1
|
Zhou H, Feng S, Cai J, Shao X, Zhu S, Zhou H, Cao Y, Wang R, Lin X, Wang J. Oestrogen suppresses the adipogenesis of fibro/adipogenic progenitors through reactivating the METTL3-ESR1-mediated loop in post-menopausal females. Clin Transl Med 2025; 15:e70206. [PMID: 39875775 PMCID: PMC11774659 DOI: 10.1002/ctm2.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/12/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration. This study aimed to investigate the detailed mechanism underlying the excessive muscular fatty infiltration in postmenopausal females. METHODS Supraspinatus muscle samples were collected from female patients with or without menopause, and from mice with or without ovariectomy (OVX), to evaluate muscular fatty infiltration and isolated FAPs. The expressions of (estrogen receptor 1) ESR1, methyltransferase-like 3 (METTL3), and adipogenesis ability in FAPs from post-menopausal women and OVX mice were investigated. RNA sequencing (RNA-Seq) was performed to explore the gene expression profiles and potential mechanisms in FAPs from Pdgfrα-CreERT2; Esr1 knockout (Esr1 KO) mice and Esr1 flox/flox (Esr1 f/f) mice. The interplay of the METTL3-ESR1 mediated loop and its role in regulating adipogenesis in FAPs were investigated using dual luciferase reporter assays, chromatin immunoprecipitation (ChIP), and protein and RNA stability assays. The effects of estrogen supplementation on muscular fatty infiltration and locomotor function in OVX mice were evaluated by immunofluorescent staining and functional analysis. RESULTS Decreased expression of ESR1/METTL3 and increased adipogenesis ability in FAPs was found in post-menopausal female. METTL3-mediated m6A methylation promoted ESR1 mRNA stability at the post-transcriptional level in FAPs. METTL3-mediated m6A modification promoted ESR1 expression by stabilizing ESR1 mRNA, while ESR1 acted as a transcription factor that enhanced METTL3 transcription in turn. ESR1 also suppressed the transcription of the adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ), thereby inhibiting adipogenesis in FAPs. Reactivation of the METTL3-ESR1 mediated loop by estrogen alleviated excessive adipogenesis in FAPs from post-menopausal women, and it also reduced muscular fatty infiltration, and improved locomotor function in OVX mice. CONCLUSION Excessive muscular fatty infiltration in post-menopausal women arose from the disruption of the METTL3-ESR1 mediated loop of FAPs due to estrogen deficiency. Reactivation of the METTL3-ESR1 mediated loop by estrogen may serve as a novel intervention to inhibit excessive adipogenesis of post-menopausal female FAPs, thereby ameliorating muscular fatty infiltration and improving locomotor function in post-menopausal females. KEY POINTS Oestrogen insufficiency disrupted the METTL3ESR1 loop in post-menopausal FAPs, causing excessive muscular fatty infiltration. METTL3-mediated m6A modification stabilized ESR1 mRNA and enhanced ESR1 expression, while increased ESR1 further promoted METTL3 transcription. ESR1 inhibited the transcription of adipogenic factor PPARγ, ameliorating adipogenesis in FAPs. Reactivating the METTL3ESR1 loop via oestrogen in FAPs reduced muscular fatty infiltration and improved locomotor function.
Collapse
Affiliation(s)
- Hao Zhou
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shujing Feng
- School of Exercise and HealthShanghai University of SportShanghaiChina
| | - Jinkui Cai
- Wuhan Third HospitalTongren Hospital of Wuhan UniversityWuhanChina
| | - Xiexiang Shao
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Siyuan Zhu
- Department of Hand SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Han Zhou
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yongmin Cao
- School of Exercise and HealthShanghai University of SportShanghaiChina
| | - Ru Wang
- School of Exercise and HealthShanghai University of SportShanghaiChina
| | | | - Jianhua Wang
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Mathyk BA, Tabetah M, Karim R, Zaksas V, Kim J, Anu RI, Muratani M, Tasoula A, Singh RS, Chen YK, Overbey E, Park J, Cope H, Fazelinia H, Povero D, Borg J, Klotz RV, Yu M, Young SL, Mason CE, Szewczyk N, St Clair RM, Karouia F, Beheshti A. Spaceflight induces changes in gene expression profiles linked to insulin and estrogen. Commun Biol 2024; 7:692. [PMID: 38862620 PMCID: PMC11166981 DOI: 10.1038/s42003-023-05213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 06/13/2024] Open
Abstract
Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes were most prominent in the liver, where we observed inhibition of insulin and estrogen receptor signaling with concomitant hepatic insulin resistance and steatosis. Based on the metabolic demand, metabolic pathways mediated by insulin and estrogen vary among muscles, specifically between the soleus and extensor digitorum longus. In humans, spaceflight induced changes in insulin and estrogen related genes and pathways. Pathway analysis demonstrated spaceflight induced changes in insulin resistance, estrogen signaling, stress response, and viral infection. These data strongly suggest the need for further research on the metabolic and reproductive endocrinologic effects of space travel, if we are to become a successful interplanetary species.
Collapse
Affiliation(s)
- Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Rashid Karim
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - R I Anu
- Department of Cancer Biology & Therapeutics, Precision Oncology and Multi-omics clinic, Genetic counseling clinic. Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, India
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Alexia Tasoula
- Department of Life Science Engineering, FH Technikum, Vienna, Austria
| | | | - Yen-Kai Chen
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Eliah Overbey
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics and Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Davide Povero
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, Msida, MSD2090, Malta
| | - Remi V Klotz
- Department of Stem Cell Biology & Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Min Yu
- Department of Stem Cell Biology & Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven L Young
- Division of Reproductive Endocrinology and Infertility, Duke School of Medicine, Durham, NC, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nathaniel Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Riley M St Clair
- Department of Life Sciences, Quest University, Squamish, BC, Canada
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
3
|
Sammut MJ, McBey DP, Sayal AP, Melling CWJ. The Effects of Resistance Exercise Training on Skeletal Muscle Metabolism and Insulin Resistance Development in Female Rodents with Type 1 Diabetes. J Diabetes Res 2024; 2024:5549762. [PMID: 38435452 PMCID: PMC10904684 DOI: 10.1155/2024/5549762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
The etiology of insulin resistance (IR) development in type 1 diabetes mellitus (T1DM) remains unclear; however, impaired skeletal muscle metabolism may play a role. While IR development has been established in male T1DM rodents, female rodents have yet to be examined in this context. Resistance exercise training (RT) has been shown to improve IR and is associated with a lower risk of hypoglycemia onset in T1DM compared to aerobic exercise. The purpose of this study was to investigate the effects of RT on IR development in female T1DM rodents. Forty Sprague Dawley eight-week-old female rats were divided into four groups: control sedentary (CS; n = 10), control trained (CT; n = 10), T1DM sedentary (DS; n = 10), and T1DM trained (DT; n = 10). Multiple low-dose streptozotocin injections were used to induce T1DM. Blood glucose levels were maintained in the 4-9 mmol/l range with intensive insulin therapy. CT and DT underwent weighted ladder climbing 5 days/week for six weeks. Intravenous glucose tolerance tests (IVGTT) were conducted on all animals following the six-week period. Results demonstrate that DS animals exhibited significantly increased weekly blood glucose measures compared to all groups including DT (p < 0.0001), despite similar insulin dosage levels. This was concomitant with a significant increase in insulin-adjusted area under the curve following IVGTT in DS (p < 0.05), indicative of a reduction in insulin sensitivity. Both DT and DS exhibited greater serum insulin concentrations compared to CT and CS (p < 0.05). DS animals also exhibited significantly greater glycogen content in white gastrocnemius muscle compared to CS and DT (p < 0.05), whereas DT and DS animals exhibited greater p-Akt: Akt ratio in the white vastus lateralis muscle and citrate synthase activity in the red vastus lateralis muscle compared to CS and CT (p < 0.05). These results indicate that female rodents with T1DM develop poor glycemic control and IR which can be attenuated with RT, possibly related to differences in intramyocellular glycogen content.
Collapse
Affiliation(s)
- Mitchell J. Sammut
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - David P. McBey
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Amit P. Sayal
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - C. W. James Melling
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
4
|
Huang JL, Pourhosseinzadeh MS, Lee S, Krämer N, Guillen JV, Cinque NH, Aniceto P, Momen AT, Koike S, Huising MO. Paracrine signalling by pancreatic δ cells determines the glycaemic set point in mice. Nat Metab 2024; 6:61-77. [PMID: 38195859 PMCID: PMC10919447 DOI: 10.1038/s42255-023-00944-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2023] [Indexed: 01/11/2024]
Abstract
While pancreatic β and α cells are considered the main drivers of blood glucose homeostasis through insulin and glucagon secretion, the contribution of δ cells and somatostatin (SST) secretion to glucose homeostasis remains unresolved. Here we provide a quantitative assessment of the physiological contribution of δ cells to the glycaemic set point in mice. Employing three orthogonal mouse models to remove SST signalling within the pancreas or transplanted islets, we demonstrate that ablating δ cells or SST leads to a sustained decrease in the glycaemic set point. This reduction coincides with a decreased glucose threshold for insulin response from β cells, leading to increased insulin secretion to the same glucose challenge. Our data demonstrate that β cells are sufficient to maintain stable glycaemia and reveal that the physiological role of δ cells is to provide tonic feedback inhibition that reduces the β cell glucose threshold and consequently lowers the glycaemic set point in vivo.
Collapse
Affiliation(s)
- Jessica L Huang
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Mohammad S Pourhosseinzadeh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Sharon Lee
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Niels Krämer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jaresley V Guillen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Naomi H Cinque
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Paola Aniceto
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Ariana T Momen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Shinichiro Koike
- Department of Nutrition, University of California, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA.
