1
|
Gu Y, Liu M, Niu N, Jia J, Gao F, Sun Y, Zhang Z, Dai Z, Jiao J, Zhu Z, Jia S, Xu J, Zhang Z, Xu B, Lei HM. Integrative network pharmacology and multi-omics to study the potential mechanism of Niuhuang Shangqing Pill on acute pharyngitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119100. [PMID: 39547363 DOI: 10.1016/j.jep.2024.119100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Niuhuang Shangqing Pill (NSP) is a renowned Chinese medicine prescription listed in the Chinese Pharmacopoeia (Edition, 2020; volume 1) and is utilized in clinical practice for treating headaches and acute pharyngitis (AP) associated with "Shanghuo". Despite its widespread use, the pharmacological mechanism and bioactive components underlying NSP in treating AP remain unclear. AIM OF THE STUDY This study delved into evaluate the alleviation effect of NSP on AP and explore the mechanisms by analyzing multi-omics. MATERIALS AND METHODS UHPLC-Q Exactive Orbitrap HRMS was employed for the chemical ingredients of NSP. Multiple compositions, targets and pathways involved in the treatment of AP with NSP were predicted by network pharmacology. Additionally, wistar rat model of AP induced by capsaicin was established to evaluate the anti-AP activity of NSP in vivo. The potential mechanism of NSP to improve AP was investigated by real-time PCR, pharyngeal transcriptome analysis, non-targeted metabolomics, immunofluorescence and Western blot. RESULTS 119 compounds were identified by UHPLC-Q Exactive Orbitrap HRMS. Both clinical data of Gene Expression Omnibus (GEO) and network pharmacology demonstrated that MAPK signaling pathway and TNF signaling pathway were the critical pathway for AP treatment. In rat model of AP induced by capsaicin, NSP demonstrated the ability to reduce the levels of IL-1β, TNF-α, IL-6, CGRP, SP, PGE2, COX-2 in serum. Moreover, Transcriptomics analysis comprehensively indicated that NSP regulated the MAPK signaling pathway, TNF signaling pathway, biosynthesis of phenylalanine, tyrosine and tryptophan, arachidonic acid metabolism in AP rats. Metabolomics analysis verified that NSP could rebalance arachidonic acid metabolism, biosynthesis of phenylalanine, tyrosine and tryptophan and regulate metabolic profiles. Multi-omics Correlation analysis exhibited that the relative expression of Tnfrsf1b was significantly negatively correlated with 12(S)-HPETE. Immunofluorescence, real-time PCR and Western blot of pharyngeal tissue revealed that NSP inhibited the TNF/p38-MAPK/NF-κB signaling pathway. Additionally, in vitro study on RAW264.7 cells confirmed that NSP counteract LPS-induced inflammatory by inhibiting the TNF/p38-MAPK/NF-κB signaling pathway. Overall, NSP effectively ameliorated capsaicin-induced AP by modulating the arachidonic acid metabolism and TNF/p38-MAPK/NF-κB signaling pathway. CONCLUSION NSP effectively ameliorated capsaicin-induced AP by modulating the arachidonic acid metabolism, biosynthesis of phenylalanine, tyrosine and tryptophan, as well as the TNF/p38-MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuhao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Manting Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Nan Niu
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, 100079, China
| | - Jun Jia
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, 100079, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yangyang Sun
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medicine Science, Beijing, 100700, China
| | - Zixuan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jingyi Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Zhi Zhu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shuhe Jia
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jiyue Xu
- Nanjing Tech University, Nanjing, 211816, China
| | - Zhaohua Zhang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, 100079, China.
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Hai Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
2
|
Heinzelmann K, Fysikopoulos A, Jaquin TJ, Peper-Gabriel JK, Hansbauer EM, Grüner S, Prassler J, Wurzenberger C, Kennedy JGC, Snead JY, Wrennall JA, Heinig K, Wurzenberger C, Bel Aiba RS, Tarran R, Livraghi-Butrico A, Fitzgerald MF, Anderson GP, Rothe C, Matschiner G, Olwill SA, Hagner M. Pulmonary-delivered Anticalin Jagged-1 antagonists reduce experimental airway mucus hyperproduction and obstruction. Am J Physiol Lung Cell Mol Physiol 2025; 328:L75-L92. [PMID: 39499257 DOI: 10.1152/ajplung.00059.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024] Open
Abstract
Mucus hypersecretion and mucus obstruction are pathogenic features in many chronic lung diseases directly linked to disease severity, exacerbation, progression, and mortality. The Jagged-1/Notch pathway is a promising therapeutic target that regulates secretory and ciliated cell trans-differentiation in the lung. However, the Notch pathway is also required in various other organs. Hence, pulmonary delivery of therapeutic agents is a promising approach to target this pathway while minimizing systemic exposure. Using Anticalin technology, Jagged-1 Anticalin binding proteins were generated and engineered to potent and selective inhalable Jagged-1 antagonists. Their therapeutic potential to reduce airway mucus hyperproduction and obstruction was investigated ex vivo and in vivo. In primary airway cell cultures grown at an air-liquid interface and stimulated with inflammatory cytokines, Jagged-1 Anticalin binding proteins reduced both mucin gene expression and mucous cell metaplasia. In vivo, prophylactic and therapeutic treatment with a pulmonary-delivered Jagged-1 Anticalin binding protein reduced mucous cell metaplasia, epithelial thickening, and airway mucus hyperproduction in IL-13 and house dust mite allergen-challenged mice, respectively. Furthermore, in a transgenic mouse model with pathophysiologic features of cystic fibrosis and chronic obstructive pulmonary disease (COPD), pulmonary-delivered Jagged-1 Anticalin binding protein reduced hallmarks of airway mucus obstruction. In all in vivo models, a reduction of mucous cells with a concomitant increase of ciliated cells was observed. Collectively, these findings support Jagged-1 antagonists' therapeutic potential for patients with muco-obstructive lung diseases and the feasibility of targeting the Jagged-1/Notch pathway by inhalation.NEW & NOTEWORTHY Airway mucus drives severity and mortality in diverse chronic lung diseases. The Jagged-1/Notch pathway controls the balance of ciliated versus mucous cells, but targeting the pathway systemically carries the risk of side effects. Here we developed novel, Anticalin-derived, pulmonary-delivered Jagged-1 antagonists, to inhibit airway mucus hyperproduction and obstruction in chronic lung diseases. Our preclinical data demonstrate the effectiveness of these antagonists in diminishing secretory cell and mucus levels and alleviating hallmarks of mucus obstruction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joseph G C Kennedy
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jazmin Y Snead
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joe A Wrennall
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | | | | | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas, United States
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Gary P Anderson
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
3
|
Oliveira ICCS, Marinsek GP, Gonçalves ARN, Lopes BS, Correia LVB, Da Silva RCB, Castro IB, Mari RB. Investigating tributyltin's toxic effects: Intestinal barrier and neuroenteric disruption in rat's jejunum. Neurotoxicology 2024; 105:208-215. [PMID: 39396746 DOI: 10.1016/j.neuro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The expansion of economic activities in coastal areas has significantly increased chemical contamination, leading to major environmental challenges. Contaminants enter the human body through the food chain, particularly via seafood and water consumption, triggering biomagnification and bioaccumulation processes. The gastrointestinal tract (GIT) acts as a selective barrier, protecting against chemical pollutants and maintaining homeostasis through a complex network of cells and immune responses. This study assessed impact of tributyltin (TBT), a highly toxic organometallic compound used in antifouling coatings for ships, on the GIT and myenteric neural plasticity in young rats. TBT exposure leads to histopathological changes, including epithelial detachment and inflammatory foci, especially at lower environmental doses. The study found that TBT causes significant reductions in villi height, increases in goblet cells and intraepithelial lymphocytes, and disrupts the myenteric plexus, with higher densities of extraganglionic neurons in exposed animals.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - A R N Gonçalves
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - B S Lopes
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - L V B Correia
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B Da Silva
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP, Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil
| | - R B Mari
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| |
Collapse
|
4
|
Xu Y, Huang C, Xu H, Xu J, Cheng KW, Mok HL, Lyu C, Zhu L, Lin C, Tan HY, Bian Z. Modified Zhenwu Decoction improved intestinal barrier function of experimental colitis through activation of sGC-mediated cGMP/PKG signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118570. [PMID: 39002824 DOI: 10.1016/j.jep.2024.118570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The invasion of luminal antigens and an aberrant immune response resulting from a disrupted physical epithelial barrier are the key characteristics of ulcerative colitis (UC). The restoration of damaged epithelial function is crucial for maintaining mucosal homeostasis and disease quiescence. Current therapies for UC primarily focus on suppressing inflammation. However, most patients fail to respond to therapy or develop secondary resistance over time, emphasizing the need to develop novel therapeutic targets for UC. Our study aimed to identify the potential targets of a novel modified herbal formula from the Zhen Wu Decoction, namely CDD-2103, which has demonstrated promising efficacy in treating chronic colitis. METHODS The effect of CDD-2103 on epithelial barrier function was examined using in vitro and ex vivo models of tissue injury, as well as a chronic colitis C57BL/6 mouse model. Transcriptomic analysis was employed to profile gene expression changes in colonic tissues following treatment with CDD-2103. RESULTS Our in vivo experiments demonstrated that CDD-2103 dose-dependently reduced disease severity in mice with chronic colitis. The efficacy of CDD-2103 was mediated by a reduction in goblet cell loss and the enhancement of tight junction protein integrity. Mechanistically, CDD-2103 suppressed epithelial cell apoptosis and tight junction protein breakdown by activating the soluble guanynyl cyclase (sGC)-mediated cyclic guanosine monophosphate (cGMP)/PKG signaling cascade. Molecular docking analysis revealed strong sGC ligand recognition by the CDD-2103-derived molecules, warranting further investigation. CONCLUSION Our study revealed a novel formulation CDD-2103 that restores intestinal barrier function through the activation of sGC-regulated cGMP/PKG signaling. Furthermore, our findings suggest that targeting sGC can be an effective approach for promoting mucosal healing in the management of UC.
