1
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Fang P, She Y, Yu M, Yan J, Yu X, Zhao J, Jin Y, Min W, Shang W, Zhang Z. Novel hypothalamic pathways for metabolic effects of spexin. Pharmacol Res 2024; 208:107399. [PMID: 39245191 DOI: 10.1016/j.phrs.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Nanjing Pukou People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
3
|
Basu R, Flak JN. Hypothalamic neural circuits regulating energy expenditure. VITAMINS AND HORMONES 2024; 127:79-124. [PMID: 39864947 DOI: 10.1016/bs.vh.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization. The hypothalamus has evolved to enhance energy storage for survival in famine and scarce environments but contribute to obesity in modern contexts of caloric abundance. It acts as a master regulator of whole-body energy homeostasis, rapidly adapting to ensure energy supplies for cellular functions. Understanding hypothalamic function, pertaining to energy expenditure, is crucial for developing targeted interventions to address metabolic disorders, offering new insights into the neural control of metabolic states and potential therapeutic strategies.
Collapse
Affiliation(s)
- Rashmita Basu
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan N Flak
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
4
|
Hristov M, Landzhov B, Yakimova K. Effect of leptin on nitrergic neurons in the lateral hypothalamic area and the supraoptic nucleus of rats. Biotech Histochem 2024; 99:125-133. [PMID: 38533595 DOI: 10.1080/10520295.2024.2335167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production. We used histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) as a marker for nitric oxide synthase activity and assessed the effect of leptin on nitrergic neurons in the LH and SO of rats. We found that intraperitoneal administration of leptin led to a significant increase in the number of NADPH-d-positive neurons in the LH and SO. In addition, the intensity (optical density) of NADPH-d staining in LH and SO neurons was significantly elevated in rats that received leptin compared with saline-treated rats. These findings suggest that nitrergic neurons in the LH and SO may be implicated in mediating the central effects of leptin.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yakimova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
5
|
Diepenbroek C, Rijnsburger M, van Irsen AAS, Eggels L, Kisner A, Foppen E, Unmehopa UA, Berland C, Dólleman S, Hardonk M, Cruciani-Guglielmacci C, Faust RP, Wenning R, Maya-Monteiro CM, Kalsbeek A, Aponte Y, Luquet S, Serlie MJM, la Fleur SE. Dopamine in the nucleus accumbens shell controls systemic glucose metabolism via the lateral hypothalamus and hepatic vagal innervation in rodents. Metabolism 2024; 150:155696. [PMID: 37804881 DOI: 10.1016/j.metabol.2023.155696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Growing evidence demonstrates the role of the striatal dopamine system in the regulation of glucose metabolism. Treatment with dopamine antagonists is associated with insulin resistance and hyperglycemia, while dopamine agonists are used in treatment of type 2 diabetes. The mechanism underlying striatal dopamine effects in glucose metabolism, however is not fully understood. Here, we provide mechanistic insights into the role of nucleus accumbens shell (sNAc) dopaminergic signaling in systemic glucose metabolism. METHODS Endogenous glucose production (EGP), blood glucose and mRNA expression in the lateral hypothalamic area (LHA) in male Wistar rats were measured following infusion of vanoxerine (VNX, dopamine reuptake inhibitor) in the sNAc. Thereafter, we analyzed projections from sNAc Drd1-expressing neurons to LHA using D1-Cre male Long-Evans rats, Cre-dependent viral tracers and fluorescence immunohistochemistry. Brain slice electrophysiology in adult mice was used to study spontaneous excitatory postsynaptic currents of sNAc Drd1-expressing neurons following VNX application. Finally, we assessed whether GABAergic LHA activity and hepatic vagal innervation were required for the effect of sNAc-VNX on glucose metabolism by combining infusion of sNAc-VNX with LHA-bicuculline, performing vagal recordings and combining infusion of sNAc-VNX with hepatic vagal denervation. RESULTS VNX infusion in the sNAc strongly decreased endogenous glucose production, prevented glucose increases over time, reduced Slc17A6 and Hcrt mRNA in LHA, and increased vagal activity. Furthermore, sNAc Drd1-expressing neurons increased spontaneous firing following VNX application, and viral tracing of sNAc Drd1-expressing neurons revealed direct projections to LHA with on average 67 % of orexin cells directly targeted by sNAc Drd1-expressing neurons. Importantly, the sNAc-VNX-induced effect on glucose metabolism was dependent on GABAergic signaling in the LHA and on intact hepatic vagal innervation. CONCLUSIONS We show that sNAc dopaminergic signaling modulates hepatic glucose metabolism through GABAergic inputs to glutamatergic LHA cells and hepatic vagal innervation. This demonstrates that striatal control of glucose metabolism involves a dopaminergic sNAc-LHA-liver axis and provides a potential explanation for the effects of dopamine agonists and antagonists on glucose metabolism.
Collapse
Affiliation(s)
- Charlene Diepenbroek
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Merel Rijnsburger
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Astrid A S van Irsen
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Leslie Eggels
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Alexandre Kisner
- National Institute on Drug Abuse, Intramural Research Program, Neuronal Circuits and Behavior Unit, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Ewout Foppen
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Unga A Unmehopa
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Chloé Berland
- Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Sophie Dólleman
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marene Hardonk
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Rudolf P Faust
- Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam UMC, UvA, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Rick Wenning
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Clarissa M Maya-Monteiro
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andries Kalsbeek
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Yeka Aponte
- National Institute on Drug Abuse, Intramural Research Program, Neuronal Circuits and Behavior Unit, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Serge Luquet
- Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Mireille J M Serlie
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Department of Endocrinology, Yale School of Medicine, New Haven, USA
| | - Susanne E la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Petzold A, van den Munkhof HE, Figge-Schlensok R, Korotkova T. Complementary lateral hypothalamic populations resist hunger pressure to balance nutritional and social needs. Cell Metab 2023; 35:456-471.e6. [PMID: 36827985 PMCID: PMC10028225 DOI: 10.1016/j.cmet.2023.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/03/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Animals continuously weigh hunger and thirst against competing needs, such as social contact and mating, according to state and opportunity. Yet neuronal mechanisms of sensing and ranking nutritional needs remain poorly understood. Here, combining calcium imaging in freely behaving mice, optogenetics, and chemogenetics, we show that two neuronal populations of the lateral hypothalamus (LH) guide increasingly hungry animals through behavioral choices between nutritional and social rewards. While increased food consumption was marked by increasing inhibition of a leptin receptor-expressing (LepRLH) subpopulation at a fast timescale, LepRLH neurons limited feeding or drinking and promoted social interaction despite hunger or thirst. Conversely, neurotensin-expressing LH neurons preferentially encoded water despite hunger pressure and promoted water seeking, while relegating social needs. Thus, hunger and thirst gate both LH populations in a complementary manner to enable the flexible fulfillment of multiple essential needs.
Collapse
Affiliation(s)
- Anne Petzold
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Hanna Elin van den Munkhof
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Rebecca Figge-Schlensok
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
7
|
Garrido-Suárez BB, Garrido-Valdes M, Garrido G. Reactogenic sleepiness after COVID-19 vaccination. A hypothesis involving orexinergic system linked to inflammatory signals. Sleep Med 2022; 98:79-86. [PMID: 35792321 PMCID: PMC9212783 DOI: 10.1016/j.sleep.2022.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19) represents a global healthcare crisis that has led to morbidity and mortality on an unprecedented scale. While studies on COVID-19 vaccines are ongoing, the knowledge about the reactogenic symptoms that can occur after vaccination and its generator mechanisms can be critical for healthcare professionals to improve compliance with the future vaccination campaign. Because sleep and immunity are bidirectionally linked, sleepiness or sleep disturbance side effects reported after some of the COVID-19 vaccines advise an academic research line in the context of physiological or pathological neuroimmune interactions. On the recognized basis of inflammatory regulation of hypothalamic neurons in sickness behavior, we hypothesized that IL-1β, INF-γ and TNF-α pro-inflammatory cytokines inhibit orexinergic neurons promoting sleepiness after peripheral activation of the innate immune system induced by the novel COVID-19 vaccines. In addition, based on knowledge of previous vaccines and disease manifestations of SARS-CoV-2 infection, it also suggests that narcolepsy must be included as potential adverse events of particular interest to consider in pharmacovigilance studies.
