1
|
Moreno-Villanueva M, Jimenez-Chavez LE, Krieger S, Ding LH, Zhang Y, Babiak-Vazquez A, Berres M, Splinter S, Pauken KE, Schaefer BC, Crucian BE, Wu H. Transcriptomics analysis reveals potential mechanisms underlying mitochondrial dysfunction and T cell exhaustion in astronauts' blood cells in space. Front Immunol 2025; 15:1512578. [PMID: 39902046 PMCID: PMC11788081 DOI: 10.3389/fimmu.2024.1512578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction The impact of spaceflight on the immune system and mitochondria has been investigated for decades. However, the molecular mechanisms underlying spaceflight-induced immune dysregulations are still unclear. Methods In this study, blood from eleven crewmembers was collected before and during International Space Station (ISS) missions. Transcriptomic analysis was performed in isolated peripheral blood mononuclear cells (PBMCs) using RNA-sequencing. Differentially expresses genes (DEG) in space were determined by comparing of the inflight to the preflight samples. Pathways and statistical analyses of these DEG were performed using the Ingenuity Pathway Analysis (IPA) tool. Results In comparison to pre-flight, a total of 2030 genes were differentially expressed in PBMC collected between 135 and 210 days in orbit, which included a significant number of surface receptors. The dysregulated genes and pathways were mostly involved in energy and oxygen metabolism, immune responses, cell adhesion/migration and cell death/survival. Discussion Based on the DEG and the associated pathways and functions, we propose that mitochondria dysfunction was caused by constant modulation of mechano-sensing receptors in microgravity, which triggered a signaling cascade that led to calcium overloading in mitochondria. The response of PBMC in space shares T-cell exhaustion features, likely initiated by microgravity than by infection. Consequences of mitochondria dysfunction include immune dysregulation and prolonged cell survival which potentially explains the reported findings of inhibition of T cell activation and telomere lengthening in astronauts. Conclusion Our study potentially identifies the upstream cause of mitochondria dysfunction and the downstream consequences in immune cells.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Luis E. Jimenez-Chavez
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | | | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ye Zhang
- National Aeronautics and Space Administration, Kennedy Space Center, Cape Canaveral, FL, United States
| | - Adriana Babiak-Vazquez
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mark Berres
- Bioinformatics Resource and Gene Expression Center, University of Wisconsin, Madison, WI, United States
| | - Sandra Splinter
- Bioinformatics Resource and Gene Expression Center, University of Wisconsin, Madison, WI, United States
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Brian E. Crucian
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| | - Honglu Wu
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
2
|
Cabrera S, García-Vicente Á, Gutiérrez P, Sánchez A, Gaxiola M, Rodríguez-Bobadilla C, Selman M, Pardo A. Increased ER Stress and Unfolded Protein Response Activation in Epithelial and Inflammatory Cells in Hypersensitivity Pneumonitis. J Histochem Cytochem 2024; 72:289-307. [PMID: 38725414 PMCID: PMC11107439 DOI: 10.1369/00221554241251915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Several types of cytotoxic insults disrupt endoplasmic reticulum (ER) homeostasis, cause ER stress, and activate the unfolded protein response (UPR). The role of ER stress and UPR activation in hypersensitivity pneumonitis (HP) has not been described. HP is an immune-mediated interstitial lung disease that develops following repeated inhalation of various antigens in susceptible and sensitized individuals. The aim of this study was to investigate the lung expression and localization of the key effectors of the UPR, BiP/GRP78, CHOP, and sXBP1 in HP patients compared with control subjects. Furthermore, we developed a mouse model of HP to determine whether ER stress and UPR pathway are induced during this pathogenesis. In human control lungs, we observed weak positive staining for BiP in some epithelial cells and macrophages, while sXBP1 and CHOP were negative. Conversely, strong BiP, sXBP1- and CHOP-positive alveolar and bronchial epithelial, and inflammatory cells were identified in HP lungs. We also found apoptosis and autophagy markers colocalization with UPR proteins in HP lungs. Similar results were obtained in lungs from an HP mouse model. Our findings suggest that the UPR pathway is associated with the pathogenesis of HP.
Collapse
Affiliation(s)
- Sandra Cabrera
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Ángeles García-Vicente
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Pamela Gutiérrez
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Andrea Sánchez
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Miguel Gaxiola
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, México
| | - Carolina Rodríguez-Bobadilla
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, México
| | - Annie Pardo
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
3
|
Mitsiades CS. Proteasome Inhibitors in Multiple Myeloma: Biological Insights on Mechanisms of Action or Resistance Informed by Functional Genomics. Hematol Oncol Clin North Am 2024; 38:321-336. [PMID: 38278626 DOI: 10.1016/j.hoc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
4
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma Cell Differentiation, Antibody Quality, and Initial Germinal Center B Cell Population Depend on Glucose Influx Rate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:43-56. [PMID: 37955416 PMCID: PMC10841396 DOI: 10.4049/jimmunol.2200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Serum Ab concentrations, selection for higher affinity BCRs, and generation of higher Ab affinities are important elements of immune response optimization and functions of germinal center (GC) reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by mouse GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether glucose uptake or glycolysis increases in GC B cells compared with their naive precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that reduction of the glucose transporter GLUT1 in mice after establishment of a preimmune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and plasma cell outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway, whose activity was important in controlling reactive oxygen species (ROS) and Ab-secreting cell production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose, an efficient precursor to glycosylation, supported robust production of and normal Ab secretion by Ab-secreting cells under glucose-free conditions. Collectively, the findings indicate that GCs depend on normal glucose influx, especially in plasma cell production, but reveal an unexpected metabolic flexibility in hexose requirements.
Collapse
Affiliation(s)
- Shawna K. Brookens
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Sung Hoon Cho
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Yeeun Paik
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kaylor Meyer
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ariel L. Raybuck
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chloe Park
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dalton L. Greenwood
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C. Rathmell
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Mark R. Boothby
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| |
Collapse
|
5
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma cell differentiation, antibody quality, and initial germinal center B cell population depend on glucose influx rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557599. [PMID: 37745429 PMCID: PMC10515901 DOI: 10.1101/2023.09.13.557599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antibody secretion into sera, selection for higher affinity BCR, and the generation of higher Ab affinities are important elements of immune response optimization, and a core function of germinal center reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether or not glucose uptake or glycolysis increases in GC B cells compared to their naïve precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that elimination of the glucose transporter GLUT1 after establishment of a pre-immune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and PC outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway (PPP), whose activity was important in controlling reactive oxygen (ROS) and ASC production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose - an efficient precursor to glycosylation - supported robust production of and normal Ab secretion by ASC under glucose-free conditions. Collectively, the findings indicate that GC depend on normal glucose influx, especially in PC production, but reveal an unexpected metabolic flexibility in hexose requirements. KEY POINTS Glucose influx is critical for GC homeostasis, affinity maturation and the generation of Ab-secreting cells.Plasma cell development uses the Pentose Phosphate Pathway, and hexose sugars maintain redox homeostasis.PCs can develop and achieve robust Ab secretion in the absence of glucose using a combination of hexose alternatives.
Collapse
|
6
|
Li HY, Huang LF, Huang XR, Wu D, Chen XC, Tang JX, An N, Liu HF, Yang C. Endoplasmic Reticulum Stress in Systemic Lupus Erythematosus and Lupus Nephritis: Potential Therapeutic Target. J Immunol Res 2023; 2023:7625817. [PMID: 37692838 PMCID: PMC10484658 DOI: 10.1155/2023/7625817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis, lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macrophages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition, ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy, and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.
Collapse
Affiliation(s)
- Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
7
|
Bainter W, Platt CD, Park SY, Stafstrom K, Wallace JG, Peters ZT, Massaad MJ, Becuwe M, Salinas SA, Jones J, Beaussant-Cohen S, Jaber F, Yang JS, Walther TC, Orange JS, Rao C, Rakoff-Nahoum S, Tsokos M, Naseem SUR, Al-Tamemi S, Chou J, Hsu VW, Geha RS. Combined immunodeficiency due to a mutation in the γ1 subunit of the coat protein I complex. J Clin Invest 2021; 131:140494. [PMID: 33529166 DOI: 10.1172/jci140494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The coat protein I (COPI) complex mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER). Five siblings with persistent bacterial and viral infections and defective humoral and cellular immunity had a homozygous p.K652E mutation in the γ1 subunit of COPI (γ1-COP). The mutation disrupts COPI binding to the KDEL receptor and impairs the retrieval of KDEL-bearing chaperones from the Golgi to the ER. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. This study establishes the role of γ1-COP in the ER retrieval of KDEL-bearing chaperones and thereby the importance of ER homeostasis in adaptive immunity.