Collapse
Affiliation(s)
- Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiaruo Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Heung Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Wang X, Qin Y, Li J, Huang P, Li Y, Huang J, Wang Q, Yang H. Vitamin B5 supplementation enhances intestinal development and alters microbes in weaned piglets. Anim Biotechnol 2024; 35:2335340. [PMID: 38587818 DOI: 10.1080/10495398.2024.2335340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study explored the effects of different vitamin B5 (VB5) levels on intestinal growth and function of weaned piglets. Twenty-one piglets (7.20 ± 1.11 kg) were included in a 28-day feeding trial with three treatments, including 0 mg/kg (L-VB5), 10 mg/kg (Control) and 50 mg/kg (H-VB5) of VB5 supplement. The results showed that: Large intestine weight/body weight was the highest in H-VB5 group, Control and H-VB5 groups had significantly higher villus height and villus height/crypt depth than the L-VB5 in the ileum (p < .05). Goblet cells (ileal crypt) and endocrine cells (ileal villus) significantly increased in Control and H-VB5 (p < .05). The H-VB5 group exhibited significantly higher levels of ki67 and crypt depth in the cecum and colon, colonic goblet cells and endocrine cells were both rising considerably (p < .05). Isobutyric acid and isovaleric acid were significantly reduced in the H-VB5 group (p < .05), and there was a decreasing trend in butyric acid (p = .073). At the genus level, the relative abundance of harmful bacteria such as Clostridium_Sensu_Structo_1 Strecto_1, Terrisporbacter and Streptococcus decreased significantly and the relative abundance of beneficial bacteria Turicibacter increased significantly in H-VB5 group (p < .05). Overall, the addition of 50 mg/kg VB5 primarily enhanced the morphological structure, cell proliferation and differentiation of the ileum, cecum and colon. It also had a significant impact on the gut microbiota and short-chain fatty acids.
Collapse
Affiliation(s)
- Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yan Qin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
6
|
Bonacci E, Fasolo A, Pagnacco C, Bosello F, Marchini G, Pedrotti E. Simple Epithelial Transplantation for Ocular Surface Reconstruction After Severe Ocular Burn Injury. Cornea 2024:00003226-990000000-00726. [PMID: 39499144 DOI: 10.1097/ico.0000000000003726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/04/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE To manage ocular surface complications and recover conjunctival and corneal epithelia after unilateral severe chemical burn. METHODS We performed simple conjunctival epithelial transplantation (SCET) to obtain renewal of fornix and bulbar-tarsal conjunctiva epithelium, followed by simple limbal epithelial transplantation (SLET) to recover limbal function and epithelial corneal surface. Slit-lamp examination, fluorescein staining, in vivo confocal microscopy, Kheirkhah grading system for symblepharon severity, Wong-Baker FACES Pain Rating Scale, and best-corrected visual acuity were assessed before surgery, at 1 to 3 months after SCET and SLET, and thereafter at 6 to 12 to 36 months. RESULTS Two patients with unilateral burn injuries underwent surgery. Eye mobility and fornix reconstruction were promptly achieved, and conjunctival epithelium with goblet cells was observed on the bulbar and tarsal conjunctiva 3 months after SCET. After SLET, corneal epithelium and cornea-conjunctiva transition zone were observed at 3 and 6 months, respectively. From before surgery to 6 months after SLET, symblepharon improved from grade IVa2 and IIIb2 to Ic0 and Ib0, the Wong-Baker FACES Pain Rating Scale changed from grade 6 and 4 to 0, and best-corrected visual acuity upgraded from 1.40 and 1.10 logarithm of the minimum angle of resolution to 0.5 logarithm of the minimum angle of resolution, in patient 1 and 2, respectively. After 3 years, results remained stable. CONCLUSIONS SCET effectively healed the bare conjunctival area relieving subjective symptoms and discomfort. Sequential SCET and SLET showed to be feasible in restoring a normal ocular surface with long-lasting results suggesting the aim in patients with severe ocular burn is not merely corneal epithelium renewal but also the regeneration of ocular surface homeostasis.
Collapse
Affiliation(s)
- Erika Bonacci
- Department of Engineering for Innovation Medicine, Ophthalmology Clinic, University of Verona, Italy
| | - Adriano Fasolo
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Ophthalmology Clinic, University of Verona, Italy; and
- Research Unit, The Veneto Eye Bank Foundation, Venezia, Italy
| | - Camilla Pagnacco
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Ophthalmology Clinic, University of Verona, Italy; and
| | - Francesca Bosello
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Ophthalmology Clinic, University of Verona, Italy; and
| | - Giorgio Marchini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Ophthalmology Clinic, University of Verona, Italy; and
| | - Emilio Pedrotti
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Ophthalmology Clinic, University of Verona, Italy; and
| |
Collapse
|
7
|
Zeng X, Hu Y, Qiao S, Cao X, Dai Y, Wu F, Wei Z. ADORA3 activation promotes goblet cell differentiation via enhancing HMGCS2-mediated ketogenesis in ulcerative colitis. Int Immunopharmacol 2024; 140:112729. [PMID: 39098229 DOI: 10.1016/j.intimp.2024.112729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
ADORA3 is mainly expressed in intestinal tract, and has the potential to promote the expression of mucin 2 (MUC2), the function-related factor of goblet cells, under asthma conditions. This study aims to confirm the induction and mechanisms of ADORA3 activation on goblet cells in ulcerative colitis (UC). A significant decrease in ADORA3 expression was found in mucosal biopsies from UC patients and in the colons of colitis mice. This reduction correlated negatively with disease severity and positively with goblet cell number. ADORA3 activation mitigated dextran sulfate sodium (DSS)-induced colitis and facilitated ATOH1-mediated goblet cell differentiation in both in vivo and in vitro. Metabolomics analysis unveiled that ADORA3 activation bolstered ketogenesis, leading to elevated levels of the metabolite BHB. Subsequently, BHB heightened the activity of HDAC1/2, augmenting histone acetylation at the H3K9ac site within the promoter region of the ATOH1 gene. Furthermore, the reason for ADORA3 activation to enhance ketogenesis was attributed to controlling the competitive binding among β-arrestin2, SHP1 and PPARγ. This results in the non-ligand-dependent activation of PPARγ, thereby promoting the transcription of HMGCS2. The exact mechanisms by which ADORA3 promoted goblet cell differentiation and alleviated UC were elucidated using MRS1191 and shHMGCS2 plasmid. Collectively, ADORA3 activation promoted goblet cell differentiation and alleviated UC by enhancing ketogenesis via the "BHB-HDAC1/2-H3K9ac" pathway.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yuxiao Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Simiao Qiao
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Xiaoying Cao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Feihua Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
8
|
Cheng H, Yang Y, Hu J, Chen L, Yuan M, Du H, Xu Z, Qiu Z. Cyclic adenosine 3', 5'-monophosphate (cAMP) signaling is a crucial therapeutic target for ulcerative colitis. Life Sci 2024; 353:122901. [PMID: 38997063 DOI: 10.1016/j.lfs.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The pathogenesis of ulcerative colitis (UC), a chronic intestine inflammatory disease primarily affecting adolescents, remains uncertain. Contemporary studies suggest that a confluence of elements, including genetic predispositions, environmental catalysts, dysregulated immune responses, and disturbances in the gut microbiome, are instrumental in the initiation and advancement of UC. Among them, inflammatory activation and mucosal barrier damage caused by abnormal immune regulation are essential links in the development of UC. The impairment of the mucosal barrier is intricately linked to the interplay of various cellular mechanisms, including oxidative stress, autophagy, and programmed cell death. An extensive corpus of research has elucidated that level of cyclic adenosine 3',5'-monophosphate (cAMP) undergo modifications in the midst of inflammation and participate in a diverse array of cellular operations that mitigate inflammation and the impairment of the mucosal barrier. Consequently, a plethora of pharmacological agents are currently under development, with some advancing through clinical trials, and are anticipated to garner approval as novel therapeutics. In summary, cAMP exerts a crucial influence on the onset and progression of UC, with fluctuations in its activity being intimately associated with the severity of the disease's manifestation. Significantly, this review unveils the paramount role of cAMP in the advancement of UC, offering a tactical approach for the clinical management of individuals afflicted with UC.
Collapse
Affiliation(s)
- Haixiang Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, People's Republic of China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Liang Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan, 430061, People's Republic of China.
| | - Ziqiang Xu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China; Hubei Shizhen Laboratory, Wuhan, 430061, People's Republic of China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
9
|
Guo TY, Kuo WT, Tsai YS, Yu LCH, Huang CY. Glucose-Stimulated Mucus Secretion by Goblet Cells Mitigates Intestinal Barrier Dysfunction in a Rat Model of Mesenteric Ischemia/Reperfusion Injury. Curr Dev Nutr 2024; 8:104431. [PMID: 39263224 PMCID: PMC11388543 DOI: 10.1016/j.cdnut.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Background Superior mesenteric ischemia/reperfusion (I/R) causes barrier dysfunction and facilitates bacterial translocation (BT) in the small intestine, which can even lead to systemic sepsis. Our previous research showed that luminal administration of glucose and its anaerobic glycolytic metabolites exerted cytoprotective effects on epithelial cells and ameliorated I/R-induced BT in the liver and spleen. Notably, the reduction of BT occurs over the whole intestinal tract, not only restricted in the ligated glucose-containing loop. Objectives In this study, we hypothesized that local jejunal glucose-contacting might confer on the remote intestinal epithelium regeneration potential, fortify their barrier function and goblet cell secretory activity. Methods Two 10-cm jejunal segments were isolated in Wistar rats. One segment was ligatured at both ends and infused with Krebs buffer containing 0- or 50-mM glucose (local loop), whereas the adjacent segment was left unaltered and not exposed to glucose (remote loop). The rats then underwent either a sham operation or I/R challenge by occlusion of the superior mesenteric artery for 20 min, followed by reperfusion for 1 h. Results Enteral addition of glucose in the local jejunum loop alleviated ischemia-induced barrier defects, histopathological scores, cell death, and mucosal inflammation (myeloperoxidase and inflammatory cytokine production) in the remote jejunum. After ischemia, goblet cells in the remote jejunum showed cavitation of mucin granules and low MUC2 expression. Local addition of glucose enhanced MUC2 synthesis and stimulated a jet-like mucus secretion in the remote jejunum, which was accompanied by the restoration of crypt activity. Conclusions Our results showed local enteral glucose effectively mitigates I/R-induced barrier dysfunction, suggesting that local glucose-stimulated mucus secretion by remote goblet cells may serve to mitigate mucosal inflammation and BT. We provide a more precise barrier protection role of enteral glucose upon I/R challenge, presenting new opportunities for future therapeutic potential.
