1
|
Eroglu B, Isales C, Eroglu A. Age and duration of obesity modulate the inflammatory response and expression of neuroprotective factors in mammalian female brain. Aging Cell 2024:e14313. [PMID: 39230054 DOI: 10.1111/acel.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
Obesity has become a global epidemic and is associated with comorbidities, including diabetes, cardiovascular, and neurodegenerative diseases, among others. While appreciable insight has been gained into the mechanisms of obesity-associated comorbidities, effects of age, and duration of obesity on the female brain remain obscure. To address this gap, adolescent and mature adult female mice were subjected to a high-fat diet (HFD) for 13 or 26 weeks, whereas age-matched controls were fed a standard diet. Subsequently, the expression of inflammatory cytokines, neurotrophic/neuroprotective factors, and markers of microgliosis and astrogliosis were analyzed in the hypothalamus, hippocampus, and cerebral cortex, along with inflammation in visceral adipose tissue. HFD led to a typical obese phenotype in all groups independent of age and duration of HFD. However, the intermediate duration of obesity induced a limited inflammatory response in adolescent females' hypothalamus while the hippocampus, cerebral cortex, and visceral adipose tissue remained unaffected. In contrast, the prolonged duration of obesity resulted in inflammation in all three brain regions and visceral adipose tissue along with upregulation of microgliosis/astrogliosis and suppression of neurotrophic/neuroprotective factors in all brain regions, denoting the duration of obesity as a critical risk factor for neurodegenerative diseases. Importantly, when female mice were older (i.e., mature adult), even the intermediate duration of obesity induced similar adverse effects in all brain regions. Taken together, our findings suggest that (1) both age and duration of obesity have a significant impact on obesity-associated comorbidities and (2) early interventions to end obesity are critical to preserving brain health.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Carlos Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Albornoz N, Álvarez-Indo J, de la Peña A, Arias-Muñoz E, Coca A, Segovia-Miranda F, Kerr B, Budini M, Criollo A, García-Robles MA, Morselli E, Soza A, Burgos PV. Targeting the immunoproteasome in hypothalamic neurons as a novel therapeutic strategy for high-fat diet-induced obesity and metabolic dysregulation. J Neuroinflammation 2024; 21:191. [PMID: 39095788 PMCID: PMC11297766 DOI: 10.1186/s12974-024-03154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS The levels of the immunoproteasome β5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome β5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of β5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the β5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Nicolás Albornoz
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alanis Coca
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fabián Segovia-Miranda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Molecular and Cellular Pathology, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago, Chile
| | - Alfredo Criollo
- Cell and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María A García-Robles
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
3
|
Vieira CP, Lelis CA, Ochioni AC, Rosário DKA, Rosario ILS, Vieira IRS, Carvalho APA, Janeiro JM, da Costa MP, Lima FRS, Mariante RM, Alves LA, Foguel D, Junior CAC. Estimating the therapeutic potential of NSAIDs and linoleic acid-isomers supplementation against neuroinflammation. Biomed Pharmacother 2024; 177:116884. [PMID: 38889635 DOI: 10.1016/j.biopha.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) regulate inflammation, which is associated with their role in preventing neurodegenerative diseases in epidemiological studies. It has sparked interest in their unconventional application for reducing neuroinflammation, opening up new avenues in biomedical research. However, given the pharmacological drawbacks of NSAIDs, the development of formulations with naturally antioxidant/anti-inflammatory dietary fatty acids has been demonstrated to be advantageous for the clinical translation of anti-inflammatory-based therapies. It includes improved blood-brain barrier (BBB) permeability and reduced toxicity. It permits us to speculate about the value of linoleic acid (LA)-isomers in preventing and treating neuroinflammatory diseases compared to NSAIDs. Our research delved into the impact of various factors, such as administration route, dosage, timing of intervention, and BBB permeability, on the efficacy of NSAIDs and LA-isomers in preclinical and clinical settings. We conducted a systematic comparison between NSAIDs and LA-isomers regarding their therapeutic effectiveness, BBB compatibility, and side effects. Additionally, we explored their underlying mechanisms in addressing neuroinflammation. Through our analysis, we've identified challenges and drawn conclusions that could propel advancements in treating neurodegenerative diseases and inform the development of future alternative therapeutic strategies.
Collapse
Affiliation(s)
- Carla Paulo Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Carini A Lelis
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Alan Clavelland Ochioni
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Denes Kaic A Rosário
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Iuri L S Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Italo Rennan S Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Anna Paula A Carvalho
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Marion P da Costa
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil; Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Flavia R S Lima
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Rafael M Mariante
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luiz Anastácio Alves
- Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Debora Foguel
- Laboratory of Protein Aggregation and Amyloidosis, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil.
| |
Collapse
|
4
|
García-Navarrete C, Kretschmar C, Toledo J, Gutiérrez K, Hernández-Cáceres MP, Budini M, Parra V, Burgos PV, Lavandero S, Morselli E, Peña-Oyarzún D, Criollo A. PKD2 regulates autophagy and forms a protein complex with BECN1 at the primary cilium of hypothalamic neuronal cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167256. [PMID: 38782303 DOI: 10.1016/j.bbadis.2024.167256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.
Collapse
Affiliation(s)
- Camila García-Navarrete
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Facultad de Medicina, Universidad de Chile, Chile
| | - Karla Gutiérrez
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Santiago, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas & Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia V Burgos
- Autophagy Research Center, Santiago, Chile; Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, Huechuraba 8580702, Santiago, Chile
| | - Sergio Lavandero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas & Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile; Autophagy Research Center, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile; Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastián, Chile.
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Collado-Perez R, Chamoso-Sánchez D, García A, Fernández-Alfonso MS, Jiménez-Hernáiz M, Canelles S, Argente J, Frago LM, Chowen JA. The differential effects of palmitic acid and oleic acid on the metabolic response of hypothalamic astrocytes from male and female mice. J Neurosci Res 2024; 102:e25339. [PMID: 38741550 DOI: 10.1002/jnr.25339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Diets rich in saturated fats are more detrimental to health than those containing mono- or unsaturated fats. Fatty acids are an important source of energy, but they also relay information regarding nutritional status to hypothalamic metabolic circuits and when in excess can be detrimental to these circuits. Astrocytes are the main site of central fatty acid β-oxidation, and hypothalamic astrocytes participate in energy homeostasis, in part by modulating hormonal and nutritional signals reaching metabolic neurons, as well as in the inflammatory response to high-fat diets. Thus, we hypothesized that how hypothalamic astrocytes process-specific fatty acids participates in determining the differential metabolic response and that this is sex dependent as males and females respond differently to high-fat diets. Male and female primary hypothalamic astrocyte cultures were treated with oleic acid (OA) or palmitic acid (PA) for 24 h, and an untargeted metabolomics study was performed. A clear predictive model for PA exposure was obtained, while the metabolome after OA exposure was not different from controls. The observed modifications in metabolites, as well as the expression levels of key metabolic enzymes, indicate a reduction in the activity of the Krebs and glutamate/glutamine cycles in response to PA. In addition, there were specific differences between the response of astrocytes from male and female mice, as well as between hypothalamic and cerebral cortical astrocytes. Thus, the response of hypothalamic astrocytes to specific fatty acids could result in differential impacts on surrounding metabolic neurons and resulting in varied systemic metabolic outcomes.
Collapse
Affiliation(s)
- Roberto Collado-Perez
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Chamoso-Sánchez
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Antonia García
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | | | - Maria Jiménez-Hernáiz
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
6
|
Sedlák F, Kvasnička A, Marešová B, Brumarová R, Dobešová D, Dostálová K, Šrámková K, Pehr M, Šácha P, Friedecký D, Konvalinka J. Parallel Metabolomics and Lipidomics of a PSMA/GCPII Deficient Mouse Model Reveal Alteration of NAAG Levels and Brain Lipid Composition. ACS Chem Neurosci 2024; 15:1342-1355. [PMID: 38377674 PMCID: PMC10995945 DOI: 10.1021/acschemneuro.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Glutamate carboxypeptidase II (GCPII, also known as PSMA or FOLH1) is responsible for the cleavage of N-acetyl-aspartyl-glutamate (NAAG) to N-acetyl-aspartate and glutamate in the central nervous system and facilitates the intestinal absorption of folate by processing dietary folyl-poly-γ-glutamate in the small intestine. The physiological function of GCPII in other organs like kidneys is still not known. GCPII inhibitors are neuroprotective in various conditions (e.g., ischemic brain injury) in vivo; however, their utilization as potential drug candidates has not been investigated in regard to not yet known GCPII activities. To explore the GCPII role and possible side effects of GCPII inhibitors, we performed parallel metabolomic and lipidomic analysis of the cerebrospinal fluid (CSF), urine, plasma, and brain tissue of mice with varying degrees of GCPII deficiency (fully deficient in Folh1, -/-; one allele deficient in Folh1, +/-; and wild type, +/+). Multivariate analysis of metabolites showed no significant differences between wild-type and GCPII-deficient mice (except for NAAG), although changes were observed between the sex and age. NAAG levels were statistically significantly increased in the CSF, urine, and plasma of GCPII-deficient mice. However, no difference in NAAG concentrations was found in the whole brain lysate likely because GCPII, as an extracellular enzyme, can affect only extracellular and not intracellular NAAG concentrations. Regarding the lipidome, the most pronounced genotype-linked changes were found in the brain tissue. In brains of GCPII-deficient mice, we observed statistically significant enrichment in phosphatidylcholine-based lipids and reduction of sphingolipids and phosphatidylethanolamine plasmalogens. We hypothesize that the alteration of the NAA-NAAG axis by absent GCPII activity affected myelin composition. In summary, the absence of GCPII and thus similarly its inhibition do not have detrimental effects on metabolism, with just minor changes in the brain lipidome.