Collapse
Affiliation(s)
- Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seung-Yeol Park
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kelsey Stafstrom
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline G Wallace
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary T Peters
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michel Becuwe
- Department of Genetics and Complex Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sandra Andrea Salinas
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer Jones
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Beaussant-Cohen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Faris Jaber
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Department of Genetics and Complex Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jordan S Orange
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, New York, USA
| | - Chitong Rao
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Patterson DG, Kania AK, Zuo Z, Scharer CD, Boss JM. Epigenetic gene regulation in plasma cells. Immunol Rev 2021; 303:8-22. [PMID: 34010461 PMCID: PMC8387415 DOI: 10.1111/imr.12975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.
Collapse
Affiliation(s)
- Dillon G. Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Anna K. Kania
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Zhihong Zuo
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | | | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| |
Collapse
|
9
|
Ricci D, Gidalevitz T, Argon Y. The special unfolded protein response in plasma cells. Immunol Rev 2021; 303:35-51. [PMID: 34368957 DOI: 10.1111/imr.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.
Collapse
Affiliation(s)
- Daniela Ricci
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Guo C, Chen F, Xiao Q, Catterall HB, Robinson JH, Wang Z, Mock M, Hubert R. Expression liabilities in a four-chain bispecific molecule. Biotechnol Bioeng 2021; 118:3744-3759. [PMID: 34110008 DOI: 10.1002/bit.27850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Multispecific antibodies, often composed of three to five polypeptide chains, have become increasingly relevant in the development of biotherapeutics. These molecules have mechanisms of action that include redirecting T cells to tumors and blocking multiple pathogenic mediators simultaneously. One of the major challenges for asymmetric multispecific antibodies is generating a high proportion of the correctly paired antibody during production. To understand the causes and effects of chain mispairing impurities in a difficult to express multispecific hetero-IgG, we investigated consequences of individual and pairwise chain expression in mammalian transient expression hosts. We found that one of the two light chains (LC) was not secretion competent when transfected individually or cotransfected with the noncognate heavy chain (HC). Overexpression of this secretion impaired LC reduced cell growth while inducing endoplasmic reticulum stress and CCAAT/enhancer-binding protein homologous protein (CHOP) expression. The majority of this LC was observed as monomer with incomplete intrachain disulfide bonds when expressed individually. Russell bodies (RB) were induced when this LC was co-expressed with the cognate HC. Moreover, one HC paired promiscuously with noncognate LC. These results identify the causes for the low product quality observed from stable cell lines expressing this heteroIgG and suggest mitigation strategies to improve overall process productivity of the correctly paired multispecific antibody. The approach described here provides a general strategy for identifying the molecular and cellular liabilities associated with difficult to express multispecific antibodies.
Collapse
Affiliation(s)
- Cai Guo
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Fuyi Chen
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Qiang Xiao
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Hannah B Catterall
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - John H Robinson
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Zhulun Wang
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., San Francisco, California, USA
| | - Marissa Mock
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - René Hubert
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
11
|
van Anken E, Bakunts A, Hu CCA, Janssens S, Sitia R. Molecular Evaluation of Endoplasmic Reticulum Homeostasis Meets Humoral Immunity. Trends Cell Biol 2021; 31:529-541. [PMID: 33685797 DOI: 10.1016/j.tcb.2021.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
The biosynthesis of about one third of the human proteome, including membrane receptors and secreted proteins, occurs in the endoplasmic reticulum (ER). Conditions that perturb ER homeostasis activate the unfolded protein response (UPR). An 'optimistic' UPR output aims at restoring homeostasis by reinforcement of machineries that guarantee efficiency and fidelity of protein biogenesis in the ER. Yet, once the UPR 'deems' that ER homeostatic readjustment fails, it transitions to a 'pessimistic' output, which, depending on the cell type, will result in apoptosis. In this article, we discuss emerging concepts on how the UPR 'evaluates' ER stress, how the UPR is repurposed, in particular in B cells, and how UPR-driven counter-selection of cells undergoing homeostatic failure serves organismal homeostasis and humoral immunity.
Collapse
Affiliation(s)
- Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Anush Bakunts
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Sophie Janssens
- Laboratory for Endoplasmic Reticulum (ER) Stress and Inflammation, VIB Center for Inflammation Research, and Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
12
|
Huang ZH, Qiao J, Feng YY, Qiu MT, Cheng T, Wang J, Zheng CF, Lv ZQ, Wang CH. Reticulocalbin-1 knockdown increases the sensitivity of cells to Adriamycin in nasopharyngeal carcinoma and promotes endoplasmic reticulum stress-induced cell apoptosis. Cell Cycle 2020; 19:1576-1589. [PMID: 32436770 PMCID: PMC7469451 DOI: 10.1080/15384101.2020.1733750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/09/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) mainly appears in southeastern Asian countries, including China. Adriamycin (ADM), a type of antitumor drug, is widely applied in treatments against various cancers. Nevertheless, cancer cells will eventually develop drug resistance to ADM. The present study aims to explore the potential role of reticulocalbin-1 (RCN1) in NPC cells resistance to ADM. Microarray-based analysis was used to screen NPC-related genes, with RCN1 acquired for this current study. RCN1 expression in NPC tissues and cells was determined. The biological function of RCN1 on NPC cell apoptosis was evaluated via gain- and loss-of-function experiments in 5-8 F/ADM and 5-8 F cells by delivering si-RCN1 and RCN1-vector. The function of endoplasmic reticulum (ER) stress on cell apoptosis was measured with the involvement of the PERK-CHOP signaling pathway. Furthermore, tumor formation in nude mice was performed to evaluate the survival condition and RCN1 effects in vivo. RCN1 was highly expressed in NPC tissues and cell lines. The increased expression of ER-related proteins ATF4, CHOP, and the extents of IRE1 and PERK phosphorylation were observed. RCN1 knockdown was found to reduce resistance of NPC cells/tissues to ADM while activating ER stress through the activated PERK-CHOP signaling pathway, which further promoted NPC cell apoptosis. These in vitro findings were detected in vivo on tumor formation in nude mice. In conclusion, the present study provides evidence that RCN1 knockdown stimulates ADM sensitivity in NPC by promoting ER stress-induced cell apoptosis, highlighting a theoretical basis for NPC treatment.
Collapse
Affiliation(s)
- Ze-Hao Huang
- Department of Head & Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Jun Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | | | - Meng-Ting Qiu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Chao-Feng Zheng
- Linfen Meternity & Child Healthcare Hospital, Linfen, P.R. China
| | - Zhi-Qin Lv
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Cai-Hong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| |
Collapse
|
13
|
Zhi F, Zhou D, Bai F, Li J, Xiang C, Zhang G, Jin Y, Wang A. VceC Mediated IRE1 Pathway and Inhibited CHOP-induced Apoptosis to Support Brucella Replication in Goat Trophoblast Cells. Int J Mol Sci 2019; 20:ijms20174104. [PMID: 31443507 PMCID: PMC6747397 DOI: 10.3390/ijms20174104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/03/2023] Open
Abstract
The effectors of the type IV secretion system (T4SS) of bacteria play important roles in mediating bacterial intracellular proliferation and manipulating host-related pathway responses to bacterial infection. Brucella Spp. inhibit the apoptosis of host cells to benefit their own intracellular proliferation. However, the underlying mechanisms between T4SS effectors and Brucella-inhibited apoptosis in goat trophoblast cells remain unclear. Here, based on Brucella suis vaccine strain 2, the VceC was deleted by allelic exchange. We show that ΔVceC was able to infect and proliferate to high titers in goat trophoblast cells (GTCs) and increase C/EBP-homologous protein (CHOP)-mediated apoptosis. GRP78 expression decreased upon ΔVceC infection. In addition, we discovered that the inositolrequiring enzyme 1 (IRE1) pathway was inhibited in this process. Changing endoplasmic reticulum (ER) stress affected Brucella intracellular replication in GTCs. The replication of ΔVceC was more sensitive under the different ERstress conditions in the GTC line after treatment with ER stress inhibitors 4 phenyl butyric acid (4-PBA) or ER stress activator Tm. Together, our findings show that VceC has a protective effect on the intracellular persistence of Brucella infection, and inhibits ER stress-induced apoptosis in the CHOP pathway. The present work provides new insights for understanding the mechanism of VceC in the establishment of chronic Brucella infection.