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Davis SR, Pinkerton J, Santoro N, Simoncini T. Menopause-Biology, consequences, supportive care, and therapeutic options. Cell 2023; 186:4038-4058. [PMID: 37678251 DOI: 10.1016/j.cell.2023.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
Menopause is the cessation of ovarian function, with loss of reproductive hormone production and irreversible loss of fertility. It is a natural part of reproductive aging. The physiology of the menopause is complex and incompletely understood. Globally, menopause occurs around the age of 49 years, with geographic and ethnic variation. The hormonal changes of the menopause transition may result in both symptoms and long-term systemic effects, predominantly adverse effects on cardiometabolic and musculoskeletal health. The most effective treatment for bothersome menopausal symptoms is evidence-based, menopausal hormone therapy (MHT), which reduces bone loss and may have cardiometabolic benefits. Evidence-based non-hormonal interventions are also available for symptom relief. Treatment should be individualized with shared decision-making. Most MHT regimens are not regulator approved for perimenopausal women. Studies that include perimenopausal women are needed to determine the efficacy and safety of treatment options. Further research is crucial to improve menopause care, along with research to guide policy and clinical practice.
Collapse
Affiliation(s)
- Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Endocrinology and Diabetes, Alfred Health, Commercial Rd., Melbourne, VIC 3004, Australia.
| | - JoAnn Pinkerton
- Department of Obstetrics and Gynecology, Division of Midlife Health, The University of Virginia Health System, Charlottesville, VA, USA
| | | | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Adu-Amankwaah J, Bushi A, Tan R, Adekunle AO, Adzika GK, Ndzie Noah ML, Nadeem I, Adzraku SY, Koda S, Mprah R, Cui J, Li K, Wowui PI, Sun H. Estradiol mitigates stress-induced cardiac injury and inflammation by downregulating ADAM17 via the GPER-1/PI3K signaling pathway. Cell Mol Life Sci 2023; 80:246. [PMID: 37572114 PMCID: PMC10423133 DOI: 10.1007/s00018-023-04886-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Stress-induced cardiovascular diseases characterized by inflammation are among the leading causes of morbidity and mortality in postmenopausal women worldwide. Estradiol (E2) is known to be cardioprotective via the modulation of inflammatory mediators during stress. But the mechanism is unclear. TNFα, a key player in inflammation, is primarily converted to its active form by 'A Disintegrin and Metalloprotease 17' (ADAM17). We investigated if E2 can regulate ADAM17 during stress. Experiments were performed using female FVB wild-type (WT), C57BL/6 WT, and G protein-coupled estrogen receptor 1 knockout (GPER-1 KO) mice and H9c2 cells. The study revealed a significant increase in cardiac injury and inflammation during isoproterenol (ISO)-induced stress in ovariectomized (OVX) mice. Additionally, ADAM17's membrane content (mADAM17) was remarkably increased in OVX and GPER-1 KO mice during stress. However, in vivo supplementation of E2 significantly reduced cardiac injury, mADAM17, and inflammation. Also, administering G1 (GPER-1 agonist) in mice under stress reduced mADAM17. Further experiments demonstrated that E2, via GPER-1/PI3K pathway, localized ADAM17 at the perinuclear region by normalizing β1AR-Gαs, mediating the switch from β2AR-Gαi to Gαs, and reducing phosphorylated kinases, including p38 MAPKs and ERKs. Thus, using G15 and LY294002 to inhibit GPER-1 and its down signaling molecule, PI3K, respectively, in the presence of E2 during stress resulted in the disappearance of E2's modulatory effect on mADAM17. In vitro knockdown of ADAM17 during stress significantly reduced cardiac injury and inflammation, confirming its significant inflammatory role. These interesting findings provide novel evidence that E2 and G1 are potential therapeutic agents for ADAM17-induced inflammatory diseases associated with postmenopausal females.
Collapse
Affiliation(s)
- Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Gabriel Komla Adzika
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Iqra Nadeem
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Seyram Yao Adzraku
- Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Stephane Koda
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kexue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
7
|
Wang H, Zheng A, Arias EB, Kwak SE, Pan X, Duan D, Cartee GD. AS160 expression, but not AS160 Serine-588, Threonine-642, and Serine-704 phosphorylation, is essential for elevated insulin-stimulated glucose uptake by skeletal muscle from female rats after acute exercise. FASEB J 2023; 37:e23021. [PMID: 37289137 DOI: 10.1096/fj.202300282rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle in both sexes. We recently found that muscle expression and phosphorylation of key sites of Akt substrate of 160 kDa (AS160; also called TBC1D4) are essential for the full-exercise effect on postexercise-ISGU (PEX-ISGU) in male rats. In striking contrast, AS160's role in increased PEX-ISGU has not been rigorously tested in females. Our rationale was to address this major knowledge gap. Wild-type (WT) and AS160-knockout (KO) rats were either sedentary or acutely exercised. Adeno-associated virus (AAV) vectors were engineered to express either WT-AS160 or AS160 mutated on key serine and threonine residues (Ser588, Thr642, and Ser704) to alanine to prevent their phosphorylation. AAV vectors were delivered to the muscle of AS160-KO rats to determine if WT-AS160 or phosphorylation-inactivated AS160 would influence PEX-ISGU. AS160-KO rats have lower skeletal muscle abundance of the GLUT4 glucose transporter protein. This GLUT4 deficit was rescued using AAV delivery of GLUT4 to determine if eliminating muscle GLUT4 deficiency would normalize PEX-ISGU. The novel results were as follows: (1) AS160 expression was required for greater PEX-ISGU; (2) rescuing muscle AS160 expression in AS160-KO rats restored elevated PEX-ISGU; (3) AS160's essential role for the postexercise increase in ISGU was not attributable to reduced muscle GLUT4 content; and (4) AS160 phosphorylation on Ser588, Thr642, and Ser704 was not essential for greater PEX-ISGU. In conclusion, these novel findings revealed that three phosphosites widely proposed to influence PEX-ISGU are not required for this important outcome in female rats.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Seong Eun Kwak
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri, USA
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Fu Q, Li T, Zhang C, Ma X, Meng L, Liu L, Shao K, Wu G, Zhu X, Zhao X. Butyrate mitigates metabolic dysfunctions via the ERα-AMPK pathway in muscle in OVX mice with diet-induced obesity. Cell Commun Signal 2023; 21:95. [PMID: 37143096 PMCID: PMC10158218 DOI: 10.1186/s12964-023-01119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
The higher prevalence of metabolic syndrome (MetS) in women after menopause is associated with a decrease in circulating 17β-oestradiol. To explore novel treatments for MetS in women with oestrogen deficiency, we studied the effect of exogenous butyrate on diet-induced obesity and metabolic dysfunctions using ovariectomized (OVX) mice as a menopause model. Oral administration of sodium butyrate (NaB) reduced the body fat content and blood lipids, increased whole-body energy expenditure, and improved insulin sensitivity. Additionally, NaB induced oestrogen receptor alpha (ERα) expression, activated the phosphorylation of AMPK and PGC1α, and improved mitochondrial aerobic respiration in cultured skeletal muscle cells. In conclusion, oral NaB improves metabolic parameters in OVX mice with diet-induced obesity. Oral supplementation with NaB might provide a novel therapeutic approach to treating MetS in women with menopause. Video Abstract.
Collapse
Affiliation(s)
- Qingsong Fu
- Department of Medical Experiment Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
- Department of Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chen Zhang
- Department of Medical Experiment Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
- Department of Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Xiaotian Ma
- Department of Medical Experiment Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
- Department of Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Liying Meng
- Department of Medical Experiment Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
- Department of Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Limin Liu
- Department of Medical Experiment Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
- Department of Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Kai Shao
- Department of Medical Experiment Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
- Department of Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Guanzhao Wu
- Department of Medical Experiment Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
- Department of Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Xing Zhu
- Department of Pathology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Xiaoyun Zhao
- Department of Medical Experiment Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China.
- Department of Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China.
| |
Collapse
|
9
|
Tao Z, Cheng Z. Hormonal regulation of metabolism-recent lessons learned from insulin and estrogen. Clin Sci (Lond) 2023; 137:415-434. [PMID: 36942499 PMCID: PMC10031253 DOI: 10.1042/cs20210519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Hormonal signaling plays key roles in tissue and metabolic homeostasis. Accumulated evidence has revealed a great deal of insulin and estrogen signaling pathways and their interplays in the regulation of mitochondrial, cellular remodeling, and macronutrient metabolism. Insulin signaling regulates nutrient and mitochondrial metabolism by targeting the IRS-PI3K-Akt-FoxOs signaling cascade and PGC1α. Estrogen signaling fine-tunes protein turnover and mitochondrial metabolism through its receptors (ERα, ERβ, and GPER). Insulin and estrogen signaling converge on Sirt1, mTOR, and PI3K in the joint regulation of autophagy and mitochondrial metabolism. Dysregulated insulin and estrogen signaling lead to metabolic diseases. This article reviews the up-to-date evidence that depicts the pathways of insulin signaling and estrogen-ER signaling in the regulation of metabolism. In addition, we discuss the cross-talk between estrogen signaling and insulin signaling via Sirt1, mTOR, and PI3K, as well as new therapeutic options such as agonists of GLP1 receptor, GIP receptor, and β3-AR. Mapping the molecular pathways of insulin signaling, estrogen signaling, and their interplays advances our understanding of metabolism and discovery of new therapeutic options for metabolic disorders.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, U.S.A
| | - Zhiyong Cheng
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, U.S.A
| |
Collapse
|
10
|
Le G, Baumann CW, Warren GL, Lowe DA. In vivo potentiation of muscle torque is enhanced in female mice through estradiol-estrogen receptor signaling. J Appl Physiol (1985) 2023; 134:722-730. [PMID: 36735234 PMCID: PMC10027088 DOI: 10.1152/japplphysiol.00731.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Estradiol affects several properties of skeletal muscle in females including strength. Here, we developed an approach to measure in vivo posttetanic twitch potentiation (PTP) of the anterior crural muscles of anesthetized mice and tested the hypothesis that 17β-estradiol (E2) enhances PTP through estrogen receptor (ER) signaling. Peak torques of potentiated twitches were ∼40%-60% greater than those of unpotentiated twitches and such PTP was greater in ovary-intact mice, or ovariectomized (Ovx) mice treated with E2, compared with Ovx mice (P ≤ 0.047). PTP did not differ between mice with and without ERα ablated in skeletal muscle fibers (P = 0.347). Treatment of ovary-intact and Ovx mice with ERβ antagonist and agonist (PHTPP and DPN, respectively) did not affect PTP (P ≥ 0.258). Treatment with G1, an agonist of the G protein-coupled estrogen receptor (GPER), significantly increased PTP in Ovx mice from 41 ± 10% to 66 ± 21% (means ± SD; P = 0.034). Collectively, these data indicate that E2 signals through GPER, and not ERα or ERβ, in skeletal muscles of female mice to augment an in vivo parameter of strength, namely, PTP.NEW & NOTEWORTHY A novel in vivo approach was developed to measure potentiation of skeletal muscle torque in female mice and highlight another parameter of strength that is impacted by estradiol. The enhancement of PTP by estradiol is mediated distinctively through the G-protein estrogen receptor, GPER.
