1
|
Sadler DG, Landes RD, Treas L, Sikes J, Porter C. Protonophore treatment augments energy expenditure in mice housed at thermoneutrality. Front Physiol 2024; 15:1452986. [PMID: 39381330 PMCID: PMC11458463 DOI: 10.3389/fphys.2024.1452986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Background Sub-thermoneutral housing increases facultative thermogenesis in mice, which may mask the pre-clinical efficacy of anti-obesity strategies that target energy expenditure (EE). Here, we quantified the impact of protonophore treatment on whole-body energetics in mice housed at 30°C. Methods C57BL/6J mice (n = 48, 24M/24F) were housed at 24°C for 2 weeks; 32 (16M/16F) were then transitioned to 30°C for a further 4 weeks. Following 2 weeks acclimation at 30°C, mice (n = 16 per group, 8M/8F) received either normal (0 mg/L; Control) or supplemented (400 mg/L; 2,4-Dinitrophenol [DNP]) drinking water. Mice were singly housed in metabolic cages to determine total EE (TEE) and its components via respiratory gas exchange. Mitochondrial respiratory function of permeabilized liver tissue was determined by high-resolution respirometry. Results Transitioning mice from 24°C to 30°C reduced TEE and basal EE (BEE) by 16% and 41%, respectively (both P < 0.001). Compared to 30°C controls, TEE was 2.6 kcal/day greater in DNP-treated mice (95% CI: 1.6-3.6 kcal/day, P < 0.001), which was partly due to a 1.2 kcal/day higher BEE in DNP-treated mice (95% CI: 0.6-1.7 kcal/day, P < 0.001). The absolute TEE of 30°C DNP-treated mice was lower than that of mice housed at 24°C in the absence of DNP (DNP: 9.4 ± 0.7 kcal/day vs. 24°C control: 10.4 ± 1.5 kcal/day). DNP treatment reduced overall body fat of females by 2.9 percentage points versus sex-matched controls (95% CI: 1.3%-4.5%, P < 0.001), which was at least partly due to a reduction in inguinal white fat mass. Conclusion Protonophore treatment markedly increases EE in mice housed at 30°C. The magnitude of change in TEE of mice receiving protonophore treatment at 30°C was smaller than that brought about by transitioning mice from 24°C to 30°C, emphasizing that housing temperature must be considered when assessing anti-obesity strategies that target EE in mice.
Collapse
Affiliation(s)
- Daniel G. Sadler
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, Univesrity of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Reid D. Landes
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Departments of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lillie Treas
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - James Sikes
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Craig Porter
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, Univesrity of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
2
|
Raun SH, Braun JL, Karavaeva I, Henriquez-Olguín C, Ali MS, Møller LLV, Gerhart-Hines Z, Fajardo VA, Richter EA, Sylow L. Mild Cold Stress at Ambient Temperature Elevates Muscle Calcium Cycling and Exercise Adaptations in Obese Female Mice. Endocrinology 2024; 165:bqae102. [PMID: 39136248 DOI: 10.1210/endocr/bqae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 08/28/2024]
Abstract
CONTEXT Housing temperature is a critical regulator of mouse metabolism and thermoneutral housing can improve model translation to humans. However, the impact of housing temperature on the ability of wheel running exercise training to rescue the detrimental effect of diet-induced obese mice is currently not fully understood. OBJECTIVE To investigate how housing temperature affects muscle metabolism in obese mice with regard to calcium handling and exercise training (ET) adaptations in skeletal muscle, and benefits of ET on adiposity and glucometabolic parameters. METHODS Lean or obese female mice were housed at standard ambient temperature (22 °C) or thermoneutrality (30 °C) with/without access to running wheels. The metabolic phenotype was investigated using glucose tolerance tests, indirect calorimetry, and body composition. Molecular muscle adaptations were measured using immunoblotting, qPCR, and spectrophotometric/fluorescent assays. RESULTS Obese female mice housed at 22 °C showed lower adiposity, lower circulating insulin levels, improved glucose tolerance, and elevated basal metabolic rate compared to 30 °C housing. Mice exposed to voluntary wheel running exhibited a larger fat loss and higher metabolic rate at 22 °C housing compared to thermoneutrality. In obese female mice, glucose tolerance improved after ET independent of housing temperature. Independent of diet and training, 22 °C housing increased skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity. Additionally, housing at 22 °C elevated the induction of training-responsive muscle proteins in obese mice. CONCLUSION Our findings highlight that housing temperature significantly influences adiposity, insulin sensitivity, muscle physiology, and exercise adaptations in diet-induced obese female mice.
Collapse
Affiliation(s)
- Steffen H Raun
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jessica L Braun
- Muscle Plasticity in Health and Disease, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, L2A 3A1, Canada
| | - Iuliia Karavaeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Carlos Henriquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Mona S Ali
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lisbeth L V Møller
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Val A Fajardo
- Muscle Plasticity in Health and Disease, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, L2A 3A1, Canada
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lykke Sylow
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
3
|
Škop V, Liu N, Xiao C, Stinson E, Chen KY, Hall KD, Piaggi P, Gavrilova O, Reitman ML. Beyond day and night: The importance of ultradian rhythms in mouse physiology. Mol Metab 2024; 84:101946. [PMID: 38657735 PMCID: PMC11070603 DOI: 10.1016/j.molmet.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma Stinson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Negm A, Stobbe K, Ben Fradj S, Sanchez C, Landra-Willm A, Richter M, Fleuriot L, Debayle D, Deval E, Lingueglia E, Rovere C, Noel J. Acid-sensing ion channel 3 mediates pain hypersensitivity associated with high-fat diet consumption in mice. Pain 2024; 165:470-486. [PMID: 37733484 DOI: 10.1097/j.pain.0000000000003030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/07/2023] [Indexed: 09/23/2023]
Abstract
ABSTRACT Lipid-rich diet is the major cause of obesity, affecting 13% of the worldwide adult population. Obesity is a major risk factor for metabolic syndrome that includes hyperlipidemia and diabetes mellitus. The early phases of metabolic syndrome are often associated with hyperexcitability of peripheral small diameter sensory fibers and painful diabetic neuropathy. Here, we investigated the effect of high-fat diet-induced obesity on the activity of dorsal root ganglion (DRG) sensory neurons and pain perception. We deciphered the underlying cellular mechanisms involving the acid-sensing ion channel 3 (ASIC3). We show that mice made obese through consuming high-fat diet developed the metabolic syndrome and prediabetes that was associated with heat pain hypersensitivity, whereas mechanical sensitivity was not affected. Concurrently, the slow conducting C fibers in the skin of obese mice showed increased activity on heating, whereas their mechanosensitivity was not altered. Although ASIC3 knockout mice fed with high-fat diet became obese, and showed signs of metabolic syndrome and prediabetes, genetic deletion, and in vivo pharmacological inhibition of ASIC3, protected mice from obesity-induced thermal hypersensitivity. We then deciphered the mechanisms involved in the heat hypersensitivity of mice and found that serum from high-fat diet-fed mice was enriched in lysophosphatidylcholine (LPC16:0, LPC18:0, and LPC18:1). These enriched lipid species directly increased the activity of DRG neurons through activating the lipid sensitive ASIC3 channel. Our results identify ASIC3 channel in DRG neurons and circulating lipid species as a mechanism contributing to the hyperexcitability of nociceptive neurons that can cause pain associated with lipid-rich diet consumption and obesity.
Collapse
Affiliation(s)
- Ahmed Negm
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Katharina Stobbe
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Selma Ben Fradj
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Clara Sanchez
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Arnaud Landra-Willm
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Margaux Richter
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | | | | | - Emmanuel Deval
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Carole Rovere
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Jacques Noel
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| |
Collapse
|
5
|
Gębczyński AK, Sadowska J, Konarzewski M. Differences in the range of thermoneutral zone between mouse strains: potential effects on translational research. Am J Physiol Regul Integr Comp Physiol 2024; 326:R91-R99. [PMID: 38009211 DOI: 10.1152/ajpregu.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Laboratory mice are commonly used for studies emulating human metabolism. To render human energetics, their ratio of daily (DEE) to basal (BMR) energy expenditure of 1.7-1.8 should be maintained. However, the DEE/BMR ratio strongly depends on whether a given study using a mouse model is carried out above, or below the lower critical temperature (LCT) of the thermoneutral zone, which is rarely considered in translational research. Here, we used mice artificially selected for high or low rates of BMR along with literature data to analyze the effect of ambient temperature on possible systematic bias in DEE/BMR. We demonstrated that the estimated LCTs of mice from the high and low BMR lines differ by more than 7°C. Furthermore, the range of variation of LCTs of mouse strains used in translational research spans from 23 to 33°C. Differences between LCTs in our selected mice and other mouse strains are mirrored by differences in their DEE-to-BMR ratio, on average increasing it at the rate of 0.172°C-1 at temperatures below LCT. Given the wide range of LCTs in different mouse strains, we conclude that the energetic cost of thermoregulation may differ greatly for different mouse strains with a potentially large impact on translational outcomes. Thus, the LCT of a given mouse strain is an important factor that must be considered in designing translational studies.
Collapse
Affiliation(s)
| | - Julita Sadowska
- Faculty of Biology, University of Białystok, Białystok, Poland
| | | |
Collapse
|
6
|
Dereje B, Nardos A, Abdela J, Terefe L, Arega M, Yilma TM, Tesfaye T. Antidiabetic Activities of 80% Methanol Extract and Solvent Fractions of Verbascum Sinaiticum Benth (Scrophulariaceae) Leaves in Mice. J Exp Pharmacol 2023; 15:423-436. [PMID: 37964792 PMCID: PMC10642538 DOI: 10.2147/jep.s437991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Background Because of the scarcity, high cost, and severe side effects of current medications, it is necessary to discover novel, safe, and affordable anti-diabetic drugs. The current study was conducted to evaluate the antidiabetic activities of Verbascum sinaiticum Benth leaves in mice. Methods Leaf coarse powder was extracted with 80% methanol and then fractionated with n-hexane, ethyl acetate, and distilled water. The glucose-lowering effects of V. sinaiticum at 100, 200, and 400mg/kg were then studied. Glibenclamide was used as a positive control at a dose of 5 mg/kg. For oral glucose tolerance tests and hypoglycemia tests, Tween 2% was used as a negative control, while citrate buffer was used as a negative control for antihyperglycemic investigations. The results from the study were evaluated using one-way ANOVA, and then Tukey's post hoc multiple comparison test was performed. Results Blood glucose levels were significantly reduced by the V. sinaiticum 80% methanol extract at 400 mg/kg (p<0.05). The blood glucose levels were significantly lowered by the aqueous residue at 400 mg/kg (p<0.05) and the ethyl acetate fractions at 200 mg/kg (p<0.01) and 400 mg/kg (p<0.001); however, none of the fraction extracts resulted in hypoglycemic shock in healthy mice. Higher glucose tolerance was seen in orally glucose-loaded mice after exposure to 80% methanol extracts at 200 and 400 mg/kg (p<0.05), the aqueous residual fraction at 200 mg/kg (p<0.01), and the ethyl acetate fraction at 200 and 400 mg/kg (p<0.05). The ethyl acetate fraction at 200 and 400 mg/kg (p<0.01), the 80% methanol extract at 400 mg/kg (p<0.05) and the aqueous residue at 400 mg/kg (p 0.01) significantly lowered blood glucose levels in streptozotocin-induced diabetic mice. Conclusion The results of this study revealed that the 80% methanol extract and solvent fractions of V. sinaiticum Benth leaves are endowed with antidiabetic activity.