Collapse
Affiliation(s)
- Feijie Zhi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Furong Bai
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Junmei Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Caixia Xiang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Guangdong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Wang X, Hao GL, Wang BY, Gao CC, Wang YX, Li LS, Xu JD. Function and dysfunction of plasma cells in intestine. Cell Biosci 2019; 9:26. [PMID: 30911371 PMCID: PMC6417281 DOI: 10.1186/s13578-019-0288-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
As the main player in humoral immunity, antibodies play indispensable roles in the body's immune system. Plasma cells (PCs), as antibody factories, are important contributors to humoral immunity. PCs, recognized by their unique marker CD138, are always discovered in the medullary cords of spleen and lymph nodes and in bone marrow and mucosal lymphoid tissue. This article will review the origin and differentiation of PCs, characteristics of short- and long-lived PCs, and the secretion of antibodies, such as IgA, IgM, and IgG. PCs play a crucial role in the maintenance of intestinal homeostasis using immunomodulation though complex mechanisms. Clearly, PCs play functional roles in maintaining intestinal health, but more details are needed to fully understand all the other effects of intestinal PCs.
Collapse
Affiliation(s)
- Xue Wang
- School of Basic Medical Sciences, Xuanwu Hospital, Beijing Capital Medical University, Beijing, 100069 China
| | - Gui-liang Hao
- School of Basic Medical Sciences, Xuanwu Hospital, Beijing Capital Medical University, Beijing, 100069 China
| | - Bo-ya Wang
- Peking University Health Science Center, Beijing, 100081 China
| | - Chen-chen Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, No. 10, Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| | - Yue-xiu Wang
- Department of Teaching Office, International School, Capital Medical University, Beijing, 100069 China
| | - Li-sheng Li
- Function Platform Center, School of Basic Medical Science, Capital Medical University, Beijing, 100069 China
| | - Jing-dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, No. 10, Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069 China
| |
Collapse
|
15
|
Chen YX. Protective effect of microRNA-224 on acute lower extremity ischemia through activation of the mTOR signaling pathway via CHOP in mice. J Cell Physiol 2018; 234:8888-8898. [PMID: 30488423 DOI: 10.1002/jcp.27550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
Acute lower extremity ischemia (ALEXI) is known worldwide as an urgent condition, occurring when there is an abrupt interruption in blood flow into an extremity. This study aims to investigate whether microRNA-224 (miR-224) affects the ALEXI mice and the underlying mechanism. The miR-224 expression and C/EBP homologous protein (CHOP), mammalian target of rapamycin (mTOR), translation initiation factor 4E-binding protein 1 (4E-BP1), and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) messenger RNA (mRNA), as well as protein expressions, were determined. The target gene of miR-224 was also verified by using a luciferase reporter gene assay. The vascular endothelial cells from the ALEXI mice were transfected with miR-224 mimics, miR-224 inhibitors, or small-interfering RNA against CHOP. Cell proliferation was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle distribution along with the cell apoptosis were both evaluated by using a flow cytometry. The muscle fibers of the lower extremities found in the ALEXI mice were evidently swollen and rounded, presenting with a remarkably narrowed gap. The positive CHOP expression increased in ALEXI mice than normal mice, while the miR-224 expression and mTOR, 4E-BP1, and p70S6K mRNA, as well as the protein expression, decreased. Luciferase reporter gene assay validated that the miR-224 gene directly targeted CHOP. MiR-224 facilitated cell proliferation but inhibited cell apoptosis; by contrast, CHOP increased cell apoptosis. Moreover, the cells transfected along with miR-224 mimic exhibited a lower CHOP expression as well as increased mTOR, 4E-BP1, and p70S6K expression. Our study provided evidence that miR-224 could alleviate the occurrence and development of ALEXI in mice through activation of the mTOR signaling pathway by downregulating CHOP.
Collapse
Affiliation(s)
- Yang-Xi Chen
- Department of Hematology Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
16
|
Campestrini J, Silveira DB, Pinto AR. HIV-1 Tat-induced bystander apoptosis in Jurkat cells involves unfolded protein responses. Cell Biochem Funct 2018; 36:377-386. [DOI: 10.1002/cbf.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/15/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jéssica Campestrini
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Douglas Bardini Silveira
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Aguinaldo Roberto Pinto
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| |
Collapse
|
17
|
Bian M, Chen X, Zhang C, Jin H, Wang F, Shao J, Chen A, Zhang F, Zheng S. Magnesium isoglycyrrhizinate promotes the activated hepatic stellate cells apoptosis via endoplasmic reticulum stress and ameliorates fibrogenesis in vitro and in vivo. Biofactors 2017; 43:836-846. [PMID: 29048780 DOI: 10.1002/biof.1390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
Varied pathogenetic elements have been touched upon the liver fibrosis, including inflammatory, stress, apoptosis and unfolded proteins aggregation. Magnesium Isoglycyrrhizinate (MgIG) has been accepted to be a neuroprotective effect, hepatoprotective and anti-inflammatory molecule. In our vitro researches, MgIG was considered to activate hepatic stellate cells (HSCs) apoptosis by promoting endoplasmic reticulum stress (ERS) detrimental response to a certain extent. Consequently, MgIG showed its potential therapeutic capacity in fibrogenesis and counteracted the pathogenetic aspects, which were involved in integrating current treatments correcting liver fibrosis. In addition, we further verificated the behavior and pathogenic mechanisms in the CCl4 -induced liver fibrosis in male mice. What surprised us was that with the treatment of MgIG caused the activation of ERS and resisted the activated HSCs in the protective effects on liver damage. We found MgIG significantly promoted the apoptosis of activated HSCs and protected the CCl4 -induced liver fibrosis. Main molecules came down to the unfolded protein response signaling pathway. Furthermore, MgIG inhibited the levels of the downstream inflammatory cytokines, which were triggered by CCl4 -induced liver fibrosis. Here, we reported that MgIG improved behavioral impairments induced by intraperitoneal injection of CCl4 and decreased the expression of proinflammatory factor, which indicated the preserving effects on liver fibrosis. © 2017 BioFactors, 43(6):836-846, 2017.
Collapse
Affiliation(s)
- Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingran Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenxi Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feixia Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Lam WY, Bhattacharya D. Metabolic Links between Plasma Cell Survival, Secretion, and Stress. Trends Immunol 2017; 39:19-27. [PMID: 28919256 DOI: 10.1016/j.it.2017.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 01/12/2023]
Abstract
Humoral immunity is generated and maintained by antigen-specific antibodies that counter infectious pathogens. Plasma cells are the major producers of antibodies during and after infections, and each plasma cell produces some thousands of antibody molecules per second. This magnitude of secretion requires enormous quantities of amino acids and glycosylation sugars to properly build and fold antibodies, biosynthetic substrates to fuel endoplasmic reticulum (ER) biogenesis, and additional carbon sources to generate energy. Many of these processes are likely to be linked, thereby affording possibilities to improve vaccine design and to develop new therapies for autoimmunity. We review here aspects of plasma cell biology with an emphasis on recent studies and the relationships between intermediary metabolism, antibody production, and lifespan.
Collapse
Affiliation(s)
- Wing Y Lam
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Current address: Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
19
|
Guo JJ, Xu FQ, Li YH, Li J, Liu X, Wang XF, Hu LG, An Y. Alginate oligosaccharide alleviates myocardial reperfusion injury by inhibiting nitrative and oxidative stress and endoplasmic reticulum stress-mediated apoptosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2387-2397. [PMID: 28860710 PMCID: PMC5571823 DOI: 10.2147/dddt.s142118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alginate oligosaccharide (AOS) has recently demonstrated the ability to protect against acute doxorubicin cardiotoxicity and neurodegenerative disorders by inhibiting oxidative stress and endoplasmic reticulum (ER) stress-mediated apoptosis, which are both involved in myocardial ischemia/reperfusion (I/R) injury. In the present study, we investigated whether pretreatment with AOS protects against myocardial I/R injury in mice and explored potential cardioprotective mechanisms. AOS pretreatment significantly decreased the infarct size, reduced the cardiac troponin-I concentration, and ameliorated the cardiac dysfunction. Accompanied with the reduced cardiac injury, AOS pretreatment clearly decreased I/R-induced myocardial apoptosis. With regard to mechanism, AOS pretreatment markedly attenuated nitrative/oxidative stress, as evidenced by decreases in 3-nitrotyrosine content and superoxide generation, and downregulated inducible nitric oxide synthase, NADPH oxidase2, and 4-hydroxynonenal. Moreover, AOS pretreatment decreased myocardial apoptosis by inhibiting the ER stress-mediated apoptosis pathway, which is reflected by the downregulation of C/EBP homologous protein, glucose-regulated protein 78, caspase-12, and Bcl-2-associated X protein, and by the upregulation of the anti-apoptotic protein B-cell lymphoma-2. Collectively, these findings demonstrate that AOS renders the heart resistant to I/R injury, at least in part, by inhibiting nitrative/oxidative stress and ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Feng-Qiang Xu
- Department of Cardiology, Qingdao Municipal Hospital
| | - Yong-Hong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Jian Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Xin Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University
| | - Xiao-Fan Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Long-Gang Hu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| |
Collapse
|
20
|
Collier AE, Wek RC, Spandau DF. Human Keratinocyte Differentiation Requires Translational Control by the eIF2α Kinase GCN2. J Invest Dermatol 2017; 137:1924-1934. [PMID: 28528168 DOI: 10.1016/j.jid.2017.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/29/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Appropriate and sequential differentiation of keratinocytes is essential for all functions of the human epidermis. Although transcriptional regulation has proven to be important for keratinocyte differentiation, little is known about the role of translational control. A key mechanism for modulating translation is through phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2). A family of different eIF2α kinases function in the integrative stress response to inhibit general protein synthesis coincident with preferential translation of select mRNAs that participate in stress alleviation. Here we demonstrate that translational control through eIF2α phosphorylation is required for normal keratinocyte differentiation. Analyses of polysome profiles revealed that key differentiation genes, including involucrin, are bound to heavy polysomes during differentiation, despite decreased general protein synthesis. Induced eIF2α phosphorylation by the general control nonderepressible 2 (GCN2) protein kinase facilitated translational control and differentiation-specific protein expression during keratinocyte differentiation. Furthermore, loss of GCN2 thwarted translational control, normal epidermal differentiation, and differentiation gene expression in organotypic skin culture. These findings underscore a previously unknown function for GCN2 phosphorylation of eIF2α and translational control in the formation of an intact human epidermis.
