1
|
Sharifi M, Saber A, Moludi J, Salimi Y, Jahan-Mihan A. The effects of portfolio moderate-carbohydrate and ketogenic diets on anthropometric indices, metabolic status, and hormonal levels in overweight or obese women with polycystic ovary syndrome: a randomized controlled trial. Nutr J 2024; 23:152. [PMID: 39617882 PMCID: PMC11610292 DOI: 10.1186/s12937-024-01056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is one of the most common hormonal disorders in reproductive-age women caused by hyperinsulinemia. The portfolio Moderate-carbohydrate diet (PMCD) is a plant-based diet with a carbohydrate content of 40% and incorporates five cholesterol-lowering foods. While, the ketogenic diet is a high-fat diet with 70% fat, promoting a ketosis state. To the best of our knowledge, no study compared the therapeutic effects of these two diets in PCOS patients. Thus, this study aimed to compare the impact of PLCD and KD on anthropometric indices, metabolic status, and hormonal levels in overweight or obese women with PCOS. METHODS This open-label, randomized clinical trial was conducted on forty-six PCOS women. 21 women in PMCD and 19 in the KD group completed the study. The anthropometric indices including body mass index (BMI) and fat body mass (FBM), metabolic markers (fasting blood glucose (FBG)) and plasma lipid profiles including low-density lipoprotein (LDL), triglycerides, and high-density lipoproteins (HDL) were measured. Reproductive hormones such as luteinizing hormone (LH), dehydroepiandrosterone sulfate (DHEA-s) and free testosterone were assessed at the baseline and after the intervention. RESULTS However, after 8 weeks both diets demonstrated enhancement in anthropometric indices (BMI, FBM, lean body mass), metabolic status (FBG, insulin serum levels), and reproductive hormones such as LH, free testosterone, and DHEA-s. The mean difference in the KD improved more than the PMCD in the field of BMI reduction (MD (SD) 2.73 (0.351) vs. MD (SD) 1.71 (0.775)) and LH (MD 4.13 (1.375) vs.MD 2.46 (1.105)). Nevertheless, the lipid profile including LDL-C and triglycerides improved more in the PMCD compared to the KD (MD 33.95 (7.345) vs. MD 23.34 (14.136)) and (MD 38.20 (10.757) vs. MD 57.62 (21.688)) respectively. There were no significant changes in the Ferriman-Gallwey score within or between the two groups. CONCLUSION The findings revealed that both diets were effective in improving PCOS manifestations. However, the KD exhibited greater effectiveness in enhancing body measurements, metabolic factors, and reproductive hormone levels compared to the PMCD in obese PCOS women. Furthermore, PMCD could be more beneficial for PCOS women with lipide disorders. REGISTRATION NUMBER OF CLINICAL TRIAL IRCT20200912048693N3, Trial registered 2022-12-14. https://www.irct.ir/trial/67548.
Collapse
Affiliation(s)
- Maryam Sharifi
- Student Research Committee, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Social Development & Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jalal Moludi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Social Development & Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Yahya Salimi
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, Brooks College of Health, University of North Florida, Jacksonville, FL, USA
| |
Collapse
|
2
|
Moya-Garzon MD, Wang M, Li VL, Lyu X, Wei W, Tung ASH, Raun SH, Zhao M, Coassolo L, Islam H, Oliveira B, Dai Y, Spaas J, Delgado-Gonzalez A, Donoso K, Alvarez-Buylla A, Franco-Montalban F, Letian A, Ward CP, Liu L, Svensson KJ, Goldberg EL, Gardner CD, Little JP, Banik SM, Xu Y, Long JZ. A β-hydroxybutyrate shunt pathway generates anti-obesity ketone metabolites. Cell 2024:S0092-8674(24)01214-5. [PMID: 39536746 DOI: 10.1016/j.cell.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
β-Hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve the interconversion of BHB and primary energy intermediates. Here, we identify a previously undescribed BHB secondary metabolic pathway via CNDP2-dependent enzymatic conjugation of BHB and free amino acids. This BHB shunt pathway generates a family of anti-obesity ketone metabolites, the BHB-amino acids. Genetic ablation of CNDP2 in mice eliminates tissue amino acid BHB-ylation activity and reduces BHB-amino acid levels. The most abundant BHB-amino acid, BHB-Phe, is a ketosis-inducible congener of Lac-Phe that activates hypothalamic and brainstem neurons and suppresses feeding. Conversely, CNDP2-KO mice exhibit increased food intake and body weight following exogenous ketone ester supplementation or a ketogenic diet. CNDP2-dependent amino acid BHB-ylation and BHB-amino acid metabolites are also conserved in humans. Therefore, enzymatic amino acid BHB-ylation defines a ketone shunt pathway and bioactive ketone metabolites linked to energy balance.