Collapse
Affiliation(s)
- Beyene Dereje
- Department of Pharmacology, School of Medicine, College of Medicine and Health Science, Dire Dawa University, Dire Dawa, Ethiopia
| | - Aschalew Nardos
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, Hawassa University, Hawassa, Ethiopia
| | - Jemal Abdela
- Department of Pharmacology, School of Pharmacy, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Lidet Terefe
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, Hawassa University, Hawassa, Ethiopia
| | - Melese Arega
- Department of Pharmacy, Pawi Health Science College, Pawi, Benishangul, Ethiopia
| | - Terfo Mikre Yilma
- Department of Medicinal Chemistry, School of Pharmacy, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Tilahun Tesfaye
- Department of Pharmacy, College of Medicine and Health Science, Ambo University, Ambo, Ethiopia
| |
Collapse
|
7
|
de Paula Faria D, da Silva Vera CC, Marques FLN, Sapienza MT. Repeatability of brown adipose tissue activation measured by [ 18F]FDG PET after beta3-adrenergic stimuli in a mouse model. Nucl Med Biol 2023; 126-127:108390. [PMID: 37804561 DOI: 10.1016/j.nucmedbio.2023.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
This study aimed to evaluate the repeatability of brown adipose tissue (BAT) activation measured by [18F]FDG-PET after beta3-adrenergic stimuli with CL316243 in mice. METHODS Male C57BL/6 mice underwent [18F]FDG-PET at baseline without stimulation (T0-NS), on three consecutive days after intravenous administration of the selective β3-adrenergic agonist CL316243 (T1-CL, T2-CL, T3-CL), and without stimuli after 1 and 2 weeks (T7-NS and T14-NS). The standardized uptake value (SUVmax), BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were measured in each scanning session, with statistical groupwise comparisons by ANOVA and post hoc Tukey test. RESULTS SUVmax, BMV, and TBG values showed no significant differences between the three PET scans without stimuli, but were significantly higher after CL316243 administration (p < 0.0001). The mean coefficient of variation (CoV) of PET within individuals was 49 % at baseline but only 9 % with pharmacological stimulation. CONCLUSIONS The study demonstrated that administration of the selective β3-adrenergic receptor agonist CL316243 (CL) in mice leads to consistent metabolic activation of brown adipose tissue (BAT), as measured by [18F]FDG-PET. We also demonstrated metabolic activation by repeated pharmacological challenge, without evidence of hysteresis. Thus, the methods used in the current work should serve for further studies on BAT metabolism in experimental animals, with translational value for clinical research.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cleinando Clemente da Silva Vera
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Tatit Sapienza
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y, Alford S, Ayala JE, McGuinness OP, Collins S, Hamm HE. Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 2023; 133:e160617. [PMID: 37561580 PMCID: PMC10541194 DOI: 10.1172/jci160617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P. Ceddia
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dianxin Liu
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sheila Collins
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Silva V, Faria HOF, Sousa-Filho CPB, de Alvarenga JFR, Fiamoncini J, Otton R. Thermoneutrality or standard temperature: is there an ideal housing temperature to study the antisteatotic effects of green tea in obese mice? J Nutr Biochem 2023; 120:109411. [PMID: 37423321 DOI: 10.1016/j.jnutbio.2023.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a condition characterized by excessive accumulation of triglycerides in hepatocytes, currently considered the number one cause of chronic liver disease. MAFLD is strongly associated with obesity, type 2 diabetes, hyperlipidaemia, and hypertension. Emphasis has been placed on the use of green tea (GT), produced from the Camellia sinensis plant, rich in antioxidants as polyphenols and catechins, on obesity and MAFLD treatment/prevention. Studies carried out in rodent models housed at a standard temperature (ST, 22°C) are being questioned as ST is a determining factor on generating changes in the physiology of immune response, and energy metabolism. On the other hand, it seems that thermoneutrality (TN, 28°C) represents a closer parallel to human physiology. In this perspective, we investigated the effects of GT (500 mg/kg of body weight, over 12 weeks, 5 days/week) by comparing mice housed at ST or TN in a model of MAFLD of diet-induced obese males C57Bl/6 mice. We show that the liver phenotype at TN exhibits a more severe MAFLD while GT ameliorates this condition. In parallel, GT restores the expression of genes involved in the lipogenic pathway, regardless of temperature, with slight modifications in lipolysis/fatty acid oxidation. We observed an increase promoted by GT in PPARα and PPARγ proteins independently of housing temperature and a dual pattern of bile acid synthesis. Thus, animals' conditioning temperature is a key factor that can interfere in the results involving obesity and MAFLD, although GT has beneficial effects against MAFLD independently of the housing temperature of mice.
Collapse
Affiliation(s)
- Victória Silva
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Sao Paulo, Brazil
| | | | | | - José Fernando Rinaldi de Alvarenga
- Department of Food Science and Experimental Nutrition, Food Research Center, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Jarlei Fiamoncini
- Department of Food Science and Experimental Nutrition, Food Research Center, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rosemari Otton
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
10
|
Sveeggen TM, Isakson BE, Straub AC, Bagher P. Bedding as a variable affecting fasting blood glucose and vascular physiology in mice. Am J Physiol Heart Circ Physiol 2023; 325:H338-H345. [PMID: 37389954 PMCID: PMC10435074 DOI: 10.1152/ajpheart.00168.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Rodent husbandry requires careful consideration of environmental factors that may impact colony performance and subsequent physiological studies. Of note, recent reports have suggested corncob bedding may affect a broad range of organ systems. As corncob bedding may contain digestible hemicelluloses, trace sugars, and fiber, we hypothesized that corncob bedding impacts overnight fasting blood glucose and murine vascular function. Here, we compared mice housed on corncob bedding, which were then fasted overnight on either corncob or ALPHA-dri bedding, a virgin paper pulp cellulose alternative. Male and female mice were used from two noninduced, endothelial-specific conditional knockout strains [Cadherin 5-cre/ERT2, floxed hemoglobin-α1 (Hba1fl/fl) or Cadherin 5-cre/ERT2, floxed cytochrome-B5 reductase 3 (CyB5R3fl/fl)] on a C57BL/6J genetic background. After fasting overnight, initial fasting blood glucose was measured, and mice were anesthetized with isoflurane for measurement of blood perfusion via laser speckle contrast analysis using a PeriMed PeriCam PSI NR system. After a 15-min equilibration, the mice were injected intraperitoneally with the α1-adrenergic receptor agonist, phenylephrine (5 mg/kg), or saline, and monitored for changes in blood perfusion. After a 15-min response period, blood glucose was remeasured postprocedure. In both strains, mice fasted on corncob bedding had higher blood glucose than the pulp cellulose group. In the CyB5R3fl/fl strain, mice housed on corncob bedding displayed a significant reduction in phenylephrine-mediated change in perfusion. In the Hba1fl/fl strain, phenylephrine-induced change in perfusion was not different in the corncob group. This work suggests that corncob bedding, in part due to its ingestion by mice, could impact vascular measurements and fasting blood glucose. To promote scientific rigor and improve reproducibility, bedding type should be routinely included in published methods.NEW & NOTEWORTHY This study demonstrates real-time measurement of changes in perfusion to pharmacological treatment using laser speckle contrast analysis. Furthermore, this investigation revealed that fasting mice overnight on corncob bedding has differential effects on vascular function and that there was increased fasting blood glucose in mice fasted on corncob bedding compared with paper pulp cellulose bedding. This highlights the impact that bedding type can have on outcomes in vascular and metabolic research and reinforces the need for thorough and robust reporting of animal husbandry practices.
Collapse
Affiliation(s)
- Timothy M Sveeggen
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Pooneh Bagher
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
11
|
Neri D, Ramos-Lobo AM, Lee S, Lafond A, Zeltser LM. Rearing mice at 22°C programs increased capacity to respond to chronic exposure to cold but not high fat diet. Mol Metab 2023; 73:101740. [PMID: 37211277 PMCID: PMC10248272 DOI: 10.1016/j.molmet.2023.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVE Rodent models raised at environmental temperatures of 21-22 °C are increasingly switched to thermoneutral housing conditions in adulthood to better capture human physiology. We quantified the developmental effects of rearing mice at an ambient temperature of 22 °C vs. 30 °C on metabolic responses to cold and high fat diet (HFD) in adulthood. METHODS Mice were reared from birth to 8 weeks of age at 22 °C or 30 °C, when they were acclimated to single housing at the same temperature for 2-3 weeks in indirect calorimetry cages. Energy expenditure attributable to basal metabolic rate, physical activity, thermic effect of food, and adaptive cold- or diet-induced thermogenesis was calculated. Responses to cooling were evaluated by decreasing the ambient temperature from 22 °C to 14 °C, while responses to HFD feeding were assessed at 30 °C. Influences of rearing temperature on thermogenic responses that emerge over hours, days and weeks were assessed by maintaining mice in the indirect calorimetry cages throughout the study. RESULTS At an ambient temperature of 22 °C, total energy expenditure (TEE) was 12-16% higher in mice reared at 22 °C as compared to 30 °C. Rearing temperature had no effect on responses in the first hours or week of the 14 °C challenge. Differences emerged in the third week, when TEE increased an additional 10% in mice reared at 22 °C, but mice reared at 30 °C could not sustain this level of cold-induced thermogenesis. Rearing temperature only affected responses to HFD during the first week, due to differences in the timing but not the strength of metabolic adaptations. CONCLUSION Rearing at 22 °C does not have a lasting effect on metabolic adaptations to HFD at thermoneutrality, but it programs an enhanced capacity to respond to chronic cold challenges in adulthood. These findings highlight the need to consider rearing temperature when using mice to model cold-induced thermogenesis.
