1
|
Teimouri H, Taheri S, Saidabad FE, Nakazato G, Maghsoud Y, Babaei A. New insights into gold nanoparticles in virology: A review of their applications in the prevention, detection, and treatment of viral infections. Biomed Pharmacother 2025; 183:117844. [PMID: 39826358 DOI: 10.1016/j.biopha.2025.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Viral infections have led to the deaths of millions worldwide and come with significant economic and social burdens. Emerging viral infections, as witnessed with coronavirus disease 2019 (COVID-19), can profoundly affect all aspects of human life, highlighting the imperative need to develop diagnostic, therapeutic, and effective control strategies in response. Numerous studies highlight the diverse applications of nanoparticles in diagnosing, controlling, preventing, and treating viral infections. Due to favorable and flexible physicochemical properties, small size, immunogenicity, biocompatibility, high surface-to-volume ratio, and the ability to combine with antiviral agents, gold nanoparticles (AuNPs) have shown great potential in the fight against viruses. The physical and chemical properties, the adjustability of characteristics based on the type of application, the ability to cross the blood-brain barrier, the ability to infiltrate cells such as phagocytic and dendritic cells, and compatibility for complexing with various compounds, among other features, transform AuNPs into a suitable tool for combating and addressing pathogenic viral agents through multiple applications. In recent years, AuNPs have been employed in various applications to fight viral infections. However, a comprehensive review article on the applications of AuNPs against viral infections has yet to be available. Given their versatility, AuNPs present an appealing option to address various gaps in combating viral infections. Hence, this review explores the attributes, antiviral properties, contributions to drug delivery, vaccine development, and diagnostic uses of AuNPs.
Collapse
Affiliation(s)
- Hossein Teimouri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shiva Taheri
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Parana State CP6001, Brazil
| | - Yazdan Maghsoud
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Nicy V, Gurusubramanian G, Roy VK. Effects of chronic CuNPs treatment followed by termination for two spermatogenic cycles in the testicular functions of mice. Reprod Toxicol 2024; 129:108669. [PMID: 39038765 DOI: 10.1016/j.reprotox.2024.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The present study investigated the possible effects of copper nanoparticles (CuNPs) after discontinuing treatment on testicular activity in a mouse model. The male mice were given continuous CuNPs treatment for 70 days and left untreated for 70 days. The results show that even after the discontinuation of CuNPs treatment, the testicular impairment was persistent till 140 days at a higher dose (200 mg/kg group). The spermatogenesis, sperm parameters, proliferation and antioxidant status were suppressed in the higher dose groups. However, these effects were also observed at moderate levels in the other CuNPs treated groups, such as at 10 mg/kg and 100 mg/kg. The apoptosis was stimulated at a higher dose compared to the other groups. The testosterone, LH levels and AR expression were suppressed in all the CuNPs treated groups, along with slight elevation in the estrogen levels and up-regulated ERβ expression. The fertility data also showed a decline in all CuNPs treated groups with the lowest litter size in the 200 mg/kg treated group. Despite testis, epididymis and accessory sex organs like prostate, seminal vesicle, and vas deferens, histoarchitecture also showed impairment. This is the first report on how CuNPs affect the male reproductive system in mice even after treatment was terminated. The current study also demonstrated possible negative effects on male reproductive function that might last for longer at higher dosages of chronic CuNPs exposure even after termination.
Collapse
Affiliation(s)
- Vanrohlu Nicy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
3
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Ozbek O, Genc DE, O. Ulgen K. Advances in Physiologically Based Pharmacokinetic (PBPK) Modeling of Nanomaterials. ACS Pharmacol Transl Sci 2024; 7:2251-2279. [PMID: 39144562 PMCID: PMC11320736 DOI: 10.1021/acsptsci.4c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
Nanoparticles (NPs) have been widely used to improve the pharmacokinetic properties and tissue distribution of small molecules such as targeting to a specific tissue of interest, enhancing their systemic circulation, and enlarging their therapeutic properties. NPs have unique and complicated in vivo disposition properties compared to small molecule drugs due to their complex multifunctionality. Physiologically based pharmacokinetic (PBPK) modeling has been a powerful tool in the simulation of the absorption, distribution, metabolism, and elimination (ADME) characteristics of the materials, and it can be used in the characterization and prediction of the systemic disposition, toxicity, efficacy, and target exposure of various types of nanoparticles. In this review, recent advances in PBPK model applications related to the nanoparticles with unique properties, and dispositional features in the biological systems, ADME characteristics, the description of transport processes of nanoparticles in the PBPK model, and the challenges in PBPK model development of nanoparticles are delineated and juxtaposed with those encountered in small molecule models. Nanoparticle related, non-nanoparticle-related, and interspecies-scaling methods applied in PBPK modeling are reviewed. In vitro to in vivo extrapolation (IVIVE) methods being a promising computational tool to provide in vivo predictions from the results of in vitro and in silico studies are discussed. Finally, as a recent advancement ML/AI-based approaches and challenges in PBPK modeling in the estimation of ADME parameters and pharmacokinetic (PK) analysis results are introduced.