Collapse
Affiliation(s)
- František Sedlák
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Institute
of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2 110 01, Czechia
- First
Department of Internal Medicine - Hematology, Charles University General Hospital in Prague, Prague 110 01, Czechia
| | - Aleš Kvasnička
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Barbora Marešová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Institute
of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2 110 01, Czechia
| | - Radana Brumarová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Dana Dobešová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Kateřina Dostálová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Karolína Šrámková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
| | - Martin Pehr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Third
Department of Medicine − Department of Endocrinology and Metabolism
of the first Faculty of Medicine and General University Hospital in
Prague, Charles University, Prague 110 01, Czechia
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
| | - David Friedecký
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Jan Konvalinka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 8, Prague 128 00, Czechia
| |
Collapse
|
7
|
Xu L, Ma Y, Ji Y, Ma Y, Wang Y, Zhao X, Ge S. Obesity exacerbates postoperative cognitive dysfunction by activating the PARP1/NAD +/SIRT1 axis through oxidative stress. Exp Gerontol 2023; 183:112320. [PMID: 39492487 DOI: 10.1016/j.exger.2023.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The purposes of this study were to explore the impact of obesity on postoperative cognitive dysfunction (POCD) and to investigate the underlying mechanism by which obesity exacerbates POCD. In this study, fifteen-month-old male C57BL/6 J mice were fed a High-fat diet for three months to establish obesity models. Internal fixation of tibial fractures under isoflurane inhalation was performed to construct a POCD animal model. Three days after surgery, mice were subjected to the Morris water maze (MWM) experiment to evaluate their learning and memory abilities. The findings from the MWM experiment revealed that in comparison to the Ad Libitum Surgical group (ALS), mice in the High-fat Surgical group (HFS) exhibited prolonged escape latencies and reduced platform crossings. These outcomes suggest the potential exacerbating role of obesity in cognitive impairment within the POCD mouse models. Immunofluorescence (IF) findings demonstrate that obesity intensifies anesthesia and surgery-induced oxidative stress levels within the hippocampus. Compared to the Ad Libitum Control group (ALC), an elevation in PARP1 expression and a reduction in the NAD+/NADH ratio and SIRT1 expression were observed in the hippocampus of mice from the ALS. Moreover, when contrasting the HFS group with the ALS group, increased PARP1 expression along with decreased NAD+/NADH ratio and SIRT1 expression were evident. In vitro studies found that compared with the Control group (CON), oil red staining and BODIPY probe staining showed significant lipid droplet aggregation in the palmitic acid (PA) group. IF results demonstrated that HT22 cells in the PA group experienced oxidative stress and activation of the PARP1/NAD+/SIRT1 axis in contrast to the CON group. Moreover, manipulation of PARP1 expression in HT22 cells through PARP1 lentivirus-based silencing or overexpression revealed a converse relationship between PARP1 expression levels and the NAD+/NADH ratio as well as SIRT1 expression levels. This study concludes that obesity may exacerbate POCD by triggering activation of the oxidative stress-induced PARP1/NAD+/SIRT1 axis.
Collapse
Affiliation(s)
- Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yimei Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Ying Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Xining Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
8
|
Elsherbini A, Zhu Z, Quadri Z, Crivelli SM, Ren X, Vekaria HJ, Tripathi P, Zhang L, Zhi W, Bieberich E. Novel Isolation Method Reveals Sex-Specific Composition and Neurotoxicity of Small Extracellular Vesicles in a Mouse Model of Alzheimer's Disease. Cells 2023; 12:1623. [PMID: 37371093 PMCID: PMC10297289 DOI: 10.3390/cells12121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
We developed a new method to isolate small extracellular vesicles (sEVs) from male and female wild-type and 5xFAD mouse brains to investigate the sex-specific functions of sEVs in Alzheimer's disease (AD). A mass spectrometric analysis revealed that sEVs contained proteins critical for EV formation and Aβ. ExoView analysis showed that female mice contained more GFAP and Aβ-labeled sEVs, suggesting that a larger proportion of sEVs from the female brain is derived from astrocytes and/or more likely to bind to Aβ. Moreover, sEVs from female brains had more acid sphingomyelinase (ASM) and ceramide, an enzyme and its sphingolipid product important for EV formation and Aβ binding to EVs, respectively. We confirmed the function of ASM in EV formation and Aβ binding using co-labeling and proximity ligation assays, showing that ASM inhibitors prevented complex formation between Aβ and ceramide in primary cultured astrocytes. Finally, our study demonstrated that sEVs from female 5xFAD mice were more neurotoxic than those from males, as determined by impaired mitochondrial function (Seahorse assays) and LDH cytotoxicity assays. Our study suggests that sex-specific sEVs are functionally distinct markers for AD and that ASM is a potential target for AD therapy.
Collapse
Affiliation(s)
- Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Simone M. Crivelli
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Xiaojia Ren
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA;
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| | - Priyanka Tripathi
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Liping Zhang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Wenbo Zhi
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA;
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| |
Collapse
|
9
|
Characterisation of the Paternal Influence on Intergenerational Offspring Cardiac and Brain Lipid Homeostasis in Mice. Int J Mol Sci 2023; 24:ijms24031814. [PMID: 36768137 PMCID: PMC9916277 DOI: 10.3390/ijms24031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
There is growing evidence that poor paternal diet at the time of conception increase the risk of offspring developing a range of non-communicable metabolic diseases, such as obesity, diabetes and cardiovascular disease, in adulthood. We hypothesise that a paternal low protein-high carbohydrate diet perturbs offspring tissue lipid abundance through both sperm and seminal plasma-mediated mechanisms. To test our hypothesis, we fed male C57BL/6 mice either a control normal protein diet (NPD; 18% protein) or an isocaloric low protein diet (LPD; 9% protein) for a minimum of 8 weeks. We generated offspring through artificial insemination, in combination with vasectomised male mating. Using this approach, we derived offspring from either NPD or LPD sperm but in the presence of NPD or LPD seminal plasma. Using high resolution mass-spectrometry, we found that offspring derived from either LPD sperm or seminal fluid displayed perturbed cardiac and brain lipid abundance from just three weeks of age, typically associated with the altered abundance of tissue triglycerides. We also observed the differential sex-specific patterns of lipids between the control and experimental offspring's hearts and brains. These observations indicate that poor paternal diet at the time of conception affects offspring cardiac and brain lipid profiles in an age-, sex- and generation-specific manner.
Collapse
|
10
|
Do KV, Hjorth E, Wang Y, Jun B, Kautzmann MAI, Ohshima M, Eriksdotter M, Schultzberg M, Bazan NG. Cerebrospinal Fluid Profile of Lipid Mediators in Alzheimer's Disease. Cell Mol Neurobiol 2023; 43:797-811. [PMID: 35362880 PMCID: PMC9957874 DOI: 10.1007/s10571-022-01216-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) develops into dementia over a period of several years, during which subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) can be used as intermediary diagnoses of increasing severity. Chronic neuroinflammation resulting from insufficient resolution is involved in the pathogenesis of AD and is associated with cognitive impairment. Specialized pro-resolving lipid mediators (LMs) that promote the resolution of inflammation may be valuable markers in AD diagnosis and as therapeutic targets. Liquid chromatography-tandem mass spectrometry was used to analyze pro-resolving and pro-inflammatory LMs in cerebrospinal fluid (CSF) from patients with cognitive impairment ranging from subjective impairment to a diagnosis of AD and correlated to cognition, CSF tau, and β-amyloid. Resolvin (Rv) D4, RvD1, neuroprotectin D1 (NPD1), maresin 1 (MaR1), and RvE4 were lower in AD and/or MCI compared to SCI. The pro-inflammatory LTB4 and 15-HETE were higher in AD and MCI, respectively, while PGD2, PGE2, and PGF2a were decreased in AD, compared to SCI. RvD4 was also negatively correlated to AD tangle biomarkers, and positive correlations to cognitive test scores were observed for both pro-resolving LMs and their precursor fatty acids. In this exploratory study of the lipidome in CSF of AD, MCI, and SCI, the results indicate a shift in the LM profile from pro-resolving to pro-inflammatory in progression to AD, suggesting that it may be of use as a biomarker when followed by confirmation by replication studies.