Collapse
Affiliation(s)
- Daniele Neri
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angela M Ramos-Lobo
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seoeun Lee
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexandre Lafond
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
12
|
de Paula Faria D, D'Arc Campeiro J, de Souza Junqueira M, Real CC, Marques FLN, Hayashi MAF, Sapienza MT. [ 18F]FDG and [ 11C]PK11195 PET imaging in the evaluation of brown adipose tissue - effects of cold and pharmacological stimuli and their association with crotamine intake in a male mouse model. Nucl Med Biol 2023; 122-123:108362. [PMID: 37356164 DOI: 10.1016/j.nucmedbio.2023.108362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
This study aimed to evaluate the role of positron emission tomography (PET) with [11C]PK11195 and [18F]FDG in the characterization of brown adipose tissue (BAT). METHODS Male C57BL/6 mice were studied with the glucose analogue [18F]FDG (n = 21) and the TSPO mitochondrial tracer [11C]PK11195 (n = 28), without stimulus and after cold (6-9 °C) or beta-agonist (CL316243) stimuli. PET studies were performed at baseline and after 21 days of daily treatment with crotamine, which is a peptide described to induce adipocyte tissue browning and to increase BAT metabolism. Tracer uptake (SUVmax) was measured in the interscapular BAT and translocator protein 18 kDa (TSPO) expression was evaluated by immunohistochemistry. RESULTS The cold stimulus increased [18F]FDG uptake compared to no-stimulus (5.21 ± 1.05 vs. 2.03 ± 0.21, p < 0.0001) and to beta-agonist stimulus (2.65 ± 0.39, p = 0.0003). After 21 days of treatment with crotamine, there was no significant difference in the [18F]FDG uptake compared to the baseline in the no-stimulus group and in the cold-stimulus group, with a significant increase in uptake after CL stimulus (baseline: 2.65 ± 0.39; 21 days crotamine: 4.77 ± 0.81, p = 0.0003). Evaluation of [11C]PK11195 at baseline shows that CL stimulus increases the BAT uptake compared to no-stimulus (4.47 ± 0.66 vs. 3.36 ± 0.68, p = 0.014). After 21 days of treatment with crotamine, there was no significant difference in the [11C]PK11195 uptake compared to the baseline in the no-stimulus group (2.94 ± 0.58, p = 0.7864) and also after CL stimulus (3.55 ± 0.79, p = 0.085). TSPO expression correlated with [11C]PK11195 uptake (r = 0.83, p = 0.018) but not with [18F]FDG uptake (r = 0.40, p = 0.516). CONCLUSIONS [11C]PK11195 allowed the identification of BAT under thermoneutral conditions or after beta3-adrenergic stimulation in a direct correlation with TSPO expression. The beta-adrenergic stimulus, despite presenting a lower intensity of glycolytic activation compared to cold at baseline, allowed the observation of an increase in BAT uptake of [18F]FDG after 21 days of crotamine administration. Although some limitations were observed for the metabolic changes induced by crotamine, this study reinforced the potential of using [11C]PK11195 and/or [18F]FDG-PET to monitor the activation of BAT.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Joana D'Arc Campeiro
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Mara de Souza Junqueira
- Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Department of Nuclear Medicine and PET Center, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Mirian Akemi Furuie Hayashi
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Marcelo Tatit Sapienza
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Pellegrinelli V, Figueroa-Juárez E, Samuelson I, U-Din M, Rodriguez-Fdez S, Virtue S, Leggat J, Çubuk C, Peirce VJ, Niemi T, Campbell M, Rodriguez-Cuenca S, Blázquez JD, Carobbio S, Virtanen KA, Vidal-Puig A. Defective extracellular matrix remodeling in brown adipose tissue is associated with fibro-inflammation and reduced diet-induced thermogenesis. Cell Rep 2023; 42:112640. [PMID: 37318951 DOI: 10.1016/j.celrep.2023.112640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
The relevance of extracellular matrix (ECM) remodeling is reported in white adipose tissue (AT) and obesity-related dysfunctions, but little is known about the importance of ECM remodeling in brown AT (BAT) function. Here, we show that a time course of high-fat diet (HFD) feeding progressively impairs diet-induced thermogenesis concomitantly with the development of fibro-inflammation in BAT. Higher markers of fibro-inflammation are associated with lower cold-induced BAT activity in humans. Similarly, when mice are housed at thermoneutrality, inactivated BAT features fibro-inflammation. We validate the pathophysiological relevance of BAT ECM remodeling in response to temperature challenges and HFD using a model of a primary defect in the collagen turnover mediated by partial ablation of the Pepd prolidase. Pepd-heterozygous mice display exacerbated dysfunction and BAT fibro-inflammation at thermoneutrality and in HFD. Our findings show the relevance of ECM remodeling in BAT activation and provide a mechanism for BAT dysfunction in obesity.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| | - Elizabeth Figueroa-Juárez
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Isabella Samuelson
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Mueez U-Din
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sonia Rodriguez-Fdez
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Jennifer Leggat
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Cankut Çubuk
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen Del Rocío, 41013 Sevilla, Spain
| | - Vivian J Peirce
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Tarja Niemi
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Mark Campbell
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China
| | - Sergio Rodriguez-Cuenca
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China
| | - Joaquin Dopazo Blázquez
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen Del Rocío, 41013 Sevilla, Spain; Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain; Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain; Functional Genomics Node (INB-ELIXIR-es), Sevilla, Spain
| | - Stefania Carobbio
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain
| | - Kirsi A Virtanen
- Turku PET Centre, University of Turku, Turku, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China; Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain; Cambridge Heart and Lung Research Institute, Cambridge, UK.
| |
Collapse
|
14
|
Reid K, Daniels EG, Vasam G, Kamble R, Janssens GE, Hu IM, Green AE, Houtkooper RH, Menzies KJ. Reducing mitochondrial ribosomal gene expression does not alter metabolic health or lifespan in mice. Sci Rep 2023; 13:8391. [PMID: 37225705 PMCID: PMC10209074 DOI: 10.1038/s41598-023-35196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
Maintaining mitochondrial function is critical to an improved healthspan and lifespan. Introducing mild stress by inhibiting mitochondrial translation invokes the mitochondrial unfolded protein response (UPRmt) and increases lifespan in several animal models. Notably, lower mitochondrial ribosomal protein (MRP) expression also correlates with increased lifespan in a reference population of mice. In this study, we tested whether partially reducing the gene expression of a critical MRP, Mrpl54, reduced mitochondrial DNA-encoded protein content, induced the UPRmt, and affected lifespan or metabolic health using germline heterozygous Mrpl54 mice. Despite reduced Mrpl54 expression in multiple organs and a reduction in mitochondrial-encoded protein expression in myoblasts, we identified few significant differences between male or female Mrpl54+/- and wild type mice in initial body composition, respiratory parameters, energy intake and expenditure, or ambulatory motion. We also observed no differences in glucose or insulin tolerance, treadmill endurance, cold tolerance, heart rate, or blood pressure. There were no differences in median life expectancy or maximum lifespan. Overall, we demonstrate that genetic manipulation of Mrpl54 expression reduces mitochondrial-encoded protein content but is not sufficient to improve healthspan in otherwise healthy and unstressed mice.
Collapse
Affiliation(s)
- Kim Reid
- Department of Biology and Ottawa Institute of Systems Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Iman M Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - Alexander E Green
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands.
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Marignac G, Pilot-Storck F. Body, ambient and felt temperature: An attempt to resolve a human and mice dilemma. Biochimie 2023:S0300-9084(23)00110-4. [PMID: 37211254 DOI: 10.1016/j.biochi.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Mice thermoneutral zone lies at temperatures much higher than expected when considering the geographical extension of the species. Growing evidence shows that mouse-dependent thermogenesis experimentation needs to cope with temperatures below those at which the animals are most comfortable. The associated physiological changes interfere with experimental results, thereby highlighting the apparently trivial subject of room-temperature. Working at above 25 °C is difficult for researchers and animal care technicians. Herein, we explore alternative solutions related to living habits of wild mice that could improve translation of research on mice to humans. Standard murine environments are often colder than those in laboratory facilities and their behavior is mainly characterized by a gregarious, nesting and exploratory way of life. Optimization of their thermal environment can thus also be achieved by avoiding individual housing and providing high-quality nesting material and devices that would allow locomotor activity, hence muscle thermogenesis. These options have additional relevance in terms of animal welfare. When precise monitoring of the temperature is required, temperature-controlled cabinets can be used for the duration of the experiments. During the manipulation of mice, a heated laminar flow hood or tray could create an optimized microenvironment. The specification of temperature-related data in publications should contain information on the translatability of the described mouse models to humans. Furthermore, publications should describe the premises of the laboratory in relation to housing possibilities and murine behavior.
Collapse
Affiliation(s)
- Geneviève Marignac
- Ecole Nationale Vétérinaire d'Alfort, EnvA, F-94700, Maisons-Alfort, France.
| | - Fanny Pilot-Storck
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010, Créteil, France; Lab Animal Science, Ecole Nationale Vétérinaire d'Alfort, EnvA, IMRB, F-94700, Maisons-Alfort, France
| |
Collapse
|
16
|
Ginting RP, Lee JM, Lee MW. The Influence of Ambient Temperature on Adipose Tissue Homeostasis, Metabolic Diseases and Cancers. Cells 2023; 12:cells12060881. [PMID: 36980222 PMCID: PMC10047443 DOI: 10.3390/cells12060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Adipose tissue is a recognized energy storage organ during excessive energy intake and an endocrine and thermoregulator, which interacts with other tissues to regulate systemic metabolism. Adipose tissue dysfunction is observed in most obese mouse models and humans. However, most studies using mouse models were conducted at room temperature (RT), where mice were chronically exposed to mild cold. In this condition, energy use is prioritized for thermogenesis to maintain body temperature in mice. It also leads to the activation of the sympathetic nervous system, followed by the activation of β-adrenergic signaling. As humans live primarily in their thermoneutral (TN) zone, RT housing for mice limits the interpretation of disease studies from mouse models to humans. Therefore, housing mice in their TN zone (~28–30 °C) can be considered to mimic humans physiologically. However, factors such as temperature ranges and TN pre-acclimatization periods should be examined to obtain reliable results. In this review, we discuss how adipose tissue responds to housing temperature and the outcomes of the TN zone in metabolic disease studies. This review highlights the critical role of TN housing in mouse models for studying adipose tissue function and human metabolic diseases.
Collapse
Affiliation(s)
- Rehna Paula Ginting
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Min-Woo Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
- Correspondence: ; Tel.: +82-41-413-5029
| |
Collapse
|
17
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
18
|
Gonzalez-Soto M, Woods SE, MacLeod B, Wright DC, Mutch DM. A moderate-fat diet containing soy protein does not differentially impact energy balance in male and female mice compared to dairy protein. Nutr Res 2023; 113:59-65. [PMID: 37028269 DOI: 10.1016/j.nutres.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Dairy and nondairy plant-based alternative proteins are reported to differentially influence body weight; however, most research has compared plant-based alternatives with isolated dairy proteins rather than a complete milk protein (containing casein and whey). This is notable given that people do not generally consume isolated dairy proteins. Therefore, the present study aimed to investigate the impact of a soy protein isolate (SPI) on factors influencing body weight gain in male and female mice in comparison to skim milk powder (SMP). Based on current knowledge in rodents, we hypothesized that SPI would promote body weight gain compared with SMP. Mice (n = 8 per sex per diet) consumed a moderate-fat diet (35% kcal from fat) containing either SPI or SMP for 8 weeks. Body weight and food intake were measured weekly. Energy expenditure, physical activity, and substrate use were measured using metabolic cages. Fecal energy content was measured with bomb calorimetry. Body weight gain and food intake during the 8-week feeding study was not different in mice consuming either SPI or SMP; however, males had a higher body weight, adiposity, and feed efficiency compared with females (all P < .05). Fecal energy content was approximately 7% higher in both male and female mice fed the SPI diet compared with the SMP diet. Neither protein source affected substrate utilization, physical activity, or energy expenditure. Physical activity in the dark phase trended higher in females compared with males (P = .0732). The present study suggests that the consumption of SPI in the context of a moderate-fat diet has little impact on numerous factors influencing body weight regulation in male and female mice compared with a complete milk protein.
