1
|
Gangadhara V, Abraham A. Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated in silico and in vitro exploration using isolated pancreatic islets of C57BL/6J mice. J Recept Signal Transduct Res 2024:1-13. [PMID: 39731340 DOI: 10.1080/10799893.2024.2446393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation. We constructed high-quality 3D models for murine β1-AR, β2-AR, and β3-AR using Phyre2 and Ramachandran plot analysis. Molecular docking revealed NE's strong binding affinity for all three β-AR subtypes through favorable docking scores and hydrogen bond formations. We evaluated the physiological impact of NE on glucose-induced insulin secretion via β-ARs under physiological and elevated glucose conditions using pancreatic islets from C57BL/6J mice. At physiological glucose levels, NE did not significantly increase insulin secretion. However, higher NE concentrations suppressed insulin release at elevated glucose. The β3-AR agonist CL316243 significantly increased (p < 0.01), insulin secretion under normal and hyperglycemic conditions, while the β3-AR antagonist L748337 substantially decreased (p < 0.01)insulin release under normal glucose, confirming their interactions through docking studies. The nonselective β-AR antagonist propranolol significantly decreased (p < 0.01)insulin secretion, suggesting alternative interactions with β1-AR and β2-AR despite lacking hydrogen bonds. Our study enhances the understanding of NE's role in modulating insulin secretion and underscores the significance of β-ARs, especially β3-AR, in its regulation, providing valuable insights for potential therapeutic interventions targeting these receptors in metabolic disorders.
Collapse
Affiliation(s)
- Vijayalakshmi Gangadhara
- Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India
- Department of Biosciences, Mangalore University, Mangalagangothri, Karnataka, India
| | - Asha Abraham
- Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India
| |
Collapse
|
2
|
Peña B SJ, Salazar J JS, Pardo JF, Roa ML, Corredor-Matus JR, Ochoa-Amaya JE. Effects of Saccharomyces cerevisiae on Pancreatic Alpha and Beta Cells and Metabolic Profile in Broilers. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10397-y. [PMID: 39549141 DOI: 10.1007/s12602-024-10397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
To evaluate the impact of Saccharomyces cerevisiae (SC) supplementation on pancreatic islet areas, alpha and beta cell populations, blood glucose levels, and lipid profiles in broilers, broilers were randomly assigned to two groups: a control group (T1) without SC and a treatment group (T2) supplemented with SC. Islet areas, alpha and beta cell counts, serum glucose and insulin levels, and lipid profiles were assessed. SC supplementation significantly decreased blood glucose levels compared to the control group. Additionally, HDL cholesterol levels were elevated in the SC-supplemented group. Although insulin levels remained unchanged, SC supplementation altered the correlation between pancreatic islet areas and alpha and beta cell populations, suggesting a potential influence on pancreatic islet function. Dietary supplementation with Saccharomyces cerevisiae can improve glycemic control and lipid profile in broilers. These findings highlight the potential benefits of using SC as a dietary additive in broiler production.
Collapse
Affiliation(s)
- Silvana J Peña B
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - Johan S Salazar J
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - Jhon F Pardo
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - Maria L Roa
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - José R Corredor-Matus
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - Julieta E Ochoa-Amaya
- Universidad de los Llanos, Villavicencio, Colombia.
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia.
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia.
| |
Collapse
|
3
|
Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiol Rev 2024; 104:1461-1486. [PMID: 38661565 DOI: 10.1152/physrev.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet β-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
5
|
Muñoz F, Fex M, Moritz T, Mulder H, Cataldo LR. Unique features of β-cell metabolism are lost in type 2 diabetes. Acta Physiol (Oxf) 2024; 240:e14148. [PMID: 38656044 DOI: 10.1111/apha.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic β cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper β-cell function. To fulfill this highly specialized nutrient sensor role, β cells have evolved a unique genetic program that shapes its distinct cellular metabolism. In this review, the unique genetic and metabolic features of β cells will be outlined, including their alterations in type 2 diabetes (T2D). β cells selectively express a set of genes in a cell type-specific manner; for instance, the glucose activating hexokinase IV enzyme or Glucokinase (GCK), whereas other genes are selectively "disallowed", including lactate dehydrogenase A (LDHA) and monocarboxylate transporter 1 (MCT1). This selective gene program equips β cells with a unique metabolic apparatus to ensure that nutrient metabolism is coupled to appropriate insulin secretion, thereby avoiding hyperglycemia, as well as life-threatening hypoglycemia. Unlike most cell types, β cells exhibit specialized bioenergetic features, including supply-driven rather than demand-driven metabolism and a high basal mitochondrial proton leak respiration. The understanding of these unique genetically programmed metabolic features and their alterations that lead to β-cell dysfunction is crucial for a comprehensive understanding of T2D pathophysiology and the development of innovative therapeutic approaches for T2D patients.
Collapse
Affiliation(s)
- Felipe Muñoz
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Malin Fex
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hindrik Mulder
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Luis Rodrigo Cataldo
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Di Piazza E, Todi L, Di Giuseppe G, Soldovieri L, Ciccarelli G, Brunetti M, Quero G, Alfieri S, Tondolo V, Pontecorvi A, Gasbarrini A, Nista EC, Giaccari A, Pani G, Mezza T. Advancing Diabetes Research: A Novel Islet Isolation Method from Living Donors. Int J Mol Sci 2024; 25:5936. [PMID: 38892122 PMCID: PMC11172646 DOI: 10.3390/ijms25115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.