Collapse
Affiliation(s)
- Khanh V. Do
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA ,grid.511102.60000 0004 8341 6684Present Address: Faculty of Medicine, PHENIKAA University, Hanoi, 12116 Vietnam ,grid.499214.3Present Address: PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC,, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi, 11313 Vietnam
| | - Erik Hjorth
- grid.465198.7Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden
| | - Ying Wang
- grid.465198.7Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden
| | - Bokkyoo Jun
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA
| | - Marie-Audrey I. Kautzmann
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA
| | - Makiko Ohshima
- grid.465198.7Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64 Solna, Sweden
| | - Maria Eriksdotter
- grid.24381.3c0000 0000 9241 5705Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Marianne Schultzberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum J9:20, Visionsgatan 4, 171 64, Solna, Sweden.
| | - Nicolas G. Bazan
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA 70112 USA
| |
Collapse
|
11
|
He W, Tran A, Chen CT, Loganathan N, Bazinet RP, Belsham DD. Oleate restores altered autophagic flux to rescue palmitate lipotoxicity in hypothalamic neurons. Mol Cell Endocrinol 2022; 557:111753. [PMID: 35981630 DOI: 10.1016/j.mce.2022.111753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023]
Abstract
Accumulation of excess lipids in non-adipose tissues, such as the hypothalamus, is termed lipotoxicity and causative of free fatty acid-mediated pathology in metabolic disease. This study aimed to elucidate the molecular mechanisms behind oleate (OA)- and palmitate (PA)-mediated changes in hypothalamic neurons. Using the well-characterized hypothalamic neuronal cell model, mHypoE-46, we assessed gene changes through qRT-PCR, cell death with quantitative imaging, PA metabolism using stable isotope labeling, and cellular mechanisms using pharmacological modulation of lipid metabolism and autophagic flux. Palmitate (PA) disrupts gene expression, including Npy, Grp78, and Il-6 mRNA in mHypoE-46 hypothalamic neurons. Blocking PA metabolism using triacsin-C prevented the increase of these genes, implying that these changes depend on PA intracellular metabolism. Co-incubation with oleate (OA) is also potently protective and prevents cell death induced by increasing concentrations of PA. However, OA does not decrease U-13C-PA incorporation into diacylglycerol and phospholipids. Remarkably, OA can reverse PA toxicity even after significant PA metabolism and cellular impairment. OA can restore PA-mediated impairment of autophagy to prevent or reverse the accumulation of PA metabolites through lysosomal degradation, and not through other reported mechanisms. The autophagic flux inhibitor chloroquine (CQ) mimics PA toxicity by upregulating autophagy-related genes, Npy, Grp78, and Il-6, an effect partially reversed by OA. CQ also prevented the OA defense against PA toxicity, whereas the autophagy inducer rapamycin provided some protection. Thus, PA impairment of autophagic flux significantly contributes to its lipotoxicity, and OA-mediated protection requires functional autophagy. Overall, our results suggest that impairment of autophagy contributes to hypothalamic lipotoxicity.
Collapse
Affiliation(s)
- Wenyuan He
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Andy Tran
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Ávalos Y, Hernández-Cáceres MP, Lagos P, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Joy-Immediato M, Venegas-Zamora L, Lopez-Gallardo E, Kretschmar C, Batista-Gonzalez A, Cifuentes-Araneda F, Toledo-Valenzuela L, Rodriguez-Peña M, Espinoza-Caicedo J, Perez-Leighton C, Bertocchi C, Cerda M, Troncoso R, Parra V, Budini M, Burgos PV, Criollo A, Morselli E. Palmitic acid control of ciliogenesis modulates insulin signaling in hypothalamic neurons through an autophagy-dependent mechanism. Cell Death Dis 2022; 13:659. [PMID: 35902579 PMCID: PMC9334645 DOI: 10.1038/s41419-022-05109-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.
Collapse
Affiliation(s)
- Yenniffer Ávalos
- grid.412179.80000 0001 2191 5013Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Pablo Lagos
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Pinto-Nuñez
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Rivera
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michelle Joy-Immediato
- grid.7870.80000 0001 2157 0406Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leslye Venegas-Zamora
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Erik Lopez-Gallardo
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Ana Batista-Gonzalez
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Flavia Cifuentes-Araneda
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Rodriguez-Peña
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Jasson Espinoza-Caicedo
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- grid.7870.80000 0001 2157 0406Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- grid.7870.80000 0001 2157 0406Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Cerda
- grid.443909.30000 0004 0385 4466Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Center for Medical Informatics and Telemedicine, Facultad de Medicina, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Biomedical Neuroscience Institute, Santiago, Chile
| | - Rodrigo Troncoso
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile
| | - Valentina Parra
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile ,grid.443909.30000 0004 0385 4466Network for the Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Autophagy Research Center, Santiago, Chile ,grid.443909.30000 0004 0385 4466Laboratory of Molecular and Cellular Pathology, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Patricia V. Burgos
- Autophagy Research Center, Santiago, Chile ,grid.442215.40000 0001 2227 4297Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile ,grid.7870.80000 0001 2157 0406Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile
| | - Eugenia Morselli
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile ,grid.442215.40000 0001 2227 4297Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
13
|
Espinosa R, Gutiérrez K, Rios J, Ormeño F, Yantén L, Galaz-Davison P, Ramírez-Sarmiento CA, Parra V, Albornoz A, Alfaro IE, Burgos PV, Morselli E, Criollo A, Budini M. Palmitic and Stearic Acids Inhibit Chaperone-Mediated Autophagy (CMA) in POMC-like Neurons In Vitro. Cells 2022; 11:cells11060920. [PMID: 35326371 PMCID: PMC8945987 DOI: 10.3390/cells11060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 12/28/2022] Open
Abstract
The intake of food with high levels of saturated fatty acids (SatFAs) is associated with the development of obesity and insulin resistance. SatFAs, such as palmitic (PA) and stearic (SA) acids, have been shown to accumulate in the hypothalamus, causing several pathological consequences. Autophagy is a lysosomal-degrading pathway that can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Previous studies showed that PA impairs macroautophagy function and insulin response in hypothalamic proopiomelanocortin (POMC) neurons. Here, we show in vitro that the exposure of POMC neurons to PA or SA also inhibits CMA, possibly by decreasing the total and lysosomal LAMP2A protein levels. Proteomics of lysosomes from PA- and SA-treated cells showed that the inhibition of CMA could impact vesicle formation and trafficking, mitochondrial components, and insulin response, among others. Finally, we show that CMA activity is important for regulating the insulin response in POMC hypothalamic neurons. These in vitro results demonstrate that CMA is inhibited by PA and SA in POMC-like neurons, giving an overview of the CMA-dependent cellular pathways that could be affected by such inhibition and opening a door for in vivo studies of CMA in the context of the hypothalamus and obesity.
Collapse
Affiliation(s)
- Rodrigo Espinosa
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Karla Gutiérrez
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Javiera Rios
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Fernando Ormeño
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Liliana Yantén
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.G.-D.); (C.A.R.-S.)
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.G.-D.); (C.A.R.-S.)
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380544, Chile; (V.P.); (A.C.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
| | - Amelina Albornoz
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Iván E. Alfaro
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Patricia V. Burgos
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Eugenia Morselli
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago 8331150, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380544, Chile; (V.P.); (A.C.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile
| | - Mauricio Budini
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Correspondence:
| |
Collapse
|
14
|
Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 2021; 70:101397. [PMID: 34214643 DOI: 10.1016/j.arr.2021.101397] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
An excess of saturated fatty acids and simple sugars in the diet is a known environmental risk factor of Alzheimer's disease (AD) but the holistic view of the interacting processes through which such diet may contribute to AD pathogenesis is missing. We addressed this need through extensive analysis of published studies investigating the effects of western diet (WD) on AD development in humans and laboratory animals. We reviewed WD-induced systemic alterations comprising metabolic changes, induction of obesity and adipose tissue inflammation, gut microbiota dysbiosis and acceleration of systemic low-grade inflammation. Next we provide an overview of the evidence demonstrating that WD-associated systemic alterations drive impairment of the blood-brain barrier (BBB) and development of neuroinflammation paralleled by accumulation of toxic amyloid. Later these changes are followed by dysfunction of synaptic transmission, neurodegeneration and finally memory and cognitive impairment. We conclude that WD can trigger AD by acceleration of inflammaging, and that BBB impairment induced by metabolic and systemic inflammation play the central role in this process. Moreover, the concurrence of neuroinflammation and Aβ dyshomeostasis, which by reciprocal interactions drive the vicious cycle of neurodegeneration, contradicts Aβ as the primary trigger of AD. Given that in 2019 the World Health Organization recommended focusing on modifiable risk factors in AD prevention, this overview of the sequential, complex pathomechanisms initiated by WD, which can lead from peripheral disturbances to neurodegeneration, can support future prevention strategies.