Collapse
Affiliation(s)
- Gengyun Le
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Cory W Baumann
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, United States
| | - Dawn A Lowe
- Division of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| |
Collapse
|
11
|
Fu L, Adu-Amankwaah J, Sang L, Tang Z, Gong Z, Zhang X, Li T, Sun H. Gender differences in GRK2 in cardiovascular diseases and its interactions with estrogen. Am J Physiol Cell Physiol 2023; 324:C505-C516. [PMID: 36622065 DOI: 10.1152/ajpcell.00407.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a multifunctional protein involved in regulating G protein-coupled receptor (GPCR) and non-GPCR signaling in the body. In the cardiovascular system, increased expression of GRK2 has been implicated in the occurrence and development of several cardiovascular diseases (CVDs). Recent studies have found gender differences in GRK2 in the cardiovascular system under physiological and pathological conditions, where GRK2's expression and activity are increased in males than in females. The incidence of CVDs in premenopausal women is lower than in men of the same age, which is related to estrogen levels. Given the shared location of GRK2 and estrogen receptors, estrogen may interact with GRK2 by modulating vital molecules such as calmodulin (CaM), caveolin, RhoA, nitrate oxide (NO), and mouse double minute 2 homolog (Mdm2), via signaling pathways mediated by estrogen's genomic (ERα and ERβ), and non-genomic (GPER) receptors, conferring cardiovascular protection in females. Highlighting the gender differences in GRK2 and understanding its interaction with estrogen in the cardiovascular system is pertinent in treating gender-related CVDs. As a result, this article explores the gender differences of GRK2 in the cardiovascular system and its relationship with estrogen during disease conditions. Estrogen's protective and therapeutic effects and its mechanism on GRK2-related cardiovascular diseases have also been discussed.
Collapse
Affiliation(s)
- Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Lili Sang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,School of Public Affairs & Governance, Silliman University, Dumaguete, Philippines
| | - Xiaoyan Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
12
|
Landen S, Hiam D, Voisin S, Jacques M, Lamon S, Eynon N. Physiological and molecular sex differences in human skeletal muscle in response to exercise training. J Physiol 2023; 601:419-434. [PMID: 34762308 DOI: 10.1113/jp279499] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/01/2021] [Indexed: 02/04/2023] Open
Abstract
Sex differences in exercise physiology, such as substrate metabolism and skeletal muscle fatigability, stem from inherent biological factors, including endogenous hormones and genetics. Studies investigating exercise physiology frequently include only males or do not take sex differences into consideration. Although there is still an underrepresentation of female participants in exercise research, existing studies have identified sex differences in physiological and molecular responses to exercise training. The observed sex differences in exercise physiology are underpinned by the sex chromosome complement, sex hormones and, on a molecular level, the epigenome and transcriptome. Future research in the field should aim to include both sexes, control for menstrual cycle factors, conduct large-scale and ethnically diverse studies, conduct meta-analyses to consolidate findings from various studies, leverage unique cohorts (such as post-menopausal, transgender, and those with sex chromosome abnormalities), as well as integrate tissue and cell-specific -omics data. This knowledge is essential for developing deeper insight into sex-specific physiological responses to exercise training, thus directing future exercise physiology studies and practical application.
Collapse
Affiliation(s)
- Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
13
|
Ortiz-Huidobro RI, Larqué C, Velasco M, Chávez-Maldonado JP, Sabido J, Sanchez-Zamora YI, Hiriart M. Sexual dimorphism in the molecular mechanisms of insulin resistance during a critical developmental window in Wistar rats. Cell Commun Signal 2022; 20:154. [PMID: 36224569 PMCID: PMC9554987 DOI: 10.1186/s12964-022-00965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is an early marker of metabolic dysfunction. However, IR also appears in physiological contexts during critical developmental windows. The molecular mechanisms of physiological IR are largely unknown in both sexes. Sexual dimorphism in insulin sensitivity is observed since early stages of development. We propose that during periods of accelerated growth, such as around weaning, at postnatal day 20 (p20) in rats, the kinase S6K1 is overactivated and induces impairment of insulin signaling in its target organs. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage.
Methods We determined systemic insulin sensitivity through insulin tolerance tests, glucose tolerance tests, and blood glucose and insulin levels under fasting and fed conditions at p20 and adult male and female Wistar rats. Furthermore, we quantified levels of S6K1 phosphorylated at threonine 389 (T389) (active form) and its target IRS1 phosphorylated at serine 1101 (S1101) (inhibited form). In addition, we assessed insulin signal transduction by measuring levels of Akt phosphorylated at serine 473 (S473) (active form) in white adipose tissue and skeletal muscle through western blot. Finally, we determined the presence and function of GLUT4 in the plasma membrane by measuring the glucose uptake of adipocytes. Results were compared using two-way ANOVA (With age and sex as factors) and one-way ANOVA with post hoc Tukey’s tests or t-student test in each corresponding case. Statistical significance was considered for P values < 0.05. Results We found that both male and female p20 rats have elevated levels of glucose and insulin, low systemic insulin sensitivity, and glucose intolerance. We identified sex- and tissue-related differences in the activation of insulin signaling proteins in p20 rats compared to adult rats. Conclusions Male and female p20 rats present physiological insulin resistance with differences in the protein activation of insulin signaling. This suggests that S6K1 overactivation and the resulting IRS1 inhibition by phosphorylation at S1101 may modulate to insulin sensitivity in a sex- and tissue-specific manner. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00965-6. Insulin regulates the synthesis of carbohydrates, lipids and proteins differently between males, and females. One of its primary functions is maintaining adequate blood glucose levels favoring glucose entry in muscle and adipose tissue after food consumption. Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is frequently associated with metabolic dysfunction such as inflammation, obesity, or type 2 diabetes. However, physiological IR develops in healthy individuals during periods of rapid growth, pregnancy, or aging by mechanisms not fully understood. We studied the postnatal development, specifically around weaning at postnatal day 20 (p20) of Wistar rats. In previous works, we identified insulin resistance during this period in male rats. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage. We found that p20 rats of both sexes have elevated blood glucose and insulin levels, low systemic insulin sensitivity, and glucose intolerance. We identified differences in insulin-regulated protein activation (S6K1, IRS1, Akt, and GLUT4) between sexes in different tissues and adipose tissue depots. Studying these mechanisms and their differences between males and females is essential to understanding insulin actions and their relationship with the possible development of metabolic diseases in both sexes.
Collapse
Affiliation(s)
- Rosa Isela Ortiz-Huidobro
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Embryology, and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Pablo Chávez-Maldonado
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jean Sabido
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yuriko Itzel Sanchez-Zamora
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
14
|
Abstract
Every woman who lives past midlife will experience menopause, which, by definition, is complete cessation of ovarian function. This process might occur spontaneously (natural menopause) or be iatrogenic (secondary menopause), and can be further classified as 'early' if it occurs before the age of 45 years and 'premature' if it occurs before the age of 40 years. Globally, the mean age of natural menopause is 48.8 years, with remarkably little geographic variation. A woman's age at menopause influences health outcomes in later life. Early menopause is associated with a reduced risk of breast cancer, but increased risks of premature osteoporosis, cardiovascular disease and premature death. The cardinal symptoms of menopause, and adverse health sequelae, are due to loss of ovarian oestrogen production. Consequently, menopausal hormone therapy (MHT) that includes oestrogen or an oestrogenic compound ameliorates menopausal symptoms, while preventing menopause-associated bone loss and cardiometabolic changes. Importantly, comprehensive care of postmenopausal women involves lifestyle optimization (attention to nutrition and physical activity, reducing alcohol consumption and not smoking) and treating other established chronic disease risk factors. This Review offers a commentary specifically on the contemporary use of MHT and novel pharmaceutical alternatives to manage menopausal symptoms.