Collapse
Affiliation(s)
- Eleonora Di Piazza
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Laura Todi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Laura Soldovieri
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gea Ciccarelli
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Michela Brunetti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giuseppe Quero
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Sergio Alfieri
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Vincenzo Tondolo
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Antonio Gasbarrini
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Enrico Celestino Nista
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giovambattista Pani
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Teresa Mezza
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
7
|
Yau B, Madsen S, Nelson ME, Cooke KC, Fritzen AM, Thorius IH, Stöckli J, James DE, Kebede MA. Genetics and diet shape the relationship between islet function and whole body metabolism. Am J Physiol Endocrinol Metab 2024; 326:E663-E672. [PMID: 38568150 PMCID: PMC11376487 DOI: 10.1152/ajpendo.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Despite the fact that genes and the environment are known to play a central role in islet function, our knowledge of how these parameters interact to modulate insulin secretory function remains relatively poor. Presently, we performed ex vivo glucose-stimulated insulin secretion and insulin content assays in islets of 213 mice from 13 inbred mouse strains on chow, Western diet (WD), and a high-fat, carbohydrate-free (KETO) diet. Strikingly, among these 13 strains, islets from the commonly used C57BL/6J mouse strain were the least glucose responsive. Using matched metabolic phenotyping data, we performed correlation analyses of isolated islet parameters and found a positive correlation between basal and glucose-stimulated insulin secretion, but no relationship between insulin secretion and insulin content. Using in vivo metabolic measures, we found that glucose tolerance determines the relationship between ex vivo islet insulin secretion and plasma insulin levels. Finally, we showed that islet glucose-stimulated insulin secretion decreased with KETO in almost all strains, concomitant with broader phenotypic changes, such as increased adiposity and glucose intolerance. This is an important finding as it should caution against the application of KETO diet for beta-cell health. Together these data offer key insights into the intersection of diet and genetic background on islet function and whole body glucose metabolism.NEW & NOTEWORTHY Thirteen strains of mice on chow, Western diet, and high-fat, carbohydrate-free (KETO), correlating whole body phenotypes to ex vivo pancreatic islet functional measurements, were used. The study finds a huge spectrum of functional islet responses and insulin phenotypes across all strains and diets, with the ubiquitous C57Bl/6J mouse exhibiting the lowest secretory response of all strains, highlighting the overall importance of considering genetic background when investigating islet function. Ex vivo basal and stimulated insulin secretion are correlated in the islet, and KETO imparts widescale downregulation of islet insulin secretion.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Søren Madsen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Marin E Nelson
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Andreas M Fritzen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Ida H Thorius
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Melkam A Kebede
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
8
|
Strage EM, Ley C, Westermark GT, Tengholm A. Insulin release from isolated cat islets of Langerhans. Domest Anim Endocrinol 2024; 87:106836. [PMID: 38141375 DOI: 10.1016/j.domaniend.2023.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Feline diabetes mellitus is a common endocrine disease with increasing prevalence. It shows similarities with human type 2 diabetes and is characterized by insulin resistance and deficient insulin secretion. Moreover, cats and humans belong to the very few species that form amyloid depositions in the pancreatic islets. However, little is known about cat islet function and no studies have addressed insulin secretion from isolated islets ex vivo. The aim of this study was to establish a protocol for isolation of islets of Langerhans from pancreata of cats euthanized due to disease, and to evaluate insulin secretion responses to various physiological and pharmacological stimuli. Collagenase digestion of pancreatic tissue from 13 non-diabetic cats and two cats with diabetic ketoacidosis yielded individual islets surrounded by a layer of exocrine tissue that was reduced after two days in culture. Histological examination showed islet amyloid in pancreatic biopsies from most non-diabetic and in one diabetic cat. Islets from non-diabetic cats cultured at 5.5 mM glucose responded with increased insulin secretion to 16.7 mM glucose, 30 mM K+ and 20 µM of the sulfonylurea glipizide (2-3 times basal secretion at 3 mM glucose). The glucagon-like peptide-1 receptor agonist exendin-4 (100 nM) had no effect under basal conditions but potentiated glucose-triggered insulin release. Only one of nine islet batches from diabetic cats released detectable amounts of insulin, which was enhanced by exendin-4. Culture of islets from non-diabetic cats at 25 mM glucose impaired secretion both in response to glucose and K+ depolarization. In conclusion, we describe a procedure for isolation of islets from cat pancreas biopsies and demonstrate that isolated cat islets secrete insulin in response to glucose and antidiabetic drugs. The study provides a basis for future ex vivo studies of islet function relevant to the understanding of the pathophysiology and treatment of feline diabetes.
