechnic University (UM6P), 43150 Benguérir, Morocco; (I.M.); (N.F.)
- Laboratory of Genetic, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 14000 Kénitra, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, 40000 Marrakesh, Morocco;
- Microbiome Team and African genome center (AGC), AgrobioSciences department (AgBS), Mohammed VI Polytechnic University (UM6P), 43150 Benguérir, Morocco;
| | - Abdelmounaaim Allaoui
- Microbiome Team and African genome center (AGC), AgrobioSciences department (AgBS), Mohammed VI Polytechnic University (UM6P), 43150 Benguérir, Morocco;
- Laboratory of Molecular Microbiology, CIPEM (Coalition Center, for Innovation, and Prevention of Epidemies in Morocco) Mohammed VI Polytechnic University (UM6P), 43150 Benguérir, Morocco
| | - Latefa Biskri
- Medical Application Interface Center (CIAM), Mohammed VI Polytechnic University (UM6P), 43150 Benguérir, Morocco; (I.M.); (N.F.)
- Laboratory of Molecular Microbiology, CIPEM (Coalition Center, for Innovation, and Prevention of Epidemies in Morocco) Mohammed VI Polytechnic University (UM6P), 43150 Benguérir, Morocco
| |
Collapse
|
35
|
Kim YJ, Park JY, Balusamy SR, Huo Y, Nong LK, Thi Le H, Yang DC, Kim D. Comprehensive Genome Analysis on the Novel Species Sphingomonas panacis DCY99 T Reveals Insights into Iron Tolerance of Ginseng. Int J Mol Sci 2020; 21:E2019. [PMID: 32188055 PMCID: PMC7139845 DOI: 10.3390/ijms21062019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.
Collapse
Affiliation(s)
- Yeon-Ju Kim
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | | | - Yue Huo
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | - Hoa Thi Le
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | - Deok Chun Yang
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
36
|
Woo OG, Kim H, Kim JS, Keum HL, Lee KC, Sul WJ, Lee JH. Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:359-367. [PMID: 32018064 DOI: 10.1016/j.plaphy.2020.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 05/01/2023]
Abstract
Soil is a primary source of water and inorganic nutrients vital for plant growth. In particular, the rhizosphere, a microecological region around the plant roots, is enriched with root exudates that enable beneficial microbial communities to form. Plant growth-promoting rhizobacteria (PGPR) are rhizosphere bacteria that contribute to the improvement of plant growth through diverse physiological mechanisms. Identifying PGPR is beneficial for agriculture because their use can effectively increase the productivity of plants without the harmful side effects of chemical fertilizers. To further enrich the pool of PGPR that contribute to abiotic stress resistance in plants, we screened roughly 491 bacteria that had previously been isolated in soil from Gotjawal in Jeju island, South Korea. Among several candidates, the application of Bacillus subtilis strain GOT9, led to the enhancement of drought and salt stress tolerance in Arabidopsis. In agreement with the increased stress tolerance phenotypes, its application resulted in increases in the transcripts of various drought stress- and salt stress-inducible genes in the absence or presence of the stresses. Furthermore, the treatment resulted in improved lateral root growth and development in Arabidopsis. GOT9 also led to enhanced tolerance against drought and salt stresses and to upregulation of drought-inducible genes in Brassica, a closely related crop to Arabidopsis. Taken together, these results show that GOT9 could be utilized as a biotic resource that effectively minimizes damage to plants from environmental stresses.