Collapse
Affiliation(s)
- Ozlem Ozbek
- Chemical Engineering Department, Bogazici University, Bebek 34342 Istanbul, Turkey
| | - Destina Ekingen Genc
- Chemical Engineering Department, Bogazici University, Bebek 34342 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Chemical Engineering Department, Bogazici University, Bebek 34342 Istanbul, Turkey
| |
Collapse
|
5
|
Sodipo BK, Kasim Mohammed Z. Advances in biodistribution of gold nanoparticles: the influence of size, surface charge, and route of administration. Biomed Mater 2024; 19:042010. [PMID: 38838693 DOI: 10.1088/1748-605x/ad5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
To improve the translational and clinical applications of gold nanoparticles (GNPs) in medicine there is a need for better understanding of physicochemical properties of the nanoparticles in relation to the systemic parameters andin-vivoperformance. This review presents the influence of physicochemical properties (surface charges and size) and route of administration on the biodistribution of GNPs. The role of protein corona (PC) (a unique biological identifier) as a barrier to biodistribution of GNPs, and the advances in engineered GNPs towards improving biodistribution are presented. Proteins can easily adsorb on charged (anionic and cationic) functionalized GNPs in circulation and shape the dynamics of their biodistribution. Non-ionic coatings such as PEG experience accelerated blood clearance (ABC) due to immunogenic response. While zwitterionic coatings provide stealth effects to formation of PC on the GNPs. GNPs with sizes less than 50 nm were found to circulate to several organs while the route of administration of the GNPs determines the serum protein that adsorbs on the nanoparticles.
Collapse
Affiliation(s)
- Bashiru K Sodipo
- Department of Physics, Kaduna State University, Kaduna, Nigeria
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | | |
Collapse
|
6
|
Jakic K, Selc M, Razga F, Nemethova V, Mazancova P, Havel F, Sramek M, Zarska M, Proska J, Masanova V, Uhnakova I, Makovicky P, Novotova M, Vykoukal V, Babelova A. Long-Term Accumulation, Biological Effects and Toxicity of BSA-Coated Gold Nanoparticles in the Mouse Liver, Spleen, and Kidneys. Int J Nanomedicine 2024; 19:4103-4120. [PMID: 38736658 PMCID: PMC11088863 DOI: 10.2147/ijn.s443168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.
Collapse
Affiliation(s)
- Kristina Jakic
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Selc
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | - Filip Havel
- Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sramek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Zarska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Proska
- Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Vlasta Masanova
- Department of Metallomics, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Department of Metallomics, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Peter Makovicky
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Novotova
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vit Vykoukal
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Andrea Babelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Das SK, Sen K, Ghosh B, Ghosh N, Sinha K, Sil PC. Molecular mechanism of nanomaterials induced liver injury: A review. World J Hepatol 2024; 16:566-600. [PMID: 38689743 PMCID: PMC11056894 DOI: 10.4254/wjh.v16.i4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024] Open
Abstract
The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.
Collapse
Affiliation(s)
- Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata 700064, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India.