Collapse
Affiliation(s)
- Ann E Collier
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Dan F Spandau
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
21
|
The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity. Blood 2017; 129:2132-2142. [DOI: 10.1182/blood-2016-08-730978] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/09/2017] [Indexed: 01/22/2023] Open
Abstract
Key PointsAmyloidogenic PCs show unique PI susceptibility and altered organelle homeostasis, consistent with defective autophagy. Amyloidogenic LC production is an intrinsic cellular stressor that sensitizes to PI toxicity.
Collapse
|
22
|
Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis. Mar Drugs 2016; 14:md14120231. [PMID: 27999379 PMCID: PMC5192468 DOI: 10.3390/md14120231] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023] Open
Abstract
Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis.
Collapse
|
23
|
Guleria A, Singh V, Chandna S. An attenuated calcium signaling and pre-emptive activation of UPR pathway together contribute to ER and calcium stress resilience of Lepidopteran insect cells. Biochim Biophys Acta Gen Subj 2016; 1861:504-521. [PMID: 27908702 DOI: 10.1016/j.bbagen.2016.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Ayushi Guleria
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Vijaypal Singh
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Sudhir Chandna
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India.
| |
Collapse
|
24
|
Saha S, Rashid K, Sadhukhan P, Agarwal N, Sil PC. Attenuative role of mangiferin in oxidative stress-mediated liver dysfunction in arsenic-intoxicated murines. Biofactors 2016; 42:515-532. [PMID: 27018134 DOI: 10.1002/biof.1276] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022]
Abstract
Mangiferin (MAG), a natural xanthone mainly derived from mangoes, possesses great antioxidative potentials. The present study has been carried out to investigate the hepato-protective role of MAG, against arsenic (As)-induced oxidative damages in the murine liver. As, a well-known toxic metalloid, is ubiquitously found in nature and has been reported to affect nearly all the organs of the human body via oxidative impairment. Administration of As in the form of sodium arsenite (NaAsO2 ) at a dose of 10 mg/kg body weight for 3 months abruptly increased reactive oxygen species (ROS) level, led to oxidative stress and significantly depleted the first line of antioxidant defense system in the body. Moreover, As caused apoptosis in hepatocytes. Treatment with MAG at a dose of 40 mg/kg for body weight for 30 days simultaneously and separately after NaAsO2 administration decreased the ROS production and attenuated the alterations in the activities of all antioxidant indices. MAG also protected liver against the NaAsO2 -induced apoptosis and disintegrated hepatocytes, thus counteracting with As-induced toxicity. It could significantly inhibit the expression of different proapoptotic caspases and upregulate the expression of survival molecules such as Akt and Nrf2. On inhibiting Akt (by PI3K inhibitor, LY294002) and ERK1/2 (by ERK1/2 inhibitor, PD98059) specifically, caspase 3 got activated abolishing mangiferin's protective role on As-induced hepatotoxicity. So here, we have briefly elucidated the signaling cascades involved in As-induced apoptotic cell death in the liver and also the detailed cellular mechanism by which MAG provides protection to this organ. © 2016 BioFactors, 42(5):515-532, 2016.
Collapse
Affiliation(s)
- Sukanya Saha
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | | | - Namrata Agarwal
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India.
| |
Collapse
|
25
|
Martins AS, Alves I, Helguero L, Domingues MR, Neves BM. The Unfolded Protein Response in Homeostasis and Modulation of Mammalian Immune Cells. Int Rev Immunol 2016; 35:457-476. [PMID: 27119724 DOI: 10.3109/08830185.2015.1110151] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) plays important roles in eukaryotic protein folding and lipid biosynthesis. Several exogenous and endogenous cellular sources of stress can perturb ER homeostasis leading to the accumulation of unfolded proteins in the lumen. Unfolded protein accumulation triggers a signal-transduction cascade known as the unfolded protein response (UPR), an adaptive mechanism which aims to protect cells from protein aggregates and to restore ER functions. Further to this protective mechanism, in immune cells, UPR molecular effectors have been shown to participate in a wide range of biological processes such as cell differentiation, survival and immunoglobulin and cytokine production. Recent findings also highlight the involvement of the UPR machinery in the maturational program and antigen presentation capacities of dendritic cells. UPR is therefore a key element in immune system homeostasis with direct implications on both adaptive and innate immune responses. The present review summarizes the knowledge on the emerging roles of UPR signaling cascades in mammalian immune cells as well as the consequences of their dysregulation in relation to the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Ana Sofia Martins
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Inês Alves
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Luisa Helguero
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal.,b Institute for Research in Biomedicine - iBiMED, Health Sciences Program, Universidade de Aveiro , Portugal
| | - Maria Rosário Domingues
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Bruno Miguel Neves
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal.,c Faculty of Pharmacy and Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
26
|
Srour N, Chemin G, Tinguely A, Ashi MO, Oruc Z, Péron S, Sirac C, Cogné M, Delpy L. A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production. J Exp Med 2015; 213:109-22. [PMID: 26666261 PMCID: PMC4710196 DOI: 10.1084/jem.20131511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/12/2015] [Indexed: 01/26/2023] Open
Abstract
Aberrantly rearranged immunoglobulin (Ig) alleles are frequent. They are usually considered sterile and innocuous as a result of nonsense-mediated mRNA decay. However, alternative splicing can yield internally deleted proteins from such nonproductively V(D)J-rearranged loci. We show that nonsense codons from variable (V) Igκ exons promote exon-skipping and synthesis of V domain-less κ light chains (ΔV-κLCs). Unexpectedly, such ΔV-κLCs inhibit plasma cell (PC) differentiation. Accordingly, in wild-type mice, rearrangements encoding ΔV-κLCs are rare in PCs, but frequent in B cells. Likewise, enforcing expression of ΔV-κLCs impaired PC differentiation and antibody responses without disturbing germinal center reactions. In addition, PCs expressing ΔV-κLCs synthesize low levels of Ig and are mostly found among short-lived plasmablasts. ΔV-κLCs have intrinsic toxic effects in PCs unrelated to Ig assembly, but mediated by ER stress-associated apoptosis, making PCs producing ΔV-κLCs highly sensitive to proteasome inhibitors. Altogether, these findings demonstrate a quality control checkpoint blunting terminal PC differentiation by eliminating those cells expressing nonfunctionally rearranged Igκ alleles. This truncated Ig exclusion (TIE) checkpoint ablates PC clones with ΔV-κLCs production and exacerbated ER stress response. The TIE checkpoint thus mediates selection of long-lived PCs with limited ER stress supporting high Ig secretion, but with a cost in terms of antigen-independent narrowing of the repertoire.