Collapse
Affiliation(s)
- Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Barbara Oliveira
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Yuqin Dai
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jan Spaas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Kenyi Donoso
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Francisco Franco-Montalban
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja sn, 18071 Granada, Spain
| | - Anudari Letian
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine P Ward
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Ye F, Huang Y, Zeng L, Li N, Hao L, Yue J, Li S, Deng J, Yu F, Hu X. The genetically predicted causal associations between circulating 3-hydroxybutyrate levels and malignant neoplasms: A pan-cancer Mendelian randomization study. Clin Nutr 2024; 43:137-152. [PMID: 39378563 DOI: 10.1016/j.clnu.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE The ketogenic diet or exogenous supplementation with 3-hydroxybutyrate (3HB) is progressively gaining recognition as a valuable therapeutic or health intervention strategy. However, the effects of 3HB on cancers have been inconsistent in previous studies. This study aimed to comprehensively investigate the causal effects of circulating 3HB levels on 120 cancer phenotypes, and explore the 3HB mediation effect between liver fat accumulation and cancers. METHODS Univariate Mendelian randomization (UVMR) was used in this study to investigate the causal impact of circulating 3HB levels on cancers. We conducted meta-analyses for 3HB-cancer associations sourced from different exposure data. In multivariate MR(MVMR), the body mass index, alcohol frequency and diabetes were included as covariates to investigate the independent effect of 3HB on cancer risk. Additionally, utilizing mediation MR analysis, we checked the potential mediating role of 3HB in the association between liver fat and cancer. RESULTS Integrating findings from UVMR and MVMR, we observed that elevated circulating 3HB levels were associated with reduced risk of developing diffuse large B-cell lymphoma(DLBCL) (OR[95%CI] = 0.28[0.14-0.57] p = 3.92e-04), biliary malignancies (OR[95%CI] = 0.30[0.15-0.60], p = 7.67e-04), hepatocellular carcinoma(HCC) (OR[95%CI] = 0.25[0.09-0.71], p = 9.33e-03), primary lymphoid and hematopoietic malignancies (OR[95%CI] = 0.76[0.58-0.99], p = 0.045). Further UVMR analysis revealed that an increase in the percent liver fat was associated with reduced 3HB levels (Beta[95%CI] = -0.073[-0.122∼-0.024], p = 0.0034) and enhanced susceptibility to HCC (OR[95%CI] = 13.9[9.76-19.79], p = 3.14e-48), biliary malignancies (OR[95%CI] = 4.04[3.22-5.07], p = 1.64e-33), nasopharyngeal cancer (OR[95%CI] = 3.26[1.10-9.67], p = 0.03), and primary lymphoid and hematopoietic malignancies (OR[95%CI] = 1.27[1.13-1.44], p = 1.04e-4). Furthermore, 3HB fully mediated the effect of liver fat on susceptibility to DLBCL (OR[95%CI] = 1.076[1.01-1.15], p = 0.034). CONCLUSIONS Circulating 3HB is associated with a reduced susceptibility to developing DLBCL, HCC, biliary malignancies, and primary lymphoid and hematopoietic malignancies. The impaired ketogenesis induced by metabolic-dysfunction associated fatty liver disease (MAFLD) contributes to risk of DLBCL.
Collapse
Affiliation(s)
- Fanghang Ye
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yucheng Huang
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liang Zeng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiayun Yue
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Zhou Y, Ling D, Wang L, Xu Z, You W, Chen W, Nong Q, Valencak TG, Shan T. Dietary "Beigeing" Fat Contains More Phosphatidylserine and Enhances Mitochondrial Function while Counteracting Obesity. RESEARCH (WASHINGTON, D.C.) 2024; 7:0492. [PMID: 39329159 PMCID: PMC11425158 DOI: 10.34133/research.0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Activation of mitochondrial function and heat production in adipose tissue by the modification of dietary fat is a promising strategy against obesity. However, as an important source of lipids for ketogenic and daily diets, the function of fats extracted from different adipose tissue sites was largely unknown. In this study, we illustrated the function of fats extracted from adipose tissues with different "beigeing" properties in the ketogenic diet and identified lipid profiles of fats that facilitate energy expenditure. We found that the anti-obesity effect of ketogenic diets was potentiated by using "beigeing" fat [porcine subcutaneous adipose tissue (SAT)] as a major energy-providing ingredient. Through lipidomic analyses, phosphatidylserine (PS) was identified as a functional lipid activating thermogenesis in adipose tissue. Moreover, in vivo studies showed that PS induces adipose tissue thermogenesis and alleviates diet-induced obesity in mice. In vitro studies showed that PS promotes UCP1 expression and lipolysis of adipocytes. Mechanistically, PS promoted mitochondrial function in adipocytes via the ADCY3-cAMP-PKA-PGC1α pathway. In addition, PS-PGC1a binding may affect the stability of the PGC1α protein, which further augments PS-induced thermogenesis. These results demonstrated the efficacy of dietary SAT fats in diminishing lipid accumulation and the underlying molecular mechanism of PS in enhancing UCP1 expression and mitochondrial function. Thus, our findings suggest that as dietary fat, "beigeing" fat provides more beneficial lipids that contribute to the improvement of mitochondrial function, including PS, which may become a novel, nonpharmacological therapy to increase energy expenditure and counteract obesity and its related diseases.
Collapse
Affiliation(s)
- Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
5
|
Moya-Garzon MD, Wang M, Li VL, Lyu X, Wei W, Tung ASH, Raun SH, Zhao M, Coassolo L, Islam H, Oliveira B, Dai Y, Spaas J, Delgado-Gonzalez A, Donoso K, Alvarez-Buylla A, Franco-Montalban F, Letian A, Ward C, Liu L, Svensson KJ, Goldberg EL, Gardner CD, Little JP, Banik SM, Xu Y, Long JZ. A secondary β-hydroxybutyrate metabolic pathway linked to energy balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612087. [PMID: 39314488 PMCID: PMC11418978 DOI: 10.1101/2024.09.09.612087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
β-hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve interconversion of BHB and primary energy intermediates. Here we show that CNDP2 controls a previously undescribed secondary BHB metabolic pathway via enzymatic conjugation of BHB and free amino acids. This BHB-ylation reaction produces a family of endogenous ketone metabolites, the BHB-amino acids. Genetic ablation of CNDP2 in mice eliminates tissue amino acid BHB-ylation activity and reduces BHB-amino acid levels. Administration of BHB-Phe, the most abundant BHB-amino acid, to obese mice activates neural populations in the hypothalamus and brainstem and suppresses feeding and body weight. Conversely, CNDP2-KO mice exhibit increased food intake and body weight upon ketosis stimuli. CNDP2-dependent amino acid BHB-ylation and BHB-amino acid metabolites are also conserved in humans. Therefore, the metabolic pathways of BHB extend beyond primary metabolism and include secondary ketone metabolites linked to energy balance.