Collapse
Affiliation(s)
- Og-Geum Woo
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea; Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hani Kim
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea; Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jong-Shik Kim
- Marine Industry Research Institute for East Sea Rim, Uljin, 36315, Republic of Korea
| | - Hye Lim Keum
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Kyu-Chan Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
37
|
Complete Genome Sequence of Paenibacillus sp. JZ16, a Plant Growth Promoting Root Endophytic Bacterium of the Desert Halophyte Zygophyllum Simplex. Curr Microbiol 2020; 77:1097-1103. [DOI: 10.1007/s00284-020-01908-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023]
|
38
|
Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109779. [PMID: 31726280 DOI: 10.1016/j.jenvman.2019.109779] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 05/22/2023]
Abstract
Rapid industrialization, modern agricultural practices and other anthropogenic activities add a significant quantity of toxic heavy metals into the environment, which induces severe toxic effects on all form of living organisms, alter the soil properties and its biological activity. Remediation of heavy metal contaminated sites has become an urgent necessity. Among the existing strategies, phytoremediation is an eco-friendly and much convincing tool for the remediation of heavy metals. However, the applicability of phytoremediation in contaminated sites is restricted by two prime factors such as i) slow growth rate at higher metal contaminated sites and ii) metal bioavailability. This circumstance could be minimized and accelerate the phytoremediation efficiency by incorporating the potential plant growth promoting rhizobacterial (PGPR) as a combined approach. PGPR inoculation might improve the plant growth through the production of plant growth promoting substances and improve the heavy metal remediation efficiency by the secretion of chelating agents, acidification and redox changes. Moreover, rhizobacterial inoculation consolidates the metal tolerance and uptake by regulating the expression of various metal transporters, tolerant and metal chelator genes. However, the exact underlying molecular mechanism of PGPR mediated plant growth promotion and phytoremediation of heavy metals is poorly understood. Thus, the present review provides clear information about the molecular mechanisms excreted by PGPR strains in plant growth promotion and phytoremediation of heavy metals.
Collapse
Affiliation(s)
- Srinivas Ravi Manoj
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Chinnannan Karthik
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India.
| | - Krishna Kadirvelu
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India.
| | - Padikasan Indra Arulselvi
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Thangavel Shanmugasundaram
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India
| | - Benedict Bruno
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
39
|
Kang JP, Huo Y, Yang DU, Yang DC. Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng. J Ginseng Res 2020; 45:442-449. [PMID: 34025137 PMCID: PMC8134844 DOI: 10.1016/j.jgr.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 11/26/2022] Open
Abstract
Background Panax ginseng is an important crop in Asian countries given its pharmaceutical uses. It is usually harvested after 4–6 years of cultivation. However, various abiotic stresses have led to its quality reduction. One of the stress causes is high content of heavy metal in ginseng cultivation area. Plant growth–promoting rhizobacteria (PGPR) can play a role in healthy growth of plants. It has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas, such as Aluminum (Al). Methods In vitro screening of the plant growth promoting activities of five tested strains were detected. Surface-disinfected 2-year-old ginseng seedlings were dipping in Rhizobium panacihumi DCY116T suspensions for 15 min and cultured in pots for investigating Al resistance of P. ginseng. The harvesting was carried out 10 days after Al treatment. We then examined H2O2, proline, total soluble sugar, and total phenolic contents. We also checked the expressions of related genes (PgCAT, PgAPX, and PgP5CS) of reactive oxygen species scavenging response and pyrroline-5-carboxylate synthetase by reverse transcription polymerase chain reaction (RT-PCR) method. Results Among five tested strains isolated from ginseng-cultivated soil, R. panacihumi DCY116T was chosen as the potential PGPR candidate for further study. Ginseng seedlings treated with R. panacihumi DCY116T produced higher biomass, proline, total phenolic, total soluble sugar contents, and related gene expressions but decreased H2O2 level than nonbacterized Al-stressed seedlings. Conclusion R. panacihumi DCY116T can be used as potential PGPR and “plant strengthener” for future cultivation of ginseng or other crops/plants that are grown in regions with heavy metal exposure.