Collapse
|
8
|
De Luca R, Nardone S, Grace KP, Venner A, Cristofolini M, Bandaru SS, Sohn LT, Kong D, Mochizuki T, Viberti B, Zhu L, Zito A, Scammell TE, Saper CB, Lowell BB, Fuller PM, Arrigoni E. Orexin neurons inhibit sleep to promote arousal. Nat Commun 2022; 13:4163. [PMID: 35851580 PMCID: PMC9293990 DOI: 10.1038/s41467-022-31591-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023] Open
Abstract
Humans and animals lacking orexin neurons exhibit daytime sleepiness, sleep attacks, and state instability. While the circuit basis by which orexin neurons contribute to consolidated wakefulness remains unclear, existing models posit that orexin neurons provide their wake-stabilizing influence by exerting excitatory tone on other brain arousal nodes. Here we show using in vivo optogenetics, in vitro optogenetic-based circuit mapping, and single-cell transcriptomics that orexin neurons also contribute to arousal maintenance through indirect inhibition of sleep-promoting neurons of the ventrolateral preoptic nucleus. Activation of this subcortical circuit rapidly drives wakefulness from sleep by differentially modulating the activity of ventrolateral preoptic neurons. We further identify and characterize a feedforward circuit through which orexin (and co-released glutamate) acts to indirectly target and inhibit sleep-promoting ventrolateral preoptic neurons to produce arousal. This revealed circuitry provides an alternate framework for understanding how orexin neurons contribute to the maintenance of consolidated wakefulness and stabilize behavioral state.
Collapse
Affiliation(s)
- Roberto De Luca
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Stefano Nardone
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kevin P Grace
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA, USA
| | - Anne Venner
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Michela Cristofolini
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sathyajit S Bandaru
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Lauren T Sohn
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Dong Kong
- Department of Pediatrics, Division of Endocrinology, F.M. Kirby Neurobiology Center. Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Takatoshi Mochizuki
- Department of Biology, Graduate School of Science and Engineering. University of Toyama, Toyama, Japan
| | - Bianca Viberti
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Lin Zhu
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Antonino Zito
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas E Scammell
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Patrick M Fuller
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA, USA.
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Kurt G, Kodur N, Quiles CR, Reynolds C, Eagle A, Mayer T, Brown J, Makela A, Bugescu R, Seo HD, Carroll QE, Daniels D, Robison AJ, Mazei-Robison M, Leinninger G. Time to drink: Activating lateral hypothalamic area neurotensin neurons promotes intake of fluid over food in a time-dependent manner. Physiol Behav 2022; 247:113707. [PMID: 35063424 PMCID: PMC8844224 DOI: 10.1016/j.physbeh.2022.113707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/24/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding. Here we investigated the connectivity of LHANts neurons, their necessity and sufficiency for drinking and feeding, and how timing and resource availability influence their modulation of these behaviors. LHANts neurons project broadly throughout the brain, including to the lateral preoptic area (LPO), a brain region implicated in modulating drinking behavior. LHANts neurons also receive inputs from brain regions implicated in sensing hydration and energy status. While activation of LHANts neurons is not required to maintain homeostatic water or food intake, it selectively promotes drinking during the light cycle, when ingestive drive is low. Activating LHANts neurons during this period also increases willingness to work for water or palatable fluids, regardless of their caloric content. By contrast, LHANts neuronal activation during the dark cycle does not promote drinking, but suppresses feeding during this time. Finally, we demonstrate that the activation of the LHANts → LPO projection is sufficient to mediate drinking behavior, but does not suppress feeding as observed after generally activating all LHANts neurons. Overall, our work suggests how and when LHANts neurons oppositely modulate ingestive behaviors.
Collapse
Key Words
- ARC, Arcuate nucleus
- CEA, Central amygdala
- CNO, Clozapine N-Oxide
- CPP, Conditioned place preference
- DR, Dorsal raphe
- DREADD
- DREADD, Designer receptor exclusively activated by designer drugs
- FR-1, Fixed ratio-1
- LHA
- LHA(Nts), Lateral hypothalamic area neuotensin-expressing
- LHA, Lateral hypothalamic area
- LPO, Lateral preoptic area
- LT, Lateral terminalis
- LepRb, Long form of the leptin receptor
- MnPO, Median preoptic area
- ModRabies, Genetically modified rabies virus, EnvA-∆G-Rabies-mCherry
- NTS, Nucleus of solitary tract
- Nts, Neurotensin
- NtsR1, Neurotensin receptor-1
- NtsR2, Neurotensin receptor-2
- OVLT, Organum vasculosum lamina terminalis
- PAG, Periaqueductal gray
- PB, Parabrachial area
- PR, Progressive ratio
- PVH, Paraventricular nucleus of hypothalamus
- SFO, Subfornical organ
- SNc, Substantia nigra compacta
- SO, Supraoptic nucleus
- TVA, avian viral receptor protein
- VEH, Vehicle
- VTA, Ventral tegmental area
- WT, Wild type
- Water
- aCSF, Artificial cerebrospinal fluid
- body weight
- feeding
- homeostasis
- lHb, Lateral habenula
- lateral preoptic area (LPO)
- neurotensin receptor
- reward
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Nandan Kodur
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Chelsea Reynolds
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Tom Mayer
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Juliette Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Harim Delgado Seo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Quinn E Carroll
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - Derek Daniels
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Yousefvand S, Hamidi F. Role of Lateral Hypothalamus Area in the Central Regulation of Feeding. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Corradi L, Bruzzone M, Maschio MD, Sawamiphak S, Filosa A. Hypothalamic Galanin-producing neurons regulate stress in zebrafish through a peptidergic, self-inhibitory loop. Curr Biol 2022; 32:1497-1510.e5. [PMID: 35219430 DOI: 10.1016/j.cub.2022.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
Abstract
Animals possess neuronal circuits inducing stress to avoid or cope with threats present in their surroundings, for instance, by promoting behaviors, such as avoidance and escape. However, mechanisms must exist to tightly control responses to stressors, since overactivation of stress circuits is deleterious for the wellbeing of an organism. The underlying neuronal dynamics responsible for controlling behavioral responses to stress have remained unclear. Here, we describe a neuronal circuit in the hypothalamus of zebrafish larvae that inhibits stress-related behaviors and prevents excessive activation of the neuroendocrine pathway hypothalamic-pituitary-interrenal axis. Central components of this circuit are neurons secreting the neuropeptide Galanin, as ablation of these neurons led to abnormally high levels of stress. Surprisingly, we found that Galanin has a self-inhibitory action on Galanin-producing neurons. Our results suggest that hypothalamic Galanin-producing neurons play an important role in fine-tuning stress responses by preventing potentially harmful overactivation of stress-regulating circuits.
Collapse
Affiliation(s)
- Laura Corradi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Freie Universität Berlin, Institute for Biology, Berlin, Germany
| | - Matteo Bruzzone
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Marco Dal Maschio
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy; Department of Biomedical Sciences, Università degli Studi di Padova, Padua, Italy
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
12
|
Owens-French J, Li SB, Francois M, Leigh Townsend R, Daniel M, Soulier H, Turner A, de Lecea L, Münzberg H, Morrison C, Qualls-Creekmore E. Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behav Brain Res 2022; 423:113773. [PMID: 35101456 PMCID: PMC8901126 DOI: 10.1016/j.bbr.2022.113773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 12/29/2022]
Abstract
Despite the prevalence of anxiety disorders, the molecular identity of neural circuits underlying anxiety remains unclear. The lateral hypothalamus (LH) is one brain region implicated in the regulation of anxiety, and our recent data found that chemogenetic activation of LH galanin neurons attenuated the stress response to a novel environment as measured by the marble burying test. Thus, we hypothesize that LH galanin neurons may contribute to anxiety-related behavior. We used chemogenetics and fiber photometry to test the ability of LH galanin neurons to influence anxiety and stress-related behavior. Chemogenetic activation of LH galanin neurons significantly decreased anxiety-like behavior in the elevated plus maze, open field test, and light dark test. However, LH galanin activation did not alter restraint stress induced HPA activation or freezing behavior in the fear conditioning paradigm. In vivo calcium monitoring by fiber photometry indicated that LH galanin neurons were activated by anxiogenic and/or stressful stimuli including tail suspension, novel mouse interaction, and predator odor. Further, in a fear conditioning task, calcium transients strongly increased during foot shock, but were not affected by the unconditioned stimulus tone. These data indicate that LH galanin neurons both respond to and modulate anxiety, with no influence on stress induced HPA activation or fear behaviors. Further investigation of LH galanin circuitry and functional mediators of behavioral output may offer a more refined pharmacological target as an alternative to first-line broad pharmacotherapies such as benzodiazepines.