Collapse
|
15
|
Ma Y, Xiong J, Zhang X, Qiu T, Pang H, Li X, Zhu J, Wang J, Pan C, Yang X, Chu X, Yang B, Wang C, Zhang J. Potential biomarker in serum for predicting susceptibility to type 2 diabetes mellitus: Free fatty acid 22:6. J Diabetes Investig 2021; 12:950-962. [PMID: 33068491 PMCID: PMC8169352 DOI: 10.1111/jdi.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is closely linked to increased levels of free fatty acids (FFAs) in obese individuals, although which FFA is most associated with type 2 diabetes mellitus is unclear. This study aimed to identify the specific FFAs that best predict the occurrence of type 2 diabetes mellitus in obese individuals, and assess their potential application value. MATERIALS AND METHODS Participants were divided into three groups: a normal weight group (n = 20), an obese group (n = 10) and a type 2 diabetes mellitus group (n = 10). FFAs in serum samples were determined by ultra-high-pressure liquid chromatography-mass spectrometry, and orthogonal partial least squares discriminant analysis models were used to study the FFA profile among the three groups. RESULTS Compared with the normal weight group, 14 FFAs (C8:0/10:0/14:0/16:1/18:1/20:2/ 20:3 /20:4/ 20:5/ 22:6/7:0/9:0/11:0 and C13:0) were significantly increased in the obese group, and nine FFAs (C14:0, C18:1, C20:1, C 18:2, C20:2, C20:3, C18:3, C20:5 and C22:6) were significantly increased in the type 2 diabetes mellitus group. Subsequently, the Venn diagram results showed that six FFAs (C14:0, C18:1, C20:2, C20:3, C20:5 and C22:6) were significantly increased in both the obese and type 2 diabetes mellitus groups. Among these six, C22:6 was finally identified as an independent risk factor for type 2 diabetes mellitus, and had a great potential to predict the susceptibility to type 2 diabetes mellitus (area under the curve 0.803). CONCLUSIONS C22:6 can be an independent risk factor for type 2 diabetes mellitus, and it has a great potential to predict the susceptibility to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yinghua Ma
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jianyu Xiong
- Department of GeneticsShihezi University School of MedicineShiheziChina
| | - Xueting Zhang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Tongtong Qiu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Huai Pang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xue Li
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jiaojiao Zhu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jingzhou Wang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Chongge Pan
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xin Yang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Xiaolong Chu
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Bingqi Yang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Cuizhe Wang
- Department of Biochemistry and Molecular BiologyShihezi University School of MedicineShiheziChina
| | - Jun Zhang
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic DiseaseShiheziChina
| |
Collapse
|
16
|
Jacenik D, Bagüés A, López-Gómez L, López-Tofiño Y, Iriondo-DeHond A, Serra C, Banovcanová L, Gálvez-Robleño C, Fichna J, del Castillo MD, Uranga JA, Abalo R. Changes in Fatty Acid Dietary Profile Affect the Brain-Gut Axis Functions of Healthy Young Adult Rats in a Sex-Dependent Manner. Nutrients 2021; 13:1864. [PMID: 34070787 PMCID: PMC8228732 DOI: 10.3390/nu13061864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary modifications, including those affecting dietary fat and its fatty acid (FA) composition, may be involved in the development of brain-gut axis disorders, with different manifestations in males and females. Our aim was to evaluate the impact of three purified diets with different FA composition on the brain-gut axis in rats of both sexes. Male and female Wistar rats fed a cereal-based standard diet from weaning were used. At young adult age (2-3 months old), animals were divided into three groups and treated each with a different refined diet for 6 weeks: a control group fed on AIN-93G diet containing 7% soy oil (SOY), and two groups fed on AIN-93G modified diets with 3.5% soy oil replaced by 3.5% coconut oil (COCO) or 3.5% evening primrose oil (EP). Different brain-gut axis parameters were evaluated during 4-6 weeks of dietary intervention. Compared with SOY diet (14% saturated FAs, and 58% polyunsaturated FAs), COCO diet (52.2% saturated FAs and 30% polyunsaturated FAs) produced no changes in brain functions and minor gastrointestinal modifications, whereas EP diet (11.1% saturated FAs and 70.56% polyunsaturated FAs) tended to decrease self-care behavior and colonic propulsion in males, and significantly increased exploratory behavior, accelerated gastrointestinal transit, and decreased cecum and fecal pellet density in females. Changes in FA composition, particularly an increase in ω-6 polyunsaturated FAs, seem to facilitate the development of brain-gut axis alterations in a sex-dependent manner, with a relatively higher risk in females.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ana Bagüés
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Yolanda López-Tofiño
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Amaia Iriondo-DeHond
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| | - Cristina Serra
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
| | - Laura Banovcanová
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
| | - Carlos Gálvez-Robleño
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Maria Dolores del Castillo
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| | - José Antonio Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
- Working Group of Basic Sciences in Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor), 28046 Madrid, Spain
| |
Collapse
|
17
|
Jo D, Yoon G, Song J. Role of Exendin-4 in Brain Insulin Resistance, Mitochondrial Function, and Neurite Outgrowth in Neurons under Palmitic Acid-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10010078. [PMID: 33435277 PMCID: PMC7827489 DOI: 10.3390/antiox10010078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
Glucagon like peptide 1 (GLP-1) is an incretin hormone produced by the gut and brain, and is currently being used as a therapeutic drug for type 2 diabetes and obesity, suggesting that it regulates abnormal appetite patterns, and ameliorates impaired glucose metabolism. Many researchers have demonstrated that GLP-1 agonists and GLP-1 receptor agonists exert neuroprotective effects against brain damage. Palmitic acid (PA) is a saturated fatty acid, and increases the risk of neuroinflammation, lipotoxicity, impaired glucose metabolism, and cognitive decline. In this study, we investigated whether or not Exentin-4 (Ex-4; GLP-1 agonist) inhibits higher production of reactive oxygen species (ROS) in an SH-SY5Y neuronal cell line under PA-induced apoptosis conditions. Moreover, pre-treatment with Ex-4 in SH-SY5Y neuronal cells prevents neural apoptosis and mitochondrial dysfunction through several cellular signal pathways. In addition, insulin sensitivity in neurons is improved by Ex-4 treatment under PA-induced insulin resistance. Additionally, our imaging data showed that neuronal morphology is improved by EX-4 treatment, in spite of PA-induced neuronal damage. Furthermore, we identified that Ex-4 inhibits neuronal damage and enhanced neural complexity, such as neurite length, secondary branches, and number of neurites from soma in PA-treated SH-SY5Y. We observed that Ex-4 significantly increases neural complexity, dendritic spine morphogenesis, and development in PA treated primary cortical neurons. Hence, we suggest that GLP-1 administration may be a crucial therapeutic solution for improving neuropathology in the obese brain.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea; (D.J.); (G.Y.)
- BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-757, Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea; (D.J.); (G.Y.)
- BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-757, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea; (D.J.); (G.Y.)
- BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-757, Korea
- Correspondence: ; Tel.:+82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
18
|
Edler MK, Johnson CT, Ahmed HS, Richardson JR. Age, sex, and regional differences in scavenger receptor CD36 in the mouse brain: Potential relevance to cerebral amyloid angiopathy and Alzheimer's disease. J Comp Neurol 2020; 529:2209-2226. [PMID: 33319367 DOI: 10.1002/cne.25089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/29/2022]
Abstract
Scavenger receptor CD36 contributes significantly to lipid homeostasis, inflammation, and amyloid deposition, while CD36 deficiency is associated with restored cerebrovascular function in an Alzheimer's disease (AD) mouse model. Yet the distribution of CD36 has not been examined in the brain. Here, we characterized CD36 gene and protein expression in the brains of young, middle aged, aged, and elderly male and female C57BL/6J mice. Age-related increases in CD36 mRNA expression were observed in the male hippocampus and female midbrain. Additionally, male mice had greater CD36 mRNA expression than females in the striatum, hippocampus, and midbrain. CD36 protein was primarily expressed intravascularly, and this expression differed by region, age, and sex in the mouse brain. Although male mice brains demonstrated an increase in CD36 protein with age in several cortices, basal ganglia, hippocampus, and midbrain, a decrease with age was observed in female mice in the same regions. These data suggest that distinctive age, region, and sex expression of CD36 in the brain may contribute to Aβ deposition and neuroinflammation in AD.