Collapse
Affiliation(s)
- Jong-Pyo Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yue Huo
- Department of Oriental Medicinal Biotechnology, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong-Uk Yang
- Department of Oriental Medicinal Biotechnology, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea.,Department of Oriental Medicinal Biotechnology, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
40
|
Genome-Wide Transcriptome Analysis of Rice Seedlings after Seed Dressing with Paenibacillus yonginensis DCY84 T and Silicon. Int J Mol Sci 2019; 20:ijms20235883. [PMID: 31771205 PMCID: PMC6928808 DOI: 10.3390/ijms20235883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Plant-growth-promoting bacteria (PGPB) are beneficial microorganisms that can also protect against disease and environmental stress. Silicon (Si) is the second most abundant element in soil, and is known to increase plant growth, grain yield, resistance to biotic stress, and tolerance to abiotic stress. Combined treatment of PGPB and Si has been shown to further enhance plant growth and crop yield. To determine the global effects of the PGPB and Si on rice growth, we compared rice plants treated with Paenibacillus yonginensis DCY84T (DCY84T) and Si with untreated rice. To identify the genes that respond to DCY84T+Si treatment in rice, we performed an RNA-Seq transcriptome analysis by sampling treated and untreated roots on a weekly basis for three weeks. Overall, 576 genes were upregulated, and 394 genes were downregulated in treated roots, using threshold fold-changes of at least 2 (log2) and p-values < 0.05. Gene ontology analysis showed that phenylpropanoids and the L-phenylalanine metabolic process were prominent in the upregulated genes. In a metabolic overview analysis using the MapMan toolkit, pathways involving phenylpropanoids and ethylene were strongly associated with upregulated genes. The functions of seven upregulated genes were identified as being associated with drought stress through a literature search, and a stress experiment confirmed that plants treated with DCY84T+Si exhibited greater drought tolerance than the untreated control plants. Furthermore, the predicted protein–protein interaction network analysis associated with DCY84T+ Si suggests mechanisms underlying growth promotion and stress tolerance.
Collapse
|
41
|
Kuppardt A, Fester T, Härtig C, Chatzinotas A. Rhizosphere Protists Change Metabolite Profiles in Zea mays. Front Microbiol 2018; 9:857. [PMID: 29780370 PMCID: PMC5946010 DOI: 10.3389/fmicb.2018.00857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 01/16/2023] Open
Abstract
Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.
Collapse
Affiliation(s)
- Anke Kuppardt
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thomas Fester
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Claus Härtig
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, Koh SC, Yang DC. A Growth-Promoting Bacteria, Paenibacillus yonginensis DCY84 T Enhanced Salt Stress Tolerance by Activating Defense-Related Systems in Panax ginseng. FRONTIERS IN PLANT SCIENCE 2018; 9:813. [PMID: 30083171 PMCID: PMC6065202 DOI: 10.3389/fpls.2018.00813] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/25/2018] [Indexed: 05/18/2023]
Abstract
Panax ginseng (C.A. Mayer) is a well-known medicinal plant used in traditional medicine in Korea that experiences serious salinity stress related to weather changes or incorrect fertilizer application. In ginseng, the use of Paenibacillus yonginensis DCY84T to improve salt stress tolerance has not been thoroughly explored. Therefore, we studied the role of P. yonginensis DCY84T under short-term and long-term salinity stress conditions in a controlled environment. In vitro testing of DCY84T revealed high indole acetic acid (IAA) production, siderophore formation, phosphate solubilization and anti-bacterial activity. We determined that 10-min dip in 1010 CFU/ml DCY84T was sufficient to protect ginseng against short-term salinity stress (osmotic stress) upon exposure to 300 mM NaCl treatment by enhancing nutrient availability, synthesizing hydrolyzing enzymes and inducing osmolyte production. Upon exposure to salinity stress (oxidative and ionic stress), strain DCY84T-primed ginseng seedlings were protected by the induction of defense-related systems such as ion transport, ROS scavenging enzymes, proline content, total sugars, and ABA biosynthetic genes, as well as genes involved in root hair formation. Additionally, ginseng primed with DCY84T and exposed to 300 mM NaCl showed the same metabolite profile as control ginseng plants, suggesting that DCY84T effectively reduced salt stress. These results indicated that DCY84T can be widely used as a microbial inoculant to protect ginseng plants against salinity stress conditions.