Collapse
Affiliation(s)
- Ting-You Guo
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Ting Kuo
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Syuan Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Huang J, Yue M, Yang Y, Liu Y, Zeng J. Protopine-Type Alkaloids Alleviate Lipopolysaccharide-Induced Intestinal Inflammation and Modulate the Gut Microbiota in Mice. Animals (Basel) 2024; 14:2273. [PMID: 39123799 PMCID: PMC11311078 DOI: 10.3390/ani14152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we assessed the therapeutic effects of Macleaya cordata (Willd). R. Br.-derived protopine-type alkaloids (MPTAs) in a mouse model of lipopolysaccharide (LPS)-induced intestinal inflammation. The experimental design involved the allocation of mice into distinct groups, including a control group, a model group treated with 6 mg/kg LPS, a berberine group treated with 50 mg/kg berberine hydrochloride and low-, medium- and high-dose MPTA groups treated with 6, 12 and 24 mg/kg MPTAs, respectively. Histological analysis of the ileum, jejunum and duodenum was performed using Hematoxylin and Eosin (H&E) staining. Moreover, the quantification of intestinal goblet cells (GCs) was performed based on PAS staining. The serum levels of IL-1β, IL-6, IL-8 and TNF-α were quantified using an enzyme-linked immunosorbent assay (ELISA), while the mRNA levels of TLR4, NF-κB p65, NLRP3, IL-6 and IL-1β were assessed using quantitative PCR (qPCR). The protein levels of TLR4, Md-2, MyD88, NF-κB p65 and NLRP3 were determined using Western blotting. Furthermore, the 16S rDNA sequences of bacterial taxa were amplified and analysed to determine alterations in the gut microbiota of the mice following MPTA treatment. Different doses of MPTAs were found to elicit distinct therapeutic effects, leading to enhanced intestinal morphology and an increased abundance of intestinal GCs. A significant decrease was noted in the levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α). Additionally, the protein levels of TLR4, MyD88, NLRP3 and p-p65/p65 were markedly reduced by MPTA treatment. Furthermore, 16S rDNA sequencing analysis revealed that the administration of 24 mg/kg MPTAs facilitated the restoration of microbial composition.
Collapse
Affiliation(s)
- Jialu Huang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (M.Y.)
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| | - Meishan Yue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (M.Y.)
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| | - Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| | - Jianguo Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (M.Y.)
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| |
Collapse
|
11
|
Al-Mansori A, Al-Sbiei A, Bashir GH, Qureshi MM, Tariq S, Altahrawi A, al-Ramadi BK, Fernandez-Cabezudo MJ. Effect of acetylcholinesterase inhibition on immune cells in the murine intestinal mucosa. Heliyon 2024; 10:e33849. [PMID: 39071679 PMCID: PMC11283160 DOI: 10.1016/j.heliyon.2024.e33849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The gastrointestinal tract (GI) is the largest immune organ whose function is controlled by a complex network of neurons from the enteric nervous system (ENS) as well as the sympathetic and parasympathetic system. Evolving evidence indicates that cross-communication between gut-innervating neurons and immune cells regulates many essential physiological functions including protection against mucosal infections. We previously demonstrated that following paraoxon treatment, 70 % of the mice were able to survive an oral infection with S. typhimurium, a virulent strain of Salmonella enterica serovar Typhimurium. The present study aims to investigate the effect that rivastigmine, a reversible AChE inhibitor used for the treatment of neurodegenerative diseases, has on the murine immune defenses of the intestinal mucosa. Our findings show that, similar to what is observed with paraoxon, administration of rivastigmine promoted the release of secretory granules from goblet and Paneth cells, resulting in increased mucin layer. Surprisingly, however, and unlike paraoxon, rivastigmine treatment did not affect overall mortality of infected mice. In order to investigate the mechanistic basis for the differential effects observed between paraoxon and rivastigmine, we used multi-color flowcytometric analysis to characterize the immune cell landscape in the intraepithelial (IE) and lamina propria (LP) compartments of intestinal mucosa. Our data indicate that treatment with paraoxon, but not rivastigmine, led to an increase of resident CD3+CD8+ T lymphocytes in the ileal mucosa (epithelium and lamina propria) and CD11b- CD11c+ dendritic cells in the LP. Our findings indicate the requirement for persistent cholinergic pathway engagement to effect a change in the cellular landscape of the mucosal tissue that is necessary for protection against lethal bacterial infections. Moreover, optimal protection requires a collaboration between innate and adaptive mucosal immune responses in the intestine.
Collapse
Affiliation(s)
- Alreem Al-Mansori
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ghada H. Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Mohammed M. Qureshi
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Tian R, Guan M, Chen L, Wan Y, He L, Zhao Z, Gao T, Zong L, Chang J, Zhang J. Mechanism insights into the histopathological changes of polypropylene microplastics induced gut and liver in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116537. [PMID: 38852469 DOI: 10.1016/j.ecoenv.2024.116537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Microplastics (MPs), emerging as significant pollutants, have been consistently detected in aquatic environments, with the Yangtze River experiencing a particularly severe level of microplastic pollution, exceeding all other watersheds in China. Polypropylene (PP), the plastic most abundantly found in the middle and lower reaches of the Yangtze River Basin, has less comprehensive research results into its toxic effects. Consequently, the present investigation employed zebrafish as a model organism to delve into the toxicological impacts of polypropylene microplastics (PP-MPs) with a diameter of 5 μm across varying concentrations (300 mg/L and 600 mg/L). Using histopathological, microbiota profiling, and transcriptomic approaches, we systematically evaluated the impact of PP-MPs exposure on the intestine and liver of zebrafish. Histopathological analysis revealed that exposure to PP-MPs resulted in thinner intestinal walls, damaged intestinal mucosa, and hepatic cellular damage. Intestinal microbiota profiling demonstrated that, the richness, uniformity, diversity, and homogeneity of gut microbes significantly increased after the PP-MPs exposure at high concentration. These alterations were accompanied by shifts in the relative abundance of microbiota associated with intestinal pathologies, suggesting a profound impact on the intestinal microbial community structure. Concurrently, hepatic transcriptome analysis and RT-qPCR indicated that the downregulation of pathways and genes associated with cell proliferation regulation and DNA damage repair mechanisms contributed to hepatic cellular damage, ultimately exerting adverse effects on the liver. Correlation analysis between the intestinal microbiota and liver transcriptome profiles further highlighted significant associations between intestinal microbiota and the downregulated hepatic pathways. Collectively, these results provide novel insights into the subacute toxicological mechanisms of PP-MPs in aquatic organisms and highlight the need for further research on the ecological and health risks associated with PP-MPs pollution.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lei Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yaming Wan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Le He
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziwen Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ting Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Linhao Zong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China.
| |
Collapse
|
13
|
Li K, Song Z, Yue Q, Wang Q, Li Y, Zhu Y, Chen H. Disease-specific transcriptional programs govern airway goblet cell metaplasia. Heliyon 2024; 10:e34105. [PMID: 39071568 PMCID: PMC11283004 DOI: 10.1016/j.heliyon.2024.e34105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Hypersecretion of airway mucus caused by goblet cell metaplasia is a characteristic of chronic pulmonary inflammatory diseases including asthma, cystic fibrosis (CF), and chronic obstructive pulmonary disease (COPD). Goblet cells originate from airway progenitor club cells. However, the molecular mechanisms and features of goblet cell metaplasia in lung disease are poorly understood. Herein, public single-cell RNA sequencing datasets of human lungs were reanalyzed to explore the transitional phase as club cells differentiate into goblet cells in asthma, CF, and COPD. We found that changes in club and goblet cells during pathogenesis and cellular transition were associated with signalling pathways related to immune response, oxidative stress, and apoptosis. Moreover, other key drivers of goblet cell specification appeared to be pathologically specific, with interleukin (IL)-13 and hypoxia inducible factor 1 (HIF-1)-induced genetic changes in asthma, cystic fibrosis transmembrane conductance regulator (CFTR) mutation being present in CF, and interactions with CD8+ T cells, mitophagy, and mitochondria-induced apoptosis in COPD. In conclusion, this study revealed the similarities and differences in goblet cell metaplasia in asthma, CF, and COPD at the transcriptome level, thereby providing insights into possible novel therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Kuan Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| | - Zhaoyu Song
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Department of Clinical Lab, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Qing Yue
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
| | - Qi Wang
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
| | - Yu Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Department of Tuberculosis, Haihe Clinical School, Tianjin Medical University, 300350, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| | - Yu Zhu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Department of Clinical Laboratory, Haihe Hospital, Tianjin University, 300350, Tianjin, China
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Department of Tuberculosis, Haihe Clinical School, Tianjin Medical University, 300350, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 300350, Tianjin, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| |
Collapse
|
14
|
Yang J, Xiao Y, Zhao N, Pei G, Sun Y, Sun X, Yu K, Miao C, Liu R, Lv J, Chu H, Zhou L, Wang B, Yao Z, Wang Q. PIM1-HDAC2 axis modulates intestinal homeostasis through epigenetic modification. Acta Pharm Sin B 2024; 14:3049-3067. [PMID: 39027246 PMCID: PMC11252454 DOI: 10.1016/j.apsb.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The mucosal barrier is crucial for intestinal homeostasis, and goblet cells are essential for maintaining the mucosal barrier integrity. The proviral integration site for Moloney murine leukemia virus-1 (PIM1) kinase regulates multiple cellular functions, but its role in intestinal homeostasis during colitis is unknown. Here, we demonstrate that PIM1 is prominently elevated in the colonic epithelia of both ulcerative colitis patients and murine models, in the presence of intestinal microbiota. Epithelial PIM1 leads to decreased goblet cells, thus impairing resistance to colitis and colitis-associated colorectal cancer (CAC) in mice. Mechanistically, PIM1 modulates goblet cell differentiation through the Wnt and Notch signaling pathways. Interestingly, PIM1 interacts with histone deacetylase 2 (HDAC2) and downregulates its level via phosphorylation, thereby altering the epigenetic profiles of Wnt signaling pathway genes. Collectively, these findings investigate the unknown function of the PIM1-HDAC2 axis in goblet cell differentiation and ulcerative colitis/CAC pathogenesis, which points to the potential for PIM1-targeted therapies of ulcerative colitis and CAC.