Collapse
Affiliation(s)
- Melissa K Edler
- Department of Anthropology, Kent State University, Kent, Ohio, USA.,School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Brain Health Research Institute, Kent State University, Kent, Ohio, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Cooper T Johnson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Hashim S Ahmed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jason R Richardson
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida, USA
| |
Collapse
|
19
|
Chen CT, Haven S, Lecaj L, Borgstrom M, Torabi M, SanGiovanni JP, Hibbeln JR. Brain PUFA Concentrations Are Differentially Affected by Interactions of Diet, Sex, Brain Regions, and Phospholipid Pools in Mice. J Nutr 2020; 150:3123-3132. [PMID: 33188433 PMCID: PMC7726127 DOI: 10.1093/jn/nxaa307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND PUFAs play vital roles in the development, maintenance, and functioning of circuitries that regulate reward and social behaviors. Therefore, modulations in PUFA concentrations of these brain regions may disrupt reward and social circuitries contributing to mood disorders, developmental disabilities, and addictions. Though much is known about regional and phospholipid-pool-specific PUFA concentrations, less is known about the effects of dietary interventions that concurrently lowers n-6 PUFA and supplements n-3 PUFA, on brain PUFA concentrations. There is even less knowledge on the effects of sex on brain PUFA concentrations. OBJECTIVE This study aimed to comprehensively examine the interaction effects of diet (D), sex (S), brain regions (BR), and phospholipid pools (PL) on brain PUFA concentrations. METHODS Male and female C57BL/6J mice were fed 1 of 4 custom-designed diets varying in linoleic acid (LNA) (8 en% or 1 en%) and eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) (0.4 en% or 0 en%) concentrations from in utero to 15 weeks old. At 15 weeks old, the prefrontal cortex, dorsal striatum, and cerebellum were collected. Fatty acids of 5 major PL were quantified by GC-flame ionization detection. Repeated measures ANOVA was used to test for differences among the groups for D, S, BR, and PL. RESULTS No significant 4-way interactions on PUFA concentrations. DHA, predominant n-3 PUFA, concentrations were dependent on significant D × BR × PL interactions. DHA concentration was not affected by sex. Arachidonic acid (ARA; predominant n-6 PUFA) concentrations were not dependent on 3-way interactions. However, significant 2-way D × PL, BR × PL, and D × Sinteractions affected ARA concentrations. Brain fatty acid concentrations were differentially affected by various combinations of D, S, BR, and PL interactions. CONCLUSION Though DHA concentrations are not affected by sex, ARA concentrations are affected by interactions of the 4 variables examined. This study provides comprehensive references in the investigation of complex interactions between factors that affect brain PUFA concentrations in mice.
Collapse
Affiliation(s)
| | - Sophie Haven
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| | - Lea Lecaj
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| | - Mark Borgstrom
- University Information Technology Services, University of Arizona, Tucson, AZ, USA
| | - Mohammad Torabi
- University Information Technology Services, University of Arizona, Tucson, AZ, USA
| | | | - Joseph R Hibbeln
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| |
Collapse
|
20
|
Dragano NR, Monfort-Pires M, Velloso LA. Mechanisms Mediating the Actions of Fatty Acids in the Hypothalamus. Neuroscience 2020; 447:15-27. [DOI: 10.1016/j.neuroscience.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
|
21
|
Explorative Combined Lipid and Transcriptomic Profiling of Substantia Nigra and Putamen in Parkinson's Disease. Cells 2020; 9:cells9091966. [PMID: 32858884 PMCID: PMC7564986 DOI: 10.3390/cells9091966] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons from the substantia nigra (SN) that project to the dorsal striatum (caudate-putamen). To better understand the molecular mechanisms underlying PD, we performed combined lipid profiling and RNA sequencing of SN and putamen samples from PD patients and age-matched controls. SN lipid analysis pointed to a neuroinflammatory component and included elevated levels of the endosomal lipid Bis (Monoacylglycero)Phosphate 42:8, while two of the three depleted putamen lipids were saturated sphingomyelin species. Remarkably, we observed gender-related differences in the SN and putamen lipid profiles. Transcriptome analysis revealed that the top-enriched pathways among the 354 differentially expressed genes (DEGs) in the SN were “protein folding” and “neurotransmitter transport”, and among the 261 DEGs from putamen “synapse organization”. Furthermore, we identified pathways, e.g., “glutamate signaling”, and genes, encoding, e.g., an angiotensin receptor subtype or a proprotein convertase, that have not been previously linked to PD. The identification of 33 genes that were common among the SN and putamen DEGs, which included the α-synuclein paralog β-synuclein, may contribute to the understanding of general PD mechanisms. Thus, our proof-of-concept data highlights new genes, pathways and lipids that have not been explored before in the context of PD.
Collapse
|
22
|
Hernández-Cáceres MP, Cereceda K, Hernández S, Li Y, Narro C, Rivera P, Silva P, Ávalos Y, Jara C, Burgos P, Toledo-Valenzuela L, Lagos P, Cifuentes Araneda F, Perez-Leighton C, Bertocchi C, Clegg DJ, Criollo A, Tapia-Rojas C, Burgos PV, Morselli E. Palmitic acid reduces the autophagic flux in hypothalamic neurons by impairing autophagosome-lysosome fusion and endolysosomal dynamics. Mol Cell Oncol 2020; 7:1789418. [PMID: 32944643 DOI: 10.1080/23723556.2020.1789418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-fat diet (HFD)-induced obesity is associated with increased cancer risk. Long-term feeding with HFD increases the concentration of the saturated fatty acid palmitic acid (PA) in the hypothalamus. We previously showed that, in hypothalamic neuronal cells, exposure to PA inhibits the autophagic flux, which is the whole autophagic process from the synthesis of the autophagosomes, up to their lysosomal fusion and degradation. However, the mechanism by which PA impairs autophagy in hypothalamic neurons remains unknown. Here, we show that PA-mediated reduction of the autophagic flux is not caused by lysosomal dysfunction, as PA treatment does not impair lysosomal pH or the activity of cathepsin B.Instead, PA dysregulates autophagy by reducing autophagosome-lysosome fusion, which correlates with the swelling of endolysosomal compartments that show areduction in their dynamics. Finally, because lysosomes undergo constant dynamic regulation by the small Rab7 GTPase, we investigated the effect of PA treatment on its activity. Interestingly, we found PA treatment altered the activity of Rab7. Altogether, these results unveil the cellular process by which PA exposure impairs the autophagic flux. As impaired autophagy in hypothalamic neurons promotes obesity, and balanced autophagy is required to inhibit malignant transformation, this could affect tumor initiation, progression, and/or response to therapy of obesity-related cancers.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Karina Cereceda
- Translational Medicine Laboratory, Fundación Arturo López Pérez Cancer Center, Santiago, Chile.,Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Ying Li
- Tsinghua University-Pekin University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Carla Narro
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Patricia Rivera
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Patricio Silva
- Advanced Center for Chronic Diseases (Accdis), Universidad De Chile, Santiago, Chile.,Instituto De Investigación En Ciencias Odontológicas (ICOD), Facultad De Odontología, Universidad De Chile, Santiago, Chile
| | - Yenniffer Ávalos
- Departamento De Biología, Facultad De Química Y Biología, Universidad De Santiago De Chile, Santiago, Chile
| | - Claudia Jara
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Paulina Burgos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Flavia Cifuentes Araneda
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Deborah J Clegg
- College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (Accdis), Universidad De Chile, Santiago, Chile.,Instituto De Investigación En Ciencias Odontológicas (ICOD), Facultad De Odontología, Universidad De Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
23
|
Kim YJ, Tu TH, Yang S, Kim JK, Kim JG. Characterization of Fatty Acid Composition Underlying Hypothalamic Inflammation in Aged Mice. Molecules 2020; 25:molecules25143170. [PMID: 32664475 PMCID: PMC7397167 DOI: 10.3390/molecules25143170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Degenerative diseases, which can develop during aging, are underlined by inflammatory processes. Hypothalamic inflammation triggered by elevation in circulating fatty acid levels is directly coupled to metabolic disorders. The present study aimed to investigate and characterize the hypothalamic inflammation and composition of fatty acids in the hypothalami of aged mice. We verified that inflammation and microglial activation occur in the hypothalami of aged mice by performing quantitative real-time PCR and using immunohistochemistry methods. In addition, we observed increased levels of various saturated fatty acids in the hypothalami of aged mice, whereas no major changes in the levels of circulating fatty acids were detected using gas chromatography with a flame ionization detector. Collectively, our current findings suggest that increases in saturated fatty acid levels are coupled to hypothalamic inflammation and thereby cause perturbations in energy metabolism during the aging process.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea; (Y.J.K.); (T.H.T.)
| | - Thai Hien Tu
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea; (Y.J.K.); (T.H.T.)
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon 406–772, Korea;
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea; (Y.J.K.); (T.H.T.)
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406–772, Korea
- Correspondence: (J.K.K.); (J.G.K.); Tel.: +82-32-835-8241 (J.K.K.); +82-32-835-8256 (J.G.K.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea; (Y.J.K.); (T.H.T.)