Collapse
|
13
|
Yu M, Han S, Wang M, Han L, Huang Y, Bo P, Fang P, Zhang Z. Baicalin protects against insulin resistance and metabolic dysfunction through activation of GALR2/GLUT4 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153869. [PMID: 34923235 DOI: 10.1016/j.phymed.2021.153869] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus is a complex metabolic disorder associated with obesity, glucose intolerance and insulin resistance. Activation of GALR2 has been proposed as a therapeutic target for the treatment of insulin resistance. The previous studies showed that baicalin could mitigate insulin resistance, but the detailed mechanism of baicalin on insulin resistance has not been fully explored yet. PURPOSE In the present study, we evaluated whether baicalin mitigated insulin resistance via activation of GALR2 signaling pathway. STUDY DESIGN/METHODS Baicalin (25 mg/kg/d and 50 mg/kg/d) and/or GALR2 antagonist M871 (10 mg/kg/d) were injected individually or in combinations into obese mice once a day for three weeks, and normal and GALR2 knockdown myotubes were treated with baicalin (100 μM and 400 μM) or metformin (4 mM) in the absence or presence of M871 (800 nM) for 12 h, respectively. The molecular mechanism was explored in skeletal muscle and L6 myotubes. RESULTS The present findings showed that baicalin mitigated hyperglycemia and insulin resistance and elevated the levels of PGC-1α, GLUT4, p-p38MAPK, p-AKT and p-AS160 in skeletal muscle of obese mice. Strikingly, the baicalin-induced beneficial effects were abolished by GALR2 antagonist M871 in obese mice. In vitro, baicalin dramatically augmented glucose consumption and the activity of PGC1α-GLUT4 axis in myotubes through activation of p38MAPK and AKT pathways. Moreover, baicalin-induced elevations in glucose consumption related genes were abolished by GALR2 antagonist M871 or silencing of GALR2 in myotubes. CONCLUSIONS The present study for the first time demonstrated that baicalin protected against insulin resistance and metabolic dysfunction mainly through activation of GALR2-GLUT4 signal pathway. Our findings identified that activation of GALR2-GLUT4 signal pathway by baicalin could be a new therapeutic approach to treat insulin resistance and T2DM in clinic.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Huang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
14
|
Identification of Novel Neurocircuitry Through Which Leptin Targets Multiple Inputs to the Dopamine System to Reduce Food Reward Seeking. Biol Psychiatry 2021; 90:843-852. [PMID: 33867112 DOI: 10.1016/j.biopsych.2021.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Leptin reduces the motivation to obtain food by modulating activity of the mesolimbic dopamine (DA) system upon presentation of cues that predict a food reward. Although leptin directly reduces the activity of ventral tegmental area (VTA) DA neurons, the majority of leptin receptor (LepR)-expressing DA neurons do not project to the nucleus accumbens, the projection implicated in driving food reward seeking. Therefore, the precise locus of leptin action to modulate motivation for a food reward is unresolved. METHODS We used transgenic mice expressing Cre recombinase under the control of the LepR promoter, anatomical tracing, optogenetics-assisted patch-clamp electrophysiology, in vivo optogenetics with fiber photometric calcium measurements, and chemogenetics to unravel how leptin-targeted neurocircuitry inhibits food reward seeking. RESULTS A large number of DA neurons projecting to the nucleus accumbens are innervated by local VTA LepR-expressing GABA (gamma-aminobutyric acid) neurons. Leptin enhances the activity of these GABA neurons and thereby inhibits nucleus accumbens-projecting DA neurons. In addition, we find that lateral hypothalamic LepR-expressing neurons projecting to the VTA are inhibited by leptin and that these neurons modulate DA neurons indirectly via inhibition of VTA GABA neurons. In accordance with such a disinhibitory function, optogenetically stimulating lateral hypothalamic LepR projections to the VTA potently activates DA neurons in vivo. Moreover, we found that chemogenetic activation of lateral hypothalamic LepR neurons increases the motivation to obtain a food reward only when mice are in a positive energy balance. CONCLUSIONS We identify neurocircuitry through which leptin targets multiple inputs to the DA system to reduce food reward seeking.
Collapse
|
15
|
Shao MS, Yang X, Zhang CC, Jiang CY, Mao Y, Xu WD, Ma L, Wang FF. O-GlcNAcylation in Ventral Tegmental Area Dopaminergic Neurons Regulates Motor Learning and the Response to Natural Reward. Neurosci Bull 2021; 38:263-274. [PMID: 34741260 PMCID: PMC8975958 DOI: 10.1007/s12264-021-00776-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/01/2021] [Indexed: 10/19/2022] Open
Abstract
Protein O-GlcNAcylation is a post-translational modification that links environmental stimuli with changes in intracellular signal pathways, and its disturbance has been found in neurodegenerative diseases and metabolic disorders. However, its role in the mesolimbic dopamine (DA) system, especially in the ventral tegmental area (VTA), needs to be elucidated. Here, we found that injection of Thiamet G, an O-GlcNAcase (OGA) inhibitor, in the VTA and nucleus accumbens (NAc) of mice, facilitated neuronal O-GlcNAcylation and decreased the operant response to sucrose as well as the latency to fall in rotarod test. Mice with DAergic neuron-specific knockout of O-GlcNAc transferase (OGT) displayed severe metabolic abnormalities and died within 4-8 weeks after birth. Furthermore, mice specifically overexpressing OGT in DAergic neurons in the VTA had learning defects in the operant response to sucrose, and impaired motor learning in the rotarod test. Instead, overexpression of OGT in GABAergic neurons in the VTA had no effect on these behaviors. These results suggest that protein O-GlcNAcylation of DAergic neurons in the VTA plays an important role in regulating the response to natural reward and motor learning in mice.
Collapse
Affiliation(s)
- Ming-Shuo Shao
- grid.8547.e0000 0001 0125 2443Departments of Neurosurgery and Hand Surgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Xiao Yang
- grid.8547.e0000 0001 0125 2443Departments of Neurosurgery and Hand Surgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Chen-Chun Zhang
- grid.8547.e0000 0001 0125 2443Departments of Neurosurgery and Hand Surgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Chang-You Jiang
- grid.8547.e0000 0001 0125 2443Departments of Neurosurgery and Hand Surgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Ying Mao
- grid.8547.e0000 0001 0125 2443Departments of Neurosurgery and Hand Surgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Wen-Dong Xu
- grid.8547.e0000 0001 0125 2443Departments of Neurosurgery and Hand Surgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Lan Ma
- Departments of Neurosurgery and Hand Surgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Fei-Fei Wang
- Departments of Neurosurgery and Hand Surgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Fang P, She Y, Zhao J, Yan J, Yu X, Jin Y, Wei Q, Zhang Z, Shang W. Emerging roles of kisspeptin/galanin in age-related metabolic disease. Mech Ageing Dev 2021; 199:111571. [PMID: 34517021 DOI: 10.1016/j.mad.2021.111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Age is a major risk factor for developing metabolic diseases such as obesity and diabetes. There is an unprecedented rise in obesity and type 2 diabetes in recent decades. A convincing majority of brain-gut peptides are associated with a higher risk to develop metabolic disorders, and may contribute to the pathophysiology of age-related metabolic diseases. Accumulating basic studies revealed an intriguing role of kisspeptin and galanin involved in the amelioration of insulin resistance in different ways. In patients suffered from obesity and diabetes a significant, sex-related changes in the plasma kisspeptin and galanin levels occurred. Kisspeptin is anorexigenic to prevent obesity, its level is negatively correlative with obesity and insulin resistance. While galanin is appetitive to stimulate food intake and body weight, its level is positively correlative with obesity, HOMA-IR and glucose/triglyceride concentration. In turn, kisspeptin and galanin also distinctly increase glucose uptake and utilization as well as energy expenditure. This article reviews recent evidence dealing with the role of kisspeptin and galanin in the pathophysiology of age-related metabolic diseases. It should be therefore taken into account that the targeted modulation of those peptidergic signaling may be potentially helpful in the future treatment of age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingbo Wei
- Key Laboratory of Acupuncture and Medicine Research of Minister of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
17
|
Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Russell CN, Aponte Y. Lateral hypothalamic LEPR neurons drive appetitive but not consummatory behaviors. Cell Rep 2021; 36:109615. [PMID: 34433027 PMCID: PMC8423025 DOI: 10.1016/j.celrep.2021.109615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 02/09/2023] Open
Abstract
Assigning behavioral roles to genetically defined neurons within the lateral hypothalamus (LH) is an ongoing challenge. We demonstrate that a subpopulation of LH GABAergic neurons expressing leptin receptors (LHLEPR) specifically drives appetitive behaviors in mice. Ablation of LH GABAergic neurons (LHVGAT) decreases weight gain and food intake, whereas LHLEPR ablation does not. Appetitive learning in a Pavlovian conditioning paradigm is delayed in LHVGAT-ablated mice but prevented entirely in LHLEPR-ablated mice. Both LHVGAT and LHLEPR neurons bidirectionally modulate reward-related behaviors, but only LHVGAT neurons affect feeding. In the Pavlovian paradigm, only LHLEPR activity discriminates between conditioned cues. Optogenetic activation or inhibition of either population in this task disrupts discrimination. However, manipulations of LHLEPR→VTA projections evoke divergent effects on responding. Unlike food-oriented learning, chemogenetic inhibition of LHLEPR neurons does not alter cocaine-conditioned place preference but attenuates cocaine sensitization. Thus, LHLEPR neurons may specifically regulate appetitive behaviors toward non-drug reinforcers.