Collapse
Affiliation(s)
- Jianming Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yawen Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ningning Zhao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Geng Pei
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center of Cancer, Tianjin 30060, China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center of Cancer, Tianjin 30060, China
| | - Xinyu Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Kaiyuan Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Chunhui Miao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ran Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Junqiang Lv
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Hongyu Chu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
15
|
Islam SM, Willora FP, Sørensen M, Rbbani G, Siddik MAB, Zatti K, Gupta S, Carr I, Santigosa E, Brinchmann MF, Thompson KD, Vatsos IN. Mucosal barrier status in Atlantic salmon fed rapeseed oil and Schizochytrium oil partly or fully replacing fish oil through winter depression. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109549. [PMID: 38599365 DOI: 10.1016/j.fsi.2024.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.
Collapse
Affiliation(s)
- Sm Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Golam Rbbani
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Kyla Zatti
- Biomar, Havnegata 9, 7010, Trondheim, Norway
| | | | - Ian Carr
- Veramaris, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Ester Santigosa
- DSM Nutritional Products, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
16
|
Xia Y, Chen Z, Huang C, Shi L, Ma W, Chen X, Liu Y, Wang Y, Cai C, Huang Y, Liu W, Shi R, Luo Q. Investigation the mechanism of iron overload-induced colonic inflammation following ferric citrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116241. [PMID: 38522287 DOI: 10.1016/j.ecoenv.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiang Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
17
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
18
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
19
|
Hong M, Chong SZ, Goh YY, Tong L. Two-Photon and Multiphoton Microscopy in Anterior Segment Diseases of the Eye. Int J Mol Sci 2024; 25:1670. [PMID: 38338948 PMCID: PMC10855705 DOI: 10.3390/ijms25031670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Two-photon excitation microscopy (TPM) and multiphoton fluorescence microscopy (MPM) are advanced forms of intravital high-resolution functional microscopy techniques that allow for the imaging of dynamic molecular processes and resolve features of the biological tissues of interest. Due to the cornea's optical properties and the uniquely accessible position of the globe, it is possible to image cells and tissues longitudinally to investigate ocular surface physiology and disease. MPM can also be used for the in vitro investigation of biological processes and drug kinetics in ocular tissues. In corneal immunology, performed via the use of TPM, cells thought to be intraepithelial dendritic cells are found to resemble tissue-resident memory T cells, and reporter mice with labeled plasmacytoid dendritic cells are imaged to understand the protective antiviral defenses of the eye. In mice with limbal progenitor cells labeled by reporters, the kinetics and localization of corneal epithelial replenishment are evaluated to advance stem cell biology. In studies of the conjunctiva and sclera, the use of such imaging together with second harmonic generation allows for the delineation of matrix wound healing, especially following glaucoma surgery. In conclusion, these imaging models play a pivotal role in the progress of ocular surface science and translational research.
Collapse
Affiliation(s)
- Merrelynn Hong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Training and Education Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Yun Yao Goh
- Lee Kong Chian School of Medicine, National Technical University, Singapore 639798, Singapore;
| | - Louis Tong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
- Ocular Surface Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Eye Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
20
|
Wang X, Cai Z, Wang Q, Wu C, Sun Y, Wang Z, Xu X, Xue W, Cao Z, Zhang M, Zhu Y, Lin H, Zhang Y, Yuan M, Zhao Y, Gao A, Yu Y, Bi Y, Ning G, Wang W, Wang J, Liu R. Bacteroides methylmalonyl-CoA mutase produces propionate that promotes intestinal goblet cell differentiation and homeostasis. Cell Host Microbe 2024; 32:63-78.e7. [PMID: 38056459 DOI: 10.1016/j.chom.2023.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Propionate is a short-chain fatty acid that is generated upon microbiome-mediated fiber fermentation in the intestine. By modulating immune and metabolic pathways, propionate exerts many health benefits. Key bacterial species, such as Bacteroides thetaiotaomicron, generate propionate, but the biochemical pathways and specific functions remain undetermined. We identified a gene operon-encoding methylmalonyl-CoA mutase (MCM) that contributes to propionate biosynthesis in B. thetaiotaomicron. Colonization of germ-free mice with wild-type or MCM-deficient strains as well as in vitro examination demonstrated that MCM-mediated propionate production promotes goblet cell differentiation and mucus-related gene expression. Intestinal organoids lacking the propionate receptor, GPR41, showed reduced goblet cell differentiation upon MCM-mediated propionate production. Furthermore, although wild-type B. thetaiotaomicron alleviated DSS-induced intestinal inflammation, this effect was abolished in mice receiving the MCM-deficient strain but restored upon propionate supplementation. These data emphasize the critical role of MCM-mediated propionate biosynthesis in goblet cell differentiation, offering potential pathways to ameliorate colitis.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongle Cai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoling Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingkai Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Wang
- 01life Institute, Shenzhen, Guangdong 518000, China
| | - Xiaoqiang Xu
- 01life Institute, Shenzhen, Guangdong 518000, China
| | - Wenzhi Xue
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minchun Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinmeng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huibin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqiang Yu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Haffreingue A, Tourneur-Marsille J, Montalva L, Berrebi D, Ogier-Denis É, Bonnard A. Intraperitoneal insufflation of carbon dioxide rescues intestinal damage in an experimental murine model of colitis. J Pediatr Gastroenterol Nutr 2024; 78:68-76. [PMID: 38291695 DOI: 10.1002/jpn3.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Necrotizing enterocolitis (NEC) is a severe neonatal surgical condition, associated with a prolonged pro-inflammatory state, leading to high mortality and morbidity rates. Carbon dioxide (CO2 ) insufflation during laparoscopy may have an anti-inflammatory effect. We aimed to evaluate the effects of CO2 -insufflation on experimental colitis. METHODS Acute colitis was induced in 6-week-old Balb/c mice by the administration of 2%-dextran sulfate-sodium (DSS) during 7 days (n = 45). On Day 4, two groups received intraperitoneal insufflation (duration: 30 mn, pressure: 5 mmHg) of CO2 ("DSS+CO2 ") or air ("DSS+air"). A group received no insufflation ("DSS"). Groups were compared for clinical severity using the disease activity index (DAI-body weight loss, stool consistency, and bleeding), histological severity (histopathological activity index, colon length, and ulcerations), colonic mucosecretion, and inflammation. RESULTS DAI was significantly decreased in DSS+CO2 group, compared to DSS (p < 0.0001) or DSS+air (p < 0.0001) groups. Colon length was increased in DSS+CO2 treated mice compared to DSS (p = 0.0002). The histopathological activity index was lower in DSS+CO2 (vs. DSS, p = 0.0059/vs. DSS+air, p = 0.0389), with decreased ulcerations (3.77 vs. 10.7, p = 0.0306), and persistent mucosecretion with increased mucin-secreting cells. CONCLUSIONS CO2 -insufflation attenuates DSS-induced colitis and improves both clinical and histological scores. Laparoscopy with CO2 insufflation represents a therapeutic anti-inflammatory strategy for NEC.
Collapse
Affiliation(s)
- Aurore Haffreingue
- Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, Team Gut Inflammation, Université de Paris, Paris, France
- Department of General Pediatric Surgery, Robert Debre Children University Hospital, APHP, Paris, France
| | - Julien Tourneur-Marsille
- Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, Team Gut Inflammation, Université de Paris, Paris, France
| | - Louise Montalva
- Department of General Pediatric Surgery, Robert Debre Children University Hospital, APHP, Paris, France
| | - Dominique Berrebi
- Department of General Pediatric Surgery, Robert Debre Children University Hospital, APHP, Paris, France
| | - Éric Ogier-Denis
- Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, Team Gut Inflammation, Université de Paris, Paris, France
- INSERM U1242, Université de Rennes 1, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis CLCC, Rennes, France
| | - Arnaud Bonnard
- Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, Team Gut Inflammation, Université de Paris, Paris, France
- Department of General Pediatric Surgery, Robert Debre Children University Hospital, APHP, Paris, France
| |
Collapse
|
23
|
Barjasteh AH, Al-Asady AM, Latifi H, Al Okla S, Al-Nazwani N, Avan A, Khazaei M, Ryzhikov M, Nadi-Yazdi H, Hassanian SM. Maximizing Treatment Options for IBD through Drug Repurposing. Curr Pharm Des 2024; 30:2538-2549. [PMID: 39039672 DOI: 10.2174/0113816128318032240702045822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Chronic inflammation characterizes Inflammatory Bowel Disease (IBD), encompassing Crohn's Disease (CD) and Ulcerative Colitis (UC). Despite modest activity of disease in most UC patients, exacerbations occur, especially in those with severe symptoms, necessitating interventions, like colectomy. Current treatments for IBD, predominantly small molecule therapies, impose significant economic burdens. Drug repurposing offers a cost-effective alternative, leveraging existing drugs for novel therapeutic applications. This approach capitalizes on shared molecular pathways across diseases, accelerating therapeutic discovery while minimizing costs and risks. This article provides an overview of IBD and explores drug repurposing as a promising avenue for more effective and affordable treatments. Through computational and animal studies, potential drug candidates are categorized, offering insights into IBD pathogenesis and treatment strategies.