Collapse
|
19
|
The metabolic cost of physical activity in mice using a physiology-based model of energy expenditure. Mol Metab 2023; 71:101699. [PMID: 36858190 PMCID: PMC10090438 DOI: 10.1016/j.molmet.2023.101699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity. METHODS Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling. The energy cost of activity was modeled considering six contributors to TEE (basal metabolic rate, thermic effect of food, body temperature, cold induced thermogenesis, physical activity, and body weight). An ambient temperature of 35 °C was required to remove the contribution from cold induced thermogenesis. Basal metabolic rate was adjusted for body temperature using a Q10 temperature coefficient. RESULTS We developed a TEE model that robustly explains 70-80% of the variance in TEE at 35 °C while fitting only two parameters, the basal metabolic rate and the mass-specific energy cost per unit of physical activity, which averaged 60 cal/km/g body weight. In Ucp1-/- mice the activity cost was elevated by 60%, indicating inefficiency and increased muscle thermogenesis. The diurnal rhythm in TEE was quantitatively explained by the combined diurnal differences in physical activity, body temperature, and energy intake. CONCLUSIONS The physiology-based model of TEE allows quantifying the energy cost of physical activity. While applied here to mice, the model should be generally valid across species. Due to the effect of body temperature, we suggest that basal metabolic rate measurements be corrected to a reference body temperature, including in humans. Having an accurate cost of physical activity allows mechanistic dissection of disorders of energy homeostasis, including obesity.
Collapse
|
20
|
Lac M, Tavernier G, Moro C. Does housing temperature influence glucose regulation and muscle-fat crosstalk in mice? Biochimie 2023:S0300-9084(23)00028-7. [PMID: 36758717 DOI: 10.1016/j.biochi.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
The robustness of scientific results is partly based on their reproducibility. Working with animal models, particularly in the field of metabolism, requires to avoid any source of stress to rule out a maximum of bias. Housing at room temperature is sufficient to induce thermal stress activating key thermogenic organs such as brown adipose tissue (BAT) and skeletal muscle. BAT covers most of the non-shivering thermogenesis in mice and burns a variety of fuels such as glucose and lipids. A high prevalence of BAT is associated with a strong protection against type 2 diabetes risk in humans, implying that BAT plays a key role in glucose homeostasis. However, thermal stress is poorly and inconsistently considered in experimental research. This thermal stress can significantly impede interpretation of phenotypes by favoring compensatory signaling pathways. Indeed, various studies revealed that thermoneutrality is essential to study metabolism in mice in order to reach a suitable level of "humanization". In this review, we briefly discuss if and how ambient temperature influence blood glucose homeostasis through BAT and muscle-fat crosstalk.
Collapse
Affiliation(s)
- Marlène Lac
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM, Paul Sabatier University, UMR1297, Toulouse, France.
| |
Collapse
|
21
|
Tognolli K, Silva V, Sousa-Filho CPB, Cardoso CAL, Gorjão R, Otton R. Green tea beneficial effects involve changes in the profile of immune cells in the adipose tissue of obese mice. Eur J Nutr 2023; 62:321-336. [PMID: 35994086 DOI: 10.1007/s00394-022-02963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE During obesity, the adipose tissue is usually infiltrated by immune cells which are related to hallmarks of obesity such as systemic inflammation and insulin resistance (IR). Green tea (GT) has been widely studied for its anti-inflammatory actions, including the modulation in the proliferation and activity of immune cells, in addition to preventing cardiovascular and metabolic diseases. METHODS The aim of the present study was to analyze the population of immune cells present in the subcutaneous and epididymal white adipose tissue (WAT) of mice kept at thermoneutrality (TN) and fed with a high-fat diet (HFD) for 16 weeks, supplemented or not with GT extract (500 mg/kg/12 weeks). RESULTS The HFD in association with TN has induced chronic inflammation, and IR in parallel with changes in the profile of immune cells in the subcutaneous and epidydimal WAT, increasing pro-inflammatory cytokines release, inflammatory cells infiltration, and fibrotic aspects in WAT. On the other hand, GT prevented body weight gain, in addition to avoiding IR and inflammation, and the consequent tissue fibrosis, maintaining a lower concentration of cytokines and a profile of immune cells similar to the control mice, preventing the harmful modulations induced by both HFD and TN. CONCLUSIONS GT beneficial effects in WAT abrogated the deleterious effects triggered by HFD and TN, maintaining all immune cells and fibrotic markers at the same level as in lean mice. These results place WAT immune cells population as a potential target of GT action, also highlighting the positive effects of GT in obese mice housed at TN.
Collapse
Affiliation(s)
- Kaue Tognolli
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Victoria Silva
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Celso Pereira Batista Sousa-Filho
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | | | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Rosemari Otton
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil.
| |
Collapse
|
22
|
Repeated short excursions from thermoneutrality suffice to restructure brown adipose tissue. Biochimie 2023:S0300-9084(23)00006-8. [PMID: 36657658 DOI: 10.1016/j.biochi.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Given the presence of brown adipose tissue in adult humans, an important issue is whether human brown adipose tissue is recruitable. Cold exposure is the canonical recruitment treatment; however, in experimental animals (mice), recruitment of brown adipose tissue is normally induced by placing the mice in constant cold, a procedure not feasible in humans. For possible translational applications, we have therefore investigated whether shorter daily excursions from thermoneutrality would suffice to qualitatively and quantitatively induce recruitment in mice. Mice, housed at thermoneutrality (30 °C) to mimic human conditions, were transferred every day for 4 weeks to cool conditions (18 °C), for 0, 15, 30, 120 and 420 min (or placed constantly in 18 °C). On the examination day, the mice were not exposed to cold. Very short daily exposures (≤30 min) were sufficient to induce structural changes in the form of higher protein density in brown adipose tissue, changes that may affect the identification of the tissue in e.g. computer tomography and other scan studies. To estimate thermogenic capacity, UCP1 protein levels were followed. No UCP1 protein was detectable in inguinal white adipose tissue. In the interscapular brown adipose tissue, a remarkable two-phase reaction was seen. Very short daily exposures (≤30 min) were sufficient to induce a significant increase in total UCP1 levels. For attainment of full cold acclimation, the mice had, however, to remain exposed to the cold. The studies indicate that marked alterations in brown adipose tissue composition can be induced in mammals through relatively modest stimulation events.
Collapse
|
23
|
Rana S, Sunshine MD, Gaire J, Simmons CS, Fuller DD. Breathing patterns and CO 2 production in adult spiny mice (Acomys cahirinus). Respir Physiol Neurobiol 2023; 307:103975. [PMID: 36206972 PMCID: PMC10112007 DOI: 10.1016/j.resp.2022.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/09/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
The spiny mouse (Acomys) is a precocial mammal with unique regenerative abilities. We used whole-body plethysmography to describe the breathing patterns and CO2 production (VCO2) of adult spiny mice (n = 10 male, 10 female) and C57BL/6 mice (n = 9 male, 11 female). During quiet breathing, female but not male spiny mice had lower tidal volumes and CO2 production vs. C57BL/6 mice. During extended hypoxia (30 min), male and female spiny mice decreased VCO2 and tidal volume to a greater degree than C57BL/6 mice. During an acute hypoxic-hypercapnic respiratory challenge (10% O2, 7% CO2), male and female spiny mice had blunted ventilatory responses as compared to C57BL/6 mice, primarily from a diminished increase in respiratory rate. These data establish a baseline for studies of respiratory physiology and neurobiology in spiny mice in the context of their remarkable regenerative capacity and their unique background of a desert dwelling species.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Breathing Research and Therapeutics Center, Gainesville, FL 32610, USA
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Breathing Research and Therapeutics Center, Gainesville, FL 32610, USA
| | - Janak Gaire
- Department of Mechanical & Aerospace Engineering, University of Florida, USA
| | - Chelsey S Simmons
- Department of Mechanical & Aerospace Engineering, University of Florida, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Breathing Research and Therapeutics Center, Gainesville, FL 32610, USA.
| |
Collapse
|
24
|
Unger CA, Hope MC, Aladhami AK, Velázquez KT, Enos RT. How stable is your vivarium's temperature? Fluctuations in vivarium temperature significantly impact metabolism and behavior impeding scientific reproducibility. Physiol Behav 2023; 258:114029. [PMID: 36372225 PMCID: PMC10797230 DOI: 10.1016/j.physbeh.2022.114029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The purpose of this investigation was to examine the variability in vivarium temperature and the impact that this has on metabolic and behavioral outcomes in mice. METHODS Daily vivarium temperature was monitored every day for a two-year period. Behavioral and metabolic phenotyping were assessed in male and female C57BL/6 (n = 71/sex) mice over the course of 2 years. RESULTS Vivarium temperature was found to fluctuate on a monthly, daily, and even an hourly basis of approximately ±5ºC. A 5ºC change in temperature was found to result in daily changes in total energy expenditure (35% and 27%), resting energy expenditure (39% for both sexes), movement (51% and 37%), food consumption (35% and 29%), and sleep duration (15% and 13%) for female and male mice, respectively. CONCLUSIONS Fluctuations in vivarium temperature can dramatically impact metabolic and behavioral outcomes, which impedes scientific reproducibility. This awareness and the guidelines we propose in this publication will hopefully help to enhance the reproducibility of pre-clinical animal research.
Collapse
Affiliation(s)
- Christian A Unger
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States
| | - Marion C Hope
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States
| | - Ahmed K Aladhami
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States; University of Baghdad, Nursing College, Baghdad, Iraq
| | - Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States.
| |
Collapse
|
25
|
Sadler DG, Treas L, Sikes JD, Porter C. A modest change in housing temperature alters whole body energy expenditure and adipocyte thermogenic capacity in mice. Am J Physiol Endocrinol Metab 2022; 323:E517-E528. [PMID: 36351253 PMCID: PMC9744648 DOI: 10.1152/ajpendo.00079.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Typical vivarium temperatures (20-26°C) induce facultative thermogenesis in mice, a process attributable in part to uncoupling protein-1 (UCP1). The impact of modest changes in housing temperature on whole body and adipose tissue energetics in mice remains unclear. Here, we determined the effects of transitioning mice from 24°C to 30°C on total energy expenditure and adipose tissue protein signatures. C57BL/6J mice were housed at 24°C for 2 wk and then either remained at 24°C (n = 16/group, 8M/8F) or were transitioned to 30°C (n = 16/group, 8M/8F) for 4 wk. Total energy expenditure and its components were determined by indirect calorimetry. Interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) proteins were quantified by Western blot and quantitative proteomics. Transitioning from 24°C to 30°C reduced total energy expenditure in both male (-25%) and female (-16%) mice, which was attributable to lower basal energy expenditure in males (-36%) and females (-40%). Total iBAT UCP1 protein content was 50% lower at 30°C compared with 24°C, whereas iWAT UCP1 protein content was similar between conditions. iBAT UCP1 protein content remained 20-fold greater than iWAT at 30°C. In iBAT and iWAT, 183 and 41 proteins were differentially expressed between 24°C and 30°C, respectively. iWAT proteins (257) differentially expressed between sexes at 30°C were not differentially expressed at 24°C. Thus, 30°C housing lowers total energy expenditure of mice when compared with an ambient temperature (24°C) that falls within the National Research Council's guidelines for housing laboratory mice. Lower iBAT UCP1 content accompanied chronic housing at 30°C. Furthermore, housing temperature influences sexual dimorphism in the iWAT proteome. These data have implications regarding the optimization of preclinical models of human disease.NEW & NOTEWORTHY Housing mice at 30°C reduced the basal and total energy expenditure compared with 24°C, which was accompanied by a reduction in brown adipose tissue UCP1 content. Proteomic profiling demonstrated the brown adipose tissue and white adipose tissue proteomes were largely influenced by housing temperature and sex, respectively. Therefore, 30°C housing revealed sexual dimorphism in the white adipose tissue proteome that was largely absent in animals housed at 24°C.
