1
|
Elkins C, Ye C, Sivasami P, Mulpur R, Diaz-Saldana PP, Peng A, Xu M, Chiang YP, Moll S, Rivera-Rodriguez DE, Cervantes-Barragan L, Wu T, Au-Yeung BB, Scharer CD, Ford ML, Kissick H, Li C. Obesity reshapes regulatory T cells in the visceral adipose tissue by disrupting cellular cholesterol homeostasis. Sci Immunol 2025; 10:eadl4909. [PMID: 39792637 DOI: 10.1126/sciimmunol.adl4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/08/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025]
Abstract
Regulatory T cells (Tregs) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT Tregs under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2hi VAT Treg subsets. Treg-specific deletion of Srebf2, the master regulator of cholesterol homeostasis, selectively reduced ST2hi VAT Tregs, increasing VAT inflammation and insulin resistance. Single-cell RNA/T cell receptor (TCR) sequencing revealed a specific loss and reduced clonal expansion of ST2hi VAT Treg subsets after Srebf2 deletion. Srebf2-mediated cholesterol homeostasis potentiated strong TCR signaling, which preferentially promoted ST2hi VAT Treg accumulation. However, long-term high-fat diet feeding disrupted VAT Treg cholesterol homeostasis and impaired clonal expansion of the ST2hi subset. Restoring Treg cholesterol homeostasis rescued VAT Treg accumulation in obese mice, suggesting that modulation of cholesterol homeostasis could be a promising strategy for Treg-targeted therapies in obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chengyu Ye
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Roy Mulpur
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela P Diaz-Saldana
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Peng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miaoer Xu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yeun-Po Chiang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Samara Moll
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dormarie E Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byron B Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haydn Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
de Lima Camillo LP, Asif MH, Horvath S, Larschan E, Singh R. Histone mark age of human tissues and cell types. SCIENCE ADVANCES 2025; 11:eadk9373. [PMID: 39742485 DOI: 10.1126/sciadv.adk9373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Aging is a complex and multifaceted process involving many epigenetic alterations. One key area of interest in aging research is the role of histone modifications, which can dynamically regulate gene expression. Here, we conducted a pan-tissue analysis of the dynamics of seven key histone modifications during human aging. Our histone-specific age prediction models showed surprisingly accurate performance, proving resilient to experimental and artificial noise. Simulation experiments for comparison with DNA methylation age predictors revealed competitive performance. Moreover, gene set enrichment analysis uncovered several critical developmental pathways for age prediction. Different from DNA methylation age predictors, genes known to be involved in aging biology are among the most important ones for the models. Last, we developed a pan-tissue pan-histone age predictor, suggesting that age-related epigenetic information is degenerated across the epigenome. This research highlights the power of histone marks as input for creating robust age predictors and opens avenues for understanding the role of epigenetic changes during aging.
Collapse
Affiliation(s)
- Lucas Paulo de Lima Camillo
- School of Biological Sciences, University of Cambridge, Cambridge, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Erica Larschan
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Zhao Z, Wang P, Li Z, Wei X, Li S, Lu X, Dai S, Huang B, Man Z, Li W. Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration. J Nanobiotechnology 2024; 22:786. [PMID: 39707367 DOI: 10.1186/s12951-024-02965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment. Here, in this study, we propose to use a combination of stem cell-recruiting hydrogels and lipid nanoparticles (LNPs) that modulate cholesterol metabolism to jointly promote a regenerative microenvironment. Specifically, we first developed an injectable, bioactive hydrogel composed of self-assembling peptide nanofibers that recruits endogenous synovial stem cells (SMSCs) and promotes their chondrogenic differentiation. At the same time, LNPs that regulate cholesterol metabolism are incorporated into the hydrogel and slowly released, thereby improving the inflammatory environment of OA. Enhancements were noted in the inflammatory conditions associated with OA, alongside the successful attraction of mesenchymal stem cells (MSCs) from the synovial membrane. These cells were then observed to differentiate into chondrocytes, contributing to effective cartilage restoration and chondrocyte regeneration, thereby offering a promising approach for OA treatment. In summary, this approach provides a feasible siRNA-based therapeutic option, offering a potential nonsurgical solution for treatment of OA.
Collapse
Affiliation(s)
- Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Ziyang Li
- Department of Sports Medicine & Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xingchen Wei
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, People's Republic of China.
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
4
|
von Voss L, Arora T, Assis J, Kuentzel KB, Arfelt KN, Nøhr MK, Grevengoed TJ, Arumugam M, Mandrup-Poulsen T, Rosenkilde MM. Sexual Dimorphism in the Immunometabolic Role of Gpr183 in Mice. J Endocr Soc 2024; 8:bvae188. [PMID: 39545055 PMCID: PMC11561910 DOI: 10.1210/jendso/bvae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/17/2024] Open
Abstract
Context Excessive eating and intake of a Western diet negatively affect the intestinal immune system, resulting in compromised glucose homeostasis and lower gut bacterial diversity. The G protein-coupled receptor GPR183 regulates immune cell migration and intestinal immune response and has been associated with tuberculosis, type 1 diabetes, and inflammatory bowel diseases. Objective We hypothesized that with these implications, GPR183 has an important immunometabolic role and investigated this using a global Gpr183 knockout mouse model. Methods Wild-type (WT) and Gpr183-deficient (Gpr183-/-) mice were fed a high-fat, high-sucrose diet (HFSD) for 15 weeks. We investigated changes in weight, body composition, fecal immunoglobulin A (IgA) levels, fecal microbiome, and glucose tolerance before and after the diet. Macrophage infiltration into visceral fat was determined by flow cytometry, and hepatic gene expression was measured. Results A sexual dimorphism was discovered, whereby female Gpr183-/- mice showed adverse metabolic outcomes compared to WT counterparts with inferior glucose tolerance, lower fecal IgA levels, and increased macrophage infiltration in visceral fat. In contrast, male Gpr183-/- mice had significantly lower fasting blood glucose after diet than male WT mice. Liver gene expression showed reduced inflammation and macrophage markers in Gpr183-/- livers, regardless of sex, while the pancreatic islet area did not differ between the groups. No conclusive differences were found after microbiome sequencing. Conclusion Gpr183 maintains metabolic homeostasis in female but not in male mice independent of diet. If confirmed in humans, future therapy targeting GPR183 should consider this sexual dimorphism.
Collapse
Affiliation(s)
- Liv von Voss
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Juliana Assis
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, SE 223 63 Lund, Sweden
| | - Katharina B Kuentzel
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Kristine N Arfelt
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mark K Nøhr
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Trisha J Grevengoed
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Lodge-Tulloch NA, Paré JF, Couture C, Bernier E, Cotechini T, Girard S, Graham CH. Maternal Innate Immune Reprogramming After Complicated Pregnancy. Am J Reprod Immunol 2024; 92:e13908. [PMID: 39119763 DOI: 10.1111/aji.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
PROBLEM Preeclampsia (PE) and fetal growth restriction (FGR) are often associated with maternal inflammation and an increased risk of cardiovascular and metabolic disease in the affected mothers. The mechanism responsible for this increased risk of subsequent disease may involve reprogramming of innate immune cells, characterized by epigenetic modifications. METHOD OF STUDY Circulating monocytes from women with PE, FGR, or uncomplicated pregnancies (control) were isolated before labor. Cytokine release from monocytes following exposure to lipopolysaccharide (LPS) and the presence of lysine 4-trimethylated histone 3 (H3K4me3) within TNF promoter sequences were evaluated. Single-cell transcriptomic profiles of circulating monocytes from women with PE or uncomplicated pregnancies were assessed. RESULTS Monocytes from women with PE or FGR exhibited increased IL-10 secretion and decreased IL-1β and GM-CSF secretion in response to LPS. While TNFα secretion was not significantly different in cultures of control monocytes versus those from complicated pregnancies with or without LPS exposure, monocytes from complicated pregnancies had significantly decreased levels of H3K4me3 associated with TNF promoter sequences. Cluster quantification and pathway analysis of differentially expressed genes revealed an increased proportion of anti-inflammatory myeloid cells and a lower proportion of inflammatory non-classical monocytes among the circulating monocyte population in women with PE. CONCLUSIONS Monocytes from women with PE and FGR exhibit an immune tolerance phenotype before initiation of labor. Further investigation is required to determine whether this tolerogenic phenotype persists after the affected pregnancy and contributes to increased risk of subsequent disease.