Collapse
Affiliation(s)
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Souad Al Okla
- College of Medicine and Health Sciences, National University of Science and Technology, Muscat, Oman
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Nasser Al-Nazwani
- Department of Biochemistry, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- School of Medicine, Saint Louis University, St. Louis, MO 63103, USA
| | - Hanieh Nadi-Yazdi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Zhang F, Chen M, Liu X, Ji X, Li S, Jin E. New insights into the unfolded protein response (UPR)-anterior gradient 2 (AGR2) pathway in the regulation of intestinal barrier function in weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:225-232. [PMID: 38033605 PMCID: PMC10685161 DOI: 10.1016/j.aninu.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/02/2023]
Abstract
Sustained dysfunction of the intestinal barrier caused by early weaning is a major factor that induces postweaning diarrhea in weaned piglets. In both healthy and diseased states, the intestinal barrier is regulated by goblet cells. Alterations in the characteristics of goblet cells are linked to intestinal barrier dysfunction and inflammatory conditions during pathogenic infections. In this review, we summarize the current understanding of the mechanisms of the unfolded protein response (UPR) and anterior gradient 2 (AGR2) in maintaining intestinal barrier function and how modifications to these systems affect mucus barrier characteristics and goblet cell dysregulation. We highlight a novel mechanism underlying the UPR-AGR2 pathway, which affects goblet cell differentiation and maturation and the synthesis and secretion of mucin by regulating epidermal growth factor receptor and mucin 2. This study provides a theoretical basis and new insights into the regulation of intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Mengxian Chen
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| |
Collapse
|
25
|
Xu J, Jia Z, Xiao S, Long C, Wang L. Effects of Enterotoxigenic Escherichia coli Challenge on Jejunal Morphology and Microbial Community Profiles in Weaned Crossbred Piglets. Microorganisms 2023; 11:2646. [PMID: 38004658 PMCID: PMC10672776 DOI: 10.3390/microorganisms11112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogenic enterotoxigenic Escherichia coli (ETEC) is a major cause of bacterial diarrhea in weaning piglets, which are vulnerable to changes in environment and feed. This study aimed to determine the effects of the ETEC challenge on piglet growth performance, diarrhea rate, jejunal microbial profile, jejunal morphology and goblet cell distribution. A total of 13 piglets from one litter were selected on postnatal day 21 and assigned to treatments with or without ETEC challenge at 1 × 108 CFUs, as ETEC group or control group, respectively. On postnatal day 28, samples were collected, followed by the detection of serum biochemical indexes and inflammatory indicators, HE staining, PAS staining and 16S rDNA gene amplicon sequencing. Results showed that the growth performance decreased, while the diarrhea rate increased for the ETEC group. The jejunum is the main segment of the injured intestine during the ETEC challenge. Compared with the control, the ETEC group displayed fewer goblet cells in the jejunum, where goblet cells are more distributed at the crypt and less distributed at the villus. In addition, ETEC piglets possessed higher abundances of the genus Desulfovibrio, genus Oxalobacter and genus Peptococus and lower abundances of the genus Prevotella 2, genus Flavonifractor and genus Blautra. In terms of alpha diversity, Chao 1 and observed features indexes were both increased for the ETEC group. Our study provides insights into jejunal histopathological impairment and microbial variation in response to ETEC infection for weaned piglets and is a valuable reference for researchers engaged in animal health research to select stress models.
Collapse
Affiliation(s)
- Juan Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhen Jia
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
| | - Shu Xiao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
| | - Cimin Long
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Leli Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
26
|
Wang Z. Role of transforming growth factor-β in airway remodelling in bronchiolitis obliterans. Growth Factors 2023; 41:192-209. [PMID: 37487145 DOI: 10.1080/08977194.2023.2239356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Airway remodelling is the main pathological mechanism of bronchiolitis obliterans (BO). Several studies have found that transforming growth factor-β (TGF-β) expression is increased in BO during airway remodelling, where it plays an important role in various biological processes by binding to its receptor complex to activate multiple signalling proteins and pathways. This review examines the role of TGF-β in airway remodelling in BO and its potential as a therapeutic target, highlighting the mechanisms of TGF-β activation and signalling, cellular targets of TGF-β actions, and research progress in TGF-β signalling and TGF-β-mediated processes.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Xu L, Wang G, Shi R, Zeng B, Zhang Y, Liu Z, Dong N, Wang S, Li C. A cocktail of small molecules maintains the stemness and differentiation potential of conjunctival epithelial cells. Ocul Surf 2023; 30:107-118. [PMID: 37634570 DOI: 10.1016/j.jtos.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE The conjunctival epithelial cells cultured with bovine serum or feeder cells were not suitable for clinical application. Therefore, we developed a novel serum-free and feeder cell-free culture system containing only a cocktail of three chemicals (3C) to expand the conjunctival epithelial cells. METHODS The cell proliferative ability was evaluated by counting, crystal violet staining and Ki67 immunostaining. Co-staining of K7 and MUC5AC was performed to identify goblet cells. PAS staining was used to assess the ability of cells to synthesis and secrete glycoproteins. In vivo, eye drops containing 3C was administered to verify the role of 3C in the mouse conjunctival injury model. PAS, HE and immunofluorescence staining were performed to show conjunctival epithelial repair. RESULTS Compared with other small molecule groups and the serum group, the cells in 3C group showed superior morphology and proliferative ability. Meanwhile, 3C maintained the well-proliferative capacity of cells even after fifth passage. The 3C group also exhibited more K7 and MUC5AC double positive cells, and the PAS staining positive areas were present in both the cytoplasm and extracellular matrix. The cell sheets treated with 3C in air-lifted culture were obviously stratified. In vivo, more goblet cells in the conjunctival epithelium were observed in the 3C group. CONCLUSION Overall, our culture system can expand the conjunctival epithelial cells and retain their potential to differentiate into mature goblet cells, which provided a promising source of seed cells for conjunctival reconstruction. Furthermore, this system provides new insights for the clinical treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Lina Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Guoliang Wang
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ruize Shi
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Baihui Zeng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Zhen Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Nuo Dong
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361102, China.
| | - Shurong Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Cheng Li
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361102, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
28
|
Zhang L, Hu A, Wang Y, Yang Y, Liu Y, Xu L, Wang L, Cheng Z. Medication adjustment of afatinib and combination therapy with sitagliptin for alleviating afatinib-induced diarrhea in rats. Neoplasia 2023; 43:100922. [PMID: 37567055 PMCID: PMC10423691 DOI: 10.1016/j.neo.2023.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Afatinib, as the first-line treatment for non-small cell lung cancer (NSCLC), causes severe gastrointestinal adverse reactions that greatly affect patients' quality of life and even potentially result in treatment discontinuation. Multiple dose adjustments and concomitant use of anti-diarrheal medications are commonly employed to manage diarrhea, also allowing for a recovery period between each adjustment. However, these approaches are based on empirical guidance and still have limitations. This study aims to explore reliable approaches to alleviate diarrhea by focusing on two strategies: adjusting the dosing regimen of afatinib itself and implementing combination therapy. In this study, we firstly revealed a dose-dependent relationship between afatinib-induced diarrhea and gastrointestinal epithelial damage, resulting in atrophy, reduced expression of tight junction proteins, and increased permeability. We further found that even after discontinuation of the medication, although the severity of diarrhea had improved to baseline, the tight junction proteins and permeability of the intestinal epithelium did not fully recover, and the pharmacokinetics studies showed that drug absorption significantly increased than normal. This indicated the recovery period was longer than expected and may accelerate the occurrence of subsequent episodes of diarrhea. Hence, it would be prudent to consider adjustments to the starting dose or the recovery interval. Furthermore, we initially investigated the relationship between DPP enzyme and afatinib-induced diarrhea and found a significant decrease in plasma DPP enzyme activity following afatinib-induced diarrhea. Subsequently, we conducted continuous treatment with sitagliptin and observed significant improvement in afatinib-induced diarrhea. We observed that sitagliptin can promote the production of anti-inflammatory factors, increase the expression of intestinal epithelial tight junction proteins, and improve intestinal microbiota, further validating the mechanism through the use of GLP-23-33 as GLP-2 receptor inhibitor. In conclusion, sitagliptin exhibits promising potential as a therapeutic option for managing afatinib-induced diarrhea. Taken together, our study provides valuable insights into alleviating afatinib-induced diarrhea through both afatinib medication adjustment and sitagliptin combination therapy.