Collapse
Affiliation(s)
- Nivine Srour
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Guillaume Chemin
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Aurélien Tinguely
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Mohamad Omar Ashi
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Zéliha Oruc
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Sophie Péron
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Christophe Sirac
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Michel Cogné
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France Institut Universitaire de France, Université de Limoges, 87000 Limoges, France
| | - Laurent Delpy
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| |
Collapse
|
27
|
Sanderson TH, Gallaway M, Kumar R. Unfolding the unfolded protein response: unique insights into brain ischemia. Int J Mol Sci 2015; 16:7133-42. [PMID: 25830481 PMCID: PMC4425008 DOI: 10.3390/ijms16047133] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is responsible for processing of proteins that are destined to be secreted, enclosed in a vesicle, or incorporated in the plasma membrane. Nascent peptides that enter the ER undergo a series of highly regulated processing steps to reach maturation as they transit the ER. Alterations in the intracellular environment that induce ER stress are thought to interrupt these processing steps, and result in unfolding of proteins in the ER. Accumulation of unfolded proteins concurrently activates three transmembrane stress sensors, IRE1, ATF6 and PERK, and is referred to as the Unfolded Protein Response (UPR). Our understanding of the mechanisms of UPR induction has been assembled primarily from experiments inducing ER stress with chemical and genetic manipulations. However, physiological stress often induces activation of ER stress sensors in a distinct manner from the canonical UPR. The unique activation profiles in vivo have prompted us to examine the mechanism of UPR activation in neurons following cerebral ischemia.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Cardiovascular Research Institute and Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Molly Gallaway
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Rita Kumar
- Cardiovascular Research Institute and Departments of Emergency Medicine and Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
28
|
Wu H, Tang Q, Yang J, Ding J, Ye M, Dong W. Atorvastatin ameliorates myocardial ischemia/reperfusion injury through attenuation of endoplasmic reticulum stress-induced apoptosis. Int J Clin Exp Med 2014; 7:4915-4923. [PMID: 25663988 PMCID: PMC4307435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Endoplasmic reticulum stress (ERS) is known to play an important role in mediating myocardial ischemic/reperfusion (I/R) injury. Some previous studies have shown that atorvastatin alleviates myocardial I/R injury in animal models, but whether attenuation of ERS-induced apoptosis contributes to this effect remains to be elucidated. Therefore, in this study, we sought to investigate the modulatory effect of atorvastatin on myocardial I/R-induced ERS in rats. Myocardial I/R injury was induced in rats by occlusion of the left anterior descending coronary artery (LAD) for 0.5 h followed by 2 h of reperfusion. Atorvastatin was administered at different dosages (10 mg/kg, 20 mg/kg, and 40 mg/kg) at the onset of reperfusion. The levels of the CK-MB and LDH were detected by ELISA. Myocardial ischemia and infarct size were evaluated by Evans blue and tetrazolium chloride (TTC) staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to investigate myocardial cell apoptosis. The expression levels of the genes encoding glucose-regulated protein-78 (GRP78, widely used as a marker of ERS), C/EBP homologous protein (CHOP) and caspase-12 (widely used as markers of ERS-induced apoptosis) were assessed using RT-PCR. The expression levels of the ERS proteins GRP78, CHOP, caspase-12, c-Jun NH2 terminal kinase (JNK) and phosphorylated JNK (p-JNK) were detected by western blot. Our results showed that atorvastatin treatment (20 mg/kg and 40 mg/kg) significantly reduced myocardial infarct size and myocardial cell apoptosis, and decreased the plasma levels of CK-MB and LDH in I/R rats. This treatment also significantly modulated mRNA and protein levels, specifically down-regulating GRP78, CHOP and caspase-12 expression along with JNK activation. These results suggest that the attenuation of ERS-induced apoptosis may be involved in the cardioprotective mechanisms of atorvastatin in myocardial I/R injury.
Collapse
Affiliation(s)
- Hui Wu
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei Province, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei Province, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges UniversityYichang 443003, Hubei Province, China
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges UniversityYichang 443003, Hubei Province, China
| | - Ming Ye
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges UniversityYichang 443003, Hubei Province, China
| | - Wusong Dong
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges UniversityYichang 443003, Hubei Province, China
| |
Collapse
|
29
|
Krysov S, Steele AJ, Coelho V, Linley A, Sanchez Hidalgo M, Carter M, Potter KN, Kennedy B, Duncombe AS, Ashton-Key M, Forconi F, Stevenson FK, Packham G. Stimulation of surface IgM of chronic lymphocytic leukemia cells induces an unfolded protein response dependent on BTK and SYK. Blood 2014; 124:3101-9. [PMID: 25170122 PMCID: PMC4231419 DOI: 10.1182/blood-2014-04-567198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/17/2014] [Indexed: 12/18/2022] Open
Abstract
B-cell receptor (BCR) signaling plays a key role in the behavior of chronic lymphocytic leukemia (CLL). However, cellular consequences of signaling are incompletely defined. Here we explored possible links between BCR signaling and the unfolded protein response (UPR), a stress response pathway that can promote survival of normal and malignant cells. Compared with normal B cells, circulating CLL cells expressed increased, but variable, levels of UPR components. Higher expression of CHOP and XBP1 RNAs was associated with more aggressive disease. UPR activation appeared due to prior tissue-based antigenic stimulation because elevated expression of UPR components was detected within lymph node proliferation centers. Basal UPR activation also correlated closely with surface immunoglobulin M (sIgM) signaling capacity in vitro in both IGHV unmutated CLL and within mutated CLL. sIgM signaling increased UPR activation in vitro with responders showing increased expression of CHOP and XBP1 RNAs, and PERK and BIP proteins, but not XBP1 splicing. Inhibitors of BCR-associated kinases effectively prevented sIgM-induced UPR activation. Overall, this study demonstrates that sIgM signaling results in activation of some components the UPR in CLL cells. Modulation of the UPR may contribute to variable clinical behavior, and its inhibition may contribute to clinical responses to BCR-associated kinase inhibitors.
Collapse
Affiliation(s)
- Sergey Krysov
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Andrew J Steele
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Vania Coelho
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Adam Linley
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Marina Sanchez Hidalgo
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Matthew Carter
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Kathleen N Potter
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Benjamin Kennedy
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Andrew S Duncombe
- Department of Haematology, Southampton General Hospital, Southampton, United Kingdom; and
| | - Margaret Ashton-Key
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom; Department of Cellular Pathology, Southampton General Hospital, Southampton, United Kingdom
| | - Francesco Forconi
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom; Department of Haematology, Southampton General Hospital, Southampton, United Kingdom; and
| | - Freda K Stevenson
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Graham Packham
- Cancer Research United Kingdom Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
30
|
Gaudette BT, Iwakoshi NN, Boise LH. Bcl-xL protein protects from C/EBP homologous protein (CHOP)-dependent apoptosis during plasma cell differentiation. J Biol Chem 2014; 289:23629-40. [PMID: 25023286 DOI: 10.1074/jbc.m114.569376] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although it is known that the unfolded protein response (UPR) plays a significant role in the process of plasma cell differentiation, the contribution of the individual sensors of the UPR to this process remains unclear. In this study we examine the death signals and compensatory survival signals activated during B cell activation and the first stages of plasma cell differentiation. During in vitro differentiation of both primary murine B cells and the Bcl1 cell line, we demonstrate that in addition to activation of the physiological UPR, changes in the expression of several Bcl-2 proteins occur, which are consistent with a lowering of the apoptotic threshold of the cell. Specifically, we observed decreased expression of Bcl-2 and Mcl-1 and increased expression of the proapoptotic protein Bim. However, these changes were countered by Bcl-xL induction, which is necessary to protect differentiating cells both from ER stress-induced death by tunicamycin and from the death signals inherent in differentiation. Consistent with differentiating cells becoming dependent on Bcl-xL for survival, the addition of ABT-737 resulted in apoptosis in differentiating cells through the inhibition of sequestration of Bim. Confirming this result, differentiation in the context of RNAi-mediated Bcl-xL knockdown also induced apoptosis. This cell death is C/EBP homologous protein (CHOP)-dependent, connecting these events to the UPR. Thus plasma cell differentiation proceeds through a Bcl-xL-dependent intermediate.
Collapse
Affiliation(s)
- Brian T Gaudette
- From the Departments of Hematology and Medical Oncology, Cell Biology and Winship Cancer Institute, and
| | - Neal N Iwakoshi
- the Department of Surgery and Emory Transplant Center, Emory University, Atlanta, Georgia 30322
| | - Lawrence H Boise
- From the Departments of Hematology and Medical Oncology, Cell Biology and Winship Cancer Institute, and
| |
Collapse
|
31
|
The genetic architecture of multiple myeloma. Adv Hematol 2014; 2014:864058. [PMID: 24803933 PMCID: PMC3996928 DOI: 10.1155/2014/864058] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma is a malignant proliferation of monoclonal plasma cells leading to clinical features that include hypercalcaemia, renal dysfunction, anaemia, and bone disease (frequently referred to by the acronym CRAB) which represent evidence of end organ failure. Recent evidence has revealed myeloma to be a highly heterogeneous disease composed of multiple molecularly-defined subtypes each with varying clinicopathological features and disease outcomes. The major division within myeloma is between hyperdiploid and nonhyperdiploid subtypes. In this division, hyperdiploid myeloma is characterised by trisomies of certain odd numbered chromosomes, namely, 3, 5, 7, 9, 11, 15, 19, and 21 whereas nonhyperdiploid myeloma is characterised by translocations of the immunoglobulin heavy chain alleles at chromosome 14q32 with various partner chromosomes, the most important of which being 4, 6, 11, 16, and 20. Hyperdiploid and nonhyperdiploid changes appear to represent early or even initiating mutagenic events that are subsequently followed by secondary aberrations including copy number abnormalities, additional translocations, mutations, and epigenetic modifications which lead to plasma cell immortalisation and disease progression. The following review provides a comprehensive coverage of the genetic and epigenetic events contributing to the initiation and progression of multiple myeloma and where possible these abnormalities have been linked to disease prognosis.