Collapse
Affiliation(s)
- Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Barbara Oliveira
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Yuqin Dai
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jan Spaas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Kenyi Donoso
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Francisco Franco-Montalban
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja sn, 18011, Granada, Spain
| | - Anudari Letian
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Ward
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Fernandes C, Forny-Germano L, Andrade MM, Lyra E Silva NM, Ramos-Lobo AM, Meireles F, Tovar-Moll F, Houzel JC, Donato J, De Felice FG. Leptin receptor reactivation restores brain function in early-life Lepr-deficient mice. Brain 2024; 147:2706-2717. [PMID: 38650574 PMCID: PMC11292908 DOI: 10.1093/brain/awae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Obesity is a chronic disease caused by excessive fat accumulation that impacts the body and brain health. Insufficient leptin or leptin receptor (LepR) is involved in the disease pathogenesis. Leptin is involved with several neurological processes, and it has crucial developmental roles. We have previously demonstrated that leptin deficiency in early life leads to permanent developmental problems in young adult mice, including an imbalance in energy homeostasis, alterations in melanocortin and the reproductive system and a reduction in brain mass. Given that in humans, obesity has been associated with brain atrophy and cognitive impairment, it is important to determine the long-term consequences of early-life leptin deficiency on brain structure and memory function. Here, we demonstrate that leptin-deficient (LepOb) mice exhibit altered brain volume, decreased neurogenesis and memory impairment. Similar effects were observed in animals that do not express the LepR (LepRNull). Interestingly, restoring the expression of LepR in 10-week-old mice reverses brain atrophy, in addition to neurogenesis and memory impairments in older animals. Our findings indicate that leptin deficiency impairs brain development and memory, which are reversible by restoring leptin signalling in adulthood.
Collapse
Affiliation(s)
- Caroline Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayara M Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Natalia M Lyra E Silva
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernanda Meireles
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Fernanda Tovar-Moll
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Jean Christophe Houzel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| |
Collapse
|
7
|
Qin J, Huang X, Gou S, Zhang S, Gou Y, Zhang Q, Chen H, Sun L, Chen M, Liu D, Han C, Tang M, Feng Z, Niu S, Zhao L, Tu Y, Liu Z, Xuan W, Dai L, Jia D, Xue Y. Ketogenic diet reshapes cancer metabolism through lysine β-hydroxybutyrylation. Nat Metab 2024; 6:1505-1528. [PMID: 39134903 DOI: 10.1038/s42255-024-01093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
Lysine β-hydroxybutyrylation (Kbhb) is a post-translational modification induced by the ketogenic diet (KD), a diet showing therapeutic effects on multiple human diseases. Little is known how cellular processes are regulated by Kbhb. Here we show that protein Kbhb is strongly affected by the KD through a multi-omics analysis of mouse livers. Using a small training dataset with known functions, we developed a bioinformatics method for the prediction of functionally important lysine modification sites (pFunK), which revealed functionally relevant Kbhb sites on various proteins, including aldolase B (ALDOB) Lys108. KD consumption or β-hydroxybutyrate supplementation in hepatocellular carcinoma cells increases ALDOB Lys108bhb and inhibits the enzymatic activity of ALDOB. A Kbhb-mimicking mutation (p.Lys108Gln) attenuates ALDOB activity and its binding to substrate fructose-1,6-bisphosphate, inhibits mammalian target of rapamycin signalling and glycolysis, and markedly suppresses cancer cell proliferation. Our study reveals a critical role of Kbhb in regulating cancer cell metabolism and provides a generally applicable algorithm for predicting functionally important lysine modification sites.
Collapse
Affiliation(s)
- Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xinhe Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shengsong Gou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yujie Gou
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Hongyu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lin Sun
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Miaomiao Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Min Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zihao Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zexian Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, China.
| |
Collapse
|
8
|
Ahmad Y, Seo DS, Jang Y. Metabolic Effects of Ketogenic Diets: Exploring Whole-Body Metabolism in Connection with Adipose Tissue and Other Metabolic Organs. Int J Mol Sci 2024; 25:7076. [PMID: 39000187 PMCID: PMC11241756 DOI: 10.3390/ijms25137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.
Collapse
Affiliation(s)
- Yusra Ahmad
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
9
|
Gallop MR, Vieira RFL, Matsuzaki ET, Mower PD, Liou W, Smart FE, Roberts S, Evason KJ, Holland WL, Chaix A. Long-term ketogenic diet causes hyperlipidemia, liver dysfunction, and glucose intolerance from impaired insulin trafficking and secretion in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599117. [PMID: 38948738 PMCID: PMC11212871 DOI: 10.1101/2024.06.14.599117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A ketogenic diet (KD) is a very low-carbohydrate, very high-fat diet proposed to treat obesity and type 2 diabetes. While KD grows in popularity, its effects on metabolic health are understudied. Here we show that, in male and female mice, while KD protects against weight gain and induces weight loss, over long-term, mice develop hyperlipidemia, hepatic steatosis, and severe glucose intolerance. Unlike high fat diet-fed mice, KD mice are not insulin resistant and have low levels of insulin. Hyperglycemic clamp and ex vivo GSIS revealed cell-autonomous and whole-body impairments in insulin secretion. Major ER/Golgi stress and disrupted ER-Golgi protein trafficking was indicated by transcriptomic profiling of KD islets and confirmed by electron micrographs showing a dilated Golgi network likely responsible for impaired insulin granule trafficking and secretion. Overall, our results suggest long-term KD leads to multiple aberrations of metabolic parameters that caution its systematic use as a health promoting dietary intervention.