Collapse
Affiliation(s)
| | - Jean-François Paré
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Camille Couture
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Elsa Bernier
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Quebec, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Zhang L, Fang Z, Zhu Q, Yang S, Fu J, Sun Z, Lu G, Wei C, Zhang Z, Lee K, Zhong Y, Liu R, He JC. Cholesterol 25-Hydroxylase Protects Against Diabetic Kidney Disease by Regulating ADP Ribosylation Factor 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309642. [PMID: 38816950 PMCID: PMC11304234 DOI: 10.1002/advs.202309642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Indexed: 06/01/2024]
Abstract
Cholesterol 25-hydroxylase (CH25H), an enzyme involved in cholesterol metabolism, regulates inflammatory responses and lipid metabolism. However, its role in kidney disease is not known. The author found that CH25H transcript is expressed mostly in glomerular and peritubular endothelial cells and that its expression increased in human and mouse diabetic kidneys. Global deletion of Ch25h in Leprdb/db mice aggravated diabetic kidney disease (DKD), which is associated with increased endothelial cell apoptosis. Treatment of 25-hydroxycholesterol (25-HC), the product of CH25H, alleviated kidney injury in Leprdb/db mice. Mechanistically, 25-HC binds to GTP-binding protein ADP-ribosylation factor 4 (ARF4), an essential protein required for maintaining protein transport in the Golgi apparatus. Interestingly, ARF4's GTPase-activating protein ASAP1 is also predominantly expressed in endothelial cells and its expression increased in DKD. Suppression of ARF4 activity by deleting ARF4 or overexpressing ASAP1 results in endothelial cell death. These results indicate that 25-HC binds ARF4 to inhibit its interaction with ASAP1, and thereby resulting in enhanced ARF4 activity to confer renoprotection. Therefore, treatment of 25-HC improves kidney injury in DKD in part by restoring ARF4 activity to maintain endothelial cell survival. This study provides a novel mechanism and a potential new therapy for DKD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - Zhengying Fang
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - Qingqing Zhu
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - Shumin Yang
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - Jia Fu
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - Zeguo Sun
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - Geming Lu
- Division of EndocrinologyDiabetes and Bone DiseasesIcahn School of Medicine at Mount SinaiDiabetesObesity and Metabolism InstituteOne Gustave L. Levy PlaceNew YorkNY10029USA
| | - Chengguo Wei
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - Zhi Zhang
- Département de Génétique Laboratoire national de santé DudelangeDudelangeL‐3555Luxembourg
| | - Kyung Lee
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - Yifei Zhong
- Division of NephrologyLonghua HospitalShanghai University of Traditional Chinese Medicine725 South Wanping RoadShanghai200032China
| | - Ruijie Liu
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
| | - John Cijiang He
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNYBox 1243USA
- Renal SectionJames J Peter Veterans Administration Medical CenterBronxNY10468USA
| |
Collapse
|
7
|
Fang Z, Liu R, Xie J, He JC. Molecular mechanism of renal lipid accumulation in diabetic kidney disease. J Cell Mol Med 2024; 28:e18364. [PMID: 38837668 PMCID: PMC11151220 DOI: 10.1111/jcmm.18364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end stage renal disease with unmet clinical demands for treatment. Lipids are essential for cell survival; however, renal cells have limited capability to metabolize overloaded lipids. Dyslipidaemia is common in DKD patients and renal ectopic lipid accumulation is associated with disease progression. Unveiling the molecular mechanism involved in renal lipid regulation is crucial for exploring potential therapeutic targets. In this review, we focused on the mechanism underlying cholesterol, oxysterol and fatty acid metabolism disorder in the context of DKD. Specific regulators of lipid accumulation in different kidney compartment and TREM2 macrophages, a lipid-related macrophages in DKD, were discussed. The role of sodium-glucose transporter 2 inhibitors in improving renal lipid accumulation was summarized.
Collapse
Affiliation(s)
- Zhengying Fang
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruijie Liu
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jingyuan Xie
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Renal SectionJames J Peters Veterans Affair Medical CenterBronxNew YorkUSA
| |
Collapse
|
8
|
Fan D, Geng Q, Wang B, Wang X, Xia Y, Yang L, Zhang Q, Deng T, Xu Y, Zhao H, Liu B, Lu C, Gu X, Xiao C. Hypoxia-induced ALKBH5 aggravates synovial aggression and inflammation in rheumatoid arthritis by regulating the m6A modification of CH25H. Clin Immunol 2024; 261:109929. [PMID: 38331303 DOI: 10.1016/j.clim.2024.109929] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/20/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Previous studies have shown that epigenetic factors are involved in the occurrence and development of rheumatoid arthritis (RA). However, the role of N6-methyladenosine (m6A) methylation in RA has not been determined. The aim of this study was to investigate the role and regulatory mechanisms of hypoxia-induced expression of the m6A demethylase alkB homolog 5 (ALKBH5) in RA fibroblast-like synoviocytes (FLSs). Synovial tissues were collected from RA and osteoarthritis (OA) patients, and RA FLSs were obtained. ALKBH5 expression in RA FLSs and collagen-induced arthritis (CIA) model rats was determined using quantitative reverse transcription-PCR (qRT-PCR), western blotting and immunohistochemistry (IHC). Using ALKBH5 overexpression and knockdown, we determined the role of ALKBH5 in RA FLS aggression and inflammation. The role of ALKBH5 in RA FLS regulation was explored using m6A-methylated RNA sequencing and methylated RNA immunoprecipitation coupled with quantitative real-time PCR. The expression of ALKBH5 was increased in RA synovial tissues, CIA model rats and RA FLSs, and a hypoxic environment increased the expression of ALKBH5 in FLSs. Increased expression of ALKBH5 promoted the proliferation and migration of RA-FLSs and inflammation. Conversely, decreased ALKBH5 expression inhibited the migration of RA-FLSs and inflammation. Mechanistically, hypoxia-induced ALKBH5 expression promoted FLS aggression and inflammation by regulating CH25H mRNA stability. Our study elucidated the functional roles of ALKBH5 and mRNA m6A methylation in RA and revealed that the HIF1α/2α-ALKBH5-CH25H pathway may be key for FLS aggression and inflammation. This study provides a novel approach for the treatment of RA by targeting the HIF1α/2α-ALKBH5-CH25H pathway.
Collapse
Affiliation(s)
- Danping Fan
- China-Japan Friendship Hospital (Department of Emergency, Institute of Clinical Medical Sciences), Beijing 100029, China; Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qishun Geng
- China-Japan Friendship Hospital (Department of Emergency, Institute of Clinical Medical Sciences), Beijing 100029, China; China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xing Wang
- China-Japan Friendship Hospital (Department of Emergency, Institute of Clinical Medical Sciences), Beijing 100029, China; China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ya Xia
- China-Japan Friendship Hospital (Department of Emergency, Institute of Clinical Medical Sciences), Beijing 100029, China; China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Deng
- China-Japan Friendship Hospital (Department of Emergency, Institute of Clinical Medical Sciences), Beijing 100029, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Cheng Xiao
- China-Japan Friendship Hospital (Department of Emergency, Institute of Clinical Medical Sciences), Beijing 100029, China.
| |
Collapse
|
9
|
Irving-Pease EK, Refoyo-Martínez A, Barrie W, Ingason A, Pearson A, Fischer A, Sjögren KG, Halgren AS, Macleod R, Demeter F, Henriksen RA, Vimala T, McColl H, Vaughn AH, Speidel L, Stern AJ, Scorrano G, Ramsøe A, Schork AJ, Rosengren A, Zhao L, Kristiansen K, Iversen AKN, Fugger L, Sudmant PH, Lawson DJ, Durbin R, Korneliussen T, Werge T, Allentoft ME, Sikora M, Nielsen R, Racimo F, Willerslev E. The selection landscape and genetic legacy of ancient Eurasians. Nature 2024; 625:312-320. [PMID: 38200293 PMCID: PMC10781624 DOI: 10.1038/s41586-023-06705-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2023] [Indexed: 01/12/2024]
Abstract
The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.