Collapse
Affiliation(s)
- Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, VIC, Australia.
| | - Rodney J Baber
- Department of Obstetrics and Gynaecology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Metabolic Syndrome, BMI, and Polymorphism of Estrogen Receptor-α in Peri- and Post-Menopausal Polish Women. Metabolites 2022; 12:metabo12080673. [PMID: 35893240 PMCID: PMC9330421 DOI: 10.3390/metabo12080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
The study aimed to investigate the association between the estrogen receptor alpha (ERα) polymorphism and the prevalence of metabolic syndrome (MetS) and obesity, as well as the coexistence of MetS and obesity, in peri- and post-menopausal Polish women. The study group consisted of 202 peri-menopausal and 202 post-menopausal women. ERα polymorphism: Xba I and Pvu II, MetS, BMI, and serum estrogen concentration were analyzed. MetS was found in 29% of the peri-menopausal women and in 21% of the post-menopausal women. BMI did not significantly differ between the peri- and post-menopausal women (≈42% were normal weight, ≈40% were overweight, and ≈18% were obese), (p = 0.82). Serum estrogen concentration in the peri-menopausal women was 91 ± 75 pg/mL, while that in the post-menopausal women was 17 ± 9. pg/mL, on average. Peri-menopausal women with AA and TT genotypes of the ERα polymorphism have a lower risk of obesity and MetS and the co-existence of obesity and MetS, whereas those women with the G or C allele have a higher risk of those health problems.
Collapse
|
16
|
Nappi RE, Chedraui P, Lambrinoudaki I, Simoncini T. Menopause: a cardiometabolic transition. Lancet Diabetes Endocrinol 2022; 10:442-456. [PMID: 35525259 DOI: 10.1016/s2213-8587(22)00076-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Menopause is often a turning point for women's health worldwide. Increasing knowledge from experimental data and clinical studies indicates that cardiometabolic changes can manifest at the menopausal transition, superimposing the effect of ageing onto the risk of cardiovascular disease. The menopausal transition is associated with an increase in fat mass (predominantly in the truncal region), an increase in insulin resistance, dyslipidaemia, and endothelial dysfunction. Exposure to endogenous oestrogen during the reproductive years provides women with protection against cardiovascular disease, which is lost around 10 years after the onset of menopause. In particular, women with vasomotor symptoms during menopause seem to have an unfavourable cardiometabolic profile. Early management of the traditional risk factors of cardiovascular disease (ie, hypertension, obesity, diabetes, dyslipidaemia, and smoking) is essential; however, it is important to recognise in the reproductive history the female-specific conditions (ie, gestational hypertension or diabetes, premature ovarian insufficiency, some gynaecological diseases such as functional hypothalamic amenorrhoea, and probably others) that could enhance the risk of cardiovascular disease during and after the menopausal transition. In this Review, the first of a Series of two papers, we provide an overview of the literature for understanding cardiometabolic changes and the management of women at midlife (40-65 years) who are at higher risk, focusing on the identification of factors that can predict the occurrence of cardiovascular disease. We also summarise evidence about preventive non-hormonal strategies in the context of cardiometabolic health.
Collapse
Affiliation(s)
- Rossella E Nappi
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Peter Chedraui
- Instituto de Investigación e Innovación en Salud Integral and Laboratorio de Biomedicina, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Irene Lambrinoudaki
- Menopause Unit, 2nd Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
18
|
Lee A, Koh E, Kim D, Lee N, Cho SM, Lee YJ, Cho IH, Yang HJ. Dendropanax trifidus Sap-Mediated Suppression of Obese Mouse Body Weight and the Metabolic Changes Related with Estrogen Receptor Alpha and AMPK-ACC Pathways in Muscle Cells. Nutrients 2022; 14:nu14051098. [PMID: 35268079 PMCID: PMC8912501 DOI: 10.3390/nu14051098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Dendropanax trifidus (DT) is a medicinal herb native to East Asia, which has been used extensively for its therapeutic properties in traditional medicine. In this study, we examined the effects of DT sap on the regulation of body weight and muscle metabolism in mice. Obese model db/db mice were administered daily with DT sap or vehicle control over a 6-week period. The effects of DT sap on muscle metabolism were studied in C2C12 muscle cells, where glycolytic and mitochondrial respiration rates were monitored. As AMP-activated protein kinase (AMPK) is a master regulator of metabolism and plays an important function as an energy sensor in muscle tissue, signaling pathways related with AMPK were also examined. We found that DT sap inhibited body weight increase in db/db, db/+, and +/+ mice over a 6-week period, while DT sap-treated muscle cells showed increased muscle metabolism and also increased phosphorylation of AMPK and Acetyl-CoA Carboxylase (ACC). Finally, we found that DT sap, which is enriched in estrogen in our previous study, significantly activates estrogen alpha receptor in a concentration-dependent manner, which can drive the activation of AMPK signaling and may be related to the muscle metabolism and weight changes observed here.
Collapse
Affiliation(s)
- Ahreum Lee
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore 117604, Singapore;
| | - Dalnim Kim
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
| | - Namkyu Lee
- Department of Integrated Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (N.L.); (Y.J.L.)
| | | | - Young Joo Lee
- Department of Integrated Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (N.L.); (Y.J.L.)
| | - Ik-Hyun Cho
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
- Department of Integrative Health Care, University of Brain Education, Cheonan 31228, Korea
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea
- Correspondence:
| |
Collapse
|
19
|
Timmons JA, Anighoro A, Brogan RJ, Stahl J, Wahlestedt C, Farquhar DG, Taylor-King J, Volmar CH, Kraus WE, Phillips SM. A human-based multi-gene signature enables quantitative drug repurposing for metabolic disease. eLife 2022; 11:68832. [PMID: 35037854 PMCID: PMC8763401 DOI: 10.7554/elife.68832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022] Open
Abstract
Insulin resistance (IR) contributes to the pathophysiology of diabetes, dementia, viral infection, and cardiovascular disease. Drug repurposing (DR) may identify treatments for IR; however, barriers include uncertainty whether in vitro transcriptomic assays yield quantitative pharmacological data, or how to optimise assay design to best reflect in vivo human disease. We developed a clinical-based human tissue IR signature by combining lifestyle-mediated treatment responses (>500 human adipose and muscle biopsies) with biomarkers of disease status (fasting IR from >1200 biopsies). The assay identified a chemically diverse set of >130 positively acting compounds, highly enriched in true positives, that targeted 73 proteins regulating IR pathways. Our multi-gene RNA assay score reflected the quantitative pharmacological properties of a set of epidermal growth factor receptor-related tyrosine kinase inhibitors, providing insight into drug target specificity; an observation supported by deep learning-based genome-wide predicted pharmacology. Several drugs identified are suitable for evaluation in patients, particularly those with either acute or severe chronic IR.
Collapse
Affiliation(s)
- James A Timmons
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Augur Precision Medicine LTD, Stirling, United Kingdom
| | | | | | - Jack Stahl
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, United States
| | | | | | - Claude-Henry Volmar
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, United States
| | | | - Stuart M Phillips
- Faculty of Science, Kinesiology, McMaster University, Hamilton, Canada
| |
Collapse
|
20
|
Wang H, Arias EB, Treebak JT, Cartee GD. Exercise effects on γ3-AMPK activity, Akt substrate of 160 kDa phosphorylation, and glucose uptake in muscle of normal and insulin-resistant female rats. J Appl Physiol (1985) 2022; 132:140-153. [PMID: 34882030 PMCID: PMC8759959 DOI: 10.1152/japplphysiol.00533.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previous studies demonstrated that acute exercise can enhance glucose uptake (GU), γ3-AMP-activated protein kinase (AMPK) activity, and Akt substrate of 160 kDa (AS160) phosphorylation in skeletal muscles from low-fat diet (LFD)- and high-fat diet (HFD)-fed male rats. Because little is known about exercise effects on these outcomes in females, we assessed postexercise GU by muscles incubated ± insulin, delta-insulin GU (GU of muscles incubated with insulin minus GU uptake of paired muscles incubated without insulin), and muscle signaling proteins from female rats fed a LFD or a brief HFD (2 wk). Rats were sedentary (LFD-SED, HFD-SED) or swim exercised. Immediately postexercise (IPEX) or 3 h postexercise (3hPEX), epitrochlearis muscles were incubated (no insulin IPEX; ±insulin 3hPEX) to determine GU. Muscle γ3-AMPK activity (IPEX, 3hPEX) and phosphorylated AS160 (pAS160; 3hPEX) were also assessed. γ3-AMPK activity and insulin-independent GU of IPEX rats exceeded sedentary rats without diet-related differences in either outcome. At 3hPEX, both GU by insulin-stimulated muscles and delta-insulin GU exceeded their respective diet-matched sedentary controls. GU by insulin-stimulated muscles, but not delta-insulin GU for LFD-3hPEX, exceeded HFD-3hPEX. LFD-3hPEX versus LFD-SED had greater γ3-AMPK activity and greater pAS160. HFD-3hPEX exceeded HFD-SED for pAS160 but not for γ3-AMPK activity. pAS160 and γ3-AMPK at 3hPEX did not differ between diet groups. These results revealed that increased γ3-AMPK activity at 3hPEX was not essential for greater GU in insulin-stimulated muscle or greater delta-insulin GU in HFD female rats. Similarly elevated γ3-AMPK activity in LFD-IPEX versus HFD-IPEX and pAS160 in LFD-3hPEX versus HFD-3hPEX may contribute to the comparable delta-insulin GU at 3hPEX in both diet groups.NEW & NOTEWORTHY Glucose uptake (GU) and phosphorylated AS160 (pAS160) by insulin-stimulated muscles at 3 h postexercise (3hPEX) exceeded diet-matched controls in female low-fat diet-fed (LFD) or high-fat diet-fed (HFD) rats. GU with insulin for LFD-3hPEX exceeded HFD-3hPEX, whereas pAS160 was similar between these groups. γ3-AMPK immediately postexercise (IPEX) was similarly elevated in LFD and HFD, but only LFD-3hPEX had increased γ3-AMPK. These results suggest that greater γ3-AMPK at IPEX and pAS160 at 3hPEX may contribute to elevated GU with insulin, but greater γ3-AMPK at 3hPEX was dispensable for female HFD rats.