Collapse
Affiliation(s)
- Emma M Strage
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, Uppsala SE-750 07, Sweden.
| | - Cecilia Ley
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, Uppsala SE-750 07, Sweden; Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, P.O. Box 571, Uppsala SE-751 23, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, P.O. Box 571, Uppsala SE-751 23, Sweden
| |
Collapse
|
9
|
Alsup AM, Fowlds K, Cho M, Luber JM. BetaBuddy: An automated end-to-end computer vision pipeline for analysis of calcium fluorescence dynamics in β-cells. PLoS One 2024; 19:e0299549. [PMID: 38489336 PMCID: PMC10942061 DOI: 10.1371/journal.pone.0299549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Insulin secretion from pancreatic β-cells is integral in maintaining the delicate equilibrium of blood glucose levels. Calcium is known to be a key regulator and triggers the release of insulin. This sub-cellular process can be monitored and tracked through live-cell imaging and subsequent cell segmentation, registration, tracking, and analysis of the calcium level in each cell. Current methods of analysis typically require the manual outlining of β-cells, involve multiple software packages, and necessitate multiple researchers-all of which tend to introduce biases. Utilizing deep learning algorithms, we have therefore created a pipeline to automatically segment and track thousands of cells, which greatly reduces the time required to gather and analyze a large number of sub-cellular images and improve accuracy. Tracking cells over a time-series image stack also allows researchers to isolate specific calcium spiking patterns and spatially identify those of interest, creating an efficient and user-friendly analysis tool. Using our automated pipeline, a previous dataset used to evaluate changes in calcium spiking activity in β-cells post-electric field stimulation was reanalyzed. Changes in spiking activity were found to be underestimated previously with manual segmentation. Moreover, the machine learning pipeline provides a powerful and rapid computational approach to examine, for example, how calcium signaling is regulated by intracellular interactions.
Collapse
Affiliation(s)
- Anne M. Alsup
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Kelli Fowlds
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Jacob M. Luber
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States of America
- Multi-Interprofessional Center for Health Informatics, University of Texas at Arlington, Arlington, TX, United States of America
| |
Collapse
|
10
|
Mishra P, Sahu A, Naik PK, Ravi PK. Islet Dimensions and Its Impact on the Cellular Composition and Insulin-Secreting Capacity: Insights Into the Role of Non-beta Cells. Cureus 2024; 16:e52428. [PMID: 38371125 PMCID: PMC10870337 DOI: 10.7759/cureus.52428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Studies have underscored the significance of islet dimensions, encompassing i) the necessity for islets to maintain an optimal diameter to sustain functional activity; ii) larger islets exhibit an intermingled architecture of alpha and beta cells, enhancing functional activity through paracrine effects; iii) non-alpha/beta (NAB) cells play a significant role in regulating beta cells; and iv) there is a preferential loss of larger islets in cases of type 2 diabetes mellitus. To delve deeper into these aspects, the authors documented the cellular composition in islets of various dimensions and regions of the pancreas, along with their secreting capacity, using the expression of the myosin Va motor protein in nine non-diabetic adult human pancreases. The proportion of NAB cells was found to be higher in intermediate islets and significantly lower in smaller and larger islets. By comparing the differences in islet composition, where NAB cells increase from smaller to intermediate islets, leading to a decrease in the proportion of alpha and beta cells, and in larger islets, there is a higher proportion of beta and alpha cells similar to smaller islets, we propose the hypothesis that NAB cells proliferate as islets increase in size. Furthermore, in larger islets, these NAB cells convert into alpha and beta cells, resulting in the scattered, intermingled arrangement observed in larger islets. The higher intensity of myosin Va expression in the islets of the tail region, along with a similar proportion of NAB cells in intermediate islets of the tail region compared to larger islets, leads to decreased inhibitory stimuli to beta cells and an increased insulin-secreting capacity.
Collapse
Affiliation(s)
- Pravash Mishra
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, IND
| | - Abhijit Sahu
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, IND
| | - Pradeep K Naik
- Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Burla, IND
| | | |
Collapse
|
11
|
Raoux M, Lablanche S, Jaffredo M, Pirog A, Benhamou PY, Lebreton F, Wojtusciszyn A, Bosco D, Berney T, Renaud S, Lang J, Catargi B. Islets-on-Chip: A Tool for Real-Time Assessment of Islet Function Prior to Transplantation. Transpl Int 2023; 36:11512. [PMID: 37885808 PMCID: PMC10598278 DOI: 10.3389/ti.2023.11512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Islet transplantation improves metabolic control in patients with unstable type 1 diabetes. Clinical outcomes have been improving over the last decade, and the widely used beta-score allows the evaluation of transplantation results. However, predictive pre-transplantation criteria of islet quality for clinical outcomes are lacking. In this proof-of-concept study, we examined whether characterization of the electrical activity of donor islets could provide a criterion. Aliquots of 8 human donor islets from the STABILOT study, sampled from islet preparations before transplantation, were characterized for purity and split for glucose-induced insulin secretion and electrical activity using multi-electrode-arrays. The latter tests glucose concentration dependencies, biphasic activity, hormones, and drug effects (adrenalin, GLP-1, glibenclamide) and provides a ranking of CHIP-scores from 1 to 6 (best) based on electrical islet activity. The analysis was performed online in real time using a dedicated board or offline. Grouping of beta-scores and CHIP-scores with high, intermediate, and low values was observed. Further analysis indicated correlation between CHIP-score and beta-score, although significance was not attained (R = 0.51, p = 0.1). This novel approach is easily implantable in islet isolation units and might provide means for the prediction of clinical outcomes. We acknowledge the small cohort size as the limitation of this pilot study.