Collapse
|
10
|
Hatano R, Lee E, Sato H, Kiuchi M, Hirahara K, Nakagawa Y, Shimano H, Nakayama T, Tanaka T, Miki T. Hepatic ketone body regulation of renal gluconeogenesis. Mol Metab 2024; 84:101934. [PMID: 38604598 PMCID: PMC11039402 DOI: 10.1016/j.molmet.2024.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVES During fasting, liver pivotally regulates blood glucose levels through glycogenolysis and gluconeogenesis. Kidney also produces glucose through gluconeogenesis. Gluconeogenic genes are transactivated by fasting, but their expression patterns are chronologically different between the two organs. We find that renal gluconeogenic gene expressions are positively correlated with the blood β-hydroxybutyrate concentration. Thus, we herein aim to investigate the regulatory mechanism and its physiological implications. METHODS Gluconeogenic gene expressions in liver and kidney were examined in hyperketogenic mice such as high-fat diet (HFD)-fed and ketogenic diet-fed mice, and in hypoketogenic PPARα knockout (PPARα-/-) mice. Renal gluconeogenesis was evaluated by rise in glycemia after glutamine loading in vivo. Functional roles of β-hydroxybutyrate in the regulation of renal gluconeogenesis were investigated by metabolome analysis and RNA-seq analysis of proximal tubule cells. RESULTS Renal gluconeogenic genes were transactivated concurrently with blood β-hydroxybutyrate uprise under ketogenic states, but the increase was blunted in hypoketogenic PPARα-/- mice. Administration of 1,3-butandiol, a ketone diester, transactivated renal gluconeogenic gene expression in fasted PPARα-/- mice. In addition, HFD-fed mice showed fasting hyperglycemia along with upregulated renal gluconeogenic gene expression, which was blunted in HFD-fed PPARα-/- mice. In vitro experiments and metabolome analysis in renal tubular cells showed that β-hydroxybutyrate directly promotes glucose and NH3 production through transactivating gluconeogenic genes. In addition, RNA-seq analysis revealed that β-hydroxybutyrate-induced transactivation of Pck1 was mediated by C/EBPβ. CONCLUSIONS Our findings demonstrate that β-hydroxybutyrate mediates hepato-renal interaction to maintain homeostatic regulation of blood glucose and systemic acid-base balance through renal gluconeogenesis regulation.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hiromi Sato
- Laboratory of Clinical Pharmacology and Pharmacometrics, Chiba University, Graduate School of Pharmaceutical Sciences, Chiba 260-8670, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kiyoshi Hirahara
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Department of Immunology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Toshinori Nakayama
- Department of Immunology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomoaki Tanaka
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Department of Molecular Diagnosis, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| |
Collapse
|
11
|
Yau B, Madsen S, Nelson ME, Cooke KC, Fritzen AM, Thorius IH, Stöckli J, James DE, Kebede MA. Genetics and diet shape the relationship between islet function and whole body metabolism. Am J Physiol Endocrinol Metab 2024; 326:E663-E672. [PMID: 38568150 PMCID: PMC11376487 DOI: 10.1152/ajpendo.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Despite the fact that genes and the environment are known to play a central role in islet function, our knowledge of how these parameters interact to modulate insulin secretory function remains relatively poor. Presently, we performed ex vivo glucose-stimulated insulin secretion and insulin content assays in islets of 213 mice from 13 inbred mouse strains on chow, Western diet (WD), and a high-fat, carbohydrate-free (KETO) diet. Strikingly, among these 13 strains, islets from the commonly used C57BL/6J mouse strain were the least glucose responsive. Using matched metabolic phenotyping data, we performed correlation analyses of isolated islet parameters and found a positive correlation between basal and glucose-stimulated insulin secretion, but no relationship between insulin secretion and insulin content. Using in vivo metabolic measures, we found that glucose tolerance determines the relationship between ex vivo islet insulin secretion and plasma insulin levels. Finally, we showed that islet glucose-stimulated insulin secretion decreased with KETO in almost all strains, concomitant with broader phenotypic changes, such as increased adiposity and glucose intolerance. This is an important finding as it should caution against the application of KETO diet for beta-cell health. Together these data offer key insights into the intersection of diet and genetic background on islet function and whole body glucose metabolism.NEW & NOTEWORTHY Thirteen strains of mice on chow, Western diet, and high-fat, carbohydrate-free (KETO), correlating whole body phenotypes to ex vivo pancreatic islet functional measurements, were used. The study finds a huge spectrum of functional islet responses and insulin phenotypes across all strains and diets, with the ubiquitous C57Bl/6J mouse exhibiting the lowest secretory response of all strains, highlighting the overall importance of considering genetic background when investigating islet function. Ex vivo basal and stimulated insulin secretion are correlated in the islet, and KETO imparts widescale downregulation of islet insulin secretion.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Søren Madsen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Marin E Nelson
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Andreas M Fritzen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Ida H Thorius
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Melkam A Kebede
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
12
|