Collapse
Affiliation(s)
- Daniel G Sadler
- Arkansas Children's Research Institute, Arkansas Children's Nutrition Center and the University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lillie Treas
- Arkansas Children's Research Institute, Arkansas Children's Nutrition Center and the University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - James D Sikes
- Arkansas Children's Research Institute, Arkansas Children's Nutrition Center and the University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Craig Porter
- Arkansas Children's Research Institute, Arkansas Children's Nutrition Center and the University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
26
|
Keller AC, Chun JH, Knaub L, Henckel M, Hull S, Scalzo R, Pott G, Walker L, Reusch J. Thermoneutrality induces vascular dysfunction and impaired metabolic function in male Wistar rats: a new model of vascular disease. J Hypertens 2022; 40:2133-2146. [PMID: 35881464 PMCID: PMC9553250 DOI: 10.1097/hjh.0000000000003153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cardiovascular disease is of paramount importance, yet there are few relevant rat models to investigate its pathology and explore potential therapeutics. Housing at thermoneutral temperature (30 °C) is being employed to humanize metabolic derangements in rodents. We hypothesized that housing rats in thermoneutral conditions would potentiate a high-fat diet, resulting in diabetes and dysmetabolism, and deleteriously impact vascular function, in comparison to traditional room temperature housing (22 °C). METHODS Male Wistar rats were housed at either room temperature or thermoneutral temperatures for 16 weeks on either a low or high-fat diet. Glucose and insulin tolerance tests were conducted at the beginning and end of the study. At the study's conclusion, vasoreactivity and mitochondrial respiration of aorta and carotid were conducted. RESULTS We observed diminished vasodilation in vessels from thermoneutral rats ( P < 0.05), whereas high-fat diet had no effect. This effect was also observed in endothelium-denuded aorta in thermoneutral rats ( P < 0.05). Vasoconstriction was significantly elevated in aorta of thermoneutral rats ( P < 0.05). Diminished nitric oxide synthase activity and nitrotyrosine, and elevated glutathione activity were observed in aorta from rats housed under thermoneutral conditions, indicating a climate of lower nitric oxide and excess reactive oxygen species in aorta. Thermoneutral rat aorta also demonstrated less mitochondrial respiration with lipid substrates compared with the controls ( P < 0.05). CONCLUSION Our data support that thermoneutrality causes dysfunctional vasoreactivity, decreased lipid mitochondrial metabolism, and modified cellular signaling. These are critical observations as thermoneutrality is becoming prevalent for translational research models. This new model of vascular dysfunction may be useful for dissection of targetable aspects of cardiovascular disease and is a novel and necessary model of disease.
Collapse
Affiliation(s)
- Amy C. Keller
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | | | - L.A. Knaub
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - M.M. Henckel
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - S.E. Hull
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - R.L. Scalzo
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - G.B. Pott
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - L.A. Walker
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J.E.B. Reusch
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| |
Collapse
|
27
|
John LM, Petersen N, Gerstenberg MK, Torz L, Pedersen K, Christoffersen BØ, Kuhre RE. Housing-temperature reveals energy intake counter-balances energy expenditure in normal-weight, but not diet-induced obese, male mice. Commun Biol 2022; 5:946. [PMID: 36088386 PMCID: PMC9464191 DOI: 10.1038/s42003-022-03895-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Most metabolic studies on mice are performed at room temperature, although under these conditions mice, unlike humans, spend considerable energy to maintain core temperature. Here, we characterize the impact of housing temperature on energy expenditure (EE), energy homeostasis and plasma concentrations of appetite- and glucoregulatory hormones in normal-weight and diet-induced obese (DIO) C57BL/6J mice fed chow or 45% high-fat-diet, respectively. Mice were housed for 33 days at 22, 25, 27.5, and 30 °C in an indirect-calorimetry-system. We show that energy expenditure increases linearly from 30 °C towards 22 °C and is ~30% higher at 22 °C in both mouse models. In normal-weight mice, food intake counter-balances EE. In contrast, DIO mice do not reduce food intake when EE is lowered. By end of study, mice at 30 °C, therefore, had higher body weight, fat mass and plasma glycerol and triglycerides than mice at 22 °C. Dysregulated counterbalancing in DIO mice may result from increased pleasure-based eating. The impact of ambient housing temperature on the interaction of energy intake, energy expenditure and glycemic control in normal and diet-induced obese mice is examined.
Collapse
|
28
|
Zhang X, Yamada Y, Sagayama H, Ainslie PN, Blaak EE, Buchowski MS, Close GL, Cooper JA, Das SK, Dugas LR, Gurven M, El Hamdouchi A, Hu S, Joonas N, Katzmarzyk P, Kraus WE, Kushner RF, Leonard WR, Martin CK, Meijer EP, Neuhouser ML, Ojiambo RM, Pitsiladis YP, Plasqui G, Prentice RL, Racette SB, Ravussin E, Redman LM, Reynolds RM, Roberts SB, Sardinha LB, Silva AM, Stice E, Urlacher SS, Van Mil EA, Wood BM, Murphy-Alford AJ, Loechl C, Luke AH, Rood J, Schoeller DA, Westerterp KR, Wong WW, Pontzer H, Speakman JR. Human total, basal and activity energy expenditures are independent of ambient environmental temperature. iScience 2022; 25:104682. [PMID: 35865134 PMCID: PMC9294192 DOI: 10.1016/j.isci.2022.104682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022] Open
Abstract
Lower ambient temperature (Ta) requires greater energy expenditure to sustain body temperature. However, effects of Ta on human energetics may be buffered by environmental modification and behavioral compensation. We used the IAEA DLW database for adults in the USA (n = 3213) to determine the effect of Ta (-10 to +30°C) on TEE, basal (BEE) and activity energy expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p > 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships between TEE, BEE and Ta emerged in females but the effect sizes were not biologically meaningful. Temperatures inside buildings are regulated at 18-25°C independent of latitude. Hence, adults in the US modify their environments to keep TEE constant across a wide range of external ambient temperatures.
Collapse
Affiliation(s)
- Xueying Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yosuke Yamada
- Institute for Active Health, Kyoto University of Advanced Science, Kyoto, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Hiroyuki Sagayama
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Philip N. Ainslie
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- University of British Columbia, Okanagan Campus School of Health and Exercise Sciences, Faculty of Health and Social Development Kelowna, Kelowna, BC, Canada
| | - Ellen E. Blaak
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Maciej S. Buchowski
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jamie A. Cooper
- Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Sai Krupa Das
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, USA
| | - Lara R. Dugas
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, IL, USA
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Asmaa El Hamdouchi
- Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN- Université Ibn Tofail URAC39, Regional Designated Center of Nutrition Associated with AFRA/IAEA, Rabat, Morocco
| | - Sumei Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Noorjehan Joonas
- Central Health Laboratory, Ministry of Health and Wellness, Port Louis, Mauritius
| | | | | | | | | | | | - Erwin P. Meijer
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Marian L. Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and School of Public Health, University of Washington, Seattle, WA, USA
| | - Robert M. Ojiambo
- Moi University, Eldoret, Kenya
- University of Global Health Equity, Kigali, Rwanda
| | | | - Guy Plasqui
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ross L. Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and School of Public Health, University of Washington, Seattle, WA, USA
| | - Susan B. Racette
- Program in Physical Therapy and Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Rebecca M. Reynolds
- Centre for Cardiovascular Sciences, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susan B. Roberts
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, USA
| | - Luis B. Sardinha
- Exercise and Health Laboratory, CIPER, Department of Sport and Health, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Analiza M. Silva
- Exercise and Health Laboratory, CIPER, Department of Sport and Health, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | | | - Samuel S. Urlacher
- Department of Anthropology, Baylor University, Waco, TX, USA
- Child and Brain Development Program, CIFAR, Toronto, Canada
| | - Edgar A. Van Mil
- Maastricht University, Maastricht and Lifestyle Medicine Center for Children, Jeroen Bosch Hospital’s-Hertogenbosch, the Netherlands
| | - Brian M. Wood
- University of California Los Angeles, Los Angeles, USA
- Max Planck Institute for Evolutionary Anthropology, Department of Human Behavior, Ecology, and Culture. Leipzig, Germany
| | - Alexia J. Murphy-Alford
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Cornelia Loechl
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Amy H. Luke
- Division of Epidemiology, Department of Public Health Sciences, Loyola University School of Medicine, Maywood, IL, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Dale A. Schoeller
- Biotech Center and Nutritional Sciences University of Wisconsin, Madison, WI, USA
| | | | - William W. Wong
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - John R. Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China
| |
Collapse
|
29
|
Chun JH, Henckel MM, Knaub LA, Hull SE, Pott GB, Ramirez DG, Reusch JEB, Keller AC. (-)-Epicatechin Reverses Glucose Intolerance in Rats Housed at Thermoneutrality. PLANTA MEDICA 2022; 88:735-744. [PMID: 35777366 PMCID: PMC9343939 DOI: 10.1055/a-1843-9855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 06/09/2023]
Abstract
Diabetes is a life-threatening and debilitating disease with pathological hallmarks, including glucose intolerance and insulin resistance. Plant compounds are a source of novel and effective therapeutics, and the flavonoid (-)-epicatechin, common to popular foods worldwide, has been shown to improve carbohydrate metabolism in both clinical studies and preclinical models. We hypothesized that (-)-epicatechin would alleviate thermoneutral housing-induced glucose intolerance. Male rats were housed at either thermoneutral (30 °C) or room temperature (24 °C) for 16 weeks and gavaged with either 1 mg/kg body weight or vehicle for the last 15 days before sacrifice. Rats housed at thermoneutrality had a significantly elevated serum glucose area under the curve (p < 0.05) and reduced glucose-mediated insulin secretion. In contrast, rats at thermoneutrality treated with (-)-epicatechin had improved glucose tolerance and increased insulin secretion (p < 0.05). Insulin tolerance tests revealed no differences in insulin sensitivity in any of the four groups. Pancreatic immunohistochemistry staining showed significantly greater islet insulin positive cells in animals housed at thermoneutrality. In conclusion, (-)-epicatechin improved carbohydrate tolerance via increased insulin secretion in response to glucose challenge without a change in insulin sensitivity.