Collapse
Affiliation(s)
- Matthieu Raoux
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-Objects, UMR 5248, Pessac, France
| | - Sandrine Lablanche
- University of Grenoble Alpes, Clinique d’Endocrinologie, Diabétologie, Maladies Métaboliques, CHU Grenoble Alpes, U1055 INSERM, Grenoble, France
| | - Manon Jaffredo
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-Objects, UMR 5248, Pessac, France
| | - Antoine Pirog
- University of Bordeaux, CNRS, Bordeaux INP, Laboratoire de l’Intégration du Matériau au Système, IMS UMR 5218, Talence, France
| | - Pierre-Yves Benhamou
- University of Grenoble Alpes, Clinique d’Endocrinologie, Diabétologie, Maladies Métaboliques, CHU Grenoble Alpes, U1055 INSERM, Grenoble, France
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Anne Wojtusciszyn
- Centre Hospitalier de Montpellier, Service d’Endocrinologie, Université de Montpellier, Montpellier, France
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Sylvie Renaud
- University of Bordeaux, CNRS, Bordeaux INP, Laboratoire de l’Intégration du Matériau au Système, IMS UMR 5218, Talence, France
| | - Jochen Lang
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-Objects, UMR 5248, Pessac, France
| | - Bogdan Catargi
- Service d’Endocrinologie-Diabétologie, Hôpital St André, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
12
|
Vanderlaan EL, Nolan JK, Sexton J, Evans-Molina C, Lee H, Voytik-Harbin SL. Development of electrochemical Zn 2+ sensors for rapid voltammetric detection of glucose-stimulated insulin release from pancreatic β-cells. Biosens Bioelectron 2023; 235:115409. [PMID: 37244091 DOI: 10.1016/j.bios.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Diabetes is a chronic disease characterized by elevated blood glucose levels resulting from absent or ineffective insulin release from pancreatic β-cells. β-cell function is routinely assessed in vitro using static or dynamic glucose-stimulated insulin secretion (GSIS) assays followed by insulin quantification via time-consuming, costly enzyme-linked immunosorbent assays (ELISA). In this study, we developed a highly sensitive electrochemical sensor for zinc (Zn2+), an ion co-released with insulin, as a rapid and low-cost method for measuring dynamic insulin release. Different modifications to glassy carbon electrodes (GCE) were evaluated to develop a sensor that detects physiological Zn2+ concentrations while operating within a biological Krebs Ringer Buffer (KRB) medium (pH 7.2). Electrodeposition of bismuth and indium improved Zn2+ sensitivity and limit of detection (LOD), and a Nafion coating improved selectivity. Using anodic stripping voltammetry (ASV) with a pre-concentration time of 6 min, we achieved a LOD of 2.3 μg/L over the wide linear range of 2.5-500 μg/L Zn2+. Sensor performance improved with 10-min pre-concentration, resulting in increased sensitivity, lower LOD (0.18 μg/L), and a bilinear response over the range of 0.25-10 μg/L Zn2+. We further characterized the physicochemical properties of the Zn2+ sensor using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Finally, we demonstrated the sensor's capability to measure Zn2+ release from glucose-stimulated INS-1 β-cells and primary mouse islets. Our results exhibited a high correlation with secreted insulin and validated the sensor's potential as a rapid alternative to conventional two-step GSIS plus ELISA methods.
Collapse
Affiliation(s)
- Emma L Vanderlaan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Indiana Medical Scientist/Engineer Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James K Nolan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Joshua Sexton
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA
| | - Carmella Evans-Molina
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
13
|
Brown A, Tzanakakis ES. Mathematical modeling clarifies the paracrine roles of insulin and glucagon on the glucose-stimulated hormonal secretion of pancreatic alpha- and beta-cells. Front Endocrinol (Lausanne) 2023; 14:1212749. [PMID: 37645413 PMCID: PMC10461634 DOI: 10.3389/fendo.2023.1212749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction Blood sugar homeostasis relies largely on the action of pancreatic islet hormones, particularly insulin and glucagon. In a prototypical fashion, glucagon is released upon hypoglycemia to elevate glucose by acting on the liver while elevated glucose induces the secretion of insulin which leads to sugar uptake by peripheral tissues. This simplified view of glucagon and insulin does not consider the paracrine roles of the two hormones modulating the response to glucose of α- and β-cells. In particular, glucose-stimulated glucagon secretion by isolated α-cells exhibits a Hill-function pattern, while experiments with intact pancreatic islets suggest a 'U'-shaped response. Methods To this end, a framework was developed based on first principles and coupled to experimental studies capturing the glucose-induced response of pancreatic α- and β-cells influenced by the two hormones. The model predicts both the transient and steady-state profiles of secreted insulin and glucagon, including the typical biphasic response of normal β-cells to hyperglycemia. Results and discussion The results underscore insulin activity as a differentiating factor of the glucagon secretion from whole islets vs. isolated α-cells, and highlight the importance of experimental conditions in interpreting the behavior of islet cells in vitro. The model also reproduces the hyperglucagonemia, which is experienced by diabetes patients, and it is linked to a failure of insulin to inhibit α-cell activity. The framework described here is amenable to the inclusion of additional islet cell types and extrapancreatic tissue cells simulating multi-organ systems. The study expands our understanding of the interplay of insulin and glucagon for pancreas function in normal and pathological conditions.