Collapse
Affiliation(s)
- Justin N Siemian
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Miguel A Arenivar
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Cara B Borja
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Charity N Russell
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Neuropeptidergic Control of Feeding: Focus on the Galanin Family of Peptides. Int J Mol Sci 2021; 22:ijms22052544. [PMID: 33802616 PMCID: PMC7961366 DOI: 10.3390/ijms22052544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity/overweight are important health problems due to metabolic complications. Dysregulation of peptides exerting orexigenic/anorexigenic effects must be investigated in-depth to understand the mechanisms involved in feeding behaviour. One of the most important and studied orexigenic peptides is galanin (GAL). The aim of this review is to update the mechanisms of action and physiological roles played by the GAL family of peptides (GAL, GAL-like peptide, GAL message-associated peptide, alarin) in the control of food intake and to review the involvement of these peptides in metabolic diseases and food intake disorders in experimental animal models and humans. The interaction between GAL and NPY in feeding and energy metabolism, the relationships between GAL and other substances involved in food intake mechanisms, the potential pharmacological strategies to treat food intake disorders and obesity and the possible clinical applications will be mentioned and discussed. Some research lines are suggested to be developed in the future, such as studies focused on GAL receptor/neuropeptide Y Y1 receptor interactions in hypothalamic and extra-hypothalamic nuclei and sexual differences regarding the expression of GAL in feeding behaviour. It is also important to study the possible GAL resistance in obese individuals to better understand the molecular mechanisms by which GAL regulates insulin/glucose metabolism. GAL does not exert a pivotal role in weight regulation and food intake, but this role is crucial in fat intake and also exerts an important action by regulating the activity of other key compounds under conditions of stress/altered diet.
Collapse
|
20
|
Wong MKH, Chen Y, He M, Lin C, Bian Z, Wong AOL. Mouse Spexin: (II) Functional Role as a Satiety Factor inhibiting Food Intake by Regulatory Actions Within the Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:681647. [PMID: 34276562 PMCID: PMC8283969 DOI: 10.3389/fendo.2021.681647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Spexin (SPX) is a pleiotropic peptide with highly conserved protein sequence from fish to mammals and its biological actions are mediated by GalR2/GalR3 receptors expressed in target tissues. Recently, SPX has been confirmed to be a novel satiety factor in fish species but whether the peptide has a similar function in mammals is still unclear. Using the mouse as a model, the functional role of SPX in feeding control and the mechanisms involved were investigated. After food intake, serum SPX in mice could be up-regulated with elevations of transcript expression and tissue content of SPX in the glandular stomach but not in other tissues examined. As revealed by immunohistochemical staining, food intake also intensified SPX signals in the major cell types forming the gastric glands (including the foveolar cells, parietal cells, and chief cells) within the gastric mucosa of glandular stomach. Furthermore, IP injection of SPX was effective in reducing food intake with parallel attenuation in transcript expression of NPY, AgRP, NPY type 5 receptor (NPY5R), and ghrelin receptor (GHSR) in the hypothalamus, and these inhibitory effects could be blocked by GalR3 but not GalR2 antagonism. In agreement with the central actions of SPX, similar inhibition on feeding and hypothalamic expression of NPY, AgRP, NPY5R, and GHSR could also be noted with ICV injection of SPX. In the same study, in contrast to the drop in NPY5R and GHSR, SPX treatment could induce parallel rises of transcript expression of leptin receptor (LepR) and melanocortin 4 receptor (MC4R) in the hypothalamus. These findings, as a whole, suggest that the role of SPX as a satiety factor is well conserved in the mouse. Apparently, food intake can induce SPX production in glandular stomach and contribute to the postprandial rise of SPX in circulation. Through GalR3 activation, this SPX signal can act within the hypothalamus to trigger feedback inhibition on feeding by differential modulation of feeding regulators (NPY and AgRP) and their receptors (NPY5R, GHSR, LepR, and MC4R) involved in the feeding circuitry within the CNS.
Collapse
Affiliation(s)
- Matthew K. H. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuan Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chengyuan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Anderson O. L. Wong,
| |
Collapse
|
21
|
Fang P, She Y, Han L, Wan S, Shang W, Zhang Z, Min W. A promising biomarker of elevated galanin level in hypothalamus for osteoporosis risk in type 2 diabetes mellitus. Mech Ageing Dev 2020; 194:111427. [PMID: 33383074 DOI: 10.1016/j.mad.2020.111427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and osteoporosis are two major healthcare problems worldwide. T2DM is considered to be a risk factor for osteoporosis. Interestingly, several epidemiological studies suggest that bone abnormalities associated with diabetes may differ, at least in part, from those associated with senile or post-menopausal osteoporosis. The growing prevalence that patients with T2DM simultaneously suffer from osteoporosis, puts forward the importance to discuss the relationship between both diseases, as well as to investigate correlative agents to treat them. Emerging evidences demonstrate that neuropeptide galanin is involved in the pathogenesis of T2DM and osteoporosis. Galanin via activation of central GALR2 increases insulin sensitivity as well as bone density and mass in animal models. The disorder of galanin function plays major role in development of both diseases. Importantly, galanin signaling is indispensable for ΔFosB, an AP1 antagonist, to play the bone mass-accruing effects in the ventral hypothalamic neurons of diabetic models. This review summarizes our and other recent studies to provide a new insight into the multivariate relationship among galanin, T2DM and osteoporosis, highlighting the beneficial effect of galanin on the comorbid state of both diseases. These may help us better understanding the pathogenesis of osteoporosis and T2DM and provide useful clues for further inquiry if elevated galanin level may be taken as a biomarker for both conjoint diseases, and GALR2 agonist may be taken as a novel therapeutic strategy to treat both diseases concurrently.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211808, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiwei Wan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Oztas B, Sahin D, Kir H, Kuskay S, Ates N. Effects of leptin, ghrelin and neuropeptide y on spike-wave discharge activity and certain biochemical parameters in WAG/Rij rats with genetic absence epilepsy. J Neuroimmunol 2020; 351:577454. [PMID: 33333420 DOI: 10.1016/j.jneuroim.2020.577454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate the effects of leptin, ghrelin and neuropeptide-Y on the development of nonconvulsive seizure activity and their role on combating oxidative stress and cytokines produced by the systemic immune response in the WAG/Rij rat model for genetic absence epilepsy. Current study showed that all three peptides aggravated spike wave discharges activity and affected the oxidative stress in WAG/Rij rats without any significant changes in the levels of IL-1β, IL-6 and TNF-α except leptin that only induced an increment in the concentration of IL-1β. Our results support the modulatory role of these endogenous peptides on absence epilepsy.
Collapse
Affiliation(s)
- Berrin Oztas
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Deniz Sahin
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Hale Kir
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Sevinc Kuskay
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Nurbay Ates
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey
| |
Collapse
|
23
|
KLF4 Exerts Sedative Effects in Pentobarbital-Treated Mice. J Mol Neurosci 2020; 71:596-606. [PMID: 32789565 DOI: 10.1007/s12031-020-01680-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
KLF4 is a zinc-finger transcription factor that plays an essential role in many biological processes, including neuroinflammation, neuron regeneration, cell proliferation, and apoptosis. Through effects on these processes, KLF4 has likely roles in Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, little is known about the role of KLF4 in more immediate behavioral processes that similarly depend upon broad changes in brain excitability, such as the sleep process. Here, behavioral approaches, western blot, and immunohistochemical experiments were used to explore the role of KLF4 on sedation and the potential mechanisms of those effects. The results showed that overexpression of KLF4 prolonged loss of righting reflex (LORR) duration in pentobarbital-treated mice and increased c-Fos expression in the lateral hypothalamus (LH) and the ventrolateral preoptic nucleus (VLPO), while it decreased c-Fos expression in the tuberomammillary nucleus (TMN). Moreover, overexpression of KLF4 reduced the expression of p53 in the hypothalamus and increased the expression of STAT3 in the hypothalamus. Therefore, these results suggest that KLF4 exerts sedative effects through the regulation of p53 and STAT3 expression, and it indicates a role of KLF4 ligands in the treatment of sleep disorders.