Collapse
Affiliation(s)
- Haiyan Wang
- 1Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B. Arias
- 1Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jonas T. Treebak
- 2Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory D. Cartee
- 1Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan,3Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,4Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Przezak A, Bielka W, Pawlik A. Incretins in the Therapy of Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms222212312. [PMID: 34830194 PMCID: PMC8617946 DOI: 10.3390/ijms222212312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease is a microvascular complication that occurs in patients with diabetes. It is strongly associated with increased risk of kidney replacement therapy and all-cause mortality. Incretins are peptide hormones derived from the gastrointestinal tract, that besides causing enhancement of insulin secretion after oral glucose intake, participate in many other metabolic processes. Antidiabetic drug classes, such as dipeptidyl peptidase 4 inhibitors and glucagon-like peptide receptor agonists, which way of action is based on incretins facility, not only show glucose-lowering properties but also have nephroprotective functions. The aim of this article is to present the latest information about incretin-based therapy and its influence on diabetic kidney disease appearance and progression, point its potential mechanisms of kidney protection and focus on future therapeutic possibilities bound with these two antidiabetic drug classes.
Collapse
|
22
|
Landen S, Jacques M, Hiam D, Alvarez-Romero J, Harvey NR, Haupt LM, Griffiths LR, Ashton KJ, Lamon S, Voisin S, Eynon N. Skeletal muscle methylome and transcriptome integration reveals profound sex differences related to muscle function and substrate metabolism. Clin Epigenetics 2021; 13:202. [PMID: 34732242 PMCID: PMC8567658 DOI: 10.1186/s13148-021-01188-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Nearly all human complex traits and diseases exhibit some degree of sex differences, with epigenetics being one of the main contributing factors. Various tissues display sex differences in DNA methylation; however, this has not yet been explored in skeletal muscle, despite skeletal muscle being among the tissues with the most transcriptomic sex differences. For the first time, we investigated the effect of sex on autosomal DNA methylation in human skeletal muscle across three independent cohorts (Gene SMART, FUSION, and GSE38291) using a meta-analysis approach, totalling 369 human muscle samples (222 males and 147 females), and integrated this with known sex-biased transcriptomics. We found 10,240 differentially methylated regions (DMRs) at FDR < 0.005, 94% of which were hypomethylated in males, and gene set enrichment analysis revealed that differentially methylated genes were involved in muscle contraction and substrate metabolism. We then investigated biological factors underlying DNA methylation sex differences and found that circulating hormones were not associated with differential methylation at sex-biased DNA methylation loci; however, these sex-specific loci were enriched for binding sites of hormone-related transcription factors (with top TFs including androgen (AR), estrogen (ESR1), and glucocorticoid (NR3C1) receptors). Fibre type proportions were associated with differential methylation across the genome, as well as across 16% of sex-biased DNA methylation loci (FDR < 0.005). Integration of DNA methylomic results with transcriptomic data from the GTEx database and the FUSION cohort revealed 326 autosomal genes that display sex differences at both the epigenome and transcriptome levels. Importantly, transcriptional sex-biased genes were overrepresented among epigenetic sex-biased genes (p value = 4.6e−13), suggesting differential DNA methylation and gene expression between male and female muscle are functionally linked. Finally, we validated expression of three genes with large effect sizes (FOXO3A, ALDH1A1, and GGT7) in the Gene SMART cohort with qPCR. GGT7, involved in antioxidant metabolism, displays male-biased expression as well as lower methylation in males across the three cohorts. In conclusion, we uncovered 8420 genes that exhibit DNA methylation differences between males and females in human skeletal muscle that may modulate mechanisms controlling muscle metabolism and health.
Collapse
Affiliation(s)
- Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Javier Alvarez-Romero
- Institute for Health and Sport (iHeS), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Nicholas R Harvey
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.
| |
Collapse
|
23
|
Retinoic acid exerts sexually dimorphic effects on muscle energy metabolism and function. J Biol Chem 2021; 297:101101. [PMID: 34419449 PMCID: PMC8441203 DOI: 10.1016/j.jbc.2021.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/- mice. Relative to wild-type (WT) controls, Rdh10+/- males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/- females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/- male GM decrease 38% relative to WT. Rdh10+/- male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/- female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.
Collapse
|
24
|
Kothmann KH, Jacobsen V, Laffitte E, Bromfield C, Grizzaffi M, Jarboe M, Braundmeier-Fleming AG, Bahr JM, Nowak RA, Newell-Fugate AE. Virilizing doses of testosterone decrease circulating insulin levels and differentially regulate insulin signaling in liver and adipose tissue of females. Am J Physiol Endocrinol Metab 2021; 320:E1107-E1118. [PMID: 33900852 PMCID: PMC8285596 DOI: 10.1152/ajpendo.00281.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transgender men undergoing hormone therapy are at risk for insulin resistance. However, how virilizing testosterone therapy affects serum insulin and peripheral insulin sensitivity in transgender men is unknown. This study assessed the effect of acute, virilizing testosterone on serum insulin concentrations and insulin signaling in liver, skeletal muscle, and white adipose tissue (WAT) of female pigs as a translational model for transgender men. Females received three doses of intramuscular testosterone cypionate (TEST females; 50 mg/day/pig) or corn oil (control) spaced 6 days apart starting on the day of estrus (D0). Fasting blood was collected on D0, D3, D5, D11, and D13, and females were euthanized on D13. On D13, TEST females had virilizing concentrations of serum testosterone with normal concentrations of serum estradiol. Virilizing serum testosterone concentrations (D13) were associated with decreased serum insulin and C-peptide concentrations. Blood glucose and serum glycerol concentrations were not altered by testosterone. Virilizing concentrations of testosterone downregulated AR and ESR1 in subcutaneous (sc) WAT and upregulated transcript levels of insulin-signaling pathway components in WAT and liver. At the protein level, virilizing testosterone concentrations were associated with increased PI3K 110α in liver and increased insulin receptor (INSR) and phospho(Ser256)-FOXO1 in visceral (v) WAT but decreased phospho(Ser473)-AKT in vWAT and scWAT. These results suggest that acute exposure to virilizing concentrations of testosterone suppresses circulating insulin levels and results in increased abundance of proteins in the insulin-signaling pathway in liver and altered phosphorylation of key proteins in control of insulin sensitivity in WAT.NEW & NOTEWORTHY Acute virilizing doses of testosterone administered to females suppress circulating insulin levels, upregulate components of the insulin-signaling pathway in liver, and suppress insulin signaling in white adipose tissue. These results suggest that insulin resistance in transgender men may be due to suppression of the insulin-signaling pathway and decreased insulin sensitivity in white adipose tissue.
Collapse
Affiliation(s)
- Kadden H Kothmann
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Victoria Jacobsen
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Emily Laffitte
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Corinne Bromfield
- Agricultural Animal Care and Use Program, Office of the Vice Chancellor for Research, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Matthew Grizzaffi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Monica Jarboe
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Andrea G Braundmeier-Fleming
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Janice M Bahr
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Annie E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
25
|
Moriggi M, Belloli S, Barbacini P, Murtaj V, Torretta E, Chaabane L, Canu T, Penati S, Malosio ML, Esposito A, Gelfi C, Moresco RM, Capitanio D. Skeletal Muscle Proteomic Profile Revealed Gender-Related Metabolic Responses in a Diet-Induced Obesity Animal Model. Int J Mol Sci 2021; 22:ijms22094680. [PMID: 33925229 PMCID: PMC8125379 DOI: 10.3390/ijms22094680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Obesity is a chronic, complex pathology associated with a risk of developing secondary pathologies, including cardiovascular diseases, cancer, type 2 diabetes (T2DM) and musculoskeletal disorders. Since skeletal muscle accounts for more than 70% of total glucose disposal, metabolic alterations are strictly associated with the onset of insulin resistance and T2DM. The present study relies on the proteomic analysis of gastrocnemius muscle from 15 male and 15 female C56BL/J mice fed for 14 weeks with standard, 45% or 60% high-fat diets (HFD) adopting a label-free LC–MS/MS approach followed by bioinformatic pathway analysis. Results indicate changes in males due to HFD, with increased muscular stiffness (Col1a1, Col1a2, Actb), fiber-type switch from slow/oxidative to fast/glycolytic (decreased Myh7, Myl2, Myl3 and increased Myh2, Mylpf, Mybpc2, Myl1), increased oxidative stress and mitochondrial dysfunction (decreased respiratory chain complex I and V and increased complex III subunits). At variance, females show few alterations and activation of compensatory mechanisms to counteract the increase of fatty acids. Bioinformatics analysis allows identifying upstream molecules involved in regulating pathways identified at variance in our analysis (Ppargc1a, Pparg, Cpt1b, Clpp, Tp53, Kdm5a, Hif1a). These findings underline the presence of a gender-specific response to be considered when approaching obesity and related comorbidities.
Collapse
Affiliation(s)
- Manuela Moriggi
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy;
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology, CNR, 20090 Segrate, Italy; (S.B.); (R.M.M.)
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (P.B.); (C.G.)
| | - Valentina Murtaj
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | | | - Linda Chaabane
- Experimental Imaging Center, Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.C.); (T.C.); (A.E.)
| | - Tamara Canu
- Experimental Imaging Center, Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.C.); (T.C.); (A.E.)
| | - Silvia Penati
- Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (S.P.); (M.L.M.)