- Correspondence: (J.K.K.); (J.G.K.); Tel.: +82-32-835-8241 (J.K.K.); +82-32-835-8256 (J.G.K.)
| |
Collapse
|
24
|
Dietary influence on central nervous system myelin production, injury, and regeneration. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165779. [DOI: 10.1016/j.bbadis.2020.165779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
|
25
|
Demers G, Roy J, Machuca-Parra AI, Dashtehei Pour Z, Bairamian D, Daneault C, Rosiers CD, Ferreira G, Alquier T, Fulton S. Fish oil supplementation alleviates metabolic and anxiodepressive effects of diet-induced obesity and associated changes in brain lipid composition in mice. Int J Obes (Lond) 2020; 44:1936-1945. [PMID: 32546855 DOI: 10.1038/s41366-020-0623-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Obesity significantly elevates the odds of developing mood disorders. Chronic consumption of a saturated high-fat diet (HFD) elicits anxiodepressive behavior in a manner linked to metabolic dysfunction and neuroinflammation in mice. Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) can improve both metabolic and mood impairments by relieving inflammation. Despite these findings, the effects of n-3 PUFA supplementation on energy homeostasis, anxiodepressive behavior, brain lipid composition, and gliosis in the diet-induced obese state are unclear. METHODS Male C57Bl/6J mice were fed a saturated high-fat diet (HFD) or chow for 20 weeks. During the last 5 weeks mice received daily gavage ("supplementation") of fish oil (FO) enriched with equal amounts of docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) or control corn oil. Food intake and body weight were measured throughout while additional metabolic parameters and anxiety- and despair-like behavior (elevated-plus maze, light-dark box, and forced swim tasks) were evaluated during the final week of supplementation. Forebrain lipid composition and markers of microglia activation and astrogliosis were assessed by gas chromatography-mass spectrometry and real-time PCR, respectively. RESULTS Five weeks of FO supplementation corrected glucose intolerance and attenuated hyperphagia in HFD-induced obese mice without affecting adipose mass. FO supplementation also defended against the anxiogenic and depressive-like effects of HFD. Brain lipids, particularly anti-inflammatory PUFA, were diminished by HFD, whereas FO restored levels beyond control values. Gene expression markers of brain reactive gliosis were supressed by FO. CONCLUSIONS Supplementing a saturated HFD with FO rich in EPA and DHA corrects glucose intolerance, inhibits food intake, suppresses anxiodepressive behaviors, enhances anti-inflammatory brain lipids, and dampens indices of brain gliosis in obese mice. Together, these findings support increasing dietary n-3 PUFA for the treatment of metabolic and mood disturbances associated with excess fat intake and obesity.
Collapse
Affiliation(s)
- Geneviève Demers
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada.,Departments of Nutrition, Université de Montréal, MontrealQC, QC, H2X 0A9, Canada
| | - Jerome Roy
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada.,Departments of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Zahra Dashtehei Pour
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada.,Departments of Nutrition, Université de Montréal, MontrealQC, QC, H2X 0A9, Canada
| | - Diane Bairamian
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada.,Departments of Nutrition, Université de Montréal, MontrealQC, QC, H2X 0A9, Canada
| | | | - Christine Des Rosiers
- Departments of Nutrition, Université de Montréal, MontrealQC, QC, H2X 0A9, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology Unit, UMR1296 INRA - Université de Bordeaux, Bordeaux, France.,Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Thierry Alquier
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada.,Departments of Medicine, Université de Montréal, Montréal, QC, Canada.,Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Stephanie Fulton
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada. .,Departments of Nutrition, Université de Montréal, MontrealQC, QC, H2X 0A9, Canada. .,Food4BrainHealth France-Canada International Research Network, Bordeaux, France.
| | | |
Collapse
|
26
|
Reinicke M, Dorow J, Bischof K, Leyh J, Bechmann I, Ceglarek U. Tissue pretreatment for LC-MS/MS analysis of PUFA and eicosanoid distribution in mouse brain and liver. Anal Bioanal Chem 2020; 412:2211-2223. [PMID: 31865417 PMCID: PMC7118053 DOI: 10.1007/s00216-019-02170-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and eicosanoids are important mediators of inflammation. The functional role of eicosanoids in metabolic-syndrome-related diseases has been extensively studied. However, their role in neuroinflammation and the development of neurodegenerative diseases is still unclear. The aim of this study was the development of a sample pretreatment protocol for the simultaneous analysis of PUFAs and eicosanoids in mouse liver and brain. Liver and brain samples of male wild-type C57BL/6J mice (11-122 mg) were used to investigate conditions for tissue rinsing, homogenization, extraction, and storage. A targeted liquid chromatography-negative electrospray ionization tandem mass spectrometry method was applied to quantify 7 PUFAs and 94 eicosanoids. The final pretreatment protocol consisted of a 5-min homogenization step by sonication in 650 μL n-hexane/2-propanol (60:40 v/v) containing 2,6-di-tert-butyl-4-methylphenol at 50 μg/mL. Homogenates representing 1 mg tissue were extracted in a single step with n-hexane/2-propanol (60:40 v/v) containing 0.1% formic acid. Autoxidation was prevented by addition of 2,6-di-tert-butyl-4-methylphenol at 50 μg/mL and keeping the samples at 4 °C during sample preparation. Extracts were dried under nitrogen and reconstituted in liquid chromatography eluent before analysis. Recovery was determined to range from 45% to 149% for both liver and brain tissue. Within-run and between-run variability ranged between 7% and 18% for PUFAs and between 1% and 24% for eicosanoids. In liver, 7 PUFAs and 15 eicosanoids were quantified; in brain, 6 PUFAs and 21 eicosanoids had significant differences within the brain substructures. In conclusion, a robust and reproducible sample preparation protocol for the multiplexed analysis of PUFAs and eicosanoids by liquid chromatography-tandem mass spectrometry in liver and discrete brain substructures was developed.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany.
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| | - Karoline Bischof
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| |
Collapse
|
27
|
Loehfelm A, Elder MK, Boucsein A, Jones PP, Williams JM, Tups A. Docosahexaenoic acid prevents palmitate-induced insulin-dependent impairments of neuronal health. FASEB J 2020; 34:4635-4652. [PMID: 32030816 DOI: 10.1096/fj.201902517r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
The importance of fatty acids (FAs) for healthy brain development and function has become more evident in the past decades. However, most studies focus on the hypothalamus as an important FA-sensing brain region involved in energy homeostasis. Less work has been done to evaluate the effects of FAs on brain regions such as the hippocampus or cortex, two important centres of learning, memory formation, and cognition. Furthermore, the mechanisms of how FAs modulate the neuronal development and function are incompletely understood. Therefore, this study examined the effects of the saturated FA palmitic acid (PA) and the polyunsaturated FA docosahexaenoic acid (DHA) on primary hippocampal and cortical cultures isolated from P0/P1 Sprague Dawley rat pups. Exposure to PA, but not DHA, resulted in severe morphological changes in primary neurons such as cell body swelling, axonal and dendritic blebbing, and a reduction in synaptic innervation, compromising healthy cell function and excitability. Pharmacological assessment revealed that the PA-mediated alterations were caused by overactivation of neuronal insulin signaling, demonstrated by insulin stimulation and phosphoinositide 3-kinase inhibition. Remarkably, co-exposure to DHA prevented all PA-induced morphological changes. This work provides new insights into how FAs can affect the cytoskeletal rearrangements and neuronal function via modulation of insulin signaling.
Collapse
Affiliation(s)
- Aline Loehfelm
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Megan K Elder
- Department of Anatomy, School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Alisa Boucsein
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter P Jones
- Department of Physiology and HeartOtago, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Albouery M, Buteau B, Grégoire S, Cherbuy C, Pais de Barros JP, Martine L, Chain F, Cabaret S, Berdeaux O, Bron AM, Acar N, Langella P, Bringer MA. Age-Related Changes in the Gut Microbiota Modify Brain Lipid Composition. Front Cell Infect Microbiol 2020; 9:444. [PMID: 31993375 PMCID: PMC6970973 DOI: 10.3389/fcimb.2019.00444] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular mechanisms underlying the changes observed during aging is a prerequisite to design strategies to prevent age-related diseases. Aging is associated with metabolic changes, including alteration in the brain lipid metabolism. These alterations may contribute to the development of pathophysiological conditions. Modifications in the gut microbiota composition are also observed during aging. As communication axes exist between the gut microbiota and the brain and knowing that microbiota influences the host metabolism, we speculated on whether age-associated modifications in the gut microbiota could be involved in the lipid changes observed in aging brain. For that purpose, germ-free mice were colonized by the fecal microbiota of young or old donor mice. Lipid classes and fatty acid profiles were determined in the brain (cortex), plasma and liver by thin-layer chromatography on silica gel-coated quartz rods and gas chromatography. Gut colonization by microbiota of old mice resulted in a significant increase in total monounsaturated fatty acids (MUFA) and a significant decrease in the relative amounts of cholesterol and total polyunsaturated fatty acids (PUFA) in the cortex. Among the eight most represented fatty acids in the cortex, the relative abundances of five (C18:1n-9, C22:6n-3, C20:4n-6, C18:1n-7, and C20:1n-9) were significantly altered in mice inoculated with an aged microbiota. Liquid chromatography analyses revealed that the relative abundance of major species among phosphatidyl and plasmenylcholine (PC 16:0/18:1), phosphatidyl and plasmenylethanolamine (PE 18:0/22:6), lysophosphatidylethanolamine (LPE 22:6) and sphingomyelins (SM d18:1/18:0) were significantly altered in the cortex of mice colonized by the microbiota obtained from aged donors. Transplantation of microbiota from old mice also modified the lipid class and fatty acid content in the liver. Finally, we found that the expression of several genes involved in MUFA and PUFA synthesis (Scd1, Fads1, Fads2, Elovl2, and Elovl5) was dysregulated in mice inoculated with an aged microbiota. In conclusion, our data suggest that changes in gut microbiota that are associated with aging can impact brain and liver lipid metabolisms. Lipid changes induced by an aged microbiota recapitulate some features of aging, thus pointing out the potential role of microbiota alterations in the age-related degradation of the health status.