Collapse
Affiliation(s)
- Aedan Brown
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Genetics, Molecular and Cellular Biology, Tufts University, Boston, MA, United States
- Pharmacology and Drug Development, Tufts University, Boston, MA, United States
- Clinical and Translational Science Institute, Tufts University, Boston, MA, United States
| |
Collapse
|
14
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
15
|
Postić S, Sarikas S, Pfabe J, Pohorec V, Križančić Bombek L, Sluga N, Skelin Klemen M, Dolenšek J, Korošak D, Stožer A, Evans-Molina C, Johnson JD, Slak Rupnik M. High-resolution analysis of the cytosolic Ca 2+ events in β cell collectives in situ. Am J Physiol Endocrinol Metab 2023; 324:E42-E55. [PMID: 36449570 PMCID: PMC9829482 DOI: 10.1152/ajpendo.00165.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
The release of peptide hormones is predominantly regulated by a transient increase in cytosolic Ca2+ concentration ([Ca2+]c). To trigger exocytosis, Ca2+ ions enter the cytosol from intracellular Ca2+ stores or from the extracellular space. The molecular events of late stages of exocytosis, and their dependence on [Ca2+]c, were extensively described in isolated single cells from various endocrine glands. Notably, less work has been done on endocrine cells in situ to address the heterogeneity of [Ca2+]c events contributing to a collective functional response of a gland. For this, β cell collectives in a pancreatic islet are particularly well suited as they are the smallest, experimentally manageable functional unit, where [Ca2+]c dynamics can be simultaneously assessed on both cellular and collective level. Here, we measured [Ca2+]c transients across all relevant timescales, from a subsecond to a minute time range, using high-resolution imaging with a low-affinity Ca2+ sensor. We quantified the recordings with a novel computational framework for automatic image segmentation and [Ca2+]c event identification. Our results demonstrate that under physiological conditions the duration of [Ca2+]c events is variable, and segregated into three reproducible modes, subsecond, second, and tens of seconds time range, and are a result of a progressive temporal summation of the shortest events. Using pharmacological tools we show that activation of intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in β cell collectives, and that a subset of [Ca2+]c events could be triggered even in the absence of Ca2+ influx across the plasma membrane. In aggregate, our experimental and analytical platform was able to readily address the involvement of intracellular Ca2+ receptors in shaping the heterogeneity of [Ca2+]c responses in collectives of endocrine cells in situ.NEW & NOTEWORTHY Physiological glucose or ryanodine stimulation of β cell collectives generates a large number of [Ca2+]c events, which can be rapidly assessed with our newly developed automatic image segmentation and [Ca2+]c event identification pipeline. The event durations segregate into three reproducible modes produced by a progressive temporal summation. Using pharmacological tools, we show that activation of ryanodine intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in β cell collectives.
Collapse
Affiliation(s)
- Sandra Postić
- Center for physiology and pharmacology, Medical University of Vienna, Vienna, Austria
| | - Srdjan Sarikas
- Center for physiology and pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes Pfabe
- Center for physiology and pharmacology, Medical University of Vienna, Vienna, Austria
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Nastja Sluga
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Dean Korošak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marjan Slak Rupnik
- Center for physiology and pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| |
Collapse
|
16
|
Huang H, Shang Y, Li H, Feng Q, Liu Y, Chen J, Dong H. Co-transplantation of Islets-Laden Microgels and Biodegradable O 2-Generating Microspheres for Diabetes Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38448-38458. [PMID: 35980755 DOI: 10.1021/acsami.2c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pancreatic islets transplantation is an optimal alternative to exogenous insulin injection for long-term effective type 1 diabetes treatment. However, direct islets transplantation without any protection can induce cell necrosis due to severe host immune rejection. Insufficient O2 supply induced by the lack of capillary network at the early stage of islets transplantation is another critical constraint limiting islets survival and insulin-secretion function. In this paper, we design a novel co-transplantation system composed of islets-laden nanocomposite microgels and O2-generating microspheres. In particular, nanocomposite microgels confer the encapsulated islets with simultaneous physical protection and chemical anti-inflammation/immunosuppression by covalently anchoring rapamycin-loaded cyclodextrin nanoparticles to microgel network. Meanwhile, O2-generating microspheres prepared by blending inorganic peroxides in biodegradable polycaprolactone and polylactic acid can generate in situ O2 gas and thus avoid hypoxia environment around transplanted islets. In vivo therapeutic effect of diabetic mice proves the reversion of the high blood glucose level back to normoglycemia and superior glucose tolerance for at least 90 days post co-transplantation. In brief, the localized drug and oxygen codelivery, as well as physical protection provided by our co-transplantation system, has the potential to overcome to a large extent the inflammatory, hypoxia, and host immune rejection after islets transplantation. This new strategy may have wider application in other cell replacement therapies.
Collapse
Affiliation(s)
- Hanhao Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yulian Shang
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yang Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
17
|
Gloyn AL, Ibberson M, Marchetti P, Powers AC, Rorsman P, Sander M, Solimena M. Every islet matters: improving the impact of human islet research. Nat Metab 2022; 4:970-977. [PMID: 35953581 PMCID: PMC11135339 DOI: 10.1038/s42255-022-00607-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
Detailed characterization of human pancreatic islets is key to elucidating the pathophysiology of all forms of diabetes, especially type 2 diabetes. However, access to human pancreatic islets is limited. Pancreatic tissue for islet retrieval can be obtained from brain-dead organ donors or from individuals undergoing pancreatectomy, often referred to as 'living donors'. Different protocols for human islet procurement can substantially impact islet function. This variability, coupled with heterogeneity between individuals and islets, results in analytical challenges to separate genuine disease pathology or differences between human donors from experimental noise. There are currently no international guidelines for human donor phenotyping, islet procurement and functional characterization. This lack of standardization means that substantial investments from multiple international efforts towards improved understanding of diabetes pathology cannot be fully leveraged. In this Perspective, we overview the status of the field of human islet research, highlight the challenges and propose actions that could accelerate research progress and increase understanding of type 2 diabetes to slow its pandemic spreading.