- Institute of Neuroscience, Humanitas Mirasole S.p.A, 20089 Rozzano, Italy
| | - Maria Luisa Malosio
- Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (S.P.); (M.L.M.)
- Institute of Neuroscience, Humanitas Mirasole S.p.A, 20089 Rozzano, Italy
| | - Antonio Esposito
- Experimental Imaging Center, Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.C.); (T.C.); (A.E.)
- Experimental Imaging Center, Radiology Department, IRCCS San Raffaele Scientific Institute, School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (P.B.); (C.G.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology, CNR, 20090 Segrate, Italy; (S.B.); (R.M.M.)
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (P.B.); (C.G.)
- Correspondence: ; Tel.: +39-0250330411
| |
Collapse
|
26
|
Goossens GH, Jocken JWE, Blaak EE. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat Rev Endocrinol 2021; 17:47-66. [PMID: 33173188 DOI: 10.1038/s41574-020-00431-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Obesity is associated with many adverse health effects, such as an increased cardiometabolic risk. Despite higher adiposity for a given BMI, premenopausal women are at lower risk of cardiometabolic disease than men of the same age. This cardiometabolic advantage in women seems to disappear after the menopause or when type 2 diabetes mellitus develops. Sexual dimorphism in substrate supply and utilization, deposition of excess lipids and mobilization of stored lipids in various key metabolic organs (such as adipose tissue, skeletal muscle and the liver) are associated with differences in tissue-specific insulin sensitivity and cardiometabolic risk profiles between men and women. Moreover, lifestyle-related factors and epigenetic and genetic mechanisms seem to affect metabolic complications and disease risk in a sex-specific manner. This Review provides insight into sexual dimorphism in adipose tissue distribution, adipose tissue, skeletal muscle and liver substrate metabolism and tissue-specific insulin sensitivity in humans, as well as the underlying mechanisms, and addresses the effect of these sex differences on cardiometabolic health. Additionally, this Review highlights the implications of sexual dimorphism in the pathophysiology of obesity-related cardiometabolic risk for the development of sex-specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| |
Collapse
|
27
|
Zhao Z, Xue F, Gu Y, Han J, Jia Y, Ye K, Zhang Y. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7,8-dihydroxyflavone in female mice. Mol Metab 2020; 45:101149. [PMID: 33352311 PMCID: PMC7811170 DOI: 10.1016/j.molmet.2020.101149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Objective 7,8-Dihydroxyflavone (7,8-DHF), a small molecular mimetic of brain-derived neurotrophic factor (BDNF), alleviates high-fat diet-induced obesity in female mice in a sex-specific manner by activating muscular tropomyosin-related kinase B (TrkB). However, the underlying molecular mechanism for this sex difference is unknown. Moreover, muscular estrogen receptor α (ERα) plays a critical role in metabolic diseases. Impaired ERα action is often accompanied by metabolic syndrome (MetS) in postmenopausal women. This study investigated whether muscular ERα is involved in the metabolic effects of 7,8-DHF. Methods For the in vivo studies, 72 female C57BL/6J mice were given a low-fat diet or high-fat diet, and both received daily intragastric administration of vehicle or 7,8-DHF for 24 weeks. The hypothalamic-pituitary-ovarian (HPO) axis function was assessed by investigating typical sex-related serum hormones and the ovarian reserve. Indicators of menopausal MetS, including lipid metabolism, insulin sensitivity, bone density, and serum inflammatory cytokines, were also evaluated. The expression levels of ERα and other relevant signaling molecules were also examined. In vitro, the molecular mechanism involved in the interplay of ERα and TrkB receptors was verified in differentiated C2C12 myotubes using several inhibitors and a lentivirus short hairpin RNA-knockdown strategy. Results Long-term oral administration of 7,8-DHF acted as a protective factor for the female HPO axis function, protecting against ovarian failure, earlier menopause, and sex hormone disorders, which was paralleled by the alleviation of MetS coupled with the production of ERα-rich, TrkB-activated, and uncoupling protein 1 (UCP1) high thermogenic skeletal muscle tissues. 7,8-DHF-stimulated transactivation of ERα at serine 118 (S118) and tyrosine 537 (Y537), which was crucial to activate the BDNF/TrkB signaling cascades. In turn, activation of BDNF/TrkB signaling was also required for the ligand-independent activation of ERα, especially at the Y537 phosphorylation site. In addition, Src family kinases played a core role in the interplay of ERα and TrkB, synergistically activating the signaling pathways related to energy metabolism. Conclusions These findings revealed a novel role of 7,8-DHF in protecting the function of the female HPO axis and activating tissue-specific ERα, which improves our understanding of this sex difference in 7,8-DHF-mediated maintenance of metabolic homeostasis and provides new therapeutic strategies for managing MetS in women. 7,8-DHF improves hypothalamic-pituitary-ovarian axis function in mature adult female mice. 7,8-DHF protects against ovarian failure and onset of earlier menopause. 7,8-DHF-induced transactivation of ERα is crucial to activate BDNF/TrkB signaling cascades. 7,8-DHF-induced activations of ERα and BDNF/TrkB signaling are interdependent. Src family kinases play a core role in the crosstalk of ERα and BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Fan Xue
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yanpei Gu
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yingxian Jia
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
The adaptations induced by Estrogen Related Receptor alpha (ERRα) disruption and exercise training on healthy and diabetic rat’s liver. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Acacetin improves endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats by estrogen receptors. Mol Biol Rep 2020; 47:6899-6918. [PMID: 32892299 PMCID: PMC7561596 DOI: 10.1007/s11033-020-05746-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
The aim of the work was to investigate the effects of acacetin on endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats and explore its mechanism. Seven-week-old male spontaneously hypertensive rats (SHR) were selected to establish a rat model of hypertension with insulin resistance induced by 10% fructose. The nuclear factor kappa B p65 (NF-κB p65) and Collagen I were observed by Immunohistochemistry. Immunofluorescence was used to observe estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and G protein-coupled receptor 30 (GPR30). Western blotting was used to detect interleukin (IL-1β), Arginase 2 (ARG2), Nostrin, endothelial nitric oxide synthase (eNOS), TGF-β, Smad3, ERK pathway proteins such as p-c-Raf, p-MEK1/2, p-ERK, ERK, p-P90RSK and p-MSK1. We found that acacetin did have an improvement on endothelial dysfunction and fibrosis. Meanwhile, it was also found to have a significant effect on the level of estrogen in this model by accident. Then, the experiment of uterine weight gain in mice confirmed that acacetin had a certain estrogen-like effect in vivo and played its role through the estrogen receptors pathway. In vitro experience HUVEC cells were stimulated with 30 mM/L glucose and 100 mM/L NaCl for 24 h to establish the endothelial cell injury model. HUVEC cells were treated with 1 μM/L estrogen receptors antagonist (ICI 182780) for 30 min before administration. Cell experiments showed that acacetin could reduce the apoptosis of HUVEC cells, the levels of inflammatory cytokines and the expression of TGF-β, Collagen I and Smad3 in endothelial cell injury model. After treatment with ICI 182780, the improvement of acacetin was significantly reversed. The results showed that acacetin relieved endothelial dysfunction and reduced the aortic fibrosis in insulin-resistant SHR rats by reducing the release of inflammatory factors and improving vasodilatory function through estrogen signaling pathway.
Collapse
|
30
|
Adaptive Fat Oxidation Is Coupled with Increased Lipid Storage in Adipose Tissue of Female Mice Fed High Dietary Fat and Sucrose. Nutrients 2020; 12:nu12082233. [PMID: 32726932 PMCID: PMC7469071 DOI: 10.3390/nu12082233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Western diets high in fat and sucrose are associated with metabolic syndrome (MetS). Although the prevalence of MetS in women is comparable to that in men, metabolic adaptations in females to Western diet have not been reported in preclinical studies. This study investigates the effects of Western diet on risk factors for MetS in female mice. Based on our earlier studies in male mice, we hypothesized that dietary supplementation with extracts of Artemisia dracunculus L. (PMI5011) and Momordica charantia (bitter melon) could affect MetS risk factors in females. Eight-week-old female mice were fed a 10% kcal fat, 17% kcal sucrose diet (LFD); high-fat, high-sucrose diet (HFS; 45% kcal fat, 30% kcal sucrose); or HFS diet with PMI5011 or bitter melon for three months. Body weight and adiposity in all HFS groups were greater than the LFD. Total cholesterol level was elevated with the HFS diets along with LDL cholesterol, but triglycerides and free fatty acids were unchanged from the LFD. Over the three month period, female mice responded to the HFS diet by adaptive increases in fat oxidation energy in muscle and liver. This was coupled with increased fat storage in white and brown adipose tissue depots. These responses were enhanced with botanical supplementation and confer protection from ectopic lipid accumulation associated with MetS in female mice fed an HFS diet.