Collapse
Affiliation(s)
- Evan K Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Alba Refoyo-Martínez
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - William Barrie
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Andrés Ingason
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
| | - Alice Pearson
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Anders Fischer
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
- Sealand Archaeology, Kalundborg, Denmark
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Alma S Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Ruairidh Macleod
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- UCL Genetics Institute, University College London, London, UK
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Eco-anthropologie, Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme, Paris, France
| | - Rasmus A Henriksen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tharsika Vimala
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew H Vaughn
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Leo Speidel
- UCL Genetics Institute, University College London, London, UK
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Aaron J Stern
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Gabriele Scorrano
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Abigail Ramsøe
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA
| | - Anders Rosengren
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
| | - Lei Zhao
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Astrid K N Iversen
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Daniel J Lawson
- Institute of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Thorfinn Korneliussen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct Hans, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Science, Curtin University, Perth, Western Australia, Australia
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Departments of Integrative Biology and Statistics, UC Berkeley, Berkeley, CA, USA.
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- MARUM Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
10
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
11
|
Fessler MB, Madenspacher JH, Baker PJ, Hilligan KL, Bohrer AC, Castro E, Meacham J, Chen SH, Johnson RF, McDonald JG, Martin NP, Tucker CJ, Mahapatra D, Cesta M, Mayer-Barber KD. Endogenous and Therapeutic 25-Hydroxycholesterols May Worsen Early SARS-CoV-2 Pathogenesis in Mice. Am J Respir Cell Mol Biol 2023; 69:638-648. [PMID: 37578898 DOI: 10.1165/rcmb.2023-0007oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-Hydroxycholesterol (25HC), a product of the activity of cholesterol-25-hydroxylase (CH25H) on cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, 25HC can also amplify inflammation and be converted by CYP7B1 (cytochrome P450 family 7 subfamily B member 1) to 7α,25-dihydroxycholesterol, a lipid with chemoattractant activity, via the G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2)/GPR183 (G protein-coupled receptor 183). Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that although 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 (angiotensin-converting enzyme 2) mouse model in vivo. Treatment with 25HC also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma proinflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points but no change in weight loss. Consistent with these findings, although Ch25h and 25HC were upregulated in the lungs of SARS-CoV-2-infected wild-type mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the β variant were similar to those in control animals. Taken together, endogenous 25HCs do not significantly regulate early SARS-CoV-2 replication or pathogenesis, and supplemental 25HC may have proinjury rather than therapeutic effects in SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey G McDonald
- Department of Molecular Genetics and
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, and
| | | | - Mark Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | | |
Collapse
|
12
|
Roozbehani M, Razizadeh MH, Keyvani H, Nejati F, Soleymani S, Mousavizadeh L. Expression Pattern of Cholesterol 25-Hydroxylase and Serum Level of 25-Hydroxycholesterol and Relevant Inflammatory Cytokines in Patients with Varying Disease Severity of COVID-19. Viral Immunol 2023; 36:610-616. [PMID: 37831916 DOI: 10.1089/vim.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25HC) showed antiviral effects against various viruses in vitro. CH25H expression is regulated in mice by pro-inflammatory cytokine interferons (IFNs) in mice but data on its possible correlation with IFNs in humans are still unclear. We examined gene expression of CH25H, IFN-α, and IFN-β and serum levels of 25HC in Iranian patients with mild and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Fifty intensive care unit (ICU) patients and outpatients with SARS-CoV-2 and 25 healthy controls were studied. Gene expression of CH25H and relevant inflammatory cytokines was quantified in peripheral blood mononuclear cells by real-time polymerase chain reaction. The expression of CH25H and serum levels of 25HC were significantly higher in ICU patients with SARS-CoV-2. Notably, IFN-α levels increased in healthy controls. However, compared to healthy controls, IFN-β was considerably higher in outpatients. Finally, statistical analysis shows that no correlation was found between CH25H and IFN-α expression; nevertheless, a lower correlation was found with IFN-β. The data revealed that CH25H and 25HC levels increase after SARS-CoV-2 infection. In other words, decreased levels of those factors in severe patients compared with mild patients may indicate the importance of their function in controlling the progression of the disease.
Collapse
Affiliation(s)
- Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nejati
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sharareh Soleymani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Leila Mousavizadeh
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zhong G, He C, Wang S, Lin C, Li M. Research progress on the mechanism of cholesterol-25-hydroxylase in intestinal immunity. Front Immunol 2023; 14:1241262. [PMID: 37720208 PMCID: PMC10500599 DOI: 10.3389/fimmu.2023.1241262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Inflammatory bowel disease (IBD), a general term encompassing Crohn's disease (CD) and ulcerative colitis (UC), and other conditions, is a chronic and relapsing autoimmune disease that can occur in any part of the digestive tract. While the cause of IBD remains unclear, it is acknowledged that the disease has much to do with the dysregulation of intestinal immunity. In the intestinal immune regulatory system, Cholesterol-25-hydroxylase (CH25H) plays an important role in regulating the function of immune cells and lipid metabolism through catalyzing the oxidation of cholesterol into 25-hydroxycholesterol (25-HC). Specifically, CH25H focuses its mechanism of regulating the inflammatory response, signal transduction and cell migration on various types of immune cells by binding to relevant receptors, and the mechanism of regulating lipid metabolism and immune cell function via the transcription factor Sterol Regulator-Binding Protein. Based on this foundation, this article will review the function of CH25H in intestinal immunity, aiming to provide evidence for supporting the discovery of early diagnostic and treatment targets for IBD.
Collapse
Affiliation(s)
| | | | | | | | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Ion RM, Sibianu M, Hutanu A, Beresescu FG, Sala DT, Flavius M, Rosca A, Constantin C, Scurtu A, Moriczi R, Muresan MG, Gabriel P, Niculescu R, Neagoe RM. A Comprehensive Summary of the Current Understanding of the Relationship between Severe Obesity, Metabolic Syndrome, and Inflammatory Status. J Clin Med 2023; 12:jcm12113818. [PMID: 37298013 DOI: 10.3390/jcm12113818] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
At present, obesity, as a part of metabolic syndrome, represents the leading factor for disability, and is correlated with higher inflammation status, morbidity, and mortality. The purpose of our study is to add new insights to the present body of knowledge regarding the correlations between chronic systemic inflammation and severe obesity, which cannot be treated without considering other metabolic syndrome conditions. Biomarkers of high-level chronic inflammation are recognized as important predictors of pro-inflammatory disease. Besides the well-known pro-inflammatory cytokines, such as WBCs (white blood cells), IL-1 (interleukin-1), IL-6 (interleukin-6), TNF-alpha (tumor necrosis factor-alpha), and hsCRP (high-sensitivity C-reactive protein), as well as anti-inflammatory markers, such as adiponectin and systemic inflammation, can be determined by a variety of blood tests as a largely available and inexpensive inflammatory biomarker tool. A few parameters, such as the neutrophil-to-lymphocyte ratio; the level of cholesterol 25-hydroxylase, which is part of the macrophage-enriched metabolic network in adipose tissue; or levels of glutamine, an immune-metabolic regulator in white adipose tissue, are markers that link obesity to inflammation. Through this narrative review, we try to emphasize the influence of the weight-loss process in reducing obesity-related pro-inflammatory status and associated comorbidities. All data from the presented studies report positive results following weight-loss procedures while improving overall health, an effect that lasts over time, as far as the existing research data show.