Collapse
|
32
|
van Anken E, Orsi A, Sitia R. A RIDDle solved: why an intact IRE1α/XBP-1 signaling relay is key for humoral immune responses. Eur J Immunol 2014; 44:641-5. [PMID: 24497153 DOI: 10.1002/eji.201444461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 01/13/2023]
Abstract
As they commit to plasma cell differentiation, B lymphocytes must swiftly gear up to produce and secrete huge amounts of antibodies. To develop their secretory capacity, B cells exploit a signaling pathway that is employed by all eukaryotic cells in response to endoplasmic reticulum stress. An article by Benhamron et al. in this issue of the European Journal of Immunology, [Eur. J. Immunol. 2014. 44: 867-876] sheds new light on why an intact IRE1/XBP-1 signaling relay is central to orchestrate the full-blown expansion of the secretory machinery needed for massive antibody production.
Collapse
Affiliation(s)
- Eelco van Anken
- San Raffaele Scientific Institute & Università Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
33
|
Zeng XS, Jia JJ, Kwon Y, Wang SD, Bai J. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radic Biol Med 2014; 67:10-8. [PMID: 24140863 DOI: 10.1016/j.freeradbiomed.2013.10.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported that thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed that 1-methyl-4-phenylpyridinium ion (MPP(+)) induced ER stress by activating glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in PC12 cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of the above molecules induced by MPP(+). In contrast, overexpression of Trx-1 attenuated the ER stress and repressed the expression of the above molecules induced by MPP(+). More importantly, the overexpression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of these molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of endoplasmic reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation of GRP78, IRE1α, TRAF2, JNK, caspase-12, and CHOP.
Collapse
Affiliation(s)
- Xian-Si Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jin-Jing Jia
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongwon Kwon
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sheng-Dong Wang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
34
|
Manasanch EE, Korde N, Zingone A, Tageja N, Fernandez de Larrea C, Bhutani M, Wu P, Roschewski M, Landgren O. The proteasome: mechanisms of biology and markers of activity and response to treatment in multiple myeloma. Leuk Lymphoma 2014; 55:1707-14. [PMID: 24261677 DOI: 10.3109/10428194.2013.828351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Since the early 1990s, the synthesis and subsequent clinical application of small molecule inhibitors of the ubiquitin proteasome pathway (UPP) has revolutionized the treatment and prognosis of multiple myeloma. In this review, we summarize important aspects of the biology of the UPP with a focus on its structure and key upstream/downstream regulatory components. We then review current knowledge of plasma cell sensitivity to proteasome inhibition and highlight new proteasome inhibitors that have recently entered clinical development. Lastly, we address the putative role of circulating proteasomes as a novel biomarker in multiple myeloma and provide guidance for future clinical trials using proteasome inhibitors.
Collapse
Affiliation(s)
- Elisabet E Manasanch
- Multiple Myeloma Section, Metabolism Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
B cells can be activated by cognate antigen, anti-B-cell receptor antibody, complement receptors, or polyclonal stimulators like lipopolysaccharide; the overall result is a large shift in RNA processing to the secretory-specific form of immunoglobulin (Ig) heavy chain mRNA and an upregulation of Igh mRNA amounts. Associated with this shift is the large-scale induction of Ig protein synthesis and the unfolded protein response to accommodate the massive quantity of secretory Ig that results. Stimulation to secretion also produces major structural accommodations and stress, with extensive generation of endoplasmic reticulum and Golgi as part of the cellular architecture. Reactive oxygen species can lead to either activation or apoptosis based on context and the high or low oxygen tension surrounding the cells. Transcription elongation factor ELL2 plays an important role in the induction of Ig secretory mRNA production, the unfolded protein response, and gene expression during hypoxia. After antigen stimulation, activated B cells from either the marginal zones or follicles can produce short-lived antibody secreting cells; it is not clear whether cells from both locations can become long-lived plasma cells. Autophagy is necessary for plasma cell long-term survival through the elimination of some of the accumulated damage to the ER from producing so much protein. Survival signals from the bone marrow stromal cells also contribute to plasma cell longevity, with BCMA serving a potentially unique survival role. Integrating the various information pathways converging on the plasma cell is crucial to the development of their long-lived, productive immune response.
Collapse
Affiliation(s)
- Ian Bayles
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine Milcarek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
36
|
Lopez JJ, Palazzo A, Chaabane C, Albarran L, Polidano E, Lebozec K, Dally S, Nurden P, Enouf J, Debili N, Bobe R. Crucial role for endoplasmic reticulum stress during megakaryocyte maturation. Arterioscler Thromb Vasc Biol 2013; 33:2750-8. [PMID: 24115034 DOI: 10.1161/atvbaha.113.302184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Apoptotic-like phase is an essential step for the platelet formation from megakaryocytes. How controlled is this signaling pathway remained poorly understood. The aim of this study was to determine whether endoplasmic reticulum (ER) stress-induced apoptosis occurs during thrombopoiesis. APPROACH AND RESULTS Investigation of ER stress and maturation markers in different models of human thrombopoiesis (CHRF, DAMI, MEG-01 cell lines, and hematopoietic stem cells: CD34(+)) as well as in immature pathological platelets clearly indicated that ER stress occurs transiently during thrombopoiesis. Direct ER stress induction by tunicamycin, an inhibitor of N-glycosylation, or by sarco/endoplasmic reticulum Ca(2+) ATPase type 3b overexpression, which interferes with reticular calcium, leads to some degree of maturation in megakaryocytic cell lines. On the contrary, exposure to salubrinal, a phosphatase inhibitor that prevents eukaryotic translation initiation factor 2α-P dephosphorylation and inhibits ER stress-induced apoptosis, decreased both expression of maturation markers in MEG-01 and CD34(+) cells as well as numbers of mature megakaryocytes and proplatelet formation in cultured CD34(+) cells. CONCLUSIONS Taken as a whole, our research suggests that transient ER stress activation triggers the apoptotic-like phase of the thrombopoiesis process.
Collapse
Affiliation(s)
- Jose J Lopez
- From the Inserm U770, Université Paris-Sud, Le Kremlin-Bicêtre, France (J.J.L., C.C., L.A., E.P., S.D., J.E., R.B.); INSERM UMR1009, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France (A.P., K.L., N.D.); and Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France (P.N.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Corbi FC, de Oliveira MB, Morelli VM, Han SW, Renauld JC, Knoops L, Colleoni GWB. Activation of the Janus kinase/signal transducer and activator of transcription pathway in multiple myeloma is not related to point mutations in kinase and pseudokinase domains of JAK1. Leuk Lymphoma 2013; 55:1176-80. [PMID: 23885837 DOI: 10.3109/10428194.2013.828352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract Considering the recent impact of tyrosine kinase inhibitors in the treatment of myeloproliferative disorders carrying a recurrent JAK2 mutation not identified in multiple myeloma (MM), this study aimed to search for mutations in kinase and pseudokinase domains of the JAK1 gene in an attempt to define any critical and recurring change that can be used as a therapeutic target. We obtained CD138 + purified cells from 27 bone marrow aspirates of untreated MM, four normal controls and four MM cell lines. After amplification of kinase and pseudokinase domains of JAK1 in cDNA samples, the fragments were automatically sequenced. Seventy-eight percent of MM cases showed at least one polymorphism, all being synonymous single nucleotide polymorphisms (SNPs), with allele frequencies consistent with previous studies in normal European, African American and Asian populations. The four cell lines also showed only synonymous SNPs. Mutations in the kinase and pseudokinase domains of the JAK1 gene do not seem to be important for activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway because we were not able to find any recurrent mutation in a case series of 27 patients and four MM cell lines.
Collapse
|
38
|
Wong VKW, Li T, Law BYK, Ma EDL, Yip NC, Michelangeli F, Law CKM, Zhang MM, Lam KYC, Chan PL, Liu L. Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death Dis 2013; 4:e720. [PMID: 23846222 PMCID: PMC3730398 DOI: 10.1038/cddis.2013.217] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022]
Abstract
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase pump, leading to autophagy induction through the activation of the Ca(2+)/calmodulin-dependent kinase kinase-AMP-activated protein kinase-mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.