Collapse
|
31
|
Burman A, Garcia-Milian R, Whirledge S. Gene X environment: the cellular environment governs the transcriptional response to environmental chemicals. Hum Genomics 2020; 14:19. [PMID: 32448403 PMCID: PMC7247264 DOI: 10.1186/s40246-020-00269-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Background An individual’s response to environmental exposures varies depending on their genotype, which has been termed the gene-environment interaction. The phenotype of cell exposed can also be a key determinant in the response to physiological cues, indicating that a cell-gene-environment interaction may exist. We investigated whether the cellular environment could alter the transcriptional response to environmental chemicals. Publicly available gene expression array data permitted a targeted comparison of the transcriptional response to a unique subclass of environmental chemicals that alter the activity of the estrogen receptor, xenoestrogens. Results Thirty xenoestrogens were included in the analysis, for which 426 human gene expression studies were identified. Comparisons were made for studies that met the predefined criteria for exposure length, concentration, and experimental replicates. The cellular response to the phytoestrogen genistein resulted in remarkably unique transcriptional profiles in breast, liver, and uterine cell-types. Analysis of gene regulatory networks and molecular pathways revealed that the cellular context mediated the activation or repression of functions important to cellular organization and survival, including opposing effects by genistein in breast vs. liver and uterine cell-types. When controlling for cell-type, xenoestrogens regulate unique gene networks and biological functions, despite belonging to the same class of environmental chemicals. Interestingly, the genetic sex of the cell-type also strongly influenced the transcriptional response to xenoestrogens in the liver, with only 22% of the genes significantly regulated by genistein common between male and female cells. Conclusions Our results demonstrate that the transcriptional response to environmental chemicals depends on a variety of factors, including the cellular context, the genetic sex of a cell, and the individual chemical. These findings highlight the importance of evaluating the impact of exposure across cell-types, as the effect is responsive to the cellular environment. These comparative genetic results support the concept of a cell-gene-environment interaction.
Collapse
Affiliation(s)
- Andreanna Burman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 310 Cedar St, PO Box 208063, New Haven, CT, 06520, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 310 Cedar St, PO Box 208063, New Haven, CT, 06520, USA.
| |
Collapse
|
32
|
Klinge CM. Estrogenic control of mitochondrial function. Redox Biol 2020; 31:101435. [PMID: 32001259 PMCID: PMC7212490 DOI: 10.1016/j.redox.2020.101435] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Sex-based differences in human disease are caused in part by the levels of endogenous sex steroid hormones which regulate mitochondrial metabolism. This review updates a previous review on how estrogens regulate metabolism and mitochondrial function that was published in 2017. Estrogens are produced by ovaries and adrenals, and in lesser amounts by adipose, breast stromal, and brain tissues. At the cellular level, the mechanisms by which estrogens regulate diverse cellular functions including reproduction and behavior is by binding to estrogen receptors α, β (ERα and ERβ) and G-protein coupled ER (GPER1). ERα and ERβ are transcription factors that bind genomic and mitochondrial DNA to regulate gene transcription. A small proportion of ERα and ERβ interact with plasma membrane-associated signaling proteins to activate intracellular signaling cascades that ultimately alter transcriptional responses, including mitochondrial morphology and function. Although the mechanisms and targets by which estrogens act directly and indirectly to regulate mitochondrial function are not fully elucidated, it is clear that estradiol regulates mitochondrial metabolism and morphology via nuclear and mitochondrial-mediated events, including stimulation of nuclear respiratory factor-1 (NRF-1) transcription that will be reviewed here. NRF-1 is a transcription factor that interacts with coactivators including peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) to regulate nuclear-encoded mitochondrial genes. One NRF-1 target is TFAM that binds mtDNA to regulate its transcription. Nuclear-encoded miRNA and lncRNA regulate mtDNA-encoded and nuclear-encoded transcripts that regulate mitochondrial function, thus acting as anterograde signals. Other estrogen-regulated mitochondrial activities including bioenergetics, oxygen consumption rate (OCR), and extracellular acidification (ECAR), are reviewed.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, 40292, KY, USA.
| |
Collapse
|
33
|
Penniman CM, Suarez Beltran PA, Bhardwaj G, Junck TL, Jena J, Poro K, Hirshman MF, Goodyear LJ, O'Neill BT. Loss of FoxOs in muscle reveals sex-based differences in insulin sensitivity but mitigates diet-induced obesity. Mol Metab 2019; 30:203-220. [PMID: 31767172 PMCID: PMC6819874 DOI: 10.1016/j.molmet.2019.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Gender influences obesity-related complications, including diabetes. Females are more protected from insulin resistance after diet-induced obesity, which may be related to fat accumulation and muscle insulin sensitivity. FoxOs regulate muscle atrophy and are targets of insulin action, but their role in muscle insulin sensitivity and mitochondrial metabolism is unknown. METHODS We measured muscle insulin signaling, mitochondrial energetics, and metabolic responses to a high-fat diet (HFD) in male and female muscle-specific FoxO1/3/4 triple knock-out (TKO) mice. RESULTS In male TKO muscle, insulin-stimulated AKT activation was decreased. AKT2 protein and mRNA levels were reduced and insulin receptor protein and IRS-2 mRNA decreased. These changes contributed to decreased insulin-stimulated glucose uptake in glycolytic muscle in males. In contrast, female TKOs maintain normal insulin-mediated AKT phosphorylation, normal AKT2 levels, and normal glucose uptake in glycolytic muscle. When challenged with a HFD, fat gain was attenuated in both male and female TKO mice, and associated with decreased glucose levels, improved glucose homeostasis, and reduced muscle triglyceride accumulation. Furthermore, female TKO mice showed increased energy expenditure, relative to controls, due to increased lean mass and maintenance of mitochondrial function in muscle. CONCLUSIONS FoxO deletion in muscle uncovers sexually dimorphic regulation of AKT2, which impairs insulin signaling in male mice, but not females. However, loss of FoxOs in muscle from both males and females also leads to muscle hypertrophy and increases in metabolic rate. These factors mitigate fat gain and attenuate metabolic abnormalities in response to a HFD.
Collapse
Affiliation(s)
- Christie M Penniman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Pablo A Suarez Beltran
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Taylor L Junck
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jayashree Jena
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kennedy Poro
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian T O'Neill
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
34
|
Sex Differences in High Fat Diet-Induced Metabolic Alterations Correlate with Changes in the Modulation of GRK2 Levels. Cells 2019; 8:cells8111464. [PMID: 31752326 PMCID: PMC6912612 DOI: 10.3390/cells8111464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
A differential sex-related sensitivity has been reported in obesity and insulin resistance-related cardio-metabolic diseases, with a lower incidence of these pathologies being observed in young females when compared to age-matched males. However, such relative protection is lost with age. The mechanisms underlying such sex and age-related changes in the susceptibility to diabetes and obesity are not fully understood. Herein, we report that the relative protection that is displayed by young female mice, as compared to male littermates, against some of the metabolic alterations that are induced by feeding a high fat diet (HFD), correlates with a lower upregulation of the protein levels of G protein-coupled receptor kinase (GRK2), which is a key regulator of both insulin and G protein-coupled receptor signaling, in the liver and adipose tissue. Interestingly, when the HFD is initiated in middle-aged (32 weeks) female mice, these animals are no longer protected and display a more overt obese and insulin-resistant phenotype, along with a more evident increase in the GRK2 protein levels in metabolically relevant tissues in such conditions. Our data suggest that GRK2 dosage might be involved in the sex and age-biased sensitivity to insulin resistance-related pathologies.
Collapse
|
35
|
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Batu, Indonesia
| |
Collapse
|
36
|
Naftolin F, Friedenthal J, Nachtigall R, Nachtigall L. Cardiovascular health and the menopausal woman: the role of estrogen and when to begin and end hormone treatment. F1000Res 2019; 8. [PMID: 31543950 PMCID: PMC6733383 DOI: 10.12688/f1000research.15548.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Reports have correlated the use of estrogen for the treatment of menopausal symptoms with beneficial effects on the cardiovascular system. Molecular, biochemical, preclinical, and clinical studies have furnished a wealth of evidence in support of this outcome of estrogen action. The prospective randomized Women's Health Initiative (WHI) and the Early Versus Late Intervention Trial (ELITE) showed that starting menopausal hormone treatment (MHT) within 5 to 10 years of menopause is fundamental to the success of estrogen's cardioprotection in post-menopausal women without adverse effects. Age stratification of the WHI data has shown that starting hormone treatment within the first decade after menopause is both safe and effective, and the long-term WHI follow-up studies are supportive of cardioprotection. This is especially true in estrogen-treated women who underwent surgical menopause. A critique of the WHI and other relevant studies is presented, supporting that the timely use of estrogens protects against age- and hormone-related cardiovascular complications. Salutary long-term hormone treatment for menopausal symptoms and prevention of complications has been widely reported, but there are no prospective trials defining the correct length to continue MHT. At present, women undergoing premature menopause receive estrogen treatment (ET) until evidence of hormone-related complications intervenes. Normal women started on MHT who receive treatment for decades without hormone-related complications have been reported, and the WHI follow-up studies are promising of long-term post-treatment cardioprotection. A prevention-based holistic approach is proposed for timely and continuing MHT/ET administration as part of the general management of the menopausal woman. But this should be undertaken only with scheduled, annual patient visits including evaluations of cardiovascular status. Because of the continued occurrence of reproductive cancers well into older ages, these visits should include genital and breast cancer screening.
Collapse
Affiliation(s)
- Frederick Naftolin
- Interdisciplinary Program in Menopausal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Jenna Friedenthal
- Interdisciplinary Program in Menopausal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Richard Nachtigall
- Interdisciplinary Program in Menopausal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Lila Nachtigall
- Interdisciplinary Program in Menopausal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Antinozzi C, Marampon F, Sgrò P, Tombolini V, Lenzi A, Crescioli C, Di Luigi L. Comparative study of testosterone and vitamin D analogue, elocalcitol, on insulin-controlled signal transduction pathway regulation in human skeletal muscle cells. J Endocrinol Invest 2019; 42:897-907. [PMID: 30600434 DOI: 10.1007/s40618-018-0998-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Skeletal muscle (Skm) plays a key role in regulating energetic metabolism through glucose homeostasis. Several hormones such as Testosterone (T) and Vitamin D (VD) have been shown to affect energy-dependent cell trafficking by determining Insulin (I)-like effects. AIM To elucidate possible hormone-related differences on muscular metabolic control, we analyzed and compared the effects of T and elocalcitol (elo), a VD analogue, on the activation of energy-dependent cell trafficking, metabolism-related-signal transduction pathways and transcription of gene downstream targets. METHODS Human fetal skeletal muscle cells (Hfsmc) treated with T or elo were analyzed for GLUT4 localization, phosphorylation/activation status of AKT, ERK1/2, IRS-1 signaling and c-MYC protein expression. RESULTS T, similar to elo, induced GLUT4 protein translocation likely in lipid raft microdomains. While both T and elo induced a rapid IRS-1 phosphorylation, the following dynamic in phosphorylation/activation of AKT and ERK1/2 signaling was different. Moreover, T but not elo increased c-MYC protein expression. CONCLUSIONS All together, our evidence indicates that whether both T and elo are able to affect upstream I-like pathway, they differently determine downstream effects in I-dependent cascade, suggesting diverse physiological roles in mediating I-like response in human skeletal muscle.