Collapse
Affiliation(s)
- Razvan-Marius Ion
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Melania Sibianu
- Clinical Medicine I, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Adina Hutanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Felicia Gabriela Beresescu
- Department of Morphology of Teeth and Dental Arches, Faculty of Dentistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Daniela Tatiana Sala
- Second Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Mocian Flavius
- Second Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ancuta Rosca
- Third Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Calin Constantin
- Second Department of Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Alexandra Scurtu
- Second Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Renata Moriczi
- Second Department of Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Mircea Gabriel Muresan
- Second Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Popescu Gabriel
- Second Department of Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Raluca Niculescu
- Second Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Radu Mircea Neagoe
- Second Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
15
|
Lim H, Oh JS, Kang KR, Seo JY, Kim DK, Yu SK, Kim HJ, Park JC, Kim JS. 25-Hydroxycholesterol induces odontoclastic differentiation through RANK-RANKL upregulation and NF-κB activation in odontoblast-like MDPC-23 cells: An in vitro study. Int Endod J 2023; 56:432-446. [PMID: 36462163 DOI: 10.1111/iej.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
AIM The physiological effects and cellular mechanism of 25-hydroxycholesterol (25-HC), which is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase (CH25H) expressed under inflammatory conditions, are still largely unknown during odontoclastogenesis. This study aimed to evaluate 25-HC-induced odontoclastogenesis and its cellular mechanisms in odontoblast-like MDPC-23 cells. METHODOLOGY To investigate 25-HC-induced odontoclastogenesis of MDPC-23 cells and its cellular mechanism, haemotoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, dentine resorption assay, zymography, reactive oxygen species (ROS) detection, immunocytochemistry, and nuclear translocation were performed. The experimental values are presented as mean ± standard deviation and were compared using analysis of variance, followed by post hoc multiple comparisons (Tukey's test) using SPSS software version 22 (IBM Corp.). A p-value <.05 was considered statistically significant. RESULTS Lipopolysaccharide or receptor activator of nuclear factor-κB ligand (RANKL) induced the synthesis of 25-HC via the expression of CH25H in MDPC-23 cells (p < .01). Multinucleated giant cells with morphological characteristics and TRAP activity of the odontoclast were increased by 25-HC in MDPC-23 cells (p < .01). Moreover, 25-HC increased dentine resorption through the expression and activity of matrix metalloproteinases in MDPC-23 cells. It not only increased the expression of odontoclastogenic biomarkers but also translocated cytosolic nuclear factor-κB (NF-κB) to the nucleus in MDPC-23 cells. Additionally, 25-HC not only increased the production of ROS (p < .01), expression of inflammatory mediators (p < .01), pro-inflammatory cytokines, receptor activator of NF-κB (RANK), and RANKL but also suppressed the expression of osteoprotegerin (OPG) in MDPC-23 cells. In contrast, CDDO-Me, a chemical NF-κB inhibitor, decreased TRAP activity (p < .01) and downregulated the expression of the odontoclastogenic biomarkers, including RANK and RANKL, in MDPC-23 cells. CONCLUSION 25-HC induced odontoclastogenesis by modulating the RANK-RANKL-OPG axis via NF-κB activation in MDPC-23 cells. Therefore, these findings provide that 25-HC derived from cholesterol metabolism may be involved in the pathophysiological etiological factors of internal tooth resorption.
Collapse
Affiliation(s)
- HyangI Lim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Ji-Su Oh
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea
| | - Kyeong-Rok Kang
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Jeong-Yeon Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Do Kyung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Sun-Kyoung Yu
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Heung-Joong Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jae-Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| |
Collapse
|
16
|
Ruiz F, Peter B, Rebeaud J, Vigne S, Bressoud V, Roumain M, Wyss T, Yersin Y, Wagner I, Kreutzfeldt M, Pimentel Mendes M, Kowalski C, Boivin G, Roth L, Schwaninger M, Merkler D, Muccioli GG, Hugues S, Petrova TV, Pot C. Endothelial cell-derived oxysterol ablation attenuates experimental autoimmune encephalomyelitis. EMBO Rep 2023; 24:e55328. [PMID: 36715148 PMCID: PMC9986812 DOI: 10.15252/embr.202255328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
The vasculature is a key regulator of leukocyte trafficking into the central nervous system (CNS) during inflammatory diseases including multiple sclerosis (MS). However, the impact of endothelial-derived factors on CNS immune responses remains unknown. Bioactive lipids, in particular oxysterols downstream of Cholesterol-25-hydroxylase (Ch25h), promote neuroinflammation but their functions in the CNS are not well-understood. Using floxed-reporter Ch25h knock-in mice, we trace Ch25h expression to CNS endothelial cells (ECs) and myeloid cells and demonstrate that Ch25h ablation specifically from ECs attenuates experimental autoimmune encephalomyelitis (EAE). Mechanistically, inflamed Ch25h-deficient CNS ECs display altered lipid metabolism favoring polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) expansion, which suppresses encephalitogenic T lymphocyte proliferation. Additionally, endothelial Ch25h-deficiency combined with immature neutrophil mobilization into the blood circulation nearly completely protects mice from EAE. Our findings reveal a central role for CNS endothelial Ch25h in promoting neuroinflammation by inhibiting the expansion of immunosuppressive myeloid cell populations.
Collapse
Affiliation(s)
- Florian Ruiz
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jessica Rebeaud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Valentine Bressoud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research InstituteUCLouvain, Université Catholique de LouvainBrusselsBelgium
| | - Tania Wyss
- Department of OncologyUniversity of Lausanne and Ludwig Institute for Cancer ResearchLausanneSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Yannick Yersin
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Ingrid Wagner
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
- Division of Clinical Pathology, Diagnostic DepartmentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Mario Kreutzfeldt
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
- Division of Clinical Pathology, Diagnostic DepartmentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Marisa Pimentel Mendes
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Camille Kowalski
- Department of Pathology and ImmunologyGeneva Medical SchoolGenevaSwitzerland
| | - Gael Boivin
- Radio‐Oncology Laboratory, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Leonard Roth
- Department of Epidemiology and Health Systems, Centre for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and ToxicologyUniversity of LübeckLuebeckGermany
| | - Doron Merkler
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
- Division of Clinical Pathology, Diagnostic DepartmentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research InstituteUCLouvain, Université Catholique de LouvainBrusselsBelgium
| | - Stephanie Hugues
- Department of Pathology and ImmunologyGeneva Medical SchoolGenevaSwitzerland
| | - Tatiana V Petrova
- Department of OncologyUniversity of Lausanne and Ludwig Institute for Cancer ResearchLausanneSwitzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
17
|
Kurlawala Z, Singh P, Hill BG, Haberzettl P. Fine Particulate Matter (PM2.5)-Induced Pulmonary Oxidative Stress Contributes to Changes in the Plasma Lipidome and Liver Transcriptome in Mice. Toxicol Sci 2023; 192:kfad020. [PMID: 36857595 PMCID: PMC10109534 DOI: 10.1093/toxsci/kfad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Fine particulate matter (PM2.5) air pollution exposure increases the cardiovascular disease risk. Although the specific mechanisms remain elusive, it is thought that PM2.5-induced oxidative stress and endothelial dysfunction contribute to this pathogenesis. Our previous findings indicate that PM2.5 impairs vascular health via a circulating factor and that plasma lipid changes contribute to the observed vascular effects. In the current study, we extend on these findings by further characterizing PM2.5-induced changes in circulating lipids and examining whether the observed changes were accompanied by related alterations in the liver transcriptome. To address the role of pulmonary oxidative stress, we exposed wild-type (WT) mice and mice that overexpress extracellular superoxide dismutase (ecSOD-Tg) in the lungs to concentrated ambient PM2.5 (CAP, 9 days). We found that CAP decreased circulating complex lipids and increased free fatty acids and acylcarnitines in WT, but not ecSOD-Tg mice. These plasma lipid changes were accompanied by transcriptional changes in genes that regulate lipid metabolism (e.g., upregulation of lipid biosynthesis, downregulation of mitochondrial/peroxisomal FA metabolism) in the liver. The CAP-induced changes in lipid homeostasis and liver transcriptome were accompanied by pulmonary but not hepatic oxidative stress and were largely absent in ecSOD-Tg mice. Our results suggest that PM2.5 impacts hepatic lipid metabolism; however, it remains unclear whether the transcriptional changes in the liver contribute to PM2.5-induced changes in plasma lipids. Regardless, PM2.5-induced changes in the plasma lipidome and hepatic transcriptome are, at least in part, mediated by pulmonary oxidative stress.