Collapse
Affiliation(s)
- Mayssa Albouery
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Bénédicte Buteau
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Claire Cherbuy
- Micalis Institute, INRAE, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Paul Pais de Barros
- Inserm U1231 "Lipids, Nutrition, Cancer", Lipidomic Platform, University of Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Florian Chain
- Micalis Institute, INRAE, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, ChemoSens Platform, Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, ChemoSens Platform, Dijon, France
| | - Alain M Bron
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France.,Department of Ophthalmology, University Hospital, Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Philippe Langella
- Micalis Institute, INRAE, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Agnès Bringer
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| |
Collapse
|
29
|
Fernández MJF, Valero-Cases E, Rincon-Frutos L. Food Components with the Potential to be Used in the Therapeutic Approach of Mental Diseases. Curr Pharm Biotechnol 2019; 20:100-113. [PMID: 30255749 DOI: 10.2174/1389201019666180925120657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neurological disorders represent a high influence in our society throughout the world. Although the symptoms arising from those diseases are well known, the causes and mechanisms are complex and depending on multiple factors. Some food components consumed as part of our diet have been studied regarding their incidence in different common neurological diseases such as Alzheimer disease, major depression, Parkinson disease, autism and schizophrenia among others. OBJECTIVE In this review, information has been gathered on the main evidences arising from studies on the most promising food components, related to their therapeutic potential, as part of dietary supplements or through the diet, as an alternative or a complement of the traditional drug treatments. Those food components include vitamins, minerals, fatty acids, carotenoids, polyphenols, bioactive peptides, probiotics, creatine and saponins. RESULTS Many in vitro and in vivo animal studies, randomized and placebo control trials, and systematic reviews on the scientific results published in the literature, have been discussed, highlighting the more recent advances, also with the aim to explore the main research needs. Particular attention has been paid to the mechanisms of action of the compounds regarding their anti-inflammatory, antioxidative properties and neuronal protection. CONCLUSION More research is needed to prove the therapeutic potential of the food components based on scientific evidence, also on intervention studies to demonstrate the improvement of neuronal and cognitive impairments.
Collapse
Affiliation(s)
- María J F Fernández
- Agro-food Technology Department, High Polytechnic School, Miguel Hernandez University, Orihuela, Alicante, Spain
| | - Estefanía Valero-Cases
- Agro-food Technology Department, High Polytechnic School, Miguel Hernandez University, Orihuela, Alicante, Spain
| | - Laura Rincon-Frutos
- Ocular Neurobiology Group, Instituto de Neurociencias de Alicante UMH-CSIC, San Juan, Alicante, Spain
| |
Collapse
|
30
|
Chudoba C, Wardelmann K, Kleinridders A. Molecular effects of dietary fatty acids on brain insulin action and mitochondrial function. Biol Chem 2019; 400:991-1003. [PMID: 30730834 DOI: 10.1515/hsz-2018-0477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/28/2019] [Indexed: 01/17/2023]
Abstract
The prevalence of obesity and its co-morbidities such as insulin resistance and type 2 diabetes are tightly linked to increased ingestion of palatable fat enriched food. Thus, it seems intuitive that the brain senses elevated amounts of fatty acids (FAs) and affects adaptive metabolic response, which is connected to mitochondrial function and insulin signaling. This review will address the effect of dietary FAs on brain insulin and mitochondrial function with a special emphasis on the impact of different FAs on brain function and metabolism.
Collapse
Affiliation(s)
- Chantal Chudoba
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kristina Wardelmann
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - André Kleinridders
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
31
|
Priming of Hypothalamic Ghrelin Signaling and Microglia Activation Exacerbate Feeding in Rats' Offspring Following Maternal Overnutrition. Nutrients 2019; 11:nu11061241. [PMID: 31159189 PMCID: PMC6627862 DOI: 10.3390/nu11061241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Maternal overnutrition during pregnancy leads to metabolic alterations, including obesity, hyperphagia, and inflammation in the offspring. Nutritional priming of central inflammation and its role in ghrelin sensitivity during fed and fasted states have not been analyzed. The current study aims to identify the effect of maternal programming on microglia activation and ghrelin-induced activation of hypothalamic neurons leading to food intake response. We employed a nutritional programming model exposing female Wistar rats to a cafeteria diet (CAF) from pre-pregnancy to weaning. Food intake in male offspring was determined daily after fasting and subcutaneous injection of ghrelin. Hypothalamic ghrelin sensitivity and microglia activation was evaluated using immunodetection for Iba-1 and c-Fos markers, and Western blot for TBK1 signaling. Release of TNF-alpha, IL-6, and IL-1β after stimulation with palmitic, oleic, linoleic acid, or C6 ceramide in primary microglia culture were quantified using ELISA. We found that programmed offspring by CAF diet exhibits overfeeding after fasting and peripheral ghrelin administration, which correlates with an increase in the hypothalamic Iba-1 microglia marker and c-Fos cell activation. Additionally, in contrast to oleic, linoleic, or C6 ceramide stimulation in primary microglia culture, stimulation with palmitic acid for 24 h promotes TNF-alpha, IL-6, and IL-1β release and TBK1 activation. Notably, intracerebroventricular (i.c.v.) palmitic acid or LPS inoculation for five days promotes daily increase in food intake and food consumption after ghrelin administration. Finally, we found that i.c.v. palmitic acid substantially activates hypothalamic Iba-1 microglia marker and c-Fos. Together, our results suggest that maternal nutritional programing primes ghrelin sensitivity and microglia activation, which potentially might mirror hypothalamic administration of the saturated palmitic acid.
Collapse
|
32
|
Miralpeix C, Fosch A, Casas J, Baena M, Herrero L, Serra D, Rodríguez-Rodríguez R, Casals N. Hypothalamic endocannabinoids inversely correlate with the development of diet-induced obesity in male and female mice. J Lipid Res 2019; 60:1260-1269. [PMID: 31138606 PMCID: PMC6602126 DOI: 10.1194/jlr.m092742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid (eCB) system regulates energy homeostasis and is linked to obesity development. However, the exact dynamic and regulation of eCBs in the hypothalamus during obesity progression remain incompletely described and understood. Our study examined the time course of responses in two hypothalamic eCBs, 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamine (AEA), in male and female mice during diet-induced obesity and explored the association of eCB levels with changes in brown adipose tissue (BAT) thermogenesis and body weight. We fed mice a high-fat diet (HFD), which induced a transient increase (substantial at 7 days) in hypothalamic eCBs, followed by a progressive decrease to basal levels with a long-term HFD. This transient rise at early stages of obesity is considered a physiologic compensatory response to BAT thermogenesis, which is activated by diet surplus. The eCB dynamic was sexually dimorphic: hypothalamic eCBs levels were higher in female mice, who became obese at later time points than males. The hypothalamic eCBs time course positively correlated with thermogenesis activation, but negatively matched body weight, leptinemia, and circulating eCB levels. Increased expression of eCB-synthetizing enzymes accompanied the transient hypothalamic eCB elevation. Icv injection of eCB did not promote BAT thermogenesis; however, administration of thermogenic molecules, such as central leptin or a peripheral β3-adrenoreceptor agonist, induced a significant increase in hypothalamic eCBs, suggesting a directional link from BAT thermogenesis to hypothalamic eCBs. This study contributes to the understanding of hypothalamic regulation of obesity.