Collapse
Affiliation(s)
- C Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135, Rome, Italy
| | - F Marampon
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135, Rome, Italy
- Department of Radiotherapy, Sapienza University of Rome, Rome, Italy
| | - P Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135, Rome, Italy
| | - V Tombolini
- Department of Radiotherapy, Sapienza University of Rome, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - C Crescioli
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135, Rome, Italy.
| | - L Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135, Rome, Italy
| |
Collapse
|
38
|
Ikeda K, Horie-Inoue K, Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol 2019; 191:105375. [PMID: 31067490 DOI: 10.1016/j.jsbmb.2019.105375] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022]
Abstract
Activity of estrogen, a sex steroid hormone, is not only limited to the reproductive organs but also involves other organs and tissues, including skeletal muscle. In postmenopausal women, estrogen decline causes endocrine and metabolic dysfunction, leading to a predisposition to osteoporosis, metabolic syndrome, and decreased muscle mass and strength. The decline in skeletal muscle mass often associates with sarcopenia, a popular condition observed in fragile elder people. In addition, varying estrogen levels associated with the menstrual phases may modulate exercise performance in women. Estrogen is thus considered to play a crucial role in skeletal muscle homeostasis and exercise capacity, although its precise mechanisms remain to be elucidated. In this article, we review the role of estrogen in the skeletal muscle, outlining the proposed molecular mechanisms. We especially focus on the current understanding of estrogen actions on mitochondria metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
39
|
Ereqat S, Cauchi S, Eweidat K, Elqadi M, Nasereddin A. Estrogen receptor 1 gene polymorphisms (PvuII and XbaI) are associated with type 2 diabetes in Palestinian women. PeerJ 2019; 7:e7164. [PMID: 31293826 PMCID: PMC6601601 DOI: 10.7717/peerj.7164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a multifactorial disease where both genetic and environmental factors contribute to its pathogenesis. The PvuII and XbaI polymorphisms of the estrogen receptor 1 (ESR1) gene have been variably associated with T2DM in several populations. This association has not been studied in the Palestinian population. Therefore, the aim of this study was to investigate the association between the PvuII and XbaI variants in the ESR1 and T2DM and its related metabolic traits among Palestinian women. Methods This case-control study included 102 T2DM and 112 controls in which PvuII and XbaI variants of the ESR1 gene were genotyped using amplicon based next generation sequencing (NGS). Results Allele frequencies of both PvuII and XbaI variants were not significantly different between patients and control subjects (P > 0.05). In logestic regression analysis adjusted for age and BMI, the ESR1 PvuII variant was associated with risk of T2DM in three genotypic models (P < 0.025) but the strongest association was observed under over-dominant model (TT+CC vs. TC) (OR = 2.32, CI [1.18-4.55] adjusted P = 0.013). A similar but non-significant trend was also observed for the ESR1 XbaI variant under the over-dominant model (AA+GG vs. AG) (OR = 2.03, CI [1.05-3.95]; adjusted P = 0.035). The frequencies of the four haplotypes (TA, CG, CA, TG) were not significantly different in the T2DM patients compared with control group (P > 0.025). Among diabetic group, an inverse trend with risk of cardio vascular diseases was shown in carriers of CG haplotype compared to those with TA haplotype (OR = 0.28, CI [0.09-0.90]; adjusted P = 0.035). Further, stratified analyses based on ESR1 PvuII and XbaI genotypes revealed no evidence for association with lipid levels (TC, TG, HDL, LDL). Conclusions This is the first Palestinian study to conclude that ESR1 PuvII and XbaI variants may contribute to diabetes susceptibility in Palestinian women. Identification of genetic risk markers can be used in defining high risk subjects and in prevention trials.
Collapse
Affiliation(s)
- Suheir Ereqat
- Biochemistry and Molecular Biology Department-Faculty of Medicine, Al-Quds University, East Jerusalem, Palestine
| | - Stéphane Cauchi
- CNRS, UMR8204, Lille, France.,INSERM, U1019, Lille, France.,Université de Lille, Lille, France.,Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Khaled Eweidat
- Biochemistry and Molecular Biology Department-Faculty of Medicine, Al-Quds University, East Jerusalem, Palestine
| | - Muawiyah Elqadi
- Biochemistry and Molecular Biology Department-Faculty of Medicine, Al-Quds University, East Jerusalem, Palestine
| | | |
Collapse
|
40
|
Khristi V, Ratri A, Ghosh S, Pathak D, Borosha S, Dai E, Roy R, Chakravarthi VP, Wolfe MW, Karim Rumi MA. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol Cell Endocrinol 2019; 490:47-56. [PMID: 30974146 DOI: 10.1016/j.mce.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
The liver helps maintain energy homeostasis by synthesizing and storing glucose and lipids. Gonadal steroids, particularly estrogens, play an important role in regulating metabolism. As estrogens are considered female hormones, metabolic disorders related to the disruption of estrogen signaling have mostly been studied in females. Estrogen receptor alpha (ESR1) is the predominant receptor in both the male and female liver, and it mediates the hepatic response to estrogens. Loss of ESR1 increases weight gain and obesity in female rats, while reducing the normal growth in males. Although Esr1-/- male rats have a reduced body weight, they exhibit increased adipose deposition and impaired glucose tolerance. We further investigated whether these metabolic disorders in Esr1-/- male rats were linked with the loss of transcriptional regulation by ESR1 in the liver. To identify the ESR-regulated genes, RNA-sequencing was performed on liver mRNAs from wildtype and Esr1-/- male rats. Based on an absolute fold change of ≥2 with a p-value ≤ 0.05, a total of 706 differentially expressed genes were identified in the Esr1-/- male liver: 478 downregulated, and 228 upregulated. Pathway analyses demonstrate that the differentially expressed genes include transcriptional regulators (Cry1, Nr1d1, Nr0b2), transporters (Slc1a2), and regulators of biosynthesis (Cyp7b1, Cyp8b1), and hormone metabolism (Hsd17b2, Sult1e1). Many of these genes are also integral parts of the lipid and carbohydrate metabolism pathways in the liver. Interestingly, certain critical regulators of the metabolic pathways displayed a sexual dimorphism in expression, which may explain the divergent weight gain in Esr1-/- male and female rats despite common metabolic dysfunctions.
Collapse
Affiliation(s)
- Vincentaben Khristi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Devansh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shaon Borosha
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eddie Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Richita Roy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - V Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
41
|
Vignozzi L, Malavolta N, Villa P, Mangili G, Migliaccio S, Lello S. Consensus statement on the use of HRT in postmenopausal women in the management of osteoporosis by SIE, SIOMMMS and SIGO. J Endocrinol Invest 2019; 42:609-618. [PMID: 30456623 DOI: 10.1007/s40618-018-0978-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/04/2018] [Indexed: 01/04/2023]
Affiliation(s)
- L Vignozzi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - N Malavolta
- St Orsola-Malpighi Hospital, Cardio-Thoracic -Vascular Department, Program of Rheumatic and Connective Tissue Disordes and Bone Metabolic Diseases, Bologna, University of Bologna, Bologna, Italy
| | - P Villa
- Department of Obstetrics and Gynecology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - G Mangili
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Hospital, Milan, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of "Foro Italico" of Rome, Largo Lauro De Bosis 6, 00195, Rome, Italy.
| | - S Lello
- Department of Woman and Child Health, Policlinico Gemelli Foundation, Rome, Italy
| |
Collapse
|
42
|
Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria. Front Endocrinol (Lausanne) 2019; 10:557. [PMID: 31474941 PMCID: PMC6702264 DOI: 10.3389/fendo.2019.00557] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are unique organelles present in almost all cell types. They are involved not only in the supply of energy to the host cell, but also in multiple biochemical and biological processes like calcium homeostasis, production, and regulation of reactive oxygen species (ROS), pH control, or cell death. The importance of mitochondria in cell biology and pathology is increasingly recognized. Being maternally inherited, mitochondria exhibit a tissue-specificity, because most of the mitochondrial proteins are encoded by the nuclear genome. This renders them exquisitely well-adapted to the physiology of the host cell. It is thus not surprising that mitochondria show a sexual dimorphism and that they are also prone to the influence of sex chromosomes and sex hormones. Estrogens affect mitochondria through multiple processes involving membrane and nuclear estrogen receptors (ERs) as well as more direct effects. Moreover, estrogen receptors have been identified within mitochondria. The effects of estrogens on mitochondria comprise protein content and specific activity of mitochondrial proteins, phospholipid content of membranes, oxidant and anti-oxidant capacities, oxidative phosphorylation, and calcium retention capacities. Herein we will briefly review the life cycle and functions of mitochondria, the importance of estrogen receptors and the effects of estrogens on heart and skeletal muscle mitochondria.
Collapse
|