| | - Parames C Sil
- Department of Molecular Medicine, Bose Institute, Calcutta 700054, India
| |
Collapse
|
8
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
9
|
Ahmad M, Khan MKA, Ahmad N, Parveen M, Shahzad K, Hasan A. Histotoxicity induced by copper oxide nanoparticles (CuO-NPs) on developing mice (Mus musculus). Food Chem Toxicol 2024; 184:114369. [PMID: 38110052 DOI: 10.1016/j.fct.2023.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/18/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
The wide range of applications of nanoparticles (NPs) in various industries have led to serious consequences in terms of teratogenic toxicity. The aim of current work was to evaluate the teratogenic effects of copper oxide (CuO) nanoparticles in albino mice.In this experimental study, after mating, inseminated 40 female mice were divided randomly into 4 pools (1 control and 3 experimental), ten each. Doses were administered intravenously (We followed the protocol by Yaqub et al. (2018), intravenous application is faster route as compared to oral dosage)to all the experimental groups on the 6th day of gestation (GD), dose concentrations were 200, 133.3 and 100 mg/kg body weights respectively.The doses were prepared in sequence (1/2, 1/3, 1/4 0f LD50) according to already published work. The effects of CuO-NPs show linear relationship with the above sequence. The control group was administered only with distilled water.The gravid females were sacrificed through cervical disruption at the 18th day of gestation, fetuses were removed and divided into four sets (pools) for morphometric, morphological and histological studies. Data were subjected to statistical analysis by using Tukey's test in light of ANOVA at p < 0.05 level of significance. Findings of the present study showed that CuO-NPs various concentrations affect developmental abnormalities i.e.runt embryos, resorbed uteri, exencephaly, hygroma, macroglossia, micromelia, open eye, omphalocoel, scoliosis, kyphosis and kinked tail. It is concluded that exposure to CuO-NPs may potentially lead to the developmental deformities in mice.
Collapse
Affiliation(s)
- Munir Ahmad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | | | - Naveed Ahmad
- Department of Zoology, University of Education, Vehari campus, Vehari, 56130, Pakistan
| | - Munazza Parveen
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Ali Hasan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Yousof S, Erfan H, Shehata S, Hosny M, El-Sayed K. Assessment of the potential cerebellar toxicity of gold nanoparticles on the structure and function of adult male albino rats. Biosci Rep 2023; 43:BSR20222255. [PMID: 37527500 PMCID: PMC10472208 DOI: 10.1042/bsr20222255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The regular use of gold nanoparticles (Au-NPs) may increase the likelihood of human exposure to these nanoparticles (NPs) and raises concerns about toxicity. AIM This study investigated the short-term impact of exposure to Au-NPs on inducing cerebellar pathology in rats, and whether the dose or duration of exposure was more important. METHODOLOGY The study used two concentrations of Au-NPs (25 and 50 particles per million) and 18 rats were randomly assigned to three groups. Assessments of the animals were done via behavioral, gene expression, histological, and immunohistochemistry analyses. RESULTS Both concentrations of Au-NPs caused cerebellar pathology, as assessed through the investigation test battery. The Au-NPs50 group displayed more injury and decreased mobility compared with the control and the Au-NPs25 group. The Au-NPs25 group showed an increase in supported rearing and significant up-regulation of the Rgc32 gene compared with the control. The Trkb gene was insignificantly up-regulated in both Au-NPs groups compared with the control. CONCLUSION The study indicates that exposure to Au-NPs can cause cerebellar pathology in rats and that the toxicity is more dependent on dose than the duration of exposure. These findings have significant implications for the safe use of Au-NPs in various applications.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Medical Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Horeya Erfan
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa M. Hosny
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Oncology Diagnostic Unit Lab, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Karima El-Sayed
- Department of Medical Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Tan KF, In LLA, Vijayaraj Kumar P. Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:2944-2981. [PMID: 37435615 DOI: 10.1021/acsabm.3c00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Gold nanoparticles (AuNPs) have undergone significant research for their use in the treatment of cancer. Numerous researchers have established their potent antitumor properties, which have greatly impacted the treatment of cancer. AuNPs have been used in four primary anticancer treatment modalities, namely radiation, photothermal therapy, photodynamic therapy, and chemotherapy. However, the ability of AuNPs to destroy cancer is lacking and can even harm healthy cells without the right direction to transport them to the tumor microenvironment. Consequently, a suitable targeting technique is needed. Based on the distinct features of the human tumor microenvironment, this review discusses four different targeting strategies that target the four key features of the tumor microenvironment, including abnormal vasculature, overexpression of specific receptors, an acidic microenvironment, and a hypoxic microenvironment, to direct surface-functionalized AuNPs to the tumor microenvironment and increase antitumor efficacies. In addition, some current completed or ongoing clinical trials of AuNPs will also be discussed below to further reinforce the concept of using AuNPs in anticancer therapy.