Collapse
Affiliation(s)
- Johan Sukweenadhi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - Sri R. Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- *Correspondence: Yeon-Ju Kim
| | - Choong H. Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Sung C. Koh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Deok C. Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- Deok C. Yang
| |
Collapse
|
43
|
Kim YJ, Sukweenadhi J, Seok JW, Kang CH, Choi ES, Subramaniyam S, Yang DC. Complete genome sequence of Paenibacillus yonginensis DCY84 T, a novel plant Symbiont that promotes growth via induced systemic resistance. Stand Genomic Sci 2017; 12:63. [PMID: 29046742 PMCID: PMC5640943 DOI: 10.1186/s40793-017-0277-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/27/2017] [Indexed: 11/10/2022] Open
Abstract
This article reports the full genome sequence of Paenibacillus yonginensis DCY84T (KCTC33428, JCM19885), which is a Gram-positive rod-shaped bacterium isolated from humus soil of Yongin Forest in Gyeonggi Province, South Korea. The genome sequence of strain DCY84T provides greater understanding of the Paenibacillus species for practical use. This bacterium displays plant growth promotion via induced systemic resistance of abiotic stresses.
Collapse
Affiliation(s)
- Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701 South Korea
| | - Johan Sukweenadhi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701 South Korea
| | | | - Chang Ho Kang
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Eul-Su Choi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701 South Korea
| | - Sathiyamoorthy Subramaniyam
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701 South Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701 South Korea
| |
Collapse
|
44
|
Farh MEA, Kim YJ, Sukweenadhi J, Singh P, Yang DC. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Microbiol Res 2017; 200:45-52. [DOI: 10.1016/j.micres.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 04/08/2017] [Indexed: 11/25/2022]
|
45
|
Radhakrishnan R, Baek KH. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:116-126. [PMID: 28554145 DOI: 10.1016/j.plaphy.2017.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 05/01/2023]
Abstract
Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress.
Collapse
Affiliation(s)
| | - Kwang Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
46
|
Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation. FRONTIERS IN PLANT SCIENCE 2017; 8:1143. [PMID: 28706529 PMCID: PMC5489591 DOI: 10.3389/fpls.2017.01143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/14/2017] [Indexed: 05/04/2023]
Abstract
Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation.
Collapse
Affiliation(s)
- Cheng Zhou
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
- School of Life Science and Technology, Tongji UniversityShanghai, China
| | - Lin Zhu
- School of Life Science and Technology, Tongji UniversityShanghai, China
| | - Yue Xie
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Feiyue Li
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Xin Xiao
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Zhongyou Ma
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Jianfei Wang
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| |
Collapse
|
47
|
Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum [Sorghum bicolor (L.) Moench]. Antonie van Leeuwenhoek 2017; 110:925-943. [PMID: 28353092 DOI: 10.1007/s10482-017-0864-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
A diverse group of bacteria colonize the exo- and endo-rhizospheres of sorghum and play a critical role in its tolerance to drought and other abiotic stresses. Two hundred and eighty endophytic bacteria were isolated from the surface-sterilized roots of four sorghum cultivars that were grown on three soil types at three different phenological stages of growth. The isolates were subjected to in vitro screening for their plant growth promoting traits. Out of 280 isolates, 70 could produce Indole 3-Acetic Acid (IAA), 28 showed N-fixation, 28 could solubilize phosphate, 24 had ACC deaminase activity and 13 isolates were able to produce siderophores. Functional diversity grouping of the isolates indicated one isolate having five PGP traits and two isolates having four PGP traits; two and 29 isolates having three and two PGP traits, respectively. Among the thirty-four isolates that possessed multiple PGP traits, 19 and 17 isolates were able to produce significant quantities of IAA in the presence and absence of L-tryptophan, an inducer. Eight isolates possessed high levels of ACC deaminase activity. PCR-RFLP of the 16Sr RNA gene revealed a distinct clustering and considerable genetic diversity among these functionally characterized isolates. The 16S rRNA gene based identification of the isolates of single and multiple PGP traits revealed phylogenetic dominance of Firmicutes; Acinetobacter, Bacillus, Enterobacter, Geobacillus, Lysinibacillus, Microbacterium, Ochrobactrum, Paenibacillus and Pseudomonas were the major genera present in the endo-rhizosphere of sorghum. Results of this study are constructive in selection of effective rhizobacterial endophytes or consortia for drought stress alleviation in sorghum.