Wu IT, Yeh WJ, Huang WC, Yang HY. Very low-carbohydrate diet with higher protein ratio improves lipid metabolism and inflammation in rats with diet-induced nonalcoholic fatty liver disease. J Nutr Biochem 2024; 126:109583. [PMID: 38244701 DOI: 10.1016/j.jnutbio.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is commonly associated with obesity, and it is mainly treated through lifestyle modifications. The very low-carbohydrate diet (VLCD) can help lose weight rapidly but the possible effects of extreme dietary patterns on lipid metabolism and inflammatory responses in individuals with NAFLD remain debatable. Moreover, VLCD protein content may affect its effectiveness in weight loss, steatosis, and inflammatory responses. Therefore, we investigated the effects of VLCDs with different protein contents in NAFLD rats and the mechanisms underlying these effects. After a 16-week inducing period, the rats received an isocaloric normal diet (NC group) or a VLCD with high or low protein content (NVLH vs. NVLL group, energy ratio:protein/carbohydrate/lipid=20/1/79 vs. 6/1/93) for the next 8 weeks experimental period. We noted that the body weight decreased in both the NVLH and NVLL groups; nevertheless, the NVLH group demonstrated improvements in ketosis. The NVLL group led to hepatic lipid accumulation, possibly by increasing very-low-density lipoprotein receptor (VLDLR) expression and elevating liver oxidative stress, subsequently activating the expression of Nrf2, and inflammation through the TLR4/TRIF/NLRP3 and TLR4/MyD88/NF-κB pathway. The NVLH was noted to prevent the changes in VLDLR and the TLR4-inflammasome pathway partially. The VLCD also reduced the diversity of gut microbiota and changed their composition. In conclusion, although low-protein VLCD consumption reduces BW, it may also lead to metabolic disorders and changes in microbiota composition; nevertheless, a VLCD with high protein content may partially alleviate these limitations.
Collapse
Affiliation(s)
- I-Ting Wu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wan-Ju Yeh
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Chih Huang
- Department of Anatomical Pathology, Taipei Institute of Pathology, Taipei City, Taiwan
| | - Hsin-Yi Yang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
13
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
14
|
Ravaut G, Carneiro A, Mounier C. Exploring the impacts of ketogenic diet on reversible hepatic steatosis: initial analysis in male mice. Front Nutr 2024; 11:1290540. [PMID: 38577162 PMCID: PMC10991688 DOI: 10.3389/fnut.2024.1290540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Ketogenic diet (KD), a diet with very low intake in carbohydrates, gained popularity as a weight-loss approach. However, in mice models, it has been reported that an excess exposition of dietary fat induces hepatic insulin resistance and steatosis. However, data published is inconsistent. Herein, we investigated in a mouse model, the metabolic effects of KD and its contribution to the pathogenesis of NALFD. Mice were exposed to KD or CHOW diet for 12 weeks while a third group was exposed to KD for also 12 weeks and then switched to CHOW diet for 4 weeks to determine if we can rescue the phenotype. We evaluated the effects of diet treatments on fat distribution, glucose, and insulin homeostasis as well as hepatic steatosis. Mice fed with KD developed glucose intolerance but not insulin resistance accompanied by an increase of inflammation. KD-fed mice showed an increase of fat accumulation in white adipose tissue and liver. This effect could be explained by an increase in fat uptake by the liver with no changes of catabolism leading to MAFLD. Interestingly, we were able to rescue the phenotype by switching KD-fed mice for 4 weeks on a CHOW diet. Our studies demonstrate that even if mice develop hepatic steatosis and glucose intolerance after 12 weeks of KD, they do not develop insulin resistance and more importantly, the phenotype can be reversed by switching the mice from a KD to a CHOW.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- CERMO-FC Research Center, Molecular Metabolism of Lipids Laboratory, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC, Canada
| |
Collapse
|
15
|
Charlot A, Bringolf A, Mallard J, Charles AL, Niederhoffer N, Duteil D, Pagano AF, Geny B, Zoll J. Hypercaloric low-carbohydrate high-fat diet protects against the development of nonalcoholic fatty liver disease in obese mice in contrast to isocaloric Western diet. Front Nutr 2024; 11:1366883. [PMID: 38571752 PMCID: PMC10987868 DOI: 10.3389/fnut.2024.1366883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Objective Obesity and metabolic complications, such as type 2 diabetes and nonalcoholic fatty liver disease (NAFLD), are one of the greatest public health challenges of the 21st century. The major role of high sugar and carbohydrate consumption rather than caloric intake in obesity and NAFLD pathophysiology remains a subject of debate. A low-carbohydrate but high-fat diet (LCHFD) has shown promising results in obesity management, but its effects in preventing NAFLD need to be detailed. This study aims to compare the effects of a LCHFD with a high-fat high-sugar obesogenic Western diet (WD) on the progression of obesity, type 2 diabetes, and nonalcoholic fatty liver disease. Methods Male C57BL/6J mice were initially fed a WD for 10 weeks. Subsequently, they were either switched to a LCHFD or maintained on the WD for an additional 6 weeks. Hepatic effects of the diet were explored by histological staining and RT-qPCR. Results After the initial 10 weeks WD feeding, LCHF diet demonstrated effectiveness in halting weight gain, maintaining a normal glucose tolerance and insulin levels, in comparison to the WD-fed mice, which developed obesity, glucose intolerance, increased insulin levels and induced NAFLD. In the liver, LCHFD mitigated the accumulation of hepatic triglycerides and the increase in Fasn relative gene expression compared to the WD mice. Beneficial effects of the LCHFD occurred despite a similar calorie intake compared to the WD mice. Conclusion Our results emphasize the negative impact of a high sugar/carbohydrate and lipid association for obesity progression and NAFLD development. LCHFD has shown beneficial effects for NAFLD management, notably improving weight management, and maintaining a normal glucose tolerance and liver health.