Collapse
|
24
|
Le B, Cheng X, Qu S. Cooperative effects of galanin and leptin on alleviation of insulin resistance in adipose tissue of diabetic rats. J Cell Mol Med 2020; 24:6773-6780. [PMID: 32395890 PMCID: PMC7299679 DOI: 10.1111/jcmm.15328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
It was reported that either orexigenic neuropeptide galanin or anorexigenic hormone leptin caught benefit insulin sensitivity through increasing the translocation of glucose transporter 4 (GLUT4) in patients with diabetes. To date, it is unknown whether galanin can potentiate the effect of leptin on alleviation of insulin resistance. Therefore, in the current study we sought to assess the combined effect of central leptin and galanin on insulin resistance in the adipose tissues of type 2 diabetic rats. Galanin and leptin were injected into the intracerebroventricle of the diabetic rats, respectively, or cooperatively once a day for 2 weeks. Then, several indexes of insulin resistance were examined. The results showed that glucose infusion rates in the hyperinsulinaemic-euglycaemic clamp test, plasma adiponectin content and GLUT4 translocation, as well as Akt phosphorylation in fat cells, were higher, not GLUT4 protein and GLUT4 mRNA expression, but HOMA index was lower in the galanin + leptin group than either one of them. Furthermore, treatment with MK-2206, an Akt inhibitor, blocked the combined effects of galanin + leptin on alleviation of insulin resistance. These results suggest that galanin can improve the leptin-induced mitigative effects on insulin resistance in the fat cells, and those provided new insights into the potential tactics for prevention and remedy of insulin resistance.
Collapse
Affiliation(s)
- Bu Le
- Department of EndocrinologyShanghai 10th People HospitalTongji University School of MedicineShanghaiChina
| | - Xiaoyun Cheng
- Department of EndocrinologyShanghai 10th People HospitalTongji University School of MedicineShanghaiChina
| | - Shen Qu
- Department of EndocrinologyShanghai 10th People HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
25
|
Perez-Bonilla P, Santiago-Colon K, Leinninger GM. Lateral hypothalamic area neuropeptides modulate ventral tegmental area dopamine neurons and feeding. Physiol Behav 2020; 223:112986. [PMID: 32492498 DOI: 10.1016/j.physbeh.2020.112986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023]
Abstract
Understanding how the brain coordinates energy status with the motivation to eat is crucial to identify strategies to improve disordered body weight. The ventral tegmental area (VTA), known as the core of the mesolimbic system, is of particular interest in this regard because it controls the motivation to consume palatable, calorie-dense foods and to engage in volitional activity. The VTA is largely composed of dopamine (DA) neurons, but modulating these DA neurons has been alternately linked with promoting and suppressing feeding, suggesting heterogeneity in their function. Subsets of VTA DA neurons have recently been described based on their anatomical distribution, electrophysiological features, connectivity and molecular expression, but to date there are no signatures to categorize how DA neurons control feeding. Assessing the neuropeptide receptors expressed by VTA DA neurons may be useful in this regard, as many neuropeptides mediate anorexic or orexigenic responses. In particular, the lateral hypothalamic area (LHA) releases a wide variety of feeding-modulating neuropeptides to the VTA. Since VTA neurons intercept LHA neuropeptides known to either evoke or suppress feeding, expression of the cognate neuropeptide receptors within the VTA may point to VTA DA neuronal mechanisms to promote or suppress feeding, respectively. Here we review the role of the VTA in energy balance and the LHA neuropeptide signaling systems that act in the VTA, whose receptors might be used to classify how VTA DA neurons contribute to energy balance.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, USA; Pharmacology and Toxicology Graduate Program, USA; Michigan State University, East Lansing, MI 48114, USA
| | - Krystal Santiago-Colon
- Department of Biology, University of Puerto Rico - Cayey, USA; Bridge to the PhD in Neuroscience Program, USA
| | - Gina M Leinninger
- Department of Physiology, USA; Michigan State University, East Lansing, MI 48114, USA.
| |
Collapse
|
26
|
Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020; 14:101. [PMID: 32116534 PMCID: PMC7029733 DOI: 10.3389/fnins.2020.00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
The roles of the hypothalamus and particularly the lateral hypothalamus (LH) in the regulation of inflammation and pain have been widely studied. The LH consists of a parasympathetic area that has connections with all the major parts of the brain. It controls the autonomic nervous system (ANS), regulates feeding behavior and wakeful cycles, and is a part of the reward system. In addition, it contains different types of neurons, most importantly the orexin neurons. These neurons, though few in number, perform critical functions such as inhibiting pain transmission and interfering with the reward system, feeding behavior and the hypothalamic pituitary axis (HPA). Recent evidence has identified a new role for orexin neurons in the modulation of pain transmission associated with several inflammatory diseases, including rheumatoid arthritis and ulcerative colitis. Here, we review recent findings on the various physiological functions of the LH with special emphasis on the orexin/receptor system and its role in mediating inflammatory pain.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Israa Salman
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Najjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George Merhej
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
27
|
Leidmaa E, Gazea M, Patchev AV, Pissioti A, Christian Gassen N, Kimura M, Liposits Z, Kallo I, Almeida OFX. Blunted leptin sensitivity during hedonic overeating can be reinstated by activating galanin 2 receptors (Gal2R) in the lateral hypothalamus. Acta Physiol (Oxf) 2020; 228:e13345. [PMID: 31310704 DOI: 10.1111/apha.13345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
AIM Since foods with high hedonic value are often consumed in excess of energetic needs, this study was designed to identify the mechanisms that may counter anorexigenic signalling in the presence of hedonic foods in lean animals. METHODS Mice, in different states of satiety (fed/fasted, or fed/fasted and treated with ghrelin or leptin, respectively), were allowed to choose between high-fat/high-sucrose and standard foods. Intake of each food type and the activity of hypothalamic neuropetidergic neurons that regulate appetite were monitored. In some cases, food choice was monitored in leptin-injected fasted mice that received microinjections of galanin receptor agonists into the lateral hypothalamus. RESULTS Appetite-stimulating orexin neurons in the lateral hypothalamus are rapidly activated when lean, satiated mice consume a highly palatable food (PF); such activation (upregulated c-Fos expression) occurred even after administration of the anorexigenic hormone leptin and despite intact leptin signalling in the hypothalamus. The ability of leptin to restrain PF eating is restored when a galanin receptor 2 (Gal2R) agonist is injected into the lateral hypothalamus. CONCLUSION Hedonically-loaded foods interrupt the inhibitory actions of leptin on orexin neurons and interfere with the homeostatic control of feeding. Overeating of palatable foods can be curtailed in lean animals by activating Gal2R in the lateral hypothalamus.