Collapse
|
48
|
Felestrino ÉB, Santiago IF, Freitas LDS, Rosa LH, Ribeiro SP, Moreira LM. Plant Growth Promoting Bacteria Associated with Langsdorffia hypogaea-Rhizosphere-Host Biological Interface: A Neglected Model of Bacterial Prospection. Front Microbiol 2017; 8:172. [PMID: 28239369 PMCID: PMC5300976 DOI: 10.3389/fmicb.2017.00172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
Soil is a habitat where plant roots and microorganisms interact. In the region of the Brazilian Iron Quadrangle (IQ), studies involving the interaction between microbiota and plants have been neglected. Even more neglected are the studies involving the holoparasite plant Langsdorffia hypogaea Mart. (Balanophoraceae). The geomorphological peculiarities of IQ soil, rich in iron ore, as well as the model of interaction between L. hypogaea, its hosts and the soil provide a unique niche that acts as selective pressure to the evolution of plant growth-promoting bacteria (PGPB). The aim of this study was to prospect the bacterial microbiota of holoparasitic plant L. hypogaea, its plant host and corresponding rhizosphere of IQ soil, and to analyze the potential of these isolates as PGPB. We obtained samples of 11 individuals of L. hypogaea containing fragments of host and rhizosphere remnants, resulting in 81 isolates associated with Firmicutes and Proteobacteria phyla. The ability to produce siderophores, hydrocyanic acid (HCN), indole-3-acetic acid (IAA), nitrogen (N2) fixation, hydrolytic enzymes secretion and inhibition of enteropathogens, and phytopathogens were evaluated. Of the total isolates, 62, 86, and 93% produced, respectively, siderophores, IAA, and were able to fix N2. In addition, 27 and 20% of isolates inhibited the growth of enteropathogens and phytopathogens, respectively, and 58% were able to produce at least one hydrolytic activity investigated. The high number of isolates that produce siderophores and indole-3-acetic acid suggests that this microbiota may be important for adaptation of plants to IQ. The results demonstrate for the first time the biological importance of Brazilian IQ species as reservoirs of specific microbiotas that might be used as PGPB on agricultural land or antropized soils that needs to be reforested.
Collapse
Affiliation(s)
- Érica B Felestrino
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro PretoOuro Preto, Brazil; Laboratório de Genômica e Interação Microrganismos-Ambiente, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do CruzeiroOuro Preto, Brazil
| | - Iara F Santiago
- Laboratório de Ecologia e Biotecnologia de Leveduras, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Luana da Silva Freitas
- Programa de Pós-Graduação em Biomas Tropicais, Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto Ouro Preto, Brazil
| | - Luiz H Rosa
- Laboratório de Ecologia e Biotecnologia de Leveduras, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Sérvio P Ribeiro
- Programa de Pós-Graduação em Biomas Tropicais, Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto Ouro Preto, Brazil
| | - Leandro M Moreira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro PretoOuro Preto, Brazil; Laboratório de Genômica e Interação Microrganismos-Ambiente, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do CruzeiroOuro Preto, Brazil
| |
Collapse
|
49
|
|
50
|
Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J, Donoso R. Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana. Front Microbiol 2016; 7:1838. [PMID: 27909432 PMCID: PMC5112238 DOI: 10.3389/fmicb.2016.01838] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
Abstract
Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homoserine-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P. phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
Collapse
Affiliation(s)
- Thomas Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Sandy Rojas
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Tania Timmermann
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Ignacio Pinedo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - María J. Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Tatiana Garrido
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Pablo Richter
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Javier Tamayo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Raúl Donoso
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| |
Collapse
|