Collapse
Affiliation(s)
- Li Zhang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Anna Hu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yan Wang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yuxin Yang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yalan Liu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lian Xu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lei Wang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Zeneng Cheng
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
29
|
Zhang X, Chen X, Wang Z, Meng X, Hoffmann-Sommergruber K, Cavallari N, Wu Y, Gao J, Li X, Chen H. Goblet cell-associated antigen passage: A gatekeeper of the intestinal immune system. Immunology 2023; 170:1-12. [PMID: 37067238 DOI: 10.1111/imm.13648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/02/2023] [Indexed: 04/18/2023] Open
Abstract
Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xiao Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Zhongliang Wang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xuanyi Meng
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | | | - Nicola Cavallari
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Yong Wu
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | - Jinyan Gao
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xin Li
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
30
|
Toledo-Solís FJ, Larrán AM, Ortiz-Delgado JB, Sarasquete C, Dias J, Morais S, Fernández I. Specific Blood Plasma Circulating miRs Are Associated with the Physiological Impact of Total Fish Meal Replacement with Soybean Meal in Diets for Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2023; 12:937. [PMID: 37508368 PMCID: PMC10376541 DOI: 10.3390/biology12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
High dietary SBM content is known to induce important physiological alterations, hampering its use as a major FM alternative. Rainbow trout (Oncorhynchus mykiss) juveniles were fed two experimental diets during 9 weeks: (i) a FM diet containing 12% FM; and (ii) a vegetable meal (VM) diet totally devoid of FM and based on SBM (26%). Fish fed the VM diet did not show reduced growth performance when compared with fish fed the FM diet. Nevertheless, fish fed the VM diet had an increased viscerosomatic index, lower apparent fat digestibility, higher aminopeptidase enzyme activity and number of villi fusions, and lower α-amylase enzyme activity and brush border integrity. Small RNA-Seq analysis identified six miRs (omy-miR-730a-5p, omy-miR-135c-5p, omy-miR-93a-3p, omy-miR-152-5p, omy-miR-133a-5p, and omy-miR-196a-3p) with higher expression in blood plasma from fish fed the VM diet. Bioinformatic prediction of target mRNAs identified several overrepresented biological processes known to be associated with high dietary SBM content (e.g., lipid metabolism, epithelial integrity disruption, and bile acid status). The present research work increases our understanding of how SBM dietary content has a physiological impact in farmed fish and suggests circulating miRs might be suitable, integrative, and less invasive biomarkers in fish.
Collapse
Affiliation(s)
- Francisco Javier Toledo-Solís
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Insurgentes Sur 1582, Col. Crédito 6 Constructor, Alcaldía Benito Juárez, Mexico City 03940, Mexico
| | - Ana M Larrán
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, Puerto Real, 11510 Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, Puerto Real, 11510 Cádiz, Spain
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Sofia Morais
- Lucta S.A., Innovation Division, UAB Research Park, 08193 Bellaterra, Spain
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
| |
Collapse
|
31
|
Zhang S, Zhang S, Hou Y, Huang Y, Cai J, Wang G, Cao Y, Chen Z, Fang X, Bao W. Porcine Deltacoronavirus Infection Disrupts the Intestinal Mucosal Barrier and Inhibits Intestinal Stem Cell Differentiation to Goblet Cells via the Notch Signaling Pathway. J Virol 2023; 97:e0068923. [PMID: 37289083 PMCID: PMC10308910 DOI: 10.1128/jvi.00689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuoshuo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuchen Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanjie Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiajia Cai
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of MOE, Yangzhou University, Yangzhou, China
| | - Guangzheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaomin Fang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown.
AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs.
METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF).
RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon.
CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
33
|
Fang YX, Liu YQ, Hu YM, Yang YY, Zhang DJ, Jiang CH, Wang JH, Zhang J. Shaoyao decoction restores the mucus layer in mice with DSS-induced colitis by regulating Notch signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116258. [PMID: 36806347 DOI: 10.1016/j.jep.2023.116258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Restoring the mucus layer is a potential strategy for treating ulcerative colitis (UC). Previous studies reported that a Chinese medicine formula Shaoyao Decoction (SYD) effectively improved UC. However, the role and mechanism of SYD in restoring the mucus layer are still vague. AIM OF THE STUDY This study aimed to research the therapeutical effects and unravel the involved mechanism of SYD on DSS-evoked UC. MATERIALS AND METHODS First, the constituents of SYD were detected by UPLC-QTOF-MS/MS. Then, the DSS-induced UC model was introduced to investigate the pharmacologic action and molecular mechanism of SYD on UC. Pharmacodynamic indicators were assessed including body weight, colon length, ulcerations, disease activity index (DAI), inflammatory cytokines and histological parameters. To investigate the integrality and functions of the mucous layer, AB-PAS stain and UEA-1 stain were used to evaluate the completeness of mucous layer, as well as the maturation of goblet cells (GCs). The bacterial invasion was detected by fluorescence in situ hybridization. As to mechanism exploration, the expressions of Notch/Hes1 pathway were investigated by using agonists in lipopolysaccharides (LPS) -stimulated LS174T cell. RESULTS After modeling in mice, SYD remarkedly ameliorated the symptoms of mouse colitis, the expression of pro-inflammatory factors declined, and increased IL-10 expression was observed in SYD-treated mice. Besides, SYD repaired the structure of the mucus layer and prevented bacterial invasion. Mechanism investigation discovered that SYD promoted GCs differentiation by inhibiting the Notch pathway, which was consistent with the results in LPS-challenged LS174 cell. CONCLUSIONS These findings demonstrated that SYD could restore the mucus layer to prevent UC via suppressing the Notch signaling pathway, which provided evidences for the UC treatment of SYD in the clinic.
Collapse
Affiliation(s)
- Yu-Xi Fang
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - You-Qian Liu
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Yi-Min Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Yuan-Yuan Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Dong-Jian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Cui-Hua Jiang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Jian-Hua Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| | - Jian Zhang
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| |
Collapse
|
34
|
Zhou W, Shi W, Du X, Han Y, Tang Y, Ri S, Ju K, Kim T, Huang L, Zhang W, Yu Y, Tian D, Yu Y, Chen L, Wu Z, Liu G. Assessment of Nonalcoholic Fatty Liver Disease Symptoms and Gut-Liver Axis Status in Zebrafish after Exposure to Polystyrene Microplastics and Oxytetracycline, Alone and in Combination. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47006. [PMID: 37027337 PMCID: PMC10081693 DOI: 10.1289/ehp11600] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/31/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Environmental pollution may give rise to the incidence and progression of nonalcoholic fatty liver disease (NAFLD), the most common cause for chronic severe liver lesions. Although knowledge of NAFLD pathogenesis is particularly important for the development of effective prevention, the relationship between NAFLD occurrence and exposure to emerging pollutants, such as microplastics (MPs) and antibiotic residues, awaits assessment. OBJECTIVES This study aimed to evaluate the toxicity of MPs and antibiotic residues related to NAFLD occurrence using the zebrafish model species. METHODS Taking common polystyrene MPs and oxytetracycline (OTC) as representatives, typical NAFLD symptoms, including lipid accumulation, liver inflammation, and hepatic oxidative stress, were screened after 28-d exposure to environmentally realistic concentrations of MPs (0.69mg/L) and antibiotic residue (3.00μg/L). The impacts of MPs and OTC on gut health, the gut-liver axis, and hepatic lipid metabolism were also investigated to reveal potential affecting mechanisms underpinning the NAFLD symptoms observed. RESULTS Compared with the control fish, zebrafish exposed to MPs and OTC exhibited significantly higher levels of lipid accumulation, triglycerides, and cholesterol contents, as well as inflammation, in conjunction with oxidative stress in their livers. In addition, a markedly smaller proportion of Proteobacteria and higher ratios of Firmicutes/Bacteroidetes were detected by microbiome analysis of gut contents in treated samples. After the exposures, the zebrafish also experienced intestinal oxidative injury and yielded significantly fewer numbers of goblet cells. Markedly higher levels of the intestinal bacteria-sourced endotoxin lipopolysaccharide (LPS) were also detected in serum. Animals treated with MPs and OTC exhibited higher expression levels of LPS binding receptor (LBP) and downstream inflammation-related genes while also exhibiting lower activity and gene expression of lipase. Furthermore, MP-OTC coexposure generally exerted more severe effects compared with single MP or OTC exposure. DISCUSSION Our results suggested that exposure to MPs and OTC may disrupt the gut-liver axis and be associated with NAFLD occurrence. https://doi.org/10.1289/EHP11600.
Collapse
Affiliation(s)
- Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, DPR Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Aquaculture, Wonsan Fisheries University, Wonsan, DPR Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, DPR Korea
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, P.R. China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, P.R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
35
|
Domene A, Orozco H, Rodríguez-Viso P, Monedero V, Zúñiga M, Vélez D, Devesa V. Intestinal homeostasis disruption in mice chronically exposed to arsenite-contaminated drinking water. Chem Biol Interact 2023; 373:110404. [PMID: 36791901 DOI: 10.1016/j.cbi.2023.110404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/14/2023]
Abstract
Chronic exposure to inorganic arsenic [As(III) and As(V)] affects about 200 million people, and is linked to a greater incidence of certain types of cancer. Drinking water is the main route of exposure, so, in endemic areas, the intestinal mucosa is constantly exposed to the metalloid. However, studies on the intestinal toxicity of inorganic As are scarce. The objective of this study was to evaluate the toxicity of a chronic exposure to As(III) on the intestinal mucosa and its associated microbiota. For this purpose, BALB/c mice were exposed during 6 months through drinking water to As(III) (15 and 30 mg/L). Treatment with As(III) increased reactive oxygen species (43-64%) and lipid peroxidation (8-51%). A pro-inflammatory response was also observed, evidenced by an increase in fecal lactoferrin (23-29%) and mucosal neutrophil infiltration. As(III) also induced an increase in the colonic levels of pro-inflammatory cytokines (24-201%) and the activation of some pro-inflammatory signaling pathways. Reductions in the number of goblet cells and mucus production were also observed. Moreover, As(III) exposure resulted in changes in gut microbial alpha diversity but no differences in beta diversity. This suggested that the abundance of some taxa was significantly affected by As(III), although the composition of the population did not show significant alterations. Analysis of differential taxa agreed with this, 21 ASVs were affected in abundance or variability, especially ASVs from the family Muribaculaceae. Intestinal microbiota metabolism was also affected, as reductions in fecal concentration of short-chain fatty acids were observed. The effects observed on different components of the intestinal barrier may be responsible of the increased permeability in As(III) treated mice, evidenced by an increase in fecal albumin (48-66%). Moreover, serum levels of Lipopolysaccharide binding proteins and TNF-α were increased in animals treated with 30 mg/L of As(III), suggesting a low-level systemic inflammation.