Collapse
Affiliation(s)
- Anouk Charlot
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”, University of Strasbourg, Strasbourg, France
- Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
| | - Anthony Bringolf
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”, University of Strasbourg, Strasbourg, France
| | - Joris Mallard
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”, University of Strasbourg, Strasbourg, France
- Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”, University of Strasbourg, Strasbourg, France
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Nathalie Niederhoffer
- Biomedicine Research Center of Strasbourg (CRBS), UR7296, NeuroCardiovascular Pharmacology and Toxicology Laboratory (LPTNC), University of Strasbourg, Strasbourg, France
| | - Delphine Duteil
- University of Strasbourg, CNRS, Inserm, IGBMC UMR 7104-UMR-S 1258, Illkirch, France
| | - Allan F. Pagano
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”, University of Strasbourg, Strasbourg, France
- Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”, University of Strasbourg, Strasbourg, France
- Service de Physiologie et explorations fonctionnelles, University Hospital of Strasbourg, Strasbourg, France
| | - Joffrey Zoll
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondrie, Stress oxydant et Plasticité musculaire”, University of Strasbourg, Strasbourg, France
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Service de Physiologie et explorations fonctionnelles, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Charlot A, Bringolf A, Debrut L, Mallard J, Charles AL, Crouchet E, Duteil D, Geny B, Zoll J. Changes in Macronutrients during Dieting Lead to Weight Cycling and Metabolic Complications in Mouse Model. Nutrients 2024; 16:646. [PMID: 38474774 DOI: 10.3390/nu16050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Weight cycling is a major challenge in obesity management. Caloric restriction is known to promote this phenomenon, but the impact of macronutrient changes during dieting remains unclear. This study aimed to determine the role of macronutrient changes in weight maintenance without caloric restriction by alternating between two hypercaloric diets: a high-carbohydrate, high-fat Western diet (WD) and a low-carbohydrate, high-fat diet (LCHDF). Obesity was induced in 8-week-old C57BL/6 male mice by 10 weeks of WD feeding. Then, the mice were subjected to 12 weeks of LCHFD interspersed with WD (I-WD), 3 periods of 2-week LCHFD followed by 2 periods of 3-week WD, or 12 weeks of continuous WD (C-WD). C-WD and I-WD mice were compared to standard diet (SD) mice. In the I-WD group, each LCHFD period decreased weight gain, but mice regained weight after WD resumption. I-WD mice exhibited obesity, dyslipidemia, and glucose intolerance, similarly to the C-WD mice. I-WD mice also developed nonalcoholic steatohepatitis, associated with an increase in type-III collagen gene expression and a decrease in FGF21 protein levels, in comparison with SD. I-WD mice developed weight cycling despite maintaining a high caloric consumption, suggesting that changes in macronutrients during dieting are also a trigger of weight regain.
Collapse
Affiliation(s)
- Anouk Charlot
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Sport Sciences, University of Strasbourg, 67000 Strasbourg, France
| | - Anthony Bringolf
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
| | - Léa Debrut
- CNRS, University of Strasbourg, Inserm, IGBMC UMR 7104-UMR-S 1258, 67400 Illkirch, France
| | - Joris Mallard
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Sport Sciences, University of Strasbourg, 67000 Strasbourg, France
- Institute of Cancerology Strasbourg Europe (ICANS), 67200 Strasbourg, France
| | - Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Emilie Crouchet
- Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, University of Strasbourg, Inserm, 67000 Strasbourg, France
| | - Delphine Duteil
- CNRS, University of Strasbourg, Inserm, IGBMC UMR 7104-UMR-S 1258, 67400 Illkirch, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
- Service de Physiologie et Explorations Fonctionnelles, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Joffrey Zoll
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
- Service de Physiologie et Explorations Fonctionnelles, University Hospital of Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
17
|
Park SB, Yang SJ. Ketogenic diet preserves muscle mass and strength in a mouse model of type 2 diabetes. PLoS One 2024; 19:e0296651. [PMID: 38198459 PMCID: PMC10781088 DOI: 10.1371/journal.pone.0296651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes is often associated with reduced muscle mass and function. The ketogenic diet (KD) may improve muscle mass and function via the induction of nutritional ketosis. To test whether the KD is able to preserve muscle mass and strength in a mouse model of type 2 diabetes (T2DM), C57BL/6J mice were assigned to lean control, diabetes control, and KD groups. The mice were fed a standard diet (10% kcal from fat) or a high-fat diet (HFD) (60% kcal from fat). The diabetic condition was induced by a single injection of streptozotocin (STZ; 100 mg/kg) and nicotinamide (NAM; 120 mg/kg) into HFD-fed mice. After 8-week HFD feeding, the KD (90% kcal from fat) was fed to the KD group for the following 6 weeks. After the 14-week experimental period, an oral glucose tolerance test and grip strength test were conducted. Type 2 diabetic condition induced by HFD feeding and STZ/NAM injection resulted in reduced muscle mass and grip strength, and smaller muscle fiber areas. The KD nutritional intervention improved these effects. Additionally, the KD altered the gene expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome- and endoplasmic reticulum (ER) stress-related markers in the muscles of diabetic mice. Collectively, KD improved muscle mass and function with alterations in NLRP3 inflammasome and ER stress.