Collapse
Affiliation(s)
- V KW Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - T Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - B YK Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - E DL Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - N C Yip
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - F Michelangeli
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - C KM Law
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - M M Zhang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - K YC Lam
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - P L Chan
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - L Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
39
|
Arensdorf AM, Rutkowski DT. Endoplasmic reticulum stress impairs IL-4/IL-13 signaling through C/EBPβ-mediated transcriptional suppression. J Cell Sci 2013; 126:4026-36. [PMID: 23813955 DOI: 10.1242/jcs.130757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the unfolded protein response (UPR) by endoplasmic reticulum (ER) stress culminates in extensive gene regulation, with transcriptional upregulation of genes that improve the protein folding capacity of the organelle. However, a substantial number of genes are downregulated by ER stress, and the mechanisms that lead to this downregulation and its consequences on cellular function are poorly understood. We found that ER stress led to coordinated transcriptional suppression of diverse cellular processes, including those involved in cytokine signaling. Using expression of the IL-4/IL-13 receptor subunit Il4ra as a sentinel, we sought to understand the mechanism behind this suppression and its impact on inflammatory signaling. We found that reinitiation of global protein synthesis by GADD34-mediated dephosphorylation of eIF2α resulted in preferential expression of the inhibitory LIP isoform of the transcription factor C/EBPβ. This regulation was in turn required for the suppression of Il4ra and related inflammatory genes. Suppression of Il4ra was lost in Cebpb(-/-) cells but could be induced by LIP overexpression. As a consequence of Il4ra suppression, ER stress impaired IL-4/IL-13 signaling. Strikingly, Cebpb(-/-) cells lacking Il4ra downregulation were protected from this signaling impairment. This work identifies a novel role for C/EBPβ in regulating transcriptional suppression and inflammatory signaling during ER stress.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
40
|
Tagoug I, Jordheim LP, Herveau S, Matera EL, Huber AL, Chettab K, Manié S, Dumontet C. Therapeutic enhancement of ER stress by insulin-like growth factor I sensitizes myeloma cells to proteasomal inhibitors. Clin Cancer Res 2013; 19:3556-66. [PMID: 23674497 DOI: 10.1158/1078-0432.ccr-12-3134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Multiple myeloma is a clonal plasma cell disorder in which growth and proliferation are linked to a variety of growth factors, including insulin-like growth factor type I (IGF-I). Bortezomib, the first-in-class proteasome inhibitor, has displayed significant antitumor activity in multiple myeloma. EXPERIMENTAL DESIGN We analyzed the impact of IGF-I combined with proteasome inhibitors on multiple myeloma cell lines in vivo and in vitro as well as on fresh human myeloma cells. RESULTS Our study shows that IGF-I enhances the cytotoxic effect of proteasome inhibitors against myeloma cells. The effect of bortezomib on the content of proapoptotic proteins such as Bax, Bad, Bak, and BimS and antiapoptotic proteins such as Bcl-2, Bcl-XL, XIAP, Bfl-1, and survivin was enhanced by IGF-I. The addition of IGF-I to bortezomib had a minor effect on NF-κB signaling in MM.1S cells while strongly enhancing reticulum stress. This resulted in an unfolded protein response (UPR), which was required for the potentiating effect of IGF-I on bortezomib cytotoxicity as shown by siRNA-mediated inhibition of GADD153 expression. CONCLUSIONS These results suggest that the high baseline level of protein synthesis in myeloma can be exploited therapeutically by combining proteasome inhibitors with IGF-I, which possesses a "priming" effect on myeloma cells for this family of compounds.
Collapse
|
41
|
Jiang X, Kanda T, Tanaka T, Wu S, Nakamoto S, Imazeki F, Yokosuka O. Lipopolysaccharide blocks induction of unfolded protein response in human hepatoma cell lines. Immunol Lett 2013; 152:8-15. [PMID: 23578665 DOI: 10.1016/j.imlet.2013.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 01/15/2023]
Abstract
In the present study, we examined whether unfolded protein response (UPR) determined the hepatic cell damage induced by an innate immune response including TLR signaling pathways. We observed that lipopolysaccharide (LPS) transcriptionally downregulates 78-kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein (GRP78/Bip), known to confer resistance to apoptosis. We also observed that LPS blocked the induction of UPR and led to poly(ADP-ribose) polymerase (PARP) cleavage in hepatocytes. We also demonstrated that overexpression of GRP78 rescued HepG2 cells treated with LPS from PARP cleavage. These data suggest that UPR downregulation could be a collateral effect of the LPS treatment. We speculate that UPR is an important factor of hepatic cell damage induced by an innate immune response.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol 2013; 14:298-305. [PMID: 23354484 DOI: 10.1038/ni.2524] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023]
Abstract
The role of autophagy in plasma cells is unknown. Here we found notable autophagic activity in both differentiating and long-lived plasma cells and investigated its function through the use of mice with conditional deficiency in the essential autophagic molecule Atg5 in B cells. Atg5(-/-) differentiating plasma cells had a larger endoplasmic reticulum (ER) and more ER stress signaling than did their wild-type counterparts, which led to higher expression of the transcriptional repressor Blimp-1 and immunoglobulins and more antibody secretion. The enhanced immunoglobulin synthesis was associated with less intracellular ATP and more death of mutant plasma cells, which identified an unsuspected autophagy-dependent cytoprotective trade-off between immunoglobulin synthesis and viability. In vivo, mice with conditional deficiency in Atg5 in B cells had defective antibody responses, complete selection in the bone marrow for plasma cells that escaped Atg5 deletion and fewer antigen-specific long-lived bone marrow plasma cells than did wild-type mice, despite having normal germinal center responses. Thus, autophagy is specifically required for plasma cell homeostasis and long-lived humoral immunity.
Collapse
|
43
|
Mann MJ, Pereira ER, Liao N, Hendershot LM. UPR-induced resistance to etoposide is downstream of PERK and independent of changes in topoisomerase IIα levels. PLoS One 2012; 7:e47931. [PMID: 23144714 PMCID: PMC3483293 DOI: 10.1371/journal.pone.0047931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 09/21/2012] [Indexed: 12/18/2022] Open
Abstract
Background The unfolded protein response (UPR) is regulated by three ER-localized, transmembrane signal transducers that control distinct aspects of the UPR. We previously reported that both increased resistance to etoposide and a reduction in Topoisomerase IIα protein levels were a direct response of UPR activation, and the latter occurred independent of changes in Topo IIα mRNA levels. We have now examined the contribution of each of the three up-stream transducers of the UPR, as well as some of their downstream targets in affecting decreased expression of Topo IIα protein and increased drug resistance. Principal Findings Our data revealed that while Ire1 activation led to Topo IIα loss at the protein level it did not contribute to changes in sensitivity to etoposide. The decreased expression of Topo IIα protein was not downstream of XBP-1, in keeping with the fact that Topo IIα transcription was not affected by ER stress. Conversely, PERK activation did not contribute to changes in Topo IIα protein levels, but it did play a significant role in the UPR-induced decreased sensitivity to etoposide. Several cellular responses downstream of PERK were examined for their potential to contribute to resistance. The ATF6 arm of the UPR did not significantly contribute to etoposide resistance within the time frame of our experiments. Conclusions and Significance In toto, our data demonstrate that UPR-induced changes in Topo IIα protein levels are not responsible for resistance to etoposide as has been previously hypothesized, and instead demonstrate that the PERK branch plays a Topo IIα-independent role in altered sensitivity to this drug.