Collapse
Affiliation(s)
- Este Leidmaa
- Max Planck Institute of Psychiatry Munich Germany
- Graduate School of Systems Neuroscience Munich University Planegg‐Martinsried Germany
- Institute of Molecular Psychiatry Bonn Germany
| | - Mary Gazea
- Max Planck Institute of Psychiatry Munich Germany
| | | | | | | | | | - Zsolt Liposits
- Institute of Experimental Medicine Hungarian Academy of Sciences Budapest Hungary
| | - Imre Kallo
- Institute of Experimental Medicine Hungarian Academy of Sciences Budapest Hungary
| | | |
Collapse
|
28
|
Fang P, Yu M, Shi M, Bo P, Zhang Z. Galanin peptide family regulation of glucose metabolism. Front Neuroendocrinol 2020; 56:100801. [PMID: 31705911 DOI: 10.1016/j.yfrne.2019.100801] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Recent preclinical and clinical studies have indicated that the galanin peptide family may regulate glucose metabolism and alleviate insulin resistance, which diminishes the probability of type 2 diabetes mellitus. The galanin was discovered in 1983 as a gut-derived peptide hormone. Subsequently, galanin peptide family was found to exert a series of metabolic effects, including the regulation of gut motility, body weight and glucose metabolism. The galanin peptide family in modulating glucose metabolism received recently increasing recognition because pharmacological activiation of galanin signaling might be of therapeutic value to improve insuin resistance and type 2 diabetes mellitus. To date, however, few papers have summarized the role of the galanin peptide family in modulating glucose metabolism and insulin resistance. In this review we summarize the metabolic effect of galanin peptide family and highlight its glucoregulatory action and discuss the pharmacological value of galanin pathway activiation for the treatment of glucose intolerance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
29
|
Idelevich A, Sato K, Nagano K, Rowe G, Gori F, Baron R. ΔFosB Requires Galanin, but not Leptin, to Increase Bone Mass via the Hypothalamus, but both are needed to increase Energy expenditure. J Bone Miner Res 2019; 34:1707-1720. [PMID: 30998833 PMCID: PMC6744351 DOI: 10.1002/jbmr.3741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 01/29/2023]
Abstract
Energy metabolism and bone homeostasis share several regulatory pathways. The AP1 transcription factor ΔFosB and leptin both regulate energy metabolism and bone, yet whether their pathways intersect is not known. Transgenic mice overexpressing ΔFosB under the control of the Enolase 2 (ENO2) promoter exhibit high bone mass, high energy expenditure, low fat mass, and low circulating leptin levels. Because leptin is a regulator of bone and ΔFosB acts on leptin-responsive ventral hypothalamic (VHT) neurons to induce bone anabolism, we hypothesized that regulation of leptin may contribute to the central actions of ΔFosB in the VHT. To address this question, we used adeno-associated virus (AAV) expression of ΔFosB in the VHT of leptin-deficient ob/ob mice and genetic crossing of ENO2-ΔFosB with ob/ob mice. In both models, leptin deficiency prevented ΔFosB-triggered reduction in body weight, increase in energy expenditure, increase in glucose utilization, and reduction in pancreatic islet size. In contrast, leptin deficiency failed to prevent ΔFosB-triggered increase in bone mass. Unlike leptin deficiency, galanin deficiency blocked both the metabolic and the bone ΔFosB-induced effects. Overall, our data demonstrate that, while the catabolic energy metabolism effects of ΔFosB require intact leptin and galanin signaling, the bone mass-accruing effects of ΔFosB require galanin but are independent of leptin. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kazusa Sato
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kenichi Nagano
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Glenn Rowe
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019; 154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
|
31
|
Schiffino FL, Siemian JN, Petrella M, Laing BT, Sarsfield S, Borja CB, Gajendiran A, Zuccoli ML, Aponte Y. Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation. PLoS One 2019; 14:e0219522. [PMID: 31291348 PMCID: PMC6619795 DOI: 10.1371/journal.pone.0219522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Across species, motivated states such as food-seeking and consumption are essential for survival. The lateral hypothalamus (LH) is known to play a fundamental role in regulating feeding and reward-related behaviors. However, the contributions of neuronal subpopulations in the LH have not been thoroughly identified. Here we examine how lateral hypothalamic leptin receptor-expressing (LHLEPR) neurons, a subset of GABAergic cells, regulate motivation in mice. We find that LHLEPR neuronal activation significantly increases progressive ratio (PR) performance, while inhibition decreases responding. Moreover, we mapped LHLEPR axonal projections and demonstrated that they target the ventral tegmental area (VTA), form functional inhibitory synapses with non-dopaminergic VTA neurons, and their activation promotes motivation for food. Finally, we find that LHLEPR neurons also regulate motivation to obtain water, suggesting that they may play a generalized role in motivation. Together, these results identify LHLEPR neurons as modulators within a hypothalamic-ventral tegmental circuit that gates motivation.
Collapse
Affiliation(s)
- Felipe L. Schiffino
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Justin N. Siemian
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Michele Petrella
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino (MC), Italy
| | - Brenton T. Laing
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah Sarsfield
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Cara B. Borja
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Anjali Gajendiran
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Maria Laura Zuccoli
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yeka Aponte
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Romanov RA, Alpár A, Hökfelt T, Harkany T. Unified Classification of Molecular, Network, and Endocrine Features of Hypothalamic Neurons. Annu Rev Neurosci 2019; 42:1-26. [DOI: 10.1146/annurev-neuro-070918-050414] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peripheral endocrine output relies on either direct or feed-forward multi-order command from the hypothalamus. Efficient coding of endocrine responses is made possible by the many neuronal cell types that coexist in intercalated hypothalamic nuclei and communicate through extensive synaptic connectivity. Although general anatomical and neurochemical features of hypothalamic neurons were described during the past decades, they have yet to be reconciled with recently discovered molecular classifiers and neurogenetic function determination. By interrogating magnocellular as well as parvocellular dopamine, GABA, glutamate, and phenotypically mixed neurons, we integrate available information at the molecular, cellular, network, and endocrine output levels to propose a framework for the comprehensive classification of hypothalamic neurons. Simultaneously, we single out putative neuronal subclasses for which future research can fill in existing gaps of knowledge to rationalize cellular diversity through function-determinant molecular marks in the hypothalamus.
Collapse
Affiliation(s)
- Roman A. Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Histology, and Embryology, and SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
- Department of Neuroscience, Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| |
Collapse
|
33
|
de Vrind VA, Rozeboom A, Wolterink‐Donselaar IG, Luijendijk‐Berg MC, Adan RA. Effects of GABA and Leptin Receptor-Expressing Neurons in the Lateral Hypothalamus on Feeding, Locomotion, and Thermogenesis. Obesity (Silver Spring) 2019; 27:1123-1132. [PMID: 31087767 PMCID: PMC6617814 DOI: 10.1002/oby.22495] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The lateral hypothalamus (LH) is known for its role in feeding, and it also regulates other aspects of energy homeostasis. How genetically defined LH neuronal subpopulations mediate LH effects on energy homeostasis remains poorly understood. The behavioral effects of chemogenetically activating LH gamma-aminobutyric acid (GABA) and the more selective population of LH GABA neurons that coexpress the leptin receptor (LepR) were compared. METHODS LepR-cre and VGAT-cre mice were injected with AAV5-hSyn-DIO-hM3DGq-mCherry in the LH. The behavioral effects of LH GABA or LH LepR neuronal activation on feeding, locomotion, thermogenesis, and body weight were assessed. RESULTS The activation of LH GABA neurons increased body temperature (P ≤ 0.008) and decreased body weight (P ≤ 0.01) despite decreased locomotor activity (P = 0.03) and transiently increased chow intake (P ≤ 0.009). Also, similar to other studies, this study found that activation of LH GABA neurons induced gnawing on both food and nonfood (P = 0.001) items. Activation of LH LepR neurons decreased body weight (P ≤ 0.01) and chow intake when presented on the cage floor (P ≤ 0.04) but not when presented in the cage top and increased locomotor activity (P = 0.002) and body temperature (P = 0.03). CONCLUSIONS LH LepR neurons are a subset of LH GABA neurons, and LH LepR activation more specifically regulates energy homeostasis to promote a negative energy balance.