Collapse
Affiliation(s)
- Ji Hye Chun
- Aquillius Corp., San Diego, CA, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Melissa M. Henckel
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Leslie A. Knaub
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Sara E. Hull
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Greg B. Pott
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - David G. Ramirez
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Jane E.-B. Reusch
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Amy C. Keller
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| |
Collapse
|
30
|
Zhao Z, Yang R, Li M, Bao M, Huo D, Cao J, Speakman JR. Effects of ambient temperatures between 5 and 35 oC on energy balance, body mass and body composition in mice. Mol Metab 2022; 64:101551. [PMID: 35870706 PMCID: PMC9382332 DOI: 10.1016/j.molmet.2022.101551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Considerable attention is currently focused on the potential to switch on brown adipose tissue (BAT), or promote browning of white adipose tissue, to elevate energy expenditure and thereby reduce obesity levels. These processes are already known to be switched on by cold exposure. Yet humans living in colder regions do not show lower levels of obesity. This could be because humans shield themselves from external temperatures, or because the resultant changes in BAT and thermogenesis are offset by elevated food intake, or reductions in other components of expenditure. Scope of Review We exposed mice to 11 different ambient temperatures between 5 and 35 °C and characterized their energy balance and body weight/composition. As it got colder mice progressively increased their energy expenditure coincident with changes in thyroid hormone levels and increased BAT activity. Simultaneously, these increases in expenditure were matched by elevated food intake, and body mass remained stable. Nevertheless, within this envelope of unchanged body mass there were significant changes in body composition – with increases in the sizes of the liver and small intestine, presumably to support the greater food intake, and reductions in the level of stored fat – maximally providing about 10% of the total elevated energy demands. Major Conclusions Elevating activity of BAT may be a valid strategy to reduce fat storage even if overall body mass is unchanged but if it is mostly offset by elevated food intake, as found here, then the impacts may be small. Male and female mice were exposed to 11 different ambient temperatures between 5 and 35 °C. As it got colder mice increased both energy expenditure and food intake. Increased energy expenditure was coincident with increased THs and BAT activity. Stored fat was considerably reduced in colder conditions, providing about 10% of the elevated energy requirements. Elevating activity of BAT may be a valid strategy to reduce fat storage.
Collapse
Affiliation(s)
- Zhijun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Rui Yang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Li
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Menghuan Bao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Daliang Huo
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jing Cao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - John R Speakman
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China.
| |
Collapse
|
31
|
Kim HJ, Kim YJ, Seong JK. AMP-activated protein kinase activation in skeletal muscle modulates exercise-induced uncoupled protein 1 expression in brown adipocyte in mouse model. J Physiol 2022; 600:2359-2376. [PMID: 35301717 PMCID: PMC9322297 DOI: 10.1113/jp282999] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract Aerobic exercise is an effective intervention in preventing obesity and is also an important factor associated with thermogenesis. There is an increasing interest in the factors and mechanisms induced by aerobic exercise that can influence the metabolism and thermogenic activity in an individual. Recent studies suggest that exercise induced circulating factors (known as ‘exerkines’), which are able to modulate activation of brown adipose tissue (BAT) and browning of white adipose tissue. However, the underlying molecular mechanisms associated with the effect of exercise‐induced peripheral factors on BAT activation remain poorly understood. Furthermore, the role of exercise training in BAT activation is still debatable. Hence, the purpose of our study is to assess whether exercise training affects the expression of uncoupled protein 1 (UCP1) in brown adipocytes via release of different blood factors. Four weeks of exercise training significantly decreased the body weight gain and fat mass gain. Furthermore, trained mice exhibit higher levels of energy expenditure and UCP1 expression than untrained mice. Surprisingly, treatment with serum from exercise‐trained mice increased the expression of UCP1 in differentiated brown adipocytes. To gain a better understanding of these mechanisms, we analysed the conditioned media obtained after treating the C2C12 myotubes with an AMP‐activated protein kinase (AMPK) activator (AICAR; 5‐aminoimidazole‐4‐carboxamide ribonucleotide), which leads to an increased expression of UCP1 when added to brown adipocytes. Our observations suggest the possibility of aerobic exercise‐induced BAT activation via activation of AMPK in skeletal muscles. Key points Exercise promotes thermogenesis by activating uncoupling protein 1 (UCP1), which leads to a decrease in the body weight gain and body fat content. However, little is known about the role of exerkines in modulating UCP1 expression and subsequent brown adipose tissue (BAT) activation. Four weeks of voluntary wheel‐running exercise reduces body weight and fat content. Exercise induces the increase in AMP‐activated protein kinase (AMPK) and slow‐type muscle fibre marker genes in skeletal muscles and promotes UCP1 expression in white and brown adipose tissues. Incubation of brown adipocytes with serum isolated from exercise‐trained mice significantly increased their UCP1 gene and protein levels; moreover, conditioned media of AMPK‐activator‐treated C2C12 myotubes induces increased UCP1 expression in brown adipocytes. These results show that aerobic exercise‐induced skeletal muscle AMPK has a significant effect on UCP1 expression in BAT.
Collapse
Affiliation(s)
- Hye Jin Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Youn Ju Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Je Kyung Seong
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, Republic of Korea.,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
32
|
McKie GL, Medak KD, Shamshoum H, Wright DC. Topical application of the pharmacological cold mimetic menthol stimulates brown adipose tissue thermogenesis through a TRPM8, UCP1, and norepinephrine dependent mechanism in mice housed at thermoneutrality. FASEB J 2022; 36:e22205. [PMID: 35157333 DOI: 10.1096/fj.202101905rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
Increasing whole-body energy expenditure via the pharmacological activation of uncoupling protein 1 (UCP1)-dependent brown adipose tissue (BAT) thermogenesis is a promising weight management strategy, yet most therapeutics studied in rodents to date either induce compensatory increases in energy intake, have thermogenic effects that are confounded by sub-thermoneutral housing temperatures or are not well tolerated in humans. Here, we sought to determine whether the non-invasive topical application of the pharmacological cold mimetic and transient receptor potential (TRP) cation channel subfamily M member 8 (TRPM8) agonist L-menthol (MNTH), could be used to stimulate BAT thermogenesis and attenuate weight gain in mice housed at thermoneutrality. Using three different strains of mice and multiple complimentary approaches to quantify thermogenesis in vivo, coupled with ex vivo models to quantify direct thermogenic effects, we were able to convincingly demonstrate the following: (1) acute topical MNTH application induces BAT thermogenesis in a TRPM8- and UCP1-dependent manner; (2) MNTH-induced BAT thermogenesis is sufficient to attenuate weight gain over time without affecting energy intake in lean and obese mice; (3) the ability of topical MNTH application to stimulate BAT thermogenesis is mediated, in part, by a central mechanism involving the release of norepinephrine. These data collectively suggest that topical application of MNTH may be a promising weight management strategy.
Collapse
Affiliation(s)
- Greg L McKie
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hesham Shamshoum
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
33
|
Parker A, Hobson L, Bains R, Wells S, Bowl M. Investigating audible and ultrasonic noise in modern animal facilities. F1000Res 2022; 11:651. [PMID: 35949916 PMCID: PMC9334837 DOI: 10.12688/f1000research.111170.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The environmental housing conditions of laboratory animals are important for both welfare and reliable, reproducible data. Guidelines currently exist for factors such as lighting cycles, temperature, humidity, and noise, however, for the latter the current guidelines may overlook important details. In the case of the most common laboratory species, the mouse, the range of frequencies they can hear is far higher than that of humans. The current guidelines briefly mention that ultrasonic (>20 kHz) frequencies can adversely affect mice, and that the acoustic environment should be checked, though no recommendations are provided relating to acceptable levels of ultrasonic noise. Methods: To investigate the ultrasonic environment in a large mouse breeding facility (the Mary Lyon Centre at MRC Harwell), we compared two systems, the Hottinger Bruel and Kjaer PULSE sound analyser, and an Avisoft Bioacoustics system. Potential noise sources were selected; we used the PULSE system to undertake real-time Fourier analysis of noise up to 100 kHz, and the Avisoft system to record noise up to 125 kHz for later analysis. The microphones from both systems were positioned consistently at the same distance from the source and environmental conditions were identical. In order to investigate our result further, a third system, the AudioMoth (Open Acoustic Devices), was also used for recording. We used DeepSqueak software for most of the recording analysis and, in some cases, we also undertook further spectral analysis using RX8 (iZotope, USA). Results: We found that both systems can detect a range of ultrasonic noise sources, and here discuss the benefits and limitations of each approach. Conclusions: We conclude that measuring the acoustic environment of animal facilities, including ultrasonic frequencies that may adversely affect the animals housed, will contribute to minimising disruption to animal welfare and perturbations in scientific research.
Collapse
Affiliation(s)
- Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, UK
| | - Liane Hobson
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Rasneer Bains
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Sara Wells
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Michael Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, UK
- UCL Ear Institute, University College London, London, UK
| |
Collapse
|
34
|
Li M, Speakman JR. Setting Ambient Temperature Conditions to Optimize Translation of Molecular Work from the Mouse to Human: The "Goldilocks Solution". Methods Mol Biol 2022; 2448:235-250. [PMID: 35167101 DOI: 10.1007/978-1-0716-2087-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Temperature has a profound effect on many aspects of murine physiology. This raises the question of the best temperature at which mice should be housed to maximize the translational potential to humans. The temperatures at which mice have been routinely kept for studies of molecular physiology (20-21 °C) maximize the comfort of animal handling staff. There is a widespread movement suggesting we should perform experiments instead on mice housed at 30 °C. This often produces very different outcomes. Here we analyze the basis of this suggestion and show that while 20-21 °C is too cold, 30 °C is probably too hot. Rather we suggest an intermediate temperature "the Goldilocks solution" of 25-26 °C is probably optimal. This should be combined with providing animals with nesting material so that they can construct nests to generate microclimates that are within their own control. Providing copious nesting material has additional spin-off advantages in terms of increasing environmental enrichment. Ultimately, however, advocating a single temperature to mimic human physiology is plagued by the problem that humans vary widely in the temperature environments they experience, with consequences for human disease. Hence studying responses at a range of temperatures may provide the greatest insights and translational potential.
Collapse
Affiliation(s)
- Min Li
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen, Institutes of Advanced Technology, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Aberdeen, Scotland, UK
| | - John R Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen, Institutes of Advanced Technology, Shenzhen, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- School of Biological Sciences, University of Aberdeen, Scotland, UK.
| |
Collapse
|
35
|
Chen X, Bollinger E, Cunio T, Damilano F, Stansfield JC, Pinkus CA, Kreuser S, Hirenallur-Shanthappa DK, Roth Flach RJ. An assessment of thermoneutral housing conditions on murine cardiometabolic function. Am J Physiol Heart Circ Physiol 2021; 322:H234-H245. [PMID: 34919456 DOI: 10.1152/ajpheart.00461.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse models are used to model human diseases and perform pharmacological efficacy testing to advance therapies to humans; most of these studies are conducted in room temperature conditions. At room temperature (22°C), mice are cold stressed and must utilize brown adipose tissue (BAT) to maintain body temperature. This cold stress increases catecholamine tone to maintain adipocyte lipid release via lipolysis, which will fuel adaptive thermogenesis. Maintaining rodents at thermoneutral temperatures (28°C) ameliorates the need for adaptive thermogenesis, thus reducing catecholamine tone and BAT activity. Cardiovascular tone is also determined by catecholamine levels in rodents, as beta adrenergic stimuli are primary drivers of not only lipolytic, but also ionotropic and chronotropic responses. As mice have increased catecholamine tone at room temperature, we investigated how thermoneutral housing conditions would impact cardiometabolic function. Here, we show a rapid and reversible effect of thermoneutrality on both heart rate and blood pressure in chow fed animals, which was blunted in animals fed high fat diet. Animals subjected to transverse aortic constriction displayed compensated hypertrophy at room temperature, while animals displayed less hypertrophy and trends towards worse systolic function at thermoneutrality. Despite these dramatic changes in blood pressure and heart rate at thermoneutral housing conditions, enalapril effectively improved cardiac hypertrophy and gene expression alterations. There were surprisingly few differences in cardiac parameters in high fat fed animals at thermoneutrality. Overall, these data suggest that thermoneutral housing may alter some aspects of cardiac remodeling in preclinical mouse models of heart failure.