Collapse
Affiliation(s)
- Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Mark Ibberson
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alvin C Powers
- Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, San Diego, CA, USA
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden and German Center for Diabetes Resaerch (DZD e.V.), Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Suleiman M, Marselli L, Cnop M, Eizirik DL, De Luca C, Femia FR, Tesi M, Del Guerra S, Marchetti P. The Role of Beta Cell Recovery in Type 2 Diabetes Remission. Int J Mol Sci 2022; 23:7435. [PMID: 35806437 PMCID: PMC9267061 DOI: 10.3390/ijms23137435] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) has been considered a relentlessly worsening disease, due to the progressive deterioration of the pancreatic beta cell functional mass. Recent evidence indicates, however, that remission of T2D may occur in variable proportions of patients after specific treatments that are associated with recovery of beta cell function. Here we review the available information on the recovery of beta cells in (a) non-diabetic individuals previously exposed to metabolic stress; (b) T2D patients following low-calorie diets, pharmacological therapies or bariatric surgery; (c) human islets isolated from non-diabetic organ donors that recover from "lipo-glucotoxic" conditions; and (d) human islets isolated from T2D organ donors and exposed to specific treatments. The improvement of insulin secretion reported by these studies and the associated molecular traits unveil the possibility to promote T2D remission by directly targeting pancreatic beta cells.
Collapse
Affiliation(s)
- Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.C.); (D.L.E.)
- Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.C.); (D.L.E.)
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Francesca R. Femia
- Departmental Section of Endocrinology and Metabolism of Transplantation, AOUP Cisanello Hospital, 56124 Pisa, Italy;
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Silvia Del Guerra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
- Departmental Section of Endocrinology and Metabolism of Transplantation, AOUP Cisanello Hospital, 56124 Pisa, Italy;
| |
Collapse
|
19
|
Nguyen-Tu MS, Harris J, Martinez-Sanchez A, Chabosseau P, Hu M, Georgiadou E, Pollard A, Otero P, Lopez-Noriega L, Leclerc I, Sakamoto K, Schmoll D, Smith DM, Carling D, Rutter GA. Opposing effects on regulated insulin secretion of acute vs chronic stimulation of AMP-activated protein kinase. Diabetologia 2022; 65:997-1011. [PMID: 35294578 PMCID: PMC9076735 DOI: 10.1007/s00125-022-05673-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Although targeted in extrapancreatic tissues by several drugs used to treat type 2 diabetes, the role of AMP-activated protein kinase (AMPK) in the control of insulin secretion is still debatable. Previous studies have used pharmacological activators of limited selectivity and specificity, and none has examined in primary pancreatic beta cells the actions of the latest generation of highly potent and specific activators that act via the allosteric drug and metabolite (ADaM) site. METHODS AMPK was activated acutely in islets isolated from C57BL6/J mice, and in an EndoC-βH3 cell line, using three structurally distinct ADaM site activators (991, PF-06409577 and RA089), with varying selectivity for β1- vs β2-containing complexes. Mouse lines expressing a gain-of-function mutation in the γ1 AMPK subunit (D316a) were generated to examine the effects of chronic AMPK stimulation in the whole body, or selectively in the beta cell. RESULTS Acute (1.5 h) treatment of wild-type mouse islets with 991, PF-06409577 or RA089 robustly stimulated insulin secretion at high glucose concentrations (p<0.01, p<0.05 and p<0.001, respectively), despite a lowering of glucose-induced intracellular free Ca2+ dynamics in response to 991 (AUC, p<0.05) and to RA089 at the highest dose (25 μmol/l) at 5.59 min (p<0.05). Although abolished in the absence of AMPK, the effects of 991 were observed in the absence of the upstream kinase, liver kinase B1, further implicating 'amplifying' pathways. In marked contrast, chronic activation of AMPK, either globally or selectively in the beta cell, achieved using a gain-of-function mutant, impaired insulin release in vivo (p<0.05 at 15 min following i.p. injection of 3 mmol/l glucose) and in vitro (p<0.01 following incubation of islets with 17 mmol/l glucose), and lowered glucose tolerance (p<0.001). CONCLUSIONS/INTERPRETATION AMPK activation exerts complex, time-dependent effects on insulin secretion. These observations should inform the design and future clinical use of AMPK modulators.
Collapse
Affiliation(s)
- Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Joseph Harris
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alice Pollard
- MRC- London Institute of Medical Sciences, Imperial College London, London, UK
- Structure Biophysics and Fragments, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Pablo Otero
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Livia Lopez-Noriega
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kei Sakamoto
- Novo Nordisk Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Dieter Schmoll
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - David M Smith
- Emerging Innovations Unit, Discovery Sciences, AstraZeneca R&D , Cambridge, UK
| | - David Carling
- MRC- London Institute of Medical Sciences, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.