Collapse
Affiliation(s)
- Zimple Kurlawala
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Parul Singh
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Petra Haberzettl
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
18
|
Canfrán-Duque A, Rotllan N, Zhang X, Andrés-Blasco I, Thompson BM, Sun J, Price NL, Fernández-Fuertes M, Fowler JW, Gómez-Coronado D, Sessa WC, Giannarelli C, Schneider RJ, Tellides G, McDonald JG, Fernández-Hernando C, Suárez Y. Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling. Circulation 2023; 147:388-408. [PMID: 36416142 PMCID: PMC9892282 DOI: 10.1161/circulationaha.122.059062] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Irene Andrés-Blasco
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Genomics and Diabetes Unit, Health Research Institute Clinic Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Bonne M Thompson
- Center for Human Nutrition. University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marta Fernández-Fuertes
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joseph W. Fowler
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diego Gómez-Coronado
- Servicio Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, and CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | - William C. Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chiara Giannarelli
- Department of Medicine, Cardiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Robert J Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - George Tellides
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, 06520 USA
| | - Jeffrey G McDonald
- Center for Human Nutrition. University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Seo YS, Kang KR, Lim H, Seo JY, Kim DOK, Kim JS. 25-Hydroxycholesterol-induced Osteoblast Oxiapoptophagy Is Involved in the Pathophysiological Process of Osteoporosis. In Vivo 2023; 37:204-217. [PMID: 36593033 PMCID: PMC9843796 DOI: 10.21873/invivo.13069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM 25-hydroxycholesterol (25-HC) plays important roles in lipid metabolism, inflammatory responses, and apoptosis, but its pathophysiological association with osteoporosis (OP) has not been verified in osteoblasts. Hence, we studied the pathophysiological linkage and underlying cellular mechanisms of 25-HC in human osteoblast-like MG-63 cells and an ovariectomy-induced osteoporotic mouse model. MATERIALS AND METHODS To investigate the pathophysiological linkage between 25-HC-induced osteoblast oxiapoptophagy and OP, 25-HC ELISA assay, MTT assay, cell live/dead staining, hematoxylin and eosin staining, DAPI staining, flow cytometry analysis, western blot, caspase-3 staining, reactive oxygen species (ROS) assay, autophagy staining, immunocytochemistry, Micro-CT image analysis and immunocytochemistry were performed in MG-63 cells and ovariectomy-induced OP animals. RESULTS The expression of cholesterol-25-hydroxylase (CH25H), an enzyme catalyzing the conversion of cholesterol to 25-HC, and the production of 25-HC were increased by lipopolysaccharide in MG-63 cells. Cytotoxicity was increased by 25-HC in MG-63 cells. Apoptosis with condensed chromatin and altered morphology was induced by 25-HC through cleavage of caspases-8, -9, and -3 in MG-63 cells. 25-HC induced oxidative stress in MG-63 cells via elevation of ROS production, cyclooxygenase-2, and inducible nitric oxide synthase. Furthermore, the expression of autophagy biomarkers, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3, was elevated by 25-HC in MG-63 cells. In addition, p53 expression was increased, whereas Akt phosphorylation was suppressed in 25-HC-incubated MG-63 cells. The expression of CH25H, cleaved caspase-3, and beclin-1 were up-regulated in the femoral bone of ovariectomy-induced mouse osteoporotic animals. CONCLUSION 25-HC plays a role in OP via the induction of oxiapoptophagic osteoblast death.
Collapse
Affiliation(s)
- Yo-Seob Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Republic of Korea
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Kyeong-Rok Kang
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Hyangi Lim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jeong-Yeon Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - DO Kyung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jae-Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Republic of Korea;
| |
Collapse
|
20
|
Sureshchandra S, Chan CN, Robino JJ, Parmelee LK, Nash MJ, Wesolowski SR, Pietras EM, Friedman JE, Takahashi D, Shen W, Jiang X, Hennebold JD, Goldman D, Packwood W, Lindner JR, Roberts CT, Burwitz BJ, Messaoudi I, Varlamov O. Maternal Western-style diet remodels the transcriptional landscape of fetal hematopoietic stem and progenitor cells in rhesus macaques. Stem Cell Reports 2022; 17:2595-2609. [PMID: 36332628 PMCID: PMC9768582 DOI: 10.1016/j.stemcr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA
| | - Chi N Chan
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Jacob J Robino
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Lindsay K Parmelee
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Michael J Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric M Pietras
- Department of Immunology and Microbiology, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana Takahashi
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Weining Shen
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Xiwen Jiang
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Devorah Goldman
- Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan R Lindner
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006; Vaccine & Gene Therapy Institute, Beaverton, OR 97006, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA; Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006.
| |
Collapse
|
21
|
Ejam SS, Saleh RO, Catalan Opulencia MJ, Najm MA, Makhmudova A, Jalil AT, Abdelbasset WK, Al-Gazally ME, Hammid AT, Mustafa YF, Sergeevna SE, Karampoor S, Mirzaei R. Pathogenic role of 25-hydroxycholesterol in cancer development and progression. Future Oncol 2022; 18:4415-4442. [PMID: 36651359 DOI: 10.2217/fon-2022-0819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cholesterol is an essential lipid that serves several important functions, including maintaining the homeostasis of cells, acting as a precursor to bile acid and steroid hormones and preserving the stability of membrane lipid rafts. 25-hydroxycholesterol (25-HC) is a cholesterol derivative that may be formed from cholesterol. 25-HC is a crucial component in various biological activities, including cholesterol metabolism. In recent years, growing evidence has shown that 25-HC performs a critical function in the etiology of cancer, infectious diseases and autoimmune disorders. This review will summarize the latest findings regarding 25-HC, including its biogenesis, immunomodulatory properties and role in innate/adaptive immunity, inflammation and the development of various types of cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Pharmacy, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Mazin Aa Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Aziza Makhmudova
- Department of Social Sciences & Humanities, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health & Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sergushina Elena Sergeevna
- National Research Ogarev Mordovia State University, 68 Bolshevitskaya Street, Republic of Mordovia, Saransk, 430005, Russia
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Fessler MB, Madenspacher J, Baker PJ, Hilligan KL, Castro E, Meacham J, Chen SH, Johnson RF, Martin NP, Tucker C, Mahapatra D, Cesta M, Mayer-Barber KD. Evaluation of endogenous and therapeutic 25-hydroxycholesterols in murine models of pulmonary SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.12.507671. [PMID: 36263064 PMCID: PMC9580384 DOI: 10.1101/2022.09.12.507671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-hydroxycholesterol (25HC), a product of activity of cholesterol-25-hydroxylase (CH25H) upon cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against SARS-CoV-2. However, 25HC can also amplify inflammation and tissue injury and be converted by CYP7B1 to 7α,25HC, a lipid with chemoattractant activity via the G protein-coupled receptor, EBI2/GPR183. Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that while 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 mouse model in vivo. 25HC treatment also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma pro-inflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points, but no change in weight loss. Consistent with these findings, although Ch25h was upregulated in the lungs of SARS-CoV-2-infected WT mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the beta variant were similar to control animals. Taken together, endogenous 25-hydroxycholesterols do not significantly regulate early SARS-CoV-2 replication or pathogenesis and supplemental 25HC may have pro-injury rather than therapeutic effects in SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Jennifer Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Paul J. Baker
- Inflammation & Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kerry L. Hilligan
- Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ehydel Castro
- Inflammation & Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julie Meacham
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Shih-Heng Chen
- Viral Vector Core Facility, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Negin P. Martin
- Viral Vector Core Facility, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - C.J. Tucker
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | | | - Mark Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Katrin D. Mayer-Barber
- Inflammation & Innate Immunity Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
23
|
Mao S, Ren J, Xu Y, Lin J, Pan C, Meng Y, Xu N. Studies in the antiviral molecular mechanisms of 25-hydroxycholesterol: Disturbing cholesterol homeostasis and post-translational modification of proteins. Eur J Pharmacol 2022; 926:175033. [PMID: 35598845 PMCID: PMC9119167 DOI: 10.1016/j.ejphar.2022.175033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Efficient antiviral drug discovery has been a pressing issue of global public health concern since the outbreak of coronavirus disease 2019. In recent years, numerous in vitro and in vivo studies have shown that 25-hydroxycholesterol (25HC), a reactive oxysterol catalyzed by cholesterol-25-hydroxylase, exerts broad-spectrum antiviral activity with high efficiency and low toxicity. 25HC restricts viral internalization and disturbs the maturity of viral proteins using multiple mechanisms. First, 25HC reduces lipid rafts and cholesterol in the cytomembrane by inhibiting sterol-regulatory element binding proteins-2, stimulating liver X receptor, and activating Acyl-coenzyme A: cholesterol acyl-transferase. Second, 25HC impairs endosomal pathways by restricting the function of oxysterol-binding protein or Niemann-pick protein C1, causing the virus to fail to release nucleic acid. Third, 25HC disturbs the prenylation of viral proteins by suppressing the sterol-regulatory element binding protein pathway and glycosylation by increasing the sensitivity of glycans to endoglycosidase. This paper reviews previous studies on the antiviral activity of 25HC in order to fully understand its role in innate immunity and how it may contribute to the development of urgently needed broad-spectrum antiviral drugs.