Collapse
Affiliation(s)
- Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Josefina Casas
- Department on Biomedical Chemistry, Research Unit of BioActive Molecules Institut de Química Avançada de Catalunya, 08034 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Baena
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
33
|
Hernández-Cáceres MP, Toledo-Valenzuela L, Díaz-Castro F, Ávalos Y, Burgos P, Narro C, Peña-Oyarzun D, Espinoza-Caicedo J, Cifuentes-Araneda F, Navarro-Aguad F, Riquelme C, Troncoso R, Criollo A, Morselli E. Palmitic Acid Reduces the Autophagic Flux and Insulin Sensitivity Through the Activation of the Free Fatty Acid Receptor 1 (FFAR1) in the Hypothalamic Neuronal Cell Line N43/5. Front Endocrinol (Lausanne) 2019; 10:176. [PMID: 30972025 PMCID: PMC6446982 DOI: 10.3389/fendo.2019.00176] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic consumption of high fat diets (HFDs), rich in saturated fatty acids (SatFAs) like palmitic acid (PA), is associated with the development of obesity and obesity-related metabolic diseases such as type II diabetes mellitus (T2DM). Previous studies indicate that PA accumulates in the hypothalamus following consumption of HFDs; in addition, HFDs consumption inhibits autophagy and reduces insulin sensitivity. Whether malfunction of autophagy specifically in hypothalamic neurons decreases insulin sensitivity remains unknown. PA does activate the Free Fatty Acid Receptor 1 (FFAR1), also known as G protein-coupled receptor 40 (GPR40); however, whether FFAR1 mediates the effects of PA on hypothalamic autophagy and insulin sensitivity has not been shown. Here, we demonstrate that exposure to PA inhibits the autophagic flux and reduces insulin sensitivity in a cellular model of hypothalamic neurons (N43/5 cells). Furthermore, we show that inhibition of autophagy and the autophagic flux reduces insulin sensitivity in hypothalamic neuronal cells. Interestingly, the inhibition of the autophagic flux, and the reduction in insulin sensitivity are prevented by pharmacological inhibition of FFAR1. Our findings show that dysregulation of autophagy reduces insulin sensitivity in hypothalamic neuronal cells. In addition, our data suggest FFAR1 mediates the ability of PA to inhibit autophagic flux and reduce insulin sensitivity in hypothalamic neuronal cells. These results reveal a novel cellular mechanism linking PA-rich diets to decreased insulin sensitivity in the hypothalamus and suggest that hypothalamic autophagy might represent a target for future T2DM therapies.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Francisco Díaz-Castro
- Autophagy Research Center, Santiago, Chile
- Research Laboratory of Nutrition and Physical Activity, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Yenniffer Ávalos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Paulina Burgos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Carla Narro
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Daniel Peña-Oyarzun
- Autophagy Research Center, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile
| | - Jasson Espinoza-Caicedo
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Flavia Cifuentes-Araneda
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Fernanda Navarro-Aguad
- Laboratory of Differentiation and Pathology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Riquelme
- Laboratory of Differentiation and Pathology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Autophagy Research Center, Santiago, Chile
- Research Laboratory of Nutrition and Physical Activity, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Autophagy Research Center, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
- *Correspondence: Eugenia Morselli
| |
Collapse
|
34
|
Fang G, Shi B, Wu K, Chen S, Gao X, Xiao S, Kang JX, Li W, Huang R. The protective role of endogenous n-3 polyunsaturated fatty acids in Tau Alzheimer’s disease mouse model. Int J Neurosci 2018; 129:325-336. [DOI: 10.1080/00207454.2018.1533824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guang Fang
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang City, Guangdong, China
- Guangdong Key Laboratory Animal Lab, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China
| | - Baoyan Shi
- Guangdong Key Laboratory Animal Lab, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China
| | - Kefeng Wu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang City, Guangdong, China
| | - Siyu Chen
- Guangdong Key Laboratory Animal Lab, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong, China
| | - Sa Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang City, Guangdong, China
- Guangdong Key Laboratory Animal Lab, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China
| | - Jing X. Kang
- The Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Boston, MA, USA
| | - Wende Li
- Guangdong Key Laboratory Animal Lab, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China
| | - Ren Huang
- Guangdong Key Laboratory Animal Lab, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
González-García I, Contreras C, Estévez-Salguero Á, Ruíz-Pino F, Colsh B, Pensado I, Liñares-Pose L, Rial-Pensado E, Martínez de Morentin PB, Fernø J, Diéguez C, Nogueiras R, Le Stunff H, Magnan C, Tena-Sempere M, López M. Estradiol Regulates Energy Balance by Ameliorating Hypothalamic Ceramide-Induced ER Stress. Cell Rep 2018; 25:413-423.e5. [PMID: 30304681 PMCID: PMC6198289 DOI: 10.1016/j.celrep.2018.09.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence has shown that, besides its putative effect on the regulation of the gonadal axis, estradiol (E2) exerts a dichotomic effect on the hypothalamus to regulate food intake and energy expenditure. The anorectic effect of E2 is mainly mediated by its action on the arcuate nucleus (ARC), whereas its effects on brown adipose tissue (BAT) thermogenesis occur in the ventromedial nucleus (VMH). Here, we demonstrate that central E2 decreases hypothalamic ceramide levels and endoplasmic reticulum (ER) stress. Pharmacological or genetic blockade of ceramide synthesis and amelioration of ER stress selectively occurring in the VMH recapitulate the effect of E2, leading to increased BAT thermogenesis, weight loss, and metabolic improvement. These findings demonstrate that E2 regulation of ceramide-induced hypothalamic lipotoxicity and ER stress is an important determinant of energy balance, suggesting that dysregulation of this mechanism may underlie some changes in energy homeostasis seen in females.
Collapse
Affiliation(s)
- Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Cristina Contreras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Ánxela Estévez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Francisco Ruíz-Pino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, 14004, Spain
| | - Benoit Colsh
- CEA-Centre d'Etude de Saclay, Laboratoire d'étude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Iván Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Pablo B Martínez de Morentin
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, 5021, Norway
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay 91405 Cedex, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, 14004, Spain; FiDiPro Program, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
36
|
Morselli E, Santos RDS, Gao S, Ávalos Y, Criollo A, Palmer BF, Clegg DJ. Impact of estrogens and estrogen receptor-α in brain lipid metabolism. Am J Physiol Endocrinol Metab 2018; 315:E7-E14. [PMID: 29509437 PMCID: PMC7717113 DOI: 10.1152/ajpendo.00473.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.
Collapse
Affiliation(s)
- Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Roberta de Souza Santos
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
| | - Su Gao
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
- Department of Medicine, Columbia University Medical Center , New York, New York
| | - Yenniffer Ávalos
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell , Santiago , Chile
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile , Santiago , Chile
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Deborah J Clegg
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
| |
Collapse
|
37
|
Gender-related metabolomics and lipidomics: From experimental animal models to clinical evidence. J Proteomics 2018; 178:82-91. [DOI: 10.1016/j.jprot.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
|
38
|
Barreto-Vianna ARC, Aguila MB, Mandarim-de-Lacerda CA. Beneficial effects of liraglutide (GLP1 analog) in the hippocampal inflammation. Metab Brain Dis 2017; 32:1735-1745. [PMID: 28681199 DOI: 10.1007/s11011-017-0059-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
The brain is very sensitive to metabolic dysfunctions induced by diets high in saturated fatty acids, leading to neuroinflammation. The liraglutide has been found to have neuroprotective effects. However, its neuroprotective action in a model of palmitate-induced neuroinflammation had not yet been evaluated. Mice were intracerebroventricular (ICV) infused with palmitate and received subcutaneous liraglutide. The hippocampal dentate gyrus and CA1 regions were analyzed (morphology and inflammation-related proteins in microglia and astrocyte by confocal microscopy). Also, a real-time PCR was performed to measure the levels of tumor necrosis factor (TNF) alpha and interleukin (IL) 6. Palmitate ICV infusion resulted in pronounced inflammation response in the hippocampus, reactive microgliosis, and astrogliosis, with hypertrophied IBA1 immunoreactive microglia, increased microglial density with ameboid shape, decreased in the number of branches and junctions and increased the major histocompatibility complex (MHC) II expression. Also, we observed in the hippocampus of ICV palmitate infused mice an elevation in the pro-inflammatory cytokine levels TNFalpha and IL6. Liraglutide induced the neuroprotective microglial phenotype, characterized by an increased microglia complexity (enlarged Feret's diameter), an improved number of both cell junctions and processes, and lower circularity, accompanied by a significant reduction in TNFalpha and IL6 expressions. The study provides evidence that liraglutide may be a suitable treatment against the palmitate-induced neuroinflammation, which it is characterized by the reactive microgliosis and astrogliosis, as well as increased pro-inflammatory cytokines, which has been described as one of the primary causes of several pathologies of the central nervous system.
Collapse
Affiliation(s)
- Andre R C Barreto-Vianna
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Centro Biomedico, Instituto de Biologia, Laboratorio de Morfometria, Metabolismo e doenca Cardiovascular (www.lmmc.uerj.br), Universidade do Estado do Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
39
|
Palmitic Acid-BSA enhances Amyloid-β production through GPR40-mediated dual pathways in neuronal cells: Involvement of the Akt/mTOR/HIF-1α and Akt/NF-κB pathways. Sci Rep 2017; 7:4335. [PMID: 28659580 PMCID: PMC5489526 DOI: 10.1038/s41598-017-04175-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological actions of fatty acids (FAs) on Alzheimer’s disease (AD), which are possibly mediated by genomic effects, are widely known; however, their non-genomic actions remain elusive. The aim of this study was to investigate the non-genomic mechanism of extra-cellular palmitic acid (PA) regulating beta-amyloid peptide (Aβ) production, which may provide a link between obesity and the occurrence of AD. In an obese mouse model, a high-fat diet (HFD) significantly increased the expression levels of APP and BACE1 as well as the AD pathology in the mouse brain. We further found that PA conjugated with bovine serum albumin (PA-BSA) increased the expression of APP and BACE1 and the production of Aβ through the G protein-coupled receptor 40 (GPR40) in SK-N-MC cells. PA-BSA coupling with GPR40 significantly induced Akt activation which is required for mTOR/p70S6K1-mediated HIF-1α expression and NF-κB phosphorylation facilitating the transcriptional activity of the APP and BACE1 genes. In addition, silencing of APP and BACE1 expression significantly decreased the production of Aβ in SK-N-MC cells treated with PA-BSA. In conclusion, these results show that extra-cellular PA coupled with GPR40 induces the expression of APP and BACE1 to facilitate Aβ production via the Akt-mTOR-HIF-1α and Akt-NF-κB pathways in SK-N-MC cells.
Collapse
|
40
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|