- CR-CHUM, University of Montréal, Montréal, QC, Canada.
| |
Collapse
|
20
|
Morriseau TS, Doucette CA, Dolinsky VW. More than meets the islet: aligning nutrient and paracrine inputs with hormone secretion in health and disease. Am J Physiol Endocrinol Metab 2022; 322:E446-E463. [PMID: 35373587 DOI: 10.1152/ajpendo.00411.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic islet is responsive to an array of endocrine, paracrine, and nutritional inputs that adjust hormone secretion to ensure accurate control of glucose homeostasis. Although the mechanisms governing glucose-coupled insulin secretion have received the most attention, there is emerging evidence for a multitude of physiological signaling pathways and paracrine networks that collectively regulate insulin, glucagon, and somatostatin release. Moreover, the modulation of these pathways in conditions of glucotoxicity or lipotoxicity are areas of both growing interest and controversy. In this review, the contributions of external, intrinsic, and paracrine factors in pancreatic β-, α-, and δ-cell secretion across the full spectrum of physiological (i.e., fasting and fed) and pathophysiological (gluco- and lipotoxicity; diabetes) environments will be critically discussed.
Collapse
Affiliation(s)
- Taylor S Morriseau
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Mugabo Y, Zhao C, Tan JJ, Ghosh A, Campbell SA, Fadzeyeva E, Paré F, Pan SS, Galipeau M, Ast J, Broichhagen J, Hodson DJ, Mulvihill EE, Petropoulos S, Lim GE. 14-3-3ζ constrains insulin secretion by regulating mitochondrial function in pancreatic β-cells. JCI Insight 2022; 7:156378. [PMID: 35298439 PMCID: PMC9089799 DOI: 10.1172/jci.insight.156378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
While critical for neurotransmitter synthesis, 14-3-3 proteins are often assumed to have redundant functions due to their ubiquitous expression, but despite this assumption, various 14-3-3 isoforms have been implicated in regulating metabolism. We previously reported contributions of 14-3-3ζ in β cell function, but these studies were performed in tumor-derived MIN6 cells and systemic KO mice. To further characterize the regulatory roles of 14-3-3ζ in β cell function, we generated β cell–specific 14-3-3ζ–KO mice. Although no effects on β cell mass were detected, potentiated glucose-stimulated insulin secretion (GSIS), mitochondrial function, and ATP synthesis were observed. Deletion of 14-3-3ζ also altered the β cell transcriptome, as genes associated with mitochondrial respiration and oxidative phosphorylation were upregulated. Acute 14-3-3 protein inhibition in mouse and human islets recapitulated the enhancements in GSIS and mitochondrial function, suggesting that 14-3-3ζ is the critical isoform in β cells. In dysfunctional db/db islets and human islets from type 2 diabetic donors, expression of Ywhaz/YWHAZ, the gene encoding 14-3-3ζ, was inversely associated with insulin secretion, and pan–14-3-3 protein inhibition led to enhanced GSIS and mitochondrial function. Taken together, this study demonstrates important regulatory functions of 14-3-3ζ in the regulation of β cell function and provides a deeper understanding of how insulin secretion is controlled in β cells.
Collapse
Affiliation(s)
- Yves Mugabo
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Cheng Zhao
- Division of Obstetrics and Gynecology, Department of Clinical Science, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ju Jing Tan
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | - Anindya Ghosh
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Scott A Campbell
- Cardiometabolic Axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | - Evgenia Fadzeyeva
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Frédéric Paré
- Cardiometabolic Axis, Centre de recherche du CHUM (CRCHUM), Montreal, Canada
| | - Siew Siew Pan
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Maria Galipeau
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Pro, University of Birmingham, Birmingham, United Kingdom
| | - Johannes Broichhagen
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Pro, University of Birmingham, Birmingham, United Kingdom
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
22
|
Cabrera O, Ficorilli J, Shaw J, Echeverri F, Schwede F, Chepurny OG, Leech CA, Holz GG. Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. J Biol Chem 2022; 298:101484. [PMID: 34896391 PMCID: PMC8789663 DOI: 10.1016/j.jbc.2021.101484] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
We report that intra-islet glucagon secreted from α-cells signals through β-cell glucagon and GLP-1 receptors (GcgR and GLP-1R), thereby conferring to rat islets their competence to exhibit first-phase glucose-stimulated insulin secretion (GSIS). Thus, in islets not treated with exogenous glucagon or GLP-1, first-phase GSIS is abolished by a GcgR antagonist (LY2786890) or a GLP-1R antagonist (Ex[9-39]). Mechanistically, glucose competence in response to intra-islet glucagon is conditional on β-cell cAMP signaling because it is blocked by the cAMP antagonist prodrug Rp-8-Br-cAMPS-pAB. In its role as a paracrine hormone, intra-islet glucagon binds with high affinity to the GcgR, while also exerting a "spillover" effect to bind with low affinity to the GLP-1R. This produces a right shift of the concentration-response relationship for the potentiation of GSIS by exogenous glucagon. Thus, 0.3 nM glucagon fails to potentiate GSIS, as expected if similar concentrations of intra-islet glucagon already occupy the GcgR. However, 10 to 30 nM glucagon effectively engages the β-cell GLP-1R to potentiate GSIS, an action blocked by Ex[9-39] but not LY2786890. Finally, we report that the action of intra-islet glucagon to support insulin secretion requires a step-wise increase of glucose concentration to trigger first-phase GSIS. It is not measurable when GSIS is stimulated by a gradient of increasing glucose concentrations, as occurs during an oral glucose tolerance test in vivo. Collectively, such findings are understandable if defective intra-islet glucagon action contributes to the characteristic loss of first-phase GSIS in an intravenous glucose tolerance test that is diagnostic of type 2 diabetes in the clinical setting.