Collapse
|
24
|
Odnoshivkina UG, Kuznetsova EA, Petrov AM. 25-Hydroxycholesterol as a Signaling Molecule of the Nervous System. BIOCHEMISTRY (MOSCOW) 2022; 87:524-537. [PMID: 35790411 PMCID: PMC9201265 DOI: 10.1134/s0006297922060049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cholesterol is an essential component of plasma membrane and precursor of biological active compounds, including hydroxycholesterols (HCs). HCs regulate cellular homeostasis of cholesterol; they can pass across the membrane and vascular barriers and act distantly as para- and endocrine agents. A small amount of 25-hydroxycholesterol (25-HC) is produced in the endoplasmic reticulum of most cells, where it serves as a potent regulator of the synthesis, intracellular transport, and storage of cholesterol. Production of 25-HC is strongly increased in the macrophages, dendrite cells, and microglia at the inflammatory response. The synthesis of 25-HC can be also upregulated in some neurological disorders, such as Alzheimer’s disease, amyotrophic lateral sclerosis, spastic paraplegia type 5, and X-linked adrenoleukodystrophy. However, it is unclear whether 25-HC aggravates these pathologies or has the protective properties. The molecular targets for 25-HC are transcriptional factors (LX receptors, SREBP2, ROR), G protein-coupled receptor (GPR183), ion channels (NMDA receptors, SLO1), adhesive molecules (α5β1 and ανβ3 integrins), and oxysterol-binding proteins. The diversity of 25-HC-binding proteins points to the ability of HC to affect many physiological and pathological processes. In this review, we focused on the regulation of 25-HC production and its universal role in the control of cellular cholesterol homeostasis, as well as the effects of 25-HC as a signaling molecule mediating the influence of inflammation on the processes in the neuromuscular system and brain. Based on the evidence collected, it can be suggested that 25-HC prevents accumulation of cellular cholesterol and serves as a potent modulator of neuroinflammation, synaptic transmission, and myelinization. An increased production of 25-HC in response to a various type of damage can have a protective role and reduce neuronal loss. At the same time, an excess of 25-HC may exert the neurotoxic effects.
Collapse
Affiliation(s)
- Ulia G Odnoshivkina
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of Russian Academy of Sciences", Kazan, 420111, Russia
- Kazan State Medical University, Kazan, 420012, Russia
| | - Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of Russian Academy of Sciences", Kazan, 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of Russian Academy of Sciences", Kazan, 420111, Russia.
- Kazan State Medical University, Kazan, 420012, Russia
| |
Collapse
|
25
|
Hernandez-Baixauli J, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Caimari A, Baselga-Escudero L, Del Bas JM, Mulero M. Imbalances in TCA, Short Fatty Acids and One-Carbon Metabolisms as Important Features of Homeostatic Disruption Evidenced by a Multi-Omics Integrative Approach of LPS-Induced Chronic Inflammation in Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23052563. [PMID: 35269702 PMCID: PMC8910732 DOI: 10.3390/ijms23052563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic inflammation is an important risk factor in a broad variety of physical and mental disorders leading to highly prevalent non-communicable diseases (NCDs). However, there is a need for a deeper understanding of this condition and its progression to the disease state. For this reason, it is important to define metabolic pathways and complementary biomarkers associated with homeostatic disruption in chronic inflammation. To achieve that, male Wistar rats were subjected to intraperitoneal and intermittent injections with saline solution or increasing lipopolysaccharide (LPS) concentrations (0.5, 5 and 7.5 mg/kg) thrice a week for 31 days. Biochemical and inflammatory parameters were measured at the end of the study. To assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to evaluate plasma metabolome; 1H-NMR was used to evaluate urine metabolome; additionally, shotgun metagenomics sequencing was carried out to characterize the cecum microbiome. The chronicity of inflammation in the study was evaluated by the monitoring of monocyte chemoattractant protein-1 (MCP-1) during the different weeks of the experimental process. At the end of the study, together with the increased levels of MCP-1, levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) along with 8-isoprostanes (an indicative of oxidative stress) were significantly increased (p-value < 0.05). The leading features implicated in the current model were tricarboxylic acid (TCA) cycle intermediates (i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); lipids such as specific cholesterol esters (ChoEs), lysophospholipids (LPCs) and phosphatidylcholines (PCs); and glycine, as well as N, N-dimethylglycine, which are related to one-carbon (1C) metabolism. These metabolites point towards mitochondrial metabolism through TCA cycle, β-oxidation of fatty acids and 1C metabolism as interconnected pathways that could reveal the metabolic effects of chronic inflammation induced by LPS administration. These results provide deeper knowledge concerning the impact of chronic inflammation on the disruption of metabolic homeostasis.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
- Correspondence: (J.M.D.B.); (M.M.)
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (J.M.D.B.); (M.M.)
| |
Collapse
|
26
|
Muir LA, Cho KW, Geletka LM, Baker NA, Flesher CG, Ehlers AP, Kaciroti N, Lindsly S, Ronquist S, Rajapakse I, O'Rourke RW, Lumeng CN. Human CD206+ macrophages associate with diabetes and adipose tissue lymphoid clusters. JCI Insight 2022; 7:146563. [PMID: 34990410 PMCID: PMC8855803 DOI: 10.1172/jci.insight.146563] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Increased adipose tissue macrophages (ATMs) correlate with metabolic dysfunction in humans and are causal in development of insulin resistance in mice. Recent bulk and single-cell transcriptomics studies reveal a wide spectrum of gene expression signatures possible for macrophages that depends on context, but the signatures of human ATM subtypes are not well defined in obesity and diabetes. We profiled 3 prominent ATM subtypes from human adipose tissue in obesity and determined their relationship to type 2 diabetes. Visceral adipose tissue (VAT) and s.c. adipose tissue (SAT) samples were collected from diabetic and nondiabetic obese participants to evaluate cellular content and gene expression. VAT CD206+CD11c- ATMs were increased in diabetic participants, were scavenger receptor-rich with low intracellular lipids, secreted proinflammatory cytokines, and diverged significantly from 2 CD11c+ ATM subtypes, which were lipid-laden, were lipid antigen presenting, and overlapped with monocyte signatures. Furthermore, diabetic VAT was enriched for CD206+CD11c- ATM and inflammatory signatures, scavenger receptors, and MHC II antigen presentation genes. VAT immunostaining found CD206+CD11c- ATMs concentrated in vascularized lymphoid clusters adjacent to CD206-CD11c+ ATMs, while CD206+CD11c+ were distributed between adipocytes. Our results show ATM subtype-specific profiles that uniquely contribute to the phenotypic variation in obesity.
Collapse
Affiliation(s)
| | | | | | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anne P Ehlers
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, Michigan, USA
| | - Niko Kaciroti
- Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Stephen Lindsly
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott Ronquist
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Mathematics and.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, Michigan, USA
| | - Carey N Lumeng
- Department of Pediatrics and.,Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Brotman SM, Raulerson CK, Vadlamudi S, Currin KW, Shen Q, Parsons VA, Iyengar AK, Roman TS, Furey TS, Kuusisto J, Collins FS, Boehnke M, Laakso M, Pajukanta P, Mohlke KL. Subcutaneous adipose tissue splice quantitative trait loci reveal differences in isoform usage associated with cardiometabolic traits. Am J Hum Genet 2022; 109:66-80. [PMID: 34995504 PMCID: PMC8764203 DOI: 10.1016/j.ajhg.2021.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.
Collapse
Affiliation(s)
- Sarah M Brotman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chelsea K Raulerson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Kevin W Currin
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qiujin Shen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria A Parsons
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Apoorva K Iyengar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tamara S Roman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terrence S Furey
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio 70210, Finland
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio 70210, Finland
| | - Päivi Pajukanta
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
You JS, Lim H, Seo JY, Kang KR, Kim DK, Oh JS, Seo YS, Lee GJ, Kim JS, Kim HJ, Yu SK, Kim JS. 25-Hydroxycholesterol-Induced Oxiapoptophagy in L929 Mouse Fibroblast Cell Line. Molecules 2021; 27:199. [PMID: 35011433 PMCID: PMC8746689 DOI: 10.3390/molecules27010199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
25-hydroxycholesterol (25-HC) is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase during cholesterol metabolism. The aim of this study was to verify whether 25-HC induces oxiapoptophagy in fibroblasts. 25-HC not only decreased the survival of L929 cells, but also increased the number of cells with condensed chromatin and altered morphology. Fluorescence-activated cell sorting results showed that there was a dose-dependent increase in the apoptotic populations of L929 cells upon treatment with 25-HC. 25-HC-induced apoptotic cell death was mediated by the death receptor-dependent extrinsic and mitochondria-dependent intrinsic apoptosis pathway, through the cascade activation of caspases including caspase-8, -9, and -3 in L929 cells. There was an increase in the levels of reactive oxygen species and inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in L929 cells treated with 25-HC. Moreover, 25-HC caused an increase in the expression of beclin-1 and microtubule-associated protein 1A/1B-light chain 3, an autophagy biomarker, in L929 cells. There was a significant decrease in the phosphorylation of protein kinase B (Akt) in L929 cells treated with 25-HC. Taken together, 25-HC induced oxiapoptophagy through the modulation of Akt and p53 cellular signaling pathways in L929 cells.