Collapse
Affiliation(s)
- A Domene
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - H Orozco
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - P Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - V Monedero
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - M Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - D Vélez
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - V Devesa
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain.
| |
Collapse
|
36
|
Zhong Z, Huang X, Zhang S, Zheng S, Cheng X, Li R, Wu D, Mo L, Qu S. Blocking Notch signalling reverses miR-155-mediated inflammation in allergic rhinitis. Int Immunopharmacol 2023; 116:109832. [PMID: 36764280 DOI: 10.1016/j.intimp.2023.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Although recent studies have shown that the Notch signalling pathway induces the production of Th2-related immune factors, the exact mechanism through which Notch signalling exacerbates allergic rhinitis (AR) remains unknown. To investigate the roles of Notch in AR, serum, nasal mucosa and spleen samples were isolated from BALB/c mice. Paraffin sections were stained with haematoxylin and eosin (H&E) or periodic acid-Schiff (PAS) to assess inflammation. Flow cytometry was performed to detect group 2 innate lymphoid cells (ILC2s) in the serum samples, and cytokine levels were measured by enzyme-linked immunosorbent assays (ELISAs). The mRNA expression levels of the Notch signalling pathway components and miR-155 were measured by quantitative real-time PCR (qRT-PCR). In addition, human nasal epithelial cells (HNEpCs) were cultured to investigate the functional consequences of Notch pathway inhibition. The findings demonstrated that symptomatology and pathology were substantially altered, and AR model mice were established. In vivo stimulation with ovalbumin (OVA) significantly increased the Th2-type immune responses and the expression of OVA-sIgE, IL-4, GATA3, NF-κB and miR-155. However, the Notch signalling pathway was significantly deteriorated in AR, and this effect was accompanied by reduced Notch1, Notch2, RBPj and Hes1 levels. These effects were abrogated by gamma-secretase inhibitor IX (DAPT) treatment, and DAPT inhibited the wound healing and proliferation of HNEpCs in a dose-dependent manner. Therefore, our results suggest that blocking the Notch pathway may alleviate miR-155-mediated inflammation via the regulation of immune homeostasis in AR.
Collapse
Affiliation(s)
- Ziling Zhong
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xueying Huang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China
| | - Shaojie Zhang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China
| | - Shaochuan Zheng
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Youjiang Medical University for Nationalities, Baize, Guangxi, China
| | - Xiqiao Cheng
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rongrong Li
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China
| | - Di Wu
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Youjiang Medical University for Nationalities, Baize, Guangxi, China
| | - Liping Mo
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China
| | - Shenhong Qu
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China.
| |
Collapse
|
37
|
Lu R, Hu J, Liu X, Yu L, Hu J, Jiang H, Liu S, Li M, He J, Yang X, Liang X. Mogroside-rich extract from Siraitia grosvenorii fruits protects against heat stress-induced intestinal damage by ameliorating oxidative stress and inflammation in mice. Food Funct 2023; 14:1238-1247. [PMID: 36625098 DOI: 10.1039/d2fo02179j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Global warming makes humans and animals more vulnerable to heat stress. Heat stress can cause multiorgan dysfunction, especially in the intestine, primarily via oxidative stress and inflammation. Mogroside-rich extract (MGE) is the active ingredient of Siraitia grosvenorii and has significant antioxidant and anti-inflammatory activity. However, whether MGE can alleviate the intestinal damage caused by heat stress has not been explored. In this study, mice were given 600 mg kg-1 MGE followed by exposure to high temperature (40 °C for 2 h per day), and the structures and molecular changes in the ileum were examined. Our findings showed that body weight was decreased by heat stress, while the activity of serum superoxide dismutase (SOD) was increased. We further found that heat stress impaired the intestinal barrier by reducing the number of goblet cells and mRNA levels of the tight junction proteins zona occludens protein 1 (ZO-1), Occludin (OCLD) and recombinant mucin 2 (MUC2 mucin), but it increased the mRNA level of trefoil factor 3 (TFF3). Interestingly, MGE treatment reversed these changes. Furthermore, heat stress increased the activity of SOD in the intestine, downregulated the expression of the oxidative stress-related genes glutathione peroxidase 1 (GPX1), SOD2 and nuclear factor erythroid 2-related factor 2 (NRF2), and upregulated the expression of catalase (CAT). Moreover, heat stress increased tumor necrosis factor-α (TNF-α) levels in the intestine and upregulated the expression of the inflammation-related genes interleukin 10 (IL-10), TNF-α, Interferon-γ (IFN-γ), toll like receptor 4 (TLR4) and nuclear factor-kappa B (NF-kB). However, MGE treatment effectively reduced TNF-α levels and restored the normal activity of SOD and normal mRNA levels for both oxidative stress-related and inflammation-related genes. In summary, our results showed that MGE can protect against heat stress-induced intestinal damage by ameliorating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Renhong Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Hu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Lijiang Yu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Junjie Hu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Huimin Jiang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoyuan Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengqi Li
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiakang He
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
38
|
Galacto-Oligosaccharides Increase the Abundance of Beneficial Probiotic Bacteria and Improve Gut Architecture and Goblet Cell Expression in Poorly Performing Piglets, but Not Performance. Animals (Basel) 2023; 13:ani13020230. [PMID: 36670770 PMCID: PMC9854465 DOI: 10.3390/ani13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Poorly performing piglets receiving commercial milk replacers do not benefit from the naturally occurring probiotic galacto-oligosaccharides otherwise found in sow milk. Study objectives were to investigate the effects of complete milk replacer supplemented with galacto-oligosaccharides on the microbiome, gut architecture and immunomodulatory goblet cell expression of poorly performing piglets that could benefit from milk replacement feeding when separated from sows and housed with fit siblings in environmentally controlled pens. The study is novel in that it is one of the first to investigate the effects of supplementing complete milk replacer with galacto-oligosaccharides in poorly performing piglets. Gastrointestinal tract samples were collected from piglets, and the microbiome composition was assessed by 16s ribosomal ribonucleic acid gene sequencing. Gut architectural features, villus/crypt ratio and enumeration of goblet cells in tissues were assessed by histopathological techniques. The most abundant taxa identified at the genus level were Lactobacillus, Streptococcus, Prevotella, Lactococcus and Leuconostoc. Milk replacer plus galacto-oligosaccharides significantly improved gut architectural features and villus/crypt ratio throughout the gastrointestinal tract, increased the number of goblet cells and revealed a differential abundance of beneficial probiotic bacteria, particularly Lactobacillus and Bifidobacterium. In these respects, galacto-oligosaccharide-supplemented milk replacer may be a useful addition to animal husbandry in poorly performing, non-thriving animals when moved to environmentally controlled pens away from sows and fit siblings, thereby modulating the microbiome and gastrointestinal tract performance.
Collapse
|
39
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
40
|
Prebiotic activity of chitooligosaccharides and their ability to alleviate necrotizing enterocolitis in newborn rats. Carbohydr Polym 2023; 299:120156. [PMID: 36876780 DOI: 10.1016/j.carbpol.2022.120156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Chitooligosaccharides (COS) have many bioactive functions and favorable prospects in the fields of biomedicine and functional foods. In this study, COS was found to significantly improve the survival rate of neonatal necrotizing enterocolitis (NEC) model rats, alter the composition of the intestinal microbiota, inhibit the expression of inflammatory cytokines, and alleviate intestinal pathological injury. In addition, COS also increased the abundance of Akkermansia, Bacteroides, and Clostridium sensu stricto 1 in the intestines of normal rats (the normal rat model is more universal). The in vitro fermentation results found that COS was degraded by the human gut microbiota to promote the abundance of Clostridium sensu stricto 1 and produced numerous short-chain fatty acids (SCFAs). In vitro metabolomic analysis revealed that COS catabolism was associated with significant increases in 3-hydroxybutyrate acid and γ-aminobutyric acid. This study provides evidence for the potential of COS as a prebiotic in food products and to ameliorate NEC development in neonatal rats.