Collapse
Affiliation(s)
- Xian Chen
- Comparative Medicine, Pfizer Inc. Cambridge MA, United States
| | - Eliza Bollinger
- Internal Medicine Research Unit, Pfizer Inc. Cambridge MA, United States
| | - Teresa Cunio
- Comparative Medicine, Pfizer Inc. Cambridge MA, United States
| | - Federico Damilano
- Internal Medicine Research Unit, Pfizer Inc. Cambridge MA, United States
| | | | - Cynthia A Pinkus
- Internal Medicine Research Unit, Pfizer Inc. Cambridge MA, United States
| | - Steven Kreuser
- Comparative Medicine, Pfizer Inc. Cambridge MA, United States
| | | | | |
Collapse
|
36
|
Brzęk P, Gębczyński A, Selewestruk P, Książek A, Sadowska J, Konarzewski M. Significance of variation in basal metabolic rate in laboratory mice for translational experiments. J Comp Physiol B 2021; 192:161-169. [PMID: 34595579 PMCID: PMC8816319 DOI: 10.1007/s00360-021-01410-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022]
Abstract
The basal metabolic rate (BMR) accounts for 60–70% of the daily energy expenditure (DEE) in sedentary humans and at least 50% of the DEE in laboratory mice in the thermoneutral zone. Surprisingly, however, the significance of the variation in the BMR is largely overlooked in translational research using such indices as physical activity level (PAL), i.e., the ratio of DEE/BMR. In particular, it is unclear whether emulation of human PAL in mouse models should be carried out within or below the thermoneutral zone. It is also unclear whether physical activity within the thermoneutral zone is limited by the capacity to dissipate heat generated by exercise and obligatory metabolic processes contributing to BMR. We measured PAL and spontaneous physical activity (SPA) in laboratory mice from two lines, divergently selected towards either high or low level of BMR, and acclimated to 30 °C (i.e., the thermoneutral zone), 23 or 4 °C. The mean PAL did not differ between both lines in the mice acclimated to 30 °C but became significantly higher in the low BMR mouse line at the lower ambient temperatures. Acclimation to 30 °C reduced the mean locomotor activity but did not affect the significant difference observed between the selected lines. We conclude that carrying out experiments within the thermoneutral zone can increase the consistency of translational studies aimed at the emulation of human energetics, without affecting the variation in physical activity correlated with BMR.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Andrzej Gębczyński
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Piotr Selewestruk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Aneta Książek
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Julita Sadowska
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Marek Konarzewski
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| |
Collapse
|
37
|
Škop V, Xiao C, Liu N, Gavrilova O, Reitman ML. The effects of housing density on mouse thermal physiology depend on sex and ambient temperature. Mol Metab 2021; 53:101332. [PMID: 34478905 PMCID: PMC8463779 DOI: 10.1016/j.molmet.2021.101332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Objective To improve understanding of mouse energy homeostasis and its applicability to humans, we quantitated the effects of housing density on mouse thermal physiology in both sexes. Methods Littermate wild type and Brs3-null mice were single- or group- (three per cage) housed and studied by indirect calorimetry with continuous measurement of core body temperature, energy expenditure, physical activity, and food intake. Results At 23 °C, below thermoneutrality, single-housed males had a lower body temperature and unchanged metabolic rate compared to group-housed controls. In contrast, single-housed females maintained a similar body temperature to group-housed controls by increasing their metabolic rate. With decreasing ambient temperature below 27 °C, only group-housed mice decreased their heat conductance, likely due to huddling, thus interfering with the energy expenditure vs ambient temperature relationship described by Scholander. In a hot environment (35 °C), the single-housed mice were less heat stressed. Upon fasting, single-housed mice had larger reductions in body temperature, with male mice having more torpor episodes of similar duration and female mice having a similar number of torpor episodes that lasted longer. Qualitatively, the effects of housing density on thermal physiology of Brs3-null mice generally mimicked the effects in controls. Conclusions Single housing is more sensitive than group housing for detecting thermal physiology phenotypes. Single housing increases heat loss and amplifies the effects of fasting or a cold environment. Male and female mice utilize different thermoregulatory strategies to respond to single housing. • Changing housing density changes thermal physiology and metabolic rate. • Singly housed mice are more affected by fasting and by cold temperatures. • Single housing is more sensitive than group housing for detecting thermal phenotypes. • Certain principles of thermal physiology are masked by group housing. • Male and female mice respond differently to single housing.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Effects of fasting on skeletal muscles and body fat of adult and old C57BL/6J mice. Exp Gerontol 2021; 152:111474. [PMID: 34252523 DOI: 10.1016/j.exger.2021.111474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Fasting improves metabolic health, but is also associated with loss of lean body mass. We investigated if old mice are less resistant to fasting-induce muscle wasting than adult mice. We compared changes in skeletal muscles and fat distribution in C57BL/6J mice subjected to 48-hour fasting at adult (6-month old) or old (24-month old) age. Old mice lost less weight (11.9 ± 1.5 vs 16.9 ± 2.8%, p < 0.001) and showed less (p < 0.01) pronounced muscle wasting than adult mice. Extensor digitorum longus (EDL) muscle force decreased only in adult mice after fasting. Serum IGF-1 levels were higher (p < 0.01) and showed greater (p < 0.01) decline in adult mice compared to old mice. Phosphorylation of 4EBP1 was reduced in the gastrocnemius muscles of adult mice only. Energy expenditure was slower in old mice and showed smaller fasting-induced decline than in adult mice when adjusted for variations in physical activity. There was a loss of fat mass in both age groups, but it was more pronounced in adult mice than old mice. Our results suggest that ageing-related decrease in metabolic rate protects old mice from skeletal muscle wasting during fasting.
Collapse
|
39
|
Zhang Z, Ding S, Yang X, Ge J. Analysis of Immune Associated Co-Expression Networks Reveals Immune-Related Long Non-Coding RNAs during MI in the Presence and Absence of HDC. Int J Mol Sci 2021; 22:7401. [PMID: 34299019 PMCID: PMC8303379 DOI: 10.3390/ijms22147401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction (MI) is one of the most common cardiovascular diseases. Although previous studies have shown that histidine decarboxylase (HDC), a histamine-synthesizing enzyme, is involved in the stress response and heart remodeling after MI, the mechanism underlying it remains unclear. In this study, using Hdc-deficient mice (Hdc-/- mice), we established an acute myocardial infarction mouse model to explore the potential roles of Hdc/histamine in cardiac immune responses. Comprehensive analysis was performed on the transcriptomes of infarcted hearts. Differentially expressed gene (DEG) analysis identified 2126 DEGs in Hdc-deficient groups and 1013 in histamine-treated groups. Immune related pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then we used the ssGSEA algorithm to evaluate 22 kinds of infiltrated immunocytes, which indicated that myeloid cells and T memory/follicular helper cells were tightly regulated by Hdc/histamine post MI. The relationships of lncRNAs and the Gene Ontology (GO) functions of protein-coding RNAs and immunocytes were dissected in networks to unveil immune-associated lncRNAs and their roles in immune modulation after MI. Finally, we screened out and verified four lncRNAs, which were closely implicated in tuning the immune responses after MI, including ENSMUST00000191157, ENSMUST00000180693 (PTPRE-AS1), and ENSMUST-00000182785. Our study highlighted the HDC-regulated myeloid cells as a driving force contributing to the government of transmission from innate immunocytes to adaptive immunocytes in the progression of the injury response after MI. We identified the potential role of the Hdc/histamine-lncRNAs network in regulating cardiac immune responses, which may provide novel promising therapeutic targets for further promoting the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (Z.Z.); (S.D.)
| | - Suling Ding
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (Z.Z.); (S.D.)
| | - Xiangdong Yang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (Z.Z.); (S.D.)
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (Z.Z.); (S.D.)
- NHC Key Laboratory of Viral Heart Diseases, Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
McKie GL, Wright DC. The confounding effects of sub-thermoneutral housing temperatures on aerobic exercise-induced adaptations in mouse subcutaneous white adipose tissue. Biol Lett 2021; 17:20210171. [PMID: 34186002 DOI: 10.1098/rsbl.2021.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mice are the most commonly used model organism for human biology, and failure to acknowledge fundamental differences in thermal biology between these species has confounded the study of adipose tissue metabolism in mice and its translational relevance to humans. Here, using exercise biochemistry as an example, we highlight the subtle yet detrimental effects sub-thermoneutral housing temperatures can have on the study of adipose tissue metabolism in mice. We encourage academics and publishers to consider ambient housing temperature as a key determinant in the methodological conception and reporting of all research on rodent white adipose tissue metabolism.
Collapse
Affiliation(s)
- Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
41
|
Shinde AB, Song A, Wang QA. Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Front Endocrinol (Lausanne) 2021; 12:651763. [PMID: 33953697 PMCID: PMC8092391 DOI: 10.3389/fendo.2021.651763] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
Brown adipocyte in brown adipose tissue (BAT) specializes in expending energy through non-shivering thermogenesis, a process that produces heat either by uncoupling protein 1 (UCP1) dependent uncoupling of mitochondrial respiration or by UCP1 independent mechanisms. Apart from this, there is ample evidence suggesting that BAT has an endocrine function. Studies in rodents point toward its vital roles in glucose and lipid homeostasis, making it an important therapeutic target for treating metabolic disorders related to morbidities such as obesity and type 2 diabetes. The rediscovery of thermogenically active BAT depots in humans by several independent research groups in the last decade has revitalized interest in BAT as an even more promising therapeutic intervention. Over the last few years, there has been overwhelming interest in understanding brown adipocyte's developmental lineages and how brown adipocyte uniquely utilizes energy beyond UCP1 mediated uncoupling respiration. These new discoveries would be leveraged for designing novel therapeutic interventions for metabolic disorders.
Collapse
Affiliation(s)
- Abhijit Babaji Shinde
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| | - Qiong A. Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
42
|
Aslanidi KB, Kharakoz DP. Limits of temperature adaptation and thermopreferendum. Cell Biosci 2021; 11:69. [PMID: 33823918 PMCID: PMC8025563 DOI: 10.1186/s13578-021-00574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Managing the limits of temperature adaptation is relevant both in medicine and in biotechnology. There are numerous scattered publications on the identification of the temperature limits of existence for various organisms and using different methods. Dmitry Petrovich Kharakoz gave a general explanation for many of these experimental results. The hypothesis implied that each cycle of synaptic exocytosis includes reversible phase transitions of lipids of the presynaptic membrane due to the entry and subsequent removal of calcium ions from the synaptic terminal. The correspondence of the times of phase transitions has previously been experimentally shown on isolated lipids in vitro. In order to test the hypothesis of D.P. Kharakoz in vivo, we investigated the influence of the temperature of long-term acclimatization on the temperature of heat and cold shock, as well as on the kinetics of temperature adaptation in zebrafish. Testing the hypothesis included a comparison of our experimental results with the results of other authors obtained on various models from invertebrates to humans. RESULTS The viability polygon for Danio rerio was determined by the minimum temperature of cold shock (about 6 °C), maximum temperature of heat shock (about 43 °C), and thermopreferendum temperature (about 27 °C). The ratio of the temperature range of cold shock to the temperature range of heat shock was about 1.3. These parameters obtained for Danio rerio describe with good accuracy those for the planarian Girardia tigrina, the ground squirrel Sermophilus undulatus, and for Homo sapiens. CONCLUSIONS The experimental values of the temperatures of cold shock and heat shock and the temperature of the thermal preferendum correspond to the temperatures of phase transitions of the lipid-protein composition of the synaptic membrane between the liquid and solid states. The viability range for zebrafish coincides with the temperature range, over which enzymes function effectively and also coincides with the viability polygons for the vast majority of organisms. The boundaries of the viability polygon are characteristic biological constants. The viability polygon of a particular organism is determined not only by the genome, but also by the physicochemical properties of lipids that make up the membrane structures of synaptic endings. The limits of temperature adaptation of any biological species are determined by the temperature range of the functioning of its nervous system.