Collapse
Affiliation(s)
- Jae-Seek You
- Departments of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.Y.); (J.-S.O.)
| | - HyangI Lim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Jeong-Yeon Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Kyeong-Rok Kang
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Do Kyung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Ji-Su Oh
- Departments of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.Y.); (J.-S.O.)
| | - Yo-Seob Seo
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.-S.S.); (J.-S.K.)
| | - Gyeong-Je Lee
- Department of Prosthodontics, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Jin-Soo Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.-S.S.); (J.-S.K.)
| | - Heung-Joong Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Sun-Kyoung Yu
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| | - Jae-Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (H.L.); (J.-Y.S.); (K.-R.K.); (D.K.K.); (H.-J.K.); (S.-K.Y.)
| |
Collapse
|
29
|
Cataldi S, Aprile M, Melillo D, Mucel I, Giorgetti-Peraldi S, Cormont M, Italiani P, Blüher M, Tanti JF, Ciccodicola A, Costa V. TNFα Mediates Inflammation-Induced Effects on PPARG Splicing in Adipose Tissue and Mesenchymal Precursor Cells. Cells 2021; 11:cells11010042. [PMID: 35011604 PMCID: PMC8750445 DOI: 10.3390/cells11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Low-grade chronic inflammation and reduced differentiation capacity are hallmarks of hypertrophic adipose tissue (AT) and key contributors of insulin resistance. We identified PPARGΔ5 as a dominant-negative splicing isoform overexpressed in the AT of obese/diabetic patients able to impair adipocyte differentiation and PPARγ activity in hypertrophic adipocytes. Herein, we investigate the impact of macrophage-secreted pro-inflammatory factors on PPARG splicing, focusing on PPARGΔ5. We report that the epididymal AT of LPS-treated mice displays increased PpargΔ5/cPparg ratio and reduced expression of Pparg-regulated genes. Interestingly, pro-inflammatory factors secreted from murine and human pro-inflammatory macrophages enhance the PPARGΔ5/cPPARG ratio in exposed adipogenic precursors. TNFα is identified herein as factor able to alter PPARG splicing—increasing PPARGΔ5/cPPARG ratio—through PI3K/Akt signaling and SRp40 splicing factor. In line with in vitro data, TNFA expression is higher in the SAT of obese (vs. lean) patients and positively correlates with PPARGΔ5 levels. In conclusion, our results indicate that inflammatory factors secreted by metabolically-activated macrophages are potent stimuli that modulate the expression and splicing of PPARG. The resulting imbalance between canonical and dominant negative isoforms may crucially contribute to impair PPARγ activity in hypertrophic AT, exacerbating the defective adipogenic capacity of precursor cells.
Collapse
Affiliation(s)
- Simona Cataldi
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
| | - Marianna Aprile
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (D.M.); (P.I.)
| | - Inès Mucel
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Sophie Giorgetti-Peraldi
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Mireille Cormont
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (D.M.); (P.I.)
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jean-François Tanti
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
- Department of Science and Technology, University of Naples ‘‘Parthenope’’, 80143 Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
- Correspondence: ; Tel.: +39-0816132617
| |
Collapse
|
30
|
Carruthers NJ, Strieder-Barboza C, Caruso JA, Flesher CG, Baker NA, Kerk SA, Ky A, Ehlers AP, Varban OA, Lyssiotis CA, Lumeng CN, Stemmer PM, O'Rourke RW. The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity. Sci Rep 2021; 11:17394. [PMID: 34462518 PMCID: PMC8405693 DOI: 10.1038/s41598-021-96995-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
Dysfunctional visceral adipose tissue (VAT) in obesity is associated with type 2 diabetes (DM) but underlying mechanisms remain unclear. Our objective in this discovery analysis was to identify genes and proteins regulated by DM to elucidate aberrant cellular metabolic and signaling mediators. We performed label-free proteomics and RNA-sequencing analysis of VAT from female bariatric surgery subjects with DM and without DM (NDM). We quantified 1965 protein groups, 23 proteins, and 372 genes that were differently abundant in DM vs. NDM VAT. Proteins downregulated in DM were related to fatty acid synthesis and mitochondrial function (fatty acid synthase, FASN; dihydrolipoyl dehydrogenase, mitochondrial, E3 component, DLD; succinate dehydrogenase-α, SDHA) while proteins upregulated in DM were associated with innate immunity and transcriptional regulation (vitronectin, VTN; endothelial protein C receptor, EPCR; signal transducer and activator of transcription 5B, STAT5B). Transcriptome indicated defects in innate inflammation, lipid metabolism, and extracellular matrix (ECM) function, and components of complement classical and alternative cascades. The VAT proteome and transcriptome shared 13 biological processes impacted by DM, related to complement activation, cell proliferation and migration, ECM organization, lipid metabolism, and gluconeogenesis. Our data revealed a marked effect of DM in downregulating FASN. We also demonstrate enrichment of complement factor B (CFB), coagulation factor XIII A chain (F13A1), thrombospondin 1 (THBS1), and integrins at mRNA and protein levels, albeit with lower q-values and lack of Western blot or PCR confirmation. Our findings suggest putative mechanisms of VAT dysfunction in DM.
Collapse
Affiliation(s)
- Nicholas J Carruthers
- Proteomics Core Facility, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Joseph A Caruso
- Department of Chemistry, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Samuel A Kerk
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Alexander Ky
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Anne P Ehlers
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Oliver A Varban
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Graduate Program in Immunology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Paul M Stemmer
- Proteomics Core Facility, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA.
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA.
- Section of General Surgery, Department of Surgery, University of Michigan, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA.
| |
Collapse
|
31
|
Li X, Zhang L, Shi X, Liao T, Zhang N, Gao Y, Xing R, Wang P. MicroRNA-10a-3p Improves Cartilage Degeneration by Regulating CH25H-CYP7B1-RORα Mediated Cholesterol Metabolism in Knee Osteoarthritis Rats. Front Pharmacol 2021; 12:690181. [PMID: 34149433 PMCID: PMC8209416 DOI: 10.3389/fphar.2021.690181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis (OA) is a worldwide degenerative joint disease that seriously impaired the quality of life of patients. OA has been established as a disease with metabolic disorder. Cholesterol 25-hydroxylase (CH25H) was proved to play a key role in cartilage cholesterol metabolism. However, the biological function and mechanism of CH25H in OA remains further investigation. Growing researches have proved the vital roles of miRNAs in OA progression. In this study, we screened out miR-10a-3p through high-throughput miRNA sequencing which may bind to CH25H. Molecular mechanism investigation indicated that miR-10a-3p is an upstream target of CH25H. Functional exploration revealed miR-10a-3p suppressed the inflammatory responses, cholesterol metabolism and extracellular matrix (ECM) degradation in primary chondrocytes. Moreover, rescue assays implied that miR-10a-3p reversed CH25H plasmids induced inflammatory cytokine production and ECM degradation. Furthermore, the OA rat model was established to explore the function of miR-10a-3p in vivo. The results showed that miR-10a-3p can recover the OA features through targeting CH25H/CYP7B1/RORα axis. In conclusion, these findings implied a crucial role of miR-10a-3p/CH25H/CYP7B1/RORα axis in OA, which may provide a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Xiaochen Li
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaoqing Shi
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Taiyang Liao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Nongshan Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Gao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Runlin Xing
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Guillemot-Legris O, Muccioli GG. The oxysterome and its receptors as pharmacological targets in inflammatory diseases. Br J Pharmacol 2021; 179:4917-4940. [PMID: 33817775 DOI: 10.1111/bph.15479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols have gained attention over the last decades and are now considered as fully fledged bioactive lipids. The study of their levels in several conditions, including atherosclerosis, obesity and neurodegenerative diseases, led to a better understanding of their involvement in (patho)physiological processes such as inflammation and immunity. For instance, the characterization of the cholesterol-7α,25-dihydroxycholesterol/GPR183 axis and its implication in immunity represents an important step in the oxysterome study. Besides this axis, others were identified as important in several inflammatory pathologies (such as colitis, lung inflammation and atherosclerosis). However, the oxysterome is a complex system notably due to a redundancy of metabolic enzymes and a wide range of receptors. Indeed, deciphering oxysterol roles and identifying the potential receptor(s) involved in a given pathology remain challenging. Oxysterol properties are very diverse, but most of them could be connected by a common component: inflammation. Here, we review the implication of oxysterol receptors in inflammatory diseases.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