Collapse
|
41
|
Liu Q, Jian W, Wang L, Yang S, Niu Y, Xie S, Hayer K, Chen K, Zhang Y, Guo Y, Tu Z. Alleviation of DSS-induced colitis in mice by a new-isolated Lactobacillus acidophilus C4. Front Microbiol 2023; 14:1137701. [PMID: 37152759 PMCID: PMC10157218 DOI: 10.3389/fmicb.2023.1137701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Probiotic is adjuvant therapy for traditional drug treatment of ulcerative colitis (UC). In the present study, Lactobacillus acidophilus C4 with high acid and bile salt resistance has been isolated and screened, and the beneficial effect of L. acidophilus C4 on Dextran Sulfate Sodium (DSS)-induced colitis in mice has been evaluated. Our data showed that oral administration of L. acidophilus C4 remarkably alleviated colitis symptoms in mice and minimized colon tissue damage. Methods To elucidate the underlying mechanism, we have investigated the levels of inflammatory cytokines and intestinal tight junction (TJ) related proteins (occludin and ZO-1) in colon tissue, as well as the intestinal microbiota and short-chain fatty acids (SCFAs) in feces. Results Compared to the DSS group, the inflammatory cytokines IL-1β, IL-6, and TNF-α in L. acidophilus C4 group were reduced, while the antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were found to be elevated. In addition, proteins linked to TJ were elevated after L. acidophilus C4 intervention. Further study revealed that L. acidophilus C4 reversed the decrease in intestinal microbiota diversity caused by colitis and promoted the levels of SCFAs. Discussion This study demonstrate that L. acidophilus C4 effectively alleviated DSS-induced colitis in mice by repairing the mucosal barrier and maintaining the intestinal microecological balance. L. acidophilus C4 could be of great potential for colitis therapy.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wenwen Jian
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Shenglin Yang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Yutian Niu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - ShuaiJing Xie
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Kim Hayer
- Leicester Medical School, University of Leicester, Leicester, United Kingdom
| | - Kun Chen
- College of Foreign Languages, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yanan Guo
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
- *Correspondence: Zeng Tu,
| |
Collapse
|
42
|
Van Acker SI, Van den Bogerd B, Haagdorens M, Koppen C, Pintelon I. Immunocytochemical characterization of ex vivo cultured conjunctival explants; marker validation for the identification of squamous epithelial cells and goblet cells. Front Med (Lausanne) 2023; 10:1024926. [PMID: 36923014 PMCID: PMC10008928 DOI: 10.3389/fmed.2023.1024926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Tissue-engineered products are at the cutting edge of innovation considering their potential to functionally and structurally repair various tissue defects when the body's own regenerative capacity is exhausted. At the ocular surface, the wound healing response to extensive conjunctival damage results in tissue repair with structural alterations or permanent scar formation rather than regeneration of the physiological conjunctiva. Conjunctival tissue engineering therefore represents a promising therapeutic option to reconstruct the ocular surface in severe cicatrizing pathologies. During the rapid race to be a pioneer, it seems that one of the fundamental steps of tissue engineering has been neglected; a proper cellular characterization of the tissue-engineered equivalents, both morphologically and functionally. Currently, no consensus has been reached on an identification strategy and/or markers for the characterization of cultured squamous epithelial and goblet cells. This study therefore evaluated the accuracy of promising markers to identify differentiated conjunctival-derived cells in human primary explant cultures through immunocytochemistry, including keratins (i.e., K7, K13, and K19) and mucins (i.e., MUC1, MUC5AC, and PAS-positivity). Comparison of the in vivo and in vitro cellular profiles revealed that the widely used goblet cell marker K7 does not function adequately in an in vitro setting. The other investigated markers offer a powerful tool to distinguish cultured squamous epithelial cells (i.e., MUC1 and K13), goblet cells (i.e., MUC5AC and PAS-staining), and conjunctival-derived cells in general (i.e., K19). In conclusion, this study emphasizes the power alongside potential pitfalls of conjunctival markers to assess the clinical safety and efficacy of conjunctival tissue-engineered products.
Collapse
Affiliation(s)
- Sara I Van Acker
- Antwerp Research Group for Ocular Science, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Bert Van den Bogerd
- Antwerp Research Group for Ocular Science, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Michel Haagdorens
- Antwerp Research Group for Ocular Science, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Carina Koppen
- Antwerp Research Group for Ocular Science, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
43
|
Bonilla-Díaz A, Ordóñez-Morán P. Differentiated Epithelial Cells of the Gut. Methods Mol Biol 2023; 2650:3-16. [PMID: 37310619 DOI: 10.1007/978-1-0716-3076-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestine is a prime example of self-renewal where stem cells give rise to progenitor cells called transit-amplifying cells which differentiate into more specialized cells. There are two intestinal lineages: the absorptive (enterocytes and microfold cells) and the secretory (Paneth cells, enteroendocrine, goblet cells, and tuft cells). Each of these differentiated cell types has a role in creating an "ecosystem" to maintain intestinal homeostasis. Here, we summarize the main roles of each cell type.
Collapse
Affiliation(s)
- Andrea Bonilla-Díaz
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine , University of Barcelona, Barcelona, Spain
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute-3, University Park, University of Nottingham, Nottingham, UK.
| |
Collapse
|
44
|
Ma N, Guo P, Chen J, Qi Z, Liu C, Shen J, Sun Y, Chen X, Chen GQ, Ma X. Poly-β-hydroxybutyrate alleviated diarrhea and colitis via Lactobacillus johnsonii biofilm-mediated maturation of sulfomucin. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2213-6. [PMID: 36580163 DOI: 10.1007/s11427-022-2213-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/04/2022] [Indexed: 12/30/2022]
Abstract
Maintainance of sulfomucin is a key end point in the treatment of diarrhea and inflammatory bowel disease (IBD). However, the mechanisms underlying the microbial sense to sulfomucin are poorly understood, and to date, there are no therapies targeting the secretion and maturation of sulfomucin in IBD. Herein, we biosynthesized poly-β-hydroxybutyrate (PHB) and found that PHB could alleviate inflammation caused by diarrhea and colitis by enhancing the differentiation of sulfomucin. Microbiota transplantation and clearance together demonstrate that PHB promoting sulfomucin is mediated by Lactobacillus johnsonii (L. johnsonii). Further studies revealed that PHB provides a favorable niche for L. johnsonii biofilm formation to resist disturbance and support its growth. L. johnsonii-biofilm alleviates colitis by regulating fucose residues to promote goblet cell differentiation and subsequent sulfomucin maturation. Importantly, PHB alleviates colitis by enhancing sulfomucin secretion and maturation in a L. johnsonii-dependent manner. PHB represents a class of guardians, acting as a safe probiotic-biofilm delivery system that significantly promotes probiotic proliferation. Altogether, this study adds weight to the possible role of probiotics and functional materials in the treatment of intestinal inflammation. The application of PHB and biofilm self-coating L. johnsonii carries high translational potential and may be of clinical relevance.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zengkai Qi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunchen Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiakun Shen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yiwei Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, MOE Key Lab for Industrial Biocatalysis, School of Life Sciences and Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Yang R, Shan S, An N, Liu F, Cui K, Shi J, Li H, Li Z. Polyphenols from foxtail millet bran ameliorate DSS-induced colitis by remodeling gut microbiome. Front Nutr 2022; 9:1030744. [PMID: 36479296 PMCID: PMC9719911 DOI: 10.3389/fnut.2022.1030744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/01/2022] [Indexed: 01/11/2024] Open
Abstract
INTRODUCTION Polyphenols from plants possess the anti-inflammatory and gut microbiota modulated properties. Foxtail millet (Setaria italica L., FM) has potential medical and nutritional functions because of rich phenolic and other phytochemical components. METHODS Here, the study explored the effects of bound polyphenol of inner shell (BPIS) from FM bran on dextran sodium sulfate (DSS)-induced experimental colitis mice. RESULTS Results showed that BPIS administration effectively relieved the weight loss, decreased disease active index (DAI) scores, restrained the secretion of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β, increased anti-inflammatory cytokines IL-10, IL-4, IL-5. BPIS prevented gut barrier damage by enhancing tight junction proteins Claudin1, ZO-1 and Occludin, increasing the number of goblet cells and facilitating the gene expressions of mucin family. In addition, BPIS restored the gut microbiota composition and increased the relative abundance of commensal bacteria such as Lachnospiraceae and Rikenellaceae and restrained the growth of S24-7 and Staphylococcaceae. Concentrations of short-chain-fatty acids (SCFAs) generated by gut microbiota were elevated in BPIS treated colitis mice. CONCLUSION These data suggest that BPIS effectively ameliorates DSS-induced colitis by preventing intestinal barrier damage and promoting gut microbiota community.
Collapse
Affiliation(s)
- Ruipeng Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Shuhua Shan
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Ning An
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Fengming Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Kaili Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Jiangying Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
46
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
47
|
Tang M, Mei J, Sun M, Ma K, Zhao A, Fu X. An optimized method to visualize the goblet cell-associated antigen passages and identify goblet cells in the intestine, conjunctiva, and airway. Immunobiology 2022; 227:152260. [DOI: 10.1016/j.imbio.2022.152260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022]
|
48
|
Wang MY, Zhang Y, Tong YX, Guo PT, Zhang J, Wang CK, Gao YY. Effects of lutein on jejunal mucosal barrier function and inflammatory responses in lipopolysaccharide-challenged yellow-feather broilers. Poult Sci 2022; 101:102191. [DOI: 10.1016/j.psj.2022.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
|
49
|
Wang Y, Song W, Yu S, Liu Y, Chen YG. Intestinal cellular heterogeneity and disease development revealed by single-cell technology. CELL REGENERATION 2022; 11:26. [PMID: 36045190 PMCID: PMC9433512 DOI: 10.1186/s13619-022-00127-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
The intestinal epithelium is responsible for food digestion and nutrient absorption and plays a critical role in hormone secretion, microorganism defense, and immune response. These functions depend on the integral single-layered intestinal epithelium, which shows diversified cell constitution and rapid self-renewal and presents powerful regeneration plasticity after injury. Derailment of homeostasis of the intestine epithelium leads to the development of diseases, most commonly including enteritis and colorectal cancer. Therefore, it is important to understand the cellular characterization of the intestinal epithelium at the molecular level and the mechanisms underlying its homeostatic maintenance. Single-cell technologies allow us to gain molecular insights at the single-cell level. In this review, we summarize the single-cell RNA sequencing applications to understand intestinal cell characteristics, spatiotemporal evolution, and intestinal disease development.
Collapse
|
50
|
Giolito MV, Plateroti M. Thyroid hormone signaling in the intestinal stem cells and their niche. Cell Mol Life Sci 2022; 79:476. [PMID: 35947210 PMCID: PMC11072102 DOI: 10.1007/s00018-022-04503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Several studies emphasized the function of the thyroid hormones in stem cell biology. These hormones act through the nuclear hormone receptor TRs, which are T3-modulated transcription factors. Pioneer work on T3-dependent amphibian metamorphosis showed that the crosstalk between the epithelium and the underlying mesenchyme is absolutely required for intestinal maturation and stem cell emergence. With the recent advances of powerful animal models and 3D-organoid cultures, similar findings have now begun to be described in mammals, where the action of T3 and TRα1 control physiological and cancer-related stem cell biology. In this review, we have summarized recent findings on the multiple functions of T3 and TRα1 in intestinal epithelium stem cells, cancer stem cells and their niche. In particular, we have highlighted the regulation of metabolic functions directly linked to normal and/or cancer stem cell biology. These findings help explain other possible mechanisms by which TRα1 controls stem cell biology, beyond the more classical Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France.
| |
Collapse
|