Collapse
Affiliation(s)
- Over Cabrera
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA.
| | - James Ficorilli
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Janice Shaw
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Frank Schwede
- Biolog Life Science Institute GmbH & Co KG, Bremen, Germany
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA; Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
23
|
Mourad NI, Xhema D, Gianello P. In vitro assessment of pancreatic hormone secretion from isolated porcine islets. Front Endocrinol (Lausanne) 2022; 13:935060. [PMID: 36034433 PMCID: PMC9402940 DOI: 10.3389/fendo.2022.935060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
The potential use of porcine islets for transplantation in humans has triggered interest in understanding porcine islet physiology. However, the number of studies dedicated to this topic has remained limited, as most islet physiologists prefer to use the less time-consuming rodent model or the more clinically relevant human islet. An often-overlooked aspect of pig islet physiology is its alpha cell activity and regulation of its glucagon secretion. In vitro islet perifusion is a reliable method to study the dynamics of hormone secretion in response to different stimuli. We thus used this method to quantify and study glucagon secretion from pig islets. Pancreatic islets were isolated from 20 neonatal (14 to 21-day old) and 5 adult (>2 years) pigs and cultured in appropriate media. Islet perifusion experiments were performed 8 to 10 days post-isolation for neonatal islets and 1 to 2 days post-isolation for adult islets. Insulin and glucagon were quantified in perifusion effluent fractions as well as in islet extracts by RIA. Increasing glucose concentration from 1 mM to 15 mM markedly inhibited glucagon secretion independently of animal age. Interestingly, the effect of high glucose was more drastic on glucagon secretion compared to its effect on insulin secretion. In vivo, glucose injection during IVGTT initiated a quick (2-10 minutes) 3-fold decrease of plasmatic glucagon whereas the increase of plasmatic insulin took 20 minutes to become significant. These results suggest that regulation of glucagon secretion significantly contributes to glucose homeostasis in pigs and might compensate for the mild changes in insulin secretion in response to changes in glucose concentration.
Collapse
|
24
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
25
|
Tuluc P, Theiner T, Jacobo-Piqueras N, Geisler SM. Role of High Voltage-Gated Ca 2+ Channel Subunits in Pancreatic β-Cell Insulin Release. From Structure to Function. Cells 2021; 10:2004. [PMID: 34440773 PMCID: PMC8393260 DOI: 10.3390/cells10082004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The pancreatic islets of Langerhans secrete several hormones critical for glucose homeostasis. The β-cells, the major cellular component of the pancreatic islets, secrete insulin, the only hormone capable of lowering the plasma glucose concentration. The counter-regulatory hormone glucagon is secreted by the α-cells while δ-cells secrete somatostatin that via paracrine mechanisms regulates the α- and β-cell activity. These three peptide hormones are packed into secretory granules that are released through exocytosis following a local increase in intracellular Ca2+ concentration. The high voltage-gated Ca2+ channels (HVCCs) occupy a central role in pancreatic hormone release both as a source of Ca2+ required for excitation-secretion coupling as well as a scaffold for the release machinery. HVCCs are multi-protein complexes composed of the main pore-forming transmembrane α1 and the auxiliary intracellular β, extracellular α2δ, and transmembrane γ subunits. Here, we review the current understanding regarding the role of all HVCC subunits expressed in pancreatic β-cell on electrical activity, excitation-secretion coupling, and β-cell mass. The evidence we review was obtained from many seminal studies employing pharmacological approaches as well as genetically modified mouse models. The significance for diabetes in humans is discussed in the context of genetic variations in the genes encoding for the HVCC subunits.
Collapse
Affiliation(s)
- Petronel Tuluc
- Centre for Molecular Biosciences, Department of Pharmacology and Toxicology, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (T.T.); (N.J.-P.); (S.M.G.)
| | | | | | | |
Collapse
|
26
|
Thapa B, Suh EH, Parrott D, Khalighinejad P, Sharma G, Chirayil S, Sherry AD. Imaging β-Cell Function Using a Zinc-Responsive MRI Contrast Agent May Identify First Responder Islets. Front Endocrinol (Lausanne) 2021; 12:809867. [PMID: 35173681 PMCID: PMC8842654 DOI: 10.3389/fendo.2021.809867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 01/05/2023] Open
Abstract
An imaging method for detecting β-cell function in real-time in the rodent pancreas could provide new insights into the biological mechanisms involving loss of β-cell function during development of type 2 diabetes and for testing of new drugs designed to modulate insulin secretion. In this study, we used a zinc-responsive MRI contrast agent and an optimized 2D MRI method to show that glucose stimulated insulin and zinc secretion can be detected as functionally active "hot spots" in the tail of the rat pancreas. A comparison of functional images with histological markers show that insulin and zinc secretion does not occur uniformly among all pancreatic islets but rather that some islets respond rapidly to an increase in glucose while others remain silent. Zinc and insulin secretion was shown to be altered in streptozotocin and exenatide treated rats thereby verifying that this simple MRI technique is responsive to changes in β-cell function.
Collapse
Affiliation(s)
- Bibek Thapa
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Daniel Parrott
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pooyan Khalighinejad
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sara Chirayil
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: A. Dean Sherry, ;
| |
Collapse
|