Collapse
Affiliation(s)
- Véronne A.J. de Vrind
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
| | - Annemieke Rozeboom
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
| | - Inge G. Wolterink‐Donselaar
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
| | - Mieneke C.M. Luijendijk‐Berg
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
| | - Roger A.H. Adan
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht and University UtrechtUtrechtThe Netherlands
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|
34
|
Fang P, He B, Yu M, Shi M, Zhu Y, Zhang Z, Bo P. Treatment with celastrol protects against obesity through suppression of galanin-induced fat intake and activation of PGC-1α/GLUT4 axis-mediated glucose consumption. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1341-1350. [PMID: 30742994 DOI: 10.1016/j.bbadis.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Overweight and obesity may cause several metabolic complications, including type 2 diabetes mellitus and hyperlipidemia. Despite years of progress in medicine, there are no highly effective pharmacological treatments for obesity. The natural compound celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium Wilfordi (thunder god vine) plant, exerts various bioactivities including anti-diabetic and anti-obese effects. Although celastrol could decrease food intake and obesity, the detailed mechanism for celastrol is still unclear as yet. Herein, we intended to determine the effect of celastrol on obesity and the underlying mechanisms. In the present study, diet-induced obese mice were treated with 100 μg/kg/d celastrol for the last 21 days, and 3T3-L1 cells were treated with celastrol for 6 h. The present findings showed that celastrol suppresses fat intake, and leads to weight loss by inhibiting galanin and its receptor expression in the hypothalamus of mice fed a high-fat diet. More importantly, in addition to these direct anti-obesity activities, celastrol augmented the PGC-1α and GLUT4 expression in adipocytes and skeletal muscles to increase glucose uptake through AKT and P38 MAPK activation. Celastrol also inhibited gluconeogenic activity through a CREB/PGC-1α pathway. In conclusion, the weight-lowering effects of celastrol are driven by decreased galanin-induced food consumption. Thus, this study contributes to our understanding of the anti-obese role of celastrol, and provides a possibility of using celastrol to treat obesity in clinic.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- College of Physical Education, Anhui Normal University, Wuhu, Anhui 241003, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
35
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
36
|
Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019; 17:e3000172. [PMID: 30893297 PMCID: PMC6426208 DOI: 10.1371/journal.pbio.3000172] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting). A neurotensin-producing subset of neurons in the lateral hypothalamus promote arousal and thermogenesis; these neurons are necessary for appropriate sleep-wake and body temperature responses to various stressors. Adjusting sleep-wake behavior in response to environmental and physiological challenges may not only be of protective value, but can also be vital for the survival of the organism. For example, while it is crucial to increase wake to explore a novel environment to search for potential threats and food sources, it is also necessary to decrease wake and reduce energy expenditure during prolonged absence of food. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to such challenges. We show that brief activation of NtsLH neurons in mice evokes immediate arousals from sleep, while their sustained activation increases wake, locomotor activity, and body temperature for several hours. In contrast, when NtsLH neurons are inhibited, mice are neither able to sustain wake in a novel environment nor able to reduce wake during food deprivation. These data suggest that NtsLH neurons may be necessary for generating appropriate sleep-wake responses to a wide variety of environmental and physiological challenges.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sathyajit S. Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joseph C. Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG, Olson DP. Lateral Hypothalamic Mc3R-Expressing Neurons Modulate Locomotor Activity, Energy Expenditure, and Adiposity in Male Mice. Endocrinology 2019; 160:343-358. [PMID: 30541071 PMCID: PMC6937456 DOI: 10.1210/en.2018-00747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.
Collapse
Affiliation(s)
- Hongjuan Pei
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | | | - Amy K Sutton
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Korri H Burnett
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence: David P. Olson, MD, PhD, University of Michigan, 1000 Wall Street, Brehm Tower 6329, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
38
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
39
|
Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018; 159:3631-3642. [PMID: 30215694 PMCID: PMC6195675 DOI: 10.1210/en.2018-00449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Our ability to modulate and observe neuronal activity in defined neurons in freely moving animals has revolutionized neuroscience research in recent years. Findings in the lateral hypothalamus (LHA) highlighted the existence of many neuronal circuits that regulate distinct phenotypes of feeding behavior, emotional valence, and locomotor activity. Several of these neuronal circuits do not fit into a common model of neuronal integration and highlight the need to improve working models for complex behaviors. This review will specifically focus on recent literature that distinguishes LHA circuits based on their molecular and anatomical characteristics and studies their role in feeding, associated behaviors (e.g., arousal and locomotion), and emotional states (e.g., emotional valences).
Collapse
Affiliation(s)
- Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
40
|
Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat Commun 2018; 9:4129. [PMID: 30297727 PMCID: PMC6175893 DOI: 10.1038/s41467-018-06590-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/07/2018] [Indexed: 01/02/2023] Open
Abstract
The preoptic area (POA) is necessary for sleep, but the fundamental POA circuits have remained elusive. Previous studies showed that galanin (GAL)- and GABA-producing neurons in the ventrolateral preoptic nucleus (VLPO) express cFos after periods of increased sleep and innervate key wake-promoting regions. Although lesions in this region can produce insomnia, high frequency photostimulation of the POAGAL neurons was shown to paradoxically cause waking, not sleep. Here we report that photostimulation of VLPOGAL neurons in mice promotes sleep with low frequency stimulation (1-4 Hz), but causes conduction block and waking at frequencies above 8 Hz. Further, optogenetic inhibition reduces sleep. Chemogenetic activation of VLPOGAL neurons confirms the increase in sleep, and also reduces body temperature. In addition, chemogenetic activation of VLPOGAL neurons induces short-latency sleep in an animal model of insomnia. Collectively, these findings establish a causal role of VLPOGAL neurons in both sleep induction and heat loss.
Collapse
|
41
|
Novelle MG, Diéguez C. Unravelling the role and mechanism of adipokine and gastrointestinal signals in animal models in the nonhomeostatic control of energy homeostasis: Implications for binge eating disorder. EUROPEAN EATING DISORDERS REVIEW 2018; 26:551-568. [PMID: 30280451 DOI: 10.1002/erv.2641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Marta G. Novelle
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS); University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Santiago de Compostela Spain
| | - Carlos Diéguez
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS); University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Santiago de Compostela Spain
| |
Collapse
|
42
|
Sclafani A, Vural AS, Ackroff K. Profound differences in fat versus carbohydrate preferences in CAST/EiJ and C57BL/6J mice: Role of fat taste. Physiol Behav 2018; 194:348-355. [PMID: 29933030 PMCID: PMC6082157 DOI: 10.1016/j.physbeh.2018.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022]
Abstract
In a nutrient self-selection study, CAST/EiJ mice consumed more carbohydrate than fat while C57BL/6J (B6) mice showed the opposite preference. The present study revealed similar strain differences in preferences for isocaloric fat (Intralipid) and carbohydrate (sucrose, maltodextrin) solutions in chow-fed mice. In initial 2-day choice tests, percent fat intakes of CAST and B6 mice were 4-9% and 71-81% respectively. In subsequent nutrient vs. water tests, CAST mice consumed considerably less fat but not carbohydrate compared to B6 mice. Orosensory rather than postoral factors are implicated in the very low fat preference and intake of CAST mice. This is supported by results of a choice test with Intralipid mixed with non-nutritive sweeteners vs. non-sweet maltodextrin. The preference of CAST mice for sweetened fat exceeded that of B6 mice (94 vs. 74%) and absolute fat intakes were similar in the two strains. When given unsweetened Intralipid vs. water tests at ascending fat concentrations CAST mice displayed reduced fat preferences at 0.1-5% and reduced intakes at 0.5-5% concentrations, compared to B6 mice. The differential fat preferences of CAST and B6 mice may reflect differences in fat taste sensing or in central neural processes related to fat selection.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | - Austin S Vural
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
43
|
Uribe-Cerda S, Morselli E, Perez-Leighton C. Updates on the neurobiology of food reward and their relation to the obesogenic environment. Curr Opin Endocrinol Diabetes Obes 2018; 25:292-297. [PMID: 30063551 DOI: 10.1097/med.0000000000000427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To summarize recent findings about the neurobiological control of food reward and discuss their relevance for hedonic food intake and obesity in our current obesogenic environment. RECENT FINDINGS Recent data show new roles for circuits involving neuronal subpopulations within the central amyglada (CeA) and lateral hypothalamus in the regulation of feeding and reward in rodents under free and operant conditions and also in restrain from reward consumption. Recent work also shows that the orbitofrontal cortex (OFC) codes for subjective perception of food features during reward assessment of individual foods and that activity in the nucleus accumbens (NAc) codes for anticipation for reward, which can be blocked by time-locked neurostimulation of NAc. SUMMARY New data illustrates that different aspects of hedonic intake and food reward are coded in a distributed brain network. In particular, as our obesogenic environment facilitates access to palatable food and promotes cue-induced feeding, neuronal circuits related to control of impulsivity, food valuation and duration of hedonic intake episodes might have a significant role in our ability to control food intake and development of obesity by excess intake.
Collapse
Affiliation(s)
- Sofia Uribe-Cerda
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Food Science and Nutrition Department, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
44
|
Kurt G, Woodworth HL, Fowler S, Bugescu R, Leinninger GM. Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology 2018; 154:13-21. [PMID: 30266601 DOI: 10.1016/j.neuropharm.2018.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Animals must ingest water via drinking to maintain fluid homeostasis, yet the neurons that specifically promote drinking behavior are incompletely characterized. The lateral hypothalamic area (LHA) as a whole is essential for drinking behavior but most LHA neurons indiscriminately promote drinking and feeding. By contrast, activating neurotensin (Nts)-expressing LHA neurons (termed LHA Nts neurons) causes mice to immediately drink water with a delayed suppression of feeding. We therefore hypothesized that LHA Nts neurons are sufficient to induce drinking behavior and that these neurons specifically bias for fluid intake over food intake. To test this hypothesis we used designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate LHA Nts neurons and studied the impact on fluid intake, fluid preference and feeding. Activation of LHA Nts neurons stimulated drinking in water-replete and dehydrated mice, indicating that these neurons are sufficient to promote water intake regardless of homeostatic need. Interestingly, mice with activated LHA Nts neurons drank any fluid that was provided regardless of its palatability, but if given a choice they preferred water or palatable solutions over unpalatable (quinine) or dehydrating (hypertonic saline) solutions. Notably, acute activation of LHA Nts neurons robustly promoted fluid but not food intake. Overall, our study confirms that activation of LHA Nts neurons is sufficient to induce drinking behavior and biases for fluid intake. Hence, LHA Nts neurons may be important targets for orchestrating the appropriate ingestive behavior necessary to maintain fluid homeostasis. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Sabrina Fowler
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
46
|
Yu S, Cheng H, François M, Qualls-Creekmore E, Huesing C, He Y, Jiang Y, Gao H, Xu Y, Zsombok A, Derbenev AV, Nillni EA, Burk DH, Morrison CD, Berthoud HR, Münzberg H. Preoptic leptin signaling modulates energy balance independent of body temperature regulation. eLife 2018; 7:33505. [PMID: 29761783 PMCID: PMC5953538 DOI: 10.7554/elife.33505] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight.