33
|
Ruggiero AD, Key CCC, Kavanagh K. Adipose Tissue Macrophage Polarization in Healthy and Unhealthy Obesity. Front Nutr 2021; 8:625331. [PMID: 33681276 PMCID: PMC7925825 DOI: 10.3389/fnut.2021.625331] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over 650 million adults are obese (body mass index ≥ 30 kg/m2) worldwide. Obesity is commonly associated with several comorbidities, including cardiovascular disease and type II diabetes. However, compiled estimates suggest that from 5 to 40% of obese individuals do not experience metabolic or cardiovascular complications. The existence of the metabolically unhealthy obese (MUO) and the metabolically healthy obese (MHO) phenotypes suggests that underlying differences exist in both tissues and overall systemic function. Macrophage accumulation in white adipose tissue (AT) in obesity is typically associated with insulin resistance. However, as plastic cells, macrophages respond to stimuli in their microenvironments, altering their polarization between pro- and anti-inflammatory phenotypes, depending on the state of their surroundings. The dichotomous nature of MHO and MUO clinical phenotypes suggests that differences in white AT function dictate local inflammatory responses by driving changes in macrophage subtypes. As obesity requires extensive AT expansion, we posit that remodeling capacity with adipose expansion potentiates favorable macrophage profiles in MHO as compared with MUO individuals. In this review, we discuss how differences in adipogenesis, AT extracellular matrix deposition and breakdown, and AT angiogenesis perpetuate altered AT macrophage profiles in MUO compared with MHO. We discuss how non-autonomous effects of remote organ systems, including the liver, gastrointestinal tract, and cardiovascular system, interact with white adipose favorably in MHO. Preferential AT macrophage profiles in MHO stem from sustained AT function and improved overall fitness and systemic health.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chia-Chi Chuang Key
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kylie Kavanagh
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.,Department of Biomedicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
34
|
Yutuc E, Dickson AL, Pacciarini M, Griffiths L, Baker PRS, Connell L, Öhman A, Forsgren L, Trupp M, Vilarinho S, Khalil Y, Clayton PT, Sari S, Dalgic B, Höflinger P, Schöls L, Griffiths WJ, Wang Y. Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry. Anal Chim Acta 2021; 1154:338259. [PMID: 33736801 PMCID: PMC7988461 DOI: 10.1016/j.aca.2021.338259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography – tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient. Absolute quantification of oxysterols and cholestenoic acids. Methodology applicable to plasma and cerebrospinal fluid. Data generated for non-esterified and total sterols. Diastereoisomers at C-24 and C-25 separated and quantified.
Collapse
Affiliation(s)
- Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Manuela Pacciarini
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Lauren Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | | | | | - Anders Öhman
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Sílvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Youssef Khalil
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Philip Höflinger
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
35
|
Choi C, Finlay DK. Diverse Immunoregulatory Roles of Oxysterols-The Oxidized Cholesterol Metabolites. Metabolites 2020; 10:metabo10100384. [PMID: 32998240 PMCID: PMC7601797 DOI: 10.3390/metabo10100384] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings.
Collapse
Affiliation(s)
- Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| |
Collapse
|
36
|
Holly JMP, Biernacka K, Maskell N, Perks CM. Obesity, Diabetes and COVID-19: An Infectious Disease Spreading From the East Collides With the Consequences of an Unhealthy Western Lifestyle. Front Endocrinol (Lausanne) 2020; 11:582870. [PMID: 33042029 PMCID: PMC7527410 DOI: 10.3389/fendo.2020.582870] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic of COVID-19, caused by the coronavirus, SARS-CoV-2, has had a global impact not seen for an infectious disease for over a century. This acute pandemic has spread from the East and has been overlaid onto a slow pandemic of metabolic diseases of obesity and diabetes consequent from the increasing adoption of a Western-lifestyle characterized by excess calorie consumption with limited physical activity. It has become clear that these conditions predispose individuals to a more severe COVID-19 with increased morbidity and mortality. There are many features of diabetes and obesity that may accentuate the clinical response to SARS-CoV-2 infection: including an impaired immune response, an atherothrombotic state, accumulation of advanced glycation end products and a chronic inflammatory state. These could prime an exaggerated cytokine response to viral infection, predisposing to the cytokine storm that triggers progression to septic shock, acute respiratory distress syndrome, and multi-organ failure. Infection leads to an inflammatory response and tissue damage resulting in increased metabolic activity and an associated increase in the mechanisms by which cells ingest and degrade tissue debris and foreign materials. It is becoming clear that viruses have acquired an ability to exploit these mechanisms to invade cells and facilitate their own life-cycle. In obesity and diabetes these mechanisms are chronically activated due to the deteriorating metabolic state and this may provide an increased opportunity for a more profound and sustained viral infection.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
37
|
Wong MY, Lewis M, Doherty JJ, Shi Y, Cashikar AG, Amelianchik A, Tymchuk S, Sullivan PM, Qian M, Covey DF, Petsko GA, Holtzman DM, Paul SM, Luo W. 25-Hydroxycholesterol amplifies microglial IL-1β production in an apoE isoform-dependent manner. J Neuroinflammation 2020; 17:192. [PMID: 32552741 PMCID: PMC7298825 DOI: 10.1186/s12974-020-01869-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Genome-wide association studies of Alzheimer's disease (AD) have implicated pathways related to lipid homeostasis and innate immunity in AD pathophysiology. However, the exact cellular and chemical mediators of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate immunity. Cholesterol 25-hydroxylase (CH25H), the enzyme responsible for 25-HC production, has also been found to be one of the disease-associated microglial (DAM) genes that are upregulated in the brain of AD and AD transgenic mouse models. METHODS We used real-time PCR and immunoblotting to examine CH25H expression in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-β plaques or tau pathology. The innate immune response of primary mouse microglia under different treatment conditions or bearing different genetic backgrounds was analyzed using ELISA, western blotting, or immunocytochemistry. RESULTS We found that CH25H expression is upregulated in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-β plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brain and stimulates CH25H expression and 25-HC secretion in mouse primary microglia. We found that LPS-induced microglial production of the pro-inflammatory cytokine IL-1β is markedly potentiated by 25-HC and attenuated by the deletion of CH25H. Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC than apoE3-expressing microglia following treatment with LPS. Remarkably, 25-HC treatment results in a greater level of IL-1β secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia. Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL-1β release in apoE4-expressing microglia, indicating the involvement of caspase-1 inflammasome activity. CONCLUSION 25-HC may function as a microglial-secreted inflammatory mediator in the brain, promoting IL-1β-mediated neuroinflammation in an apoE isoform-dependent manner (E4>>E2/E3) and thus may be an important mediator of neuroinflammation in AD.
Collapse
Affiliation(s)
- Man Ying Wong
- grid.5386.8000000041936877XAppel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - Michael Lewis
- grid.476678.c0000 0004 5913 664XSage Therapeutics, Cambridge, Massachusetts USA
| | - James J. Doherty
- grid.476678.c0000 0004 5913 664XSage Therapeutics, Cambridge, Massachusetts USA
| | - Yang Shi
- grid.4367.60000 0001 2355 7002Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Anil G. Cashikar
- grid.4367.60000 0001 2355 7002Departments of Neurology and Psychiatry, Hope Center for Neurological Disorders, Taylor Family Institute, Washington University School of Medicine, St. Louis, MO USA
| | - Anna Amelianchik
- grid.5386.8000000041936877XAppel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - Svitlana Tymchuk
- grid.5386.8000000041936877XAppel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - Patrick M. Sullivan
- grid.281208.10000 0004 0419 3073Department of Medicine, Duke University Medical Center, Durham Veterans Health Administration Medical Center’s Geriatric Research, Education and Clinical Center, Durham, NC USA
| | - Mingxing Qian
- grid.4367.60000 0001 2355 7002Departments of Developmental Biology, Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Douglas F. Covey
- grid.4367.60000 0001 2355 7002Departments of Developmental Biology, Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Gregory A. Petsko
- grid.5386.8000000041936877XAppel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - David M. Holtzman
- grid.4367.60000 0001 2355 7002Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Steven M. Paul
- grid.476678.c0000 0004 5913 664XSage Therapeutics, Cambridge, Massachusetts USA ,grid.4367.60000 0001 2355 7002Departments of Neurology and Psychiatry, Hope Center for Neurological Disorders, Taylor Family Institute, Washington University School of Medicine, St. Louis, MO USA
| | - Wenjie Luo
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|