Collapse
Affiliation(s)
- K B Aslanidi
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia, 142290.
| | - D P Kharakoz
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia, 142290
| |
Collapse
|
43
|
Abstract
Laboratory mice have provided invaluable insight into mammalian immune systems. Yet the immune phenotypes of mice bred and maintained in conventional laboratory conditions often differ from the immune phenotypes of wild mammals. Recent work to naturalize the environmental experience of inbred laboratory mice-to take them where the wild things are (to borrow a phrase from Maurice Sendak), via approaches such as construction of exposure histories, provision of fecal transplants or surrogate mothering by wild mice, and rewilding-is poised to expand understanding, complementing genetic and phylogenetic research on how natural selection has shaped mammalian immune systems while improving the translational potential of mouse research.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
44
|
|
45
|
Giles ED, Wellberg EA. Preclinical Models to Study Obesity and Breast Cancer in Females: Considerations, Caveats, and Tools. J Mammary Gland Biol Neoplasia 2020; 25:237-253. [PMID: 33146844 PMCID: PMC8197449 DOI: 10.1007/s10911-020-09463-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Obesity increases the risk for breast cancer and is associated with poor outcomes for cancer patients. A variety of rodent models have been used to investigate these relationships; however, key differences in experimental approaches, as well as unique aspects of rodent physiology lead to variability in how these valuable models are implemented. We combine expertise in the development and implementation of preclinical models of obesity and breast cancer to disseminate effective practices for studies that integrate these fields. In this review, we share, based on our experience, key considerations for model selection, highlighting important technical nuances and tips for use of preclinical models in studies that integrate obesity with breast cancer risk and progression. We describe relevant mouse and rat paradigms, specifically highlighting differences in breast tumor subtypes, estrogen production, and strategies to manipulate hormone levels. We also outline options for diet composition and housing environments to promote obesity in female rodents. While we have applied our experience to understanding obesity-associated breast cancer, the experimental variables we incorporate have relevance to multiple fields that investigate women's health.
Collapse
Affiliation(s)
- Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, TX, USA.
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| |
Collapse
|
46
|
Xiao Y, Kronenfeld JM, Renquist BJ. Feed intake-dependent and -independent effects of heat stress on lactation and mammary gland development. J Dairy Sci 2020; 103:12003-12014. [PMID: 33041042 DOI: 10.3168/jds.2020-18675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022]
Abstract
With a growing population, a reliable food supply is increasingly important. Heat stress reduces livestock meat and milk production. Genetic selection of high-producing animals increases endogenous heat production, while climate change increases exogenous heat exposure. Both sources of heat exacerbate the risk of heat-induced depression of production. Rodents are valuable models to understand mechanisms conserved across species. Heat exposure suppresses feed intake across homeothermic species including rodents and production animal species. We assessed the response to early-mid lactation or late-gestation heat exposure on milk production and mammary gland development/function, respectively. Using pair-fed controls we experimentally isolated the feed intake-dependent and -independent effects of heat stress on mammary function and mass. Heat exposure (35°C, relative humidity 50%) decreased daily feed intake. When heat exposure occurred during lactation, hypophagia accounted for approximately 50% of the heat stress-induced hypogalactia. Heat exposure during middle to late gestation suppressed feed intake, which was fully responsible for the lowered mammary gland weight of dams at parturition. However, the impaired mammary gland function in heat-exposed dams measured by metabolic rate and lactogenesis could not be explained by depressed feed consumption. In conclusion, mice recapitulate the depressed milk production and mammary gland development observed in dairy species while providing insight regarding the role of feed intake. This opens the potential to apply genetic, experimental, and pharmacological models unique to mice to identify the mechanism by which heat is limiting animal production.
Collapse
Affiliation(s)
- Yao Xiao
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson 85721; Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Jason M Kronenfeld
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson 85721
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson 85721.
| |
Collapse
|
47
|
Parsanathan R, Achari AE, Manna P, Jain SK. l-Cysteine and Vitamin D Co-Supplementation Alleviates Markers of Musculoskeletal Disorders in Vitamin D-Deficient High-Fat Diet-Fed Mice. Nutrients 2020; 12:nu12113406. [PMID: 33171932 PMCID: PMC7694620 DOI: 10.3390/nu12113406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin D (VD) deficiency is associated with musculoskeletal disorders. This study examines whether co-supplementation of l-cysteine (LC) and VD is better than monotherapy with LC or VD at alleviating musculoskeletal dyshomeostasis in the skeletal muscle of VD-deficient high-fat diet (HFD-VD-) fed mice. Mice were fed a healthy diet or an HFD; for VD-deficient animals, the mice were maintained on a HFD-VD-diet (16 weeks); after the first 8 weeks, the HFD-VD-diet-fed mice were supplemented for another 8 weeks with LC, VD-alone, or the same doses of LC + VD by oral gavage. Saline and olive oil served as controls. Myotubes were exposed with high-glucose, palmitate, Monocyte Chemoattractant Protein 1 (MCP-1), and Tumor Necrosis Factor (TNF), to mimic the in vivo microenvironment. In vitro deficiencies of glutathione and hydrogen sulfide were induced by knockdown of GCLC and CSE genes. Relative gene expression of biomarkers (myogenic: MyoD, Mef2c, Csrp3; muscle dystrophy: Atrogin1, Murf1, and Myostatin; bone modeling and remodeling: RANK, RANKL, OPG) were analyzed using qRT-PCR. Co-supplementatoin with LC + VD showed beneficial effects on gene expression of myogenic markers and OPG but reduced markers of dystrophy, RANK/RANKL in comparison to LC or VD alone-supplementation. In vitro myotubes treated with glutathione (GSH) precursors also showed a positive effect on OPG and the myogenesis genes, and inhibited RANK/RANKL and muscle-dystrophy markers. This study reveals that the co-supplementation of LC with VD significantly alleviates the markers of musculoskeletal disorders in the skeletal muscle better than monotherapy with LC or VD in HFD-VD-fed mice.
Collapse
|
48
|
snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 2020; 587:98-102. [PMID: 33116305 DOI: 10.1038/s41586-020-2856-x] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
|
49
|
Morris EM, Noland RD, Allen JA, McCoin CS, Xia Q, Koestler DC, Shook RP, Lighton JR, Christianson JA, Thyfault JP. Difference in Housing Temperature-Induced Energy Expenditure Elicits Sex-Specific Diet-Induced Metabolic Adaptations in Mice. Obesity (Silver Spring) 2020; 28:1922-1931. [PMID: 32857478 PMCID: PMC7511436 DOI: 10.1002/oby.22925] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study was to test whether increased energy expenditure (EE), independent of physical activity, reduces acute diet-induced weight gain through tighter coupling of energy intake to energy demand and enhanced metabolic adaptations. METHODS Indirect calorimetry and quantitative magnetic resonance imaging were used to assess energy metabolism and body composition during 7-day high-fat/high-sucrose (HFHS) feeding in male and female mice housed at divergent temperatures (20°C vs. 30°C). RESULTS As previously observed, 30°C housing resulted in lower total EE and energy intake compared with 20°C mice regardless of sex. Interestingly, housing temperature did not impact HFHS-induced weight gain in females, whereas 30°C male mice gained more weight than 20°C males. Energy intake coupling to EE during HFHS feeding was greater in 20°C versus 30°C housing, with females greater at both temperatures. Fat mass gain was greater in 30°C mice compared with 20°C mice, whereas females gained less fat mass than males. Strikingly, female 20°C mice gained considerably more fat-free mass than 30°C mice. Reduced fat mass gain was associated with greater metabolic flexibility to HFHS, whereas fat-free mass gain was associated with diet-induced adaptive thermogenesis. CONCLUSIONS These data reveal that EE and sex interact to impact energy homeostasis and metabolic adaptation to acute HFHS feeding, altering weight gain and body composition change.
Collapse
Affiliation(s)
- E. Matthew Morris
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Roberto D. Noland
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie A. Allen
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Colin S. McCoin
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Qing Xia
- Dept. of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C. Koestler
- Dept. of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Robin P. Shook
- Dept. of Pediatrics, Children’s Mercy Hospital, Kansas City, MO
| | | | - Julie A. Christianson
- Dept. of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - John P. Thyfault
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Kansas City VA Medical Center-Research Service, Kansas City, Missouri
| |
Collapse
|
50
|
Pedroso JAB, Wasinski F, Donato J. Prolonged fasting induces long-lasting metabolic consequences in mice. J Nutr Biochem 2020; 84:108457. [PMID: 32738733 DOI: 10.1016/j.jnutbio.2020.108457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
To endure prolonged fasting, animals undergo important acute physiological adjustments. However, whether severe fasting also leads to long-term metabolic adaptations is largely unknown. Forty-eight-hour fasting caused a pronounced weight loss in adult C57BL/6 male mice. Seven days of refeeding increased body adiposity to levels above baseline, whereas fasting-induced reductions in lean body mass and energy expenditure were not fully recovered. Respiratory exchange ratio and locomotor activity also remained altered. A fasting/refeeding cycle led to persistent suppression of Pomc mRNA levels and significant changes in the expression of histone deacetylases and DNA methyltransferases in the hypothalamus. Additionally, histone acetylation in the ventromedial nucleus of the hypothalamus was reduced by prolonged fasting and remained suppressed after refeeding. Mice subjected to 48-h fasting 30 days earlier exhibited higher body weight and fat mass compared to aged-matched animals that were never food-deprived. Furthermore, a previous fasting experience altered the changes in body weight, lean mass, energy expenditure and locomotor activity induced by a second cycle of fasting and refeeding. Notably, when acutely exposed to high-palatable/high-fat diet, mice that went through cumulative fasting episodes presented higher calorie intake and reduced energy expenditure and fat oxidation, compared to mice that had never been subjected to fasting. When chronically exposed to high-fat diet, mice that experienced cumulative fasting episodes showed higher gain of body and fat mass and reduced energy expenditure and calorie intake. In summary, cumulative episodes of prolonged fasting lead to hypothalamic epigenetic changes and long-lasting metabolic adaptations in mice.
Collapse
Affiliation(s)
- João A B Pedroso
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, 05508-000, Brazil
| | - Jose Donato
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, 05508-000, Brazil.
| |
Collapse
|