Collapse
Affiliation(s)
- Sangho Yu
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Helia Cheng
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Marie François
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Clara Huesing
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Yanyan Jiang
- Department of Physiology, School of Medicine, Tulane University, New Orleans, United States
| | - Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, United States
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, United States
| | - Eduardo A Nillni
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,The Warren Alpert Medical School, Department of Medicine, Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - David H Burk
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| |
Collapse
|
47
|
Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018; 12:14. [PMID: 29713268 PMCID: PMC5911470 DOI: 10.3389/fnsys.2018.00014] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2018] [Indexed: 01/02/2023] Open
Abstract
Converging evidence for an essential function of the lateral hypothalamus (LHA) in the control of feeding behavior has been accumulating since the classic work conducted almost 80 years ago. The LHA is also important in reward and reinforcement processes and behavioral state control. A unifying function for the LHA across these processes has not been fully established. Nonetheless, it is considered to integrate motivation with behavior. More recent work has demonstrated that the LHA is also required when cognitive processes, such as associative learning and memory control feeding behavior, suggesting it may serve as a motivation-cognition interface. Structurally, the LHA is well positioned within the cerebral hemisphere, with its extensive connectional network across the forebrain-brainstem axis, to link motivational and behavioral systems with cognitive processes. Studies that examined how learned cues control food seeking and consumption have implicated the LHA, but due to methodological limitations could not determine whether it underlies motivation, learning, or the integration of these processes. Furthermore, the identification of specific substrates has been limited by the LHA's extraordinary complexity and heterogeneity. Recent methodological advancements with chemo-and opto-genetic approaches have enabled unprecedented specificity in interrogations of distinct neurons and their pathways in behaving animals, including manipulations during temporally distinct events. These approaches have revealed novel insights about the LHA structure and function. Recent findings that the GABA LHA neurons control feeding and food-reward learning and memory will be reviewed together with past work within the context of the LHA function as an interface between cognition and motivation.
Collapse
Affiliation(s)
- Gorica D Petrovich
- Department of Psychology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
48
|
Pan W, Adams JM, Allison MB, Patterson C, Flak JN, Jones J, Strohbehn G, Trevaskis J, Rhodes CJ, Olson DP, Myers MG. Essential Role for Hypothalamic Calcitonin Receptor‒Expressing Neurons in the Control of Food Intake by Leptin. Endocrinology 2018; 159:1860-1872. [PMID: 29522093 PMCID: PMC5888224 DOI: 10.1210/en.2017-03259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023]
Abstract
The adipocyte-derived hormone leptin acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake, and to promote energy expenditure. We generated mice that express Cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrknockout (KO) mice caused hyperphagic obesity. Because LepRb-mediated transcriptional control plays a crucial role in leptin action, we used translating ribosome affinity purification followed by RNA sequencing to define the transcriptome of hypothalamic Calcr neurons, along with its alteration in LepRbCalcrKO mice. We found that ARC LepRbCalcr cells include neuropeptide Y (NPY)/agouti-related peptide (AgRP)/γ-aminobutyric acid (GABA) ("NAG") cells as well as non-NAG cells that are distinct from pro-opiomelanocortin cells. Furthermore, although LepRbCalcrKO mice exhibited dysregulated expression of several genes involved in energy balance, neither the expression of Agrp and Npy nor the activity of NAG cells was altered in vivo. Thus, although direct leptin action via LepRbCalcr cells plays an important role in leptin action, our data also suggest that leptin indirectly, as well as directly, regulates these cells.
Collapse
Affiliation(s)
- Warren Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Jessica M Adams
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Margaret B Allison
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Christa Patterson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jonathan N Flak
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Justin Jones
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Garth Strohbehn
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - David P Olson
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
49
|
Santiago JCP, Otto M, Kern W, Baier PC, Hallschmid M. Relationship between cerebrospinal fluid concentrations of orexin A/hypocretin-1 and body composition in humans. Peptides 2018; 102:26-30. [PMID: 29471000 DOI: 10.1016/j.peptides.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
The hypothalamic neuropeptide orexin A (hypocretin-1) is a key signal in sleep/wake regulation and promotes food intake. We investigated the relationship between cerebrospinal fluid orexin A concentrations and body composition in non-narcoleptic human subjects with a wide range of body weight to gain insight into the role of orexin A in human metabolism. We collected cerebrospinal fluid and blood samples and measured body composition by bioelectric impedance analysis in 36 subjects (16 women and 20 men) with body mass indices between 16.24 and 38.10 kg/m2 and an age range of 19-80 years. Bivariate Pearson correlations and stepwise multiple regressions were calculated to determine associations between orexin A and body composition as well as biometric variables. Concentrations of orexin A in cerebrospinal fluid averaged 315.6 ± 6.0 pg/ml, were comparable between sexes (p > 0.15) and unrelated to age (p > 0.66); they appeared slightly reduced in overweight/obese compared to normal-weight subjects (p = .07). Orexin A concentrations decreased with body weight (r = -0.38, p = .0229) and fat-free mass (r = -0.39, p = .0173) but were not linked to body fat mass (p > 0.24). They were inversely related to total body water (r = -0.39, p = .0174) as well as intracellular (r = -0.41, p = .0139) and extracellular water (r = -0.35, p = .0341). Intracellular water was the only factor independently associated with cerebrospinal fluid orexin A concentrations (p = .0139). We conclude that cerebrospinal fluid orexin A concentrations do not display associations with body adiposity, but are inversely related to intracellular water content. These cross-sectional findings suggest a link between orexin A signaling and the regulation of water homeostasis in humans.
Collapse
Affiliation(s)
- João C P Santiago
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany.
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany.
| | | | - Paul Christian Baier
- Department of Psychiatry and Psychotherapy, University of Kiel, 24103 Kiel, Germany.
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
50
|
Woodworth HL, Brown JA, Batchelor HM, Bugescu R, Leinninger GM. Determination of neurotensin projections to the ventral tegmental area in mice. Neuropeptides 2018; 68:57-74. [PMID: 29478718 PMCID: PMC5906039 DOI: 10.1016/j.npep.2018.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022]
Abstract
Pharmacologic treatment with the neuropeptide neurotensin (Nts) modifies motivated behaviors such as feeding, locomotor activity, and reproduction. Dopamine (DA) neurons of the ventral tegmental area (VTA) control these behaviors, and Nts directly modulates the activity of DA neurons via Nts receptor-1. While Nts sources to the VTA have been described in starlings and rats, the endogenous sources of Nts to the VTA of mice remain incompletely understood, impeding determination of which Nts circuits orchestrate specific behaviors in this model. To overcome this obstacle we injected the retrograde tracer Fluoro-Gold into the VTA of mice that express GFP in Nts neurons. Identification of GFP-Nts cells that accumulate Fluoro-Gold revealed the Nts afferents to the VTA in mice. Similar to rats, most Nts afferents to the VTA of mice arise from the medial and lateral preoptic areas (POA) and the lateral hypothalamic area (LHA), brain regions that are critical for coordination of feeding and reproduction. Additionally, the VTA receives dense input from Nts neurons in the nucleus accumbens shell (NAsh) of mice, and minor Nts projections from the amygdala and periaqueductal gray area. Collectively, our data reveal multiple populations of Nts neurons that provide direct afferents to the VTA and which may regulate specific aspects of motivated behavior. This work lays the foundation for understanding endogenous Nts actions in the VTA, and how circuit-specific Nts modulation may be useful to correct motivational and affective deficits in neuropsychiatric disease.
Collapse
Affiliation(s)
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|