Collapse
Affiliation(s)
- Sol Been Park
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
19
|
He Y, Cheng X, Zhou T, Li D, Peng J, Xu Y, Huang W. β-Hydroxybutyrate as an epigenetic modifier: Underlying mechanisms and implications. Heliyon 2023; 9:e21098. [PMID: 37928021 PMCID: PMC10623287 DOI: 10.1016/j.heliyon.2023.e21098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Previous studies have found that β-Hydroxybutyrate (BHB), the main component of ketone bodies, is of physiological importance as a backup energy source during starvation or induces diabetic ketoacidosis when insulin deficiency occurs. Ketogenic diets (KD) have been used as metabolic therapy for over a hundred years, it is well known that ketone bodies and BHB not only serve as ancillary fuel substituting for glucose but also induce anti-oxidative, anti-inflammatory, and cardioprotective features via binding to several target proteins, including histone deacetylase (HDAC), or G protein-coupled receptors (GPCRs). Recent advances in epigenetics, especially novel histone post-translational modifications (HPTMs), have continuously updated our understanding of BHB, which also acts as a signal transduction molecule and modification substrate to regulate a series of epigenetic phenomena, such as histone acetylation, histone β-hydroxybutyrylation, histone methylation, DNA methylation, and microRNAs. These epigenetic events alter the activity of genes without changing the DNA structure and further participate in the pathogenesis of related diseases. This review focuses on the metabolic process of BHB and BHB-mediated epigenetics in cardiovascular diseases, diabetes and complications of diabetes, neuropsychiatric diseases, cancers, osteoporosis, liver and kidney injury, embryonic and fetal development, and intestinal homeostasis, and discusses potential molecular mechanisms, drug targets, and application prospects.
Collapse
Affiliation(s)
- Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Juan Peng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| |
Collapse
|
20
|
Lares-Gutiérrez DA, Galván-Valencia M, Flores-Baza IJ, Lazalde-Ramos BP. Benefits of Chronic Administration of a Carbohydrate-Free Diet on Biochemical and Morphometric Parameters in a Rat Model of Diet-Induced Metabolic Syndrome. Metabolites 2023; 13:1085. [PMID: 37887410 PMCID: PMC10609360 DOI: 10.3390/metabo13101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Carbohydrate intake restriction positively affects markers related to metabolic syndrome (MS). However, the effects of long-term carbohydrate-free diets (CFD) have yet to be studied. The main objective of this study was to report the effects on biochemical and morphometric parameters in a rat model of MS. Male Wistar rats were initially divided into two groups: the standard diet group (SD, n = 20); and the MS group (n = 30) fed a high-glucose diet. Ten animals from each group were sacrificed after 20 weeks on their respective diets to verify MS development. The remaining MS animals were divided into two subgroups: one continued with the MS diet (n = 10); and the other transitioned to a carbohydrate-free diet (MS + CFD group, n = 10) for 20 more weeks. At week 40, parameters, including glucose, insulin, lipid profile, ketone bodies, C-reactive protein (CRP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, creatinine, liver and muscle glycogen, and serum, hepatic, renal, and pancreatic malondialdehyde (MDA) levels were assessed. Transitioning to CFD resulted in decreased caloric intake and body weight, with normalized parameters including MDA, insulin, lipid profile, ALT, liver glycogen, creatinine, and CRP levels. This shift effectively reversed the MS-induced alterations, except for glycemia and uremia, likely influenced by the diet's high protein content stimulating gluconeogenesis. This research underscores the potential benefits of long-term carbohydrate restriction in mitigating MS-related markers.
Collapse
Affiliation(s)
| | | | | | - Blanca Patricia Lazalde-Ramos
- Maestría en Ciencia y Tecnología Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; (D.A.L.-G.); (M.G.-V.); (I.J.F.-B.)
| |
Collapse
|
21
|
Li K, Wang WH, Wu JB, Xiao WH. β-hydroxybutyrate: A crucial therapeutic target for diverse liver diseases. Biomed Pharmacother 2023; 165:115191. [PMID: 37487440 DOI: 10.1016/j.biopha.2023.115191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
β-hydroxybutyrate (β-HB), the most abundant ketone body, is produced primarily in the liver and acts as a substitute energy fuel to provide energy to extrahepatic tissues in the event of hypoglycemia or glycogen depletion. We now have an improved understanding of β-HB as a signal molecule and epigenetic regulatory factor as a result of intensive research over the last ten years. Because β-HB regulates various physiological and pathological processes, it may have a potential role in the treatment of metabolic diseases. The liver is the most significant metabolic organ, and the part that β-HB plays in liver disorders is receiving increasing attention. In this review, we summarize the therapeutic effects of β-HB on liver diseases and its underlying mechanisms of action. Moreover, we explore the prospects of exogenous supplements and endogenous ketosis including fasting, caloric restriction (CR), ketogenic diet (KD), and exercise as adjuvant nutritional therapies to protect the liver from damage and provide insights and strategies for exploring the treatment of various liver diseases.