Collapse
Affiliation(s)
- Melissa J. Mann
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Ethel R. Pereira
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tenessee, United States of America
| | - Nan Liao
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tenessee, United States of America
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tenessee, United States of America
- * E-mail:
| |
Collapse
|
44
|
DeSalvo J, Kuznetsov JN, Du J, Leclerc GM, Leclerc GJ, Lampidis TJ, Barredo JC. Inhibition of Akt potentiates 2-DG-induced apoptosis via downregulation of UPR in acute lymphoblastic leukemia. Mol Cancer Res 2012; 10:969-78. [PMID: 22692960 DOI: 10.1158/1541-7786.mcr-12-0125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to pair the regulation of metabolism and cellular energetics with oncogenes and tumor suppressor genes provides cancer cells with a growth and survival advantage over normal cells. We investigated the mechanism of cell death induced by 2-deoxy-D-glucose (2-DG), a sugar analog with dual activity of inhibiting glycolysis and N-linked glycosylation, in acute lymphoblastic leukemia (ALL). We found that, unlike most other cancer phenotypes in which 2-DG only inhibits cell proliferation under normoxic conditions, ALL lymphoblasts undergo apoptosis. Bp-ALL cell lines and primary cells exhibited sensitivity to 2-DG, whereas T-ALL cells were relatively resistant, revealing phenotypic differences within ALL subtypes. Cotreatment with D-mannose, a sugar essential for N-linked glycosylation, rescues 2-DG-treated ALL cells, indicating that inhibition of N-linked glycosylation and induction of ER stress and the unfolded protein response (UPR) is the predominant mechanism of 2-DG's cytotoxicity in ALL. 2-DG-treated ALL cells exhibit upregulation of P-AMPK, P-Akt, and induction of ER stress/UPR markers (IRE1α, GRP78, P-eIF2α, and CHOP), which correlate with PARP cleavage and apoptosis. In addition, we find that pharmacologic and genetic Akt inhibition upregulates P-AMPK, downregulates UPR, and sensitizes ALL cells to remarkably low doses of 2-DG (0.5 mmol/L), inducing 85% cell death and overcoming the relative resistance of T-ALL. In contrast, AMPK knockdown rescues ALL cells by upregulating the prosurvival UPR signaling. Therefore, 2-DG induces ALL cell death under normoxia by inducing ER stress, and AKT and AMPK, traditionally thought to operate predominantly on the glycolytic pathway, differentially regulate UPR activity to determine cell death or survival.
Collapse
Affiliation(s)
- Joanna DeSalvo
- Department of Pediatric Hematology-Oncology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Margittai É, Löw P, Stiller I, Greco A, Garcia-Manteiga JM, Pengo N, Benedetti A, Sitia R, Bánhegyi G. Production of H₂O₂ in the endoplasmic reticulum promotes in vivo disulfide bond formation. Antioxid Redox Signal 2012; 16:1088-99. [PMID: 22369093 DOI: 10.1089/ars.2011.4221] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Oxidative protein folding in the luminal compartment of endoplasmic reticulum (ER) is thought to be accompanied by the generation of H₂O₂, as side-product of disulfide bond formation. We aimed to examine the role of H₂O₂ produced in the lumen, which on one hand can lead to redox imbalance and hence can contribute to ER stress caused by overproduction of secretory proteins; on the other hand, as an excellent electron acceptor, H₂O₂ might serve as an additional pro-oxidant in physiological oxidative folding. RESULTS Stimulation of H₂O₂ production in the hepatic ER resulted in a decrease in microsomal GSH and protein-thiol contents and in a redox shift of certain luminal oxidoreductases in mice. The oxidative effect, accompanied by moderate signs of ER stress and reversible dilation of ER cisternae, was prevented by concomitant reducing treatment. The imbalance also affected the redox state of pyridine nucleotides in the ER. Antibody producing cells artificially engineered with powerful luminal H₂O₂ eliminating system showed diminished secretion of mature antibody polymers, while incomplete antibody monomers/dimers were accumulated and/or secreted. INNOVATION Evidence are provided by using in vivo models that hydrogen peroxide can promote disulfide bond formation in the ER. CONCLUSION The results indicate that local H₂O₂ production promotes, while quenching of H₂O₂ impairs disulfide formation. The contribution of H₂O₂ to disulfide bond formation previously observed in vitro can be also shown in cellular and in vivo systems.
Collapse
Affiliation(s)
- Éva Margittai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aragon IV, Barrington RA, Jackowski S, Mori K, Brewer JW. The specialized unfolded protein response of B lymphocytes: ATF6α-independent development of antibody-secreting B cells. Mol Immunol 2012; 51:347-55. [PMID: 22555069 DOI: 10.1016/j.molimm.2012.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/06/2012] [Accepted: 04/08/2012] [Indexed: 12/13/2022]
Abstract
B lymphocytes, like all mammalian cells, are equipped with the unfolded protein response (UPR), a complex signaling system allowing for both pro- and mal-adaptive responses to increased demands on the endoplasmic reticulum (ER). The UPR is comprised of three signaling pathways initiated by the ER transmembrane stress sensors, IRE1α/β, PERK and ATF6α/β. Activation of IRE1 yields XBP1(S), a transcription factor that directs expansion of the ER and enhances protein biosynthetic and secretory machinery. XBP1(S) is essential for the differentiation of B lymphocytes into antibody-secreting cells. In contrast, the PERK pathway, a regulator of translation and transcription, is dispensable for the generation of antibody-secreting cells. Functioning as a transcription factor, ATF6α can augment ER quality control processes and drive ER expansion, but the potential role of this UPR pathway in activated B cells has not been investigated. Here, we report studies of ATF6α-deficient B cells demonstrating that ATF6α is not required for the development of antibody-secreting cells. Thus, when B cells are stimulated to secrete antibody, a specialized UPR relies exclusively on the IRE1-XBP1 pathway to remodel the ER and expand cellular secretory capacity.
Collapse
Affiliation(s)
- Ileana V Aragon
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 5851 USA Drive North, Mobile, AL 36688, United States
| | | | | | | | | |
Collapse
|
47
|
Yu L, Lu M, Wang P, Chen X. Trichostatin A Ameliorates Myocardial Ischemia/Reperfusion Injury Through Inhibition of Endoplasmic Reticulum Stress-induced Apoptosis. Arch Med Res 2012; 43:190-6. [DOI: 10.1016/j.arcmed.2012.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/28/2012] [Indexed: 01/05/2023]
|
48
|
Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A, Ave E, Zaffino F, Di Maira G, Ruzzene M, Adami F, Zambello R, Pitari MR, Tassone P, Pinna LA, Gurrieri C, Semenzato G, Piazza F. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin Cancer Res 2012; 18:1888-900. [PMID: 22351691 DOI: 10.1158/1078-0432.ccr-11-1789] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Protein kinase CK2 promotes multiple myeloma cell growth by regulating critical signaling pathways. CK2 also modulates proper HSP90-dependent client protein folding and maturation by phosphorylating its co-chaperone CDC37. Because the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is central in myeloma pathogenesis, we tested the hypothesis that the CK2/CDC37/HSP90 axis could be involved in UPR in myeloma cells. EXPERIMENTAL DESIGN We analyzed CK2 activity upon ER stress, the effects of its inactivation on the UPR pathways and on ER stress-induced apoptosis. The consequences of CK2 plus HSP90 inhibition on myeloma cell growth in vitro and in vivo and CK2 regulation of HSP90-triggered UPR were determined. RESULTS CK2 partly localized to the ER and ER stress triggered its kinase activity. CK2 inhibition reduced the levels of the ER stress sensors IRE1α and BIP/GRP78, increased phosphorylation of PERK and EIF2α, and enhanced ER stress-induced apoptosis. Simultaneous inactivation of CK2 and HSP90 resulted in a synergic anti-myeloma effect (combination index = 0.291) and in much stronger alterations of the UPR pathways as compared with the single inhibition of the two molecules. Cytotoxicity from HSP90 and CK2 targeting was present in a myeloma microenvironment model, on plasma cells from patients with myeloma and in an in vivo mouse xenograft model. Mechanistically, CK2 inhibition led to a reduction of IRE1α/HSP90/CDC37 complexes in multiple myeloma cells. CONCLUSIONS Our results place CK2 as a novel regulator of the ER stress/UPR cascades and HSP90 function in myeloma cells and offer the groundwork to design novel combination treatments for this disease.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, University of Padova, Via Giustiniani 2, Padova 35128, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Seavey MM, Lu LD, Stump KL, Wallace NH, Ruggeri BA. Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770), ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE. Int Immunopharmacol 2012; 12:257-70. [DOI: 10.1016/j.intimp.2011.11.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/20/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
|
50
|
Gentile CL, Frye M, Pagliassotti MJ. Endoplasmic reticulum stress and the unfolded protein response in nonalcoholic fatty liver disease. Antioxid Redox Signal 2011; 15:505-21. [PMID: 21128705 PMCID: PMC3118611 DOI: 10.1089/ars.2010.3790] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/02/2010] [Indexed: 02/07/2023]
Abstract
The underlying causes of nonalcoholic fatty liver disease (NAFLD) are unclear, although recent evidence has implicated the endoplasmic reticulum (ER) in both the development of steatosis and progression to nonalcoholic steatohepatitis. Disruption of ER homeostasis, often termed "ER stress," has been observed in liver and adipose tissue of humans with NAFLD and/or obesity. Importantly, the signaling pathway activated by disruption of ER homeostasis, the unfolded protein response, has been linked to lipid biosynthesis, insulin action, inflammation, and apoptosis. Therefore, understanding the mechanisms that disrupt ER homeostasis in NAFLD and the role of ER-mediated signaling have become topics of intense investigation. The present review will examine the ER and the unfolded protein response in the context of NAFLD.
Collapse
Affiliation(s)
- Christopher L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Melinda Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Michael J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| |
Collapse
|