Collapse
Affiliation(s)
- Ke Li
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wen-Hong Wang
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Jia-Bin Wu
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei-Hua Xiao
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
22
|
Aurich S, Müller L, Kovacs P, Keller M. Implication of DNA methylation during lifestyle mediated weight loss. Front Endocrinol (Lausanne) 2023; 14:1181002. [PMID: 37614712 PMCID: PMC10442821 DOI: 10.3389/fendo.2023.1181002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Over the past 50 years, the number of overweight/obese people increased significantly, making obesity a global public health challenge. Apart from rare monogenic forms, obesity is a multifactorial disease, most likely resulting from a concerted interaction of genetic, epigenetic and environmental factors. Although recent studies opened new avenues in elucidating the complex genetics behind obesity, the biological mechanisms contributing to individual's risk to become obese are not yet fully understood. Non-genetic factors such as eating behaviour or physical activity are strong contributing factors for the onset of obesity. These factors may interact with genetic predispositions most likely via epigenetic mechanisms. Epigenome-wide association studies or methylome-wide association studies are measuring DNA methylation at single CpGs across thousands of genes and capture associations to obesity phenotypes such as BMI. However, they only represent a snapshot in the complex biological network and cannot distinguish between causes and consequences. Intervention studies are therefore a suitable method to control for confounding factors and to avoid possible sources of bias. In particular, intervention studies documenting changes in obesity-associated epigenetic markers during lifestyle driven weight loss, make an important contribution to a better understanding of epigenetic reprogramming in obesity. To investigate the impact of lifestyle in obesity state specific DNA methylation, especially concerning the development of new strategies for prevention and individual therapy, we reviewed 19 most recent human intervention studies. In summary, this review highlights the huge potential of targeted interventions to alter disease-associated epigenetic patterns. However, there is an urgent need for further robust and larger studies to identify the specific DNA methylation biomarkers which influence obesity.
Collapse
Affiliation(s)
- Samantha Aurich
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
24
|
Huang W, Su J, Chen X, Li Y, Xing Z, Guo L, Li S, Zhang J. High-Intensity Interval Training Induces Protein Lactylation in Different Tissues of Mice with Specificity and Time Dependence. Metabolites 2023; 13:metabo13050647. [PMID: 37233688 DOI: 10.3390/metabo13050647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Protein lysine lactylation (Kla) is a novel protein acylation reported in recent years, which plays an important role in the development of several diseases with pathologically elevated lactate levels, such as tumors. The concentration of lactate as a donor is directly related to the Kla level. High-intensity interval training (HIIT) is a workout pattern that has positive effects in many metabolic diseases, but the mechanisms by which HIIT promotes health are not yet clear. Lactate is the main metabolite of HIIT, and it is unknown as to whether high lactate during HIIT can induce changes in Kla levels, as well as whether Kla levels differ in different tissues and how time-dependent Kla levels are. In this study, we observed the specificity and time-dependent effects of a single HIIT on the regulation of Kla in mouse tissues. In addition, we aimed to select tissues with high Kla specificity and obvious time dependence for lactylation quantitative omics and analyze the possible biological targets of HIIT-induced Kla regulation. A single HIIT induces Kla in tissues with high lactate uptake and metabolism, such as iWAT, BAT, soleus muscle and liver proteins, and Kla levels peak at 24 h after HIIT and return to steady state at 72 h. Kla proteins in iWAT may affect pathways related to glycolipid metabolism and are highly associated with de novo synthesis. It is speculated that the changes in energy expenditure, lipolytic effects and metabolic characteristics during the recovery period after HIIT may be related to the regulation of Kla in iWAT.
Collapse
Affiliation(s)
- Wenhua Huang
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Jie Su
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Xuefei Chen
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Yanjun Li
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Zheng Xing
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Lanlan Guo
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
- Department of Physical Education, University of International Business and Economics, Beijing 100029, China
| | - Shitian Li
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Jing Zhang
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Nedoboy PE, Farnham MMJ. Still Excited, but Less Aroused-The Effects of Nutritional Ketosis on Epinephrine Response and Hypothalamic Orexin Neuron Activation Following Recurrent Hypoglycemia in Diabetic Rats. Metabolites 2022; 13:metabo13010042. [PMID: 36676967 PMCID: PMC9862750 DOI: 10.3390/metabo13010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Hypoglycemia-associated autonomic failure (HAAF) is a serious, life-threatening complication of intensive insulin therapy, particularly in people with type 1 diabetes. The ketogenic diet is reported to beneficially affect glycemic control in people with type 1 diabetes, however its effects on the neurohormonal counterregulatory response to recurrent hypoglycemia and HAAF development are understudied. In this study we used Sprague Dawley rats to establish a HAAF model under non-diabetic and streptozotocin (STZ)-induced diabetic conditions and determined how nutritional ketosis affected the neurohormonal counterregulation and the activity of energy-sensing orexin (OX) neurons. We found that antecedent hypoglycemia diminished the sympathoexcitatory epinephrine response to subsequent hypoglycemia in chow-fed non-diabetic rats, but this did not occur in STZ-diabetic animals. In all cases a ketogenic diet preserved the epinephrine response. Contrary to expectations, STZ-diabetic keto-fed rats showed reduced OX activity in the recurrent hypoglycemia group, which did not occur in any other group. It is possible that the reduced activation of OX neurons is an adaptation aimed at energy conservation accompanied by diminished arousal and exploratory behaviour. Our data suggests that while a ketogenic diet has beneficial effects on glycemia, and epinephrine response, the reduced activation of OX neurons could be detrimental and warrants further investigation.
Collapse
|
26
|
Ketone Bodies as Metabolites and Signalling Molecules at the Crossroad between Inflammation and Epigenetic Control of Cardiometabolic Disorders. Int J Mol Sci 2022; 23:ijms232314564. [PMID: 36498891 PMCID: PMC9740056 DOI: 10.3390/ijms232314564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, β-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, β-hydroxybutyrylation. β-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor.
Collapse
|