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Phukan K, Sarma H, Devi R, Chowdhury D. Acute toxicity study of onion peel-derived gold nano-bioconjugate. 3 Biotech 2023; 13:172. [PMID: 37188292 PMCID: PMC10169968 DOI: 10.1007/s13205-023-03592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
The acute anti-inflammatory activity of onion peel-derived gold nano-bioconjugate was already established earlier. The current study was aimed to investigate the acute oral toxicity of onion peel-derived gold nano-bioconjugate (GNBC) for safe therapeutic utilization in vivo. The acute toxicity study was carried out in female mice for 15 days and showed no mortality and any abnormal complications. The lethal dose (LD50) was evaluated and found to be higher than 2000 mg/kg. After 15 days, animals were euthanized and hematological, and biochemical analyses were performed. In all hematological and biochemical assays, treated animals did not show significant toxicity when compared to the control group. The body weight, behavior, and histopathological studies showed that GNBC is nontoxic. Thereby, the results suggest that onion peel-derived gold nano-bioconjugate GNBC can be utilized for therapeutic applications in vivo.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035 India
- Present Address: Baosi Banikanta Kakati College, Nagaon, Barpeta, 781311 India
| | - Himangshu Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035 India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035 India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035 India
| |
Collapse
|
13
|
Tarantino S, Caricato AP, Rinaldi R, Capomolla C, De Matteis V. Cancer Treatment Using Different Shapes of Gold-Based Nanomaterials in Combination with Conventional Physical Techniques. Pharmaceutics 2023; 15:500. [PMID: 36839822 PMCID: PMC9968101 DOI: 10.3390/pharmaceutics15020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The conventional methods of cancer treatment and diagnosis, such as radiotherapy, chemotherapy, and computed tomography, have developed a great deal. However, the effectiveness of such methods is limited to the possible failure or collateral effects on the patients. In recent years, nanoscale materials have been studied in the field of medical physics to develop increasingly efficient methods to treat diseases. Gold nanoparticles (AuNPs), thanks to their unique physicochemical and optical properties, were introduced to medicine to promote highly effective treatments. Several studies have confirmed the advantages of AuNPs such as their biocompatibility and the possibility to tune their shapes and sizes or modify their surfaces using different chemical compounds. In this review, the main properties of AuNPs are analyzed, with particular focus on star-shaped AuNPs. In addition, the main methods of tumor treatment and diagnosis involving AuNPs are reviewed.
Collapse
Affiliation(s)
- Simona Tarantino
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Anna Paola Caricato
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
- National Institute of Nuclear Physics (INFN), Section of Lecce, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Caterina Capomolla
- “Vito Fazzi” Hospital of Lecce, Oncological Center, Piazza Filippo Muratore 1, 73100 Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
14
|
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am J Physiol Cell Physiol 2023; 324:C29-C38. [PMID: 36409176 DOI: 10.1152/ajpcell.00080.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Allison J Cowin
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Zhang R, Kiessling F, Lammers T, Pallares RM. Clinical translation of gold nanoparticles. Drug Deliv Transl Res 2023; 13:378-385. [PMID: 36045273 PMCID: PMC9432795 DOI: 10.1007/s13346-022-01232-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/30/2022]
Abstract
Gold nanoparticles display unique physicochemical features, which can be useful for therapeutic purposes. After two decades of preclinical progress, gold nanoconstructs are slowly but steadily transitioning into clinical trials. Although initially thought to be "magic golden bullets" that could be used to treat a wide range of diseases, current consensus has moved toward a more realistic approach, where gold nanoformulations are being investigated to treat specific disorders. These therapeutic applications are dictated by the pharmacokinetics and biodistribution profiles of gold nanoparticles. Here, we analyze the current clinical landscape of therapeutic gold nanoconstructs, discuss the shared characteristics that allowed for their transition from bench to bedside, and examine existing hurdles that need to be overcome before they can be approved for clinical use.
Collapse
Affiliation(s)
- Rui Zhang
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Fabian Kiessling
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Twan Lammers
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Roger M. Pallares
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
16
|
Kesharwani K, Kautu A, Sharma S, Singh R, Kumar V, Tripathi SK, Shukla P, Joshi KB. Short peptide amphiphile nanostructures facilitate sunlight-induced nanowelding of gold nanosheets. Chem Commun (Camb) 2022; 58:13815-13818. [PMID: 36444804 DOI: 10.1039/d2cc05392f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An effortless thermoplasmonic welding of multi-shaped gold nanosheets is achieved by ordinary and simple sunlight irradiation. A light-matter interaction occurred via the nanogaps of smaller nanosheets, leading to the enhancement of the electromagnetic field and thus effectively concentrating the heat at the welding point. The sPA peptide nanostructure facilitates the nanowelding of small caged gold nanostructures.
Collapse
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India. .,Indian Institute of Technology Gandhinagar (IITGN), India
| | - Vikas Kumar
- Department of Chemistry, IISc, Bengaluru, Karnataka, India
| | - Satyendra Kumar Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Prashant Shukla
- Department of Physics, School of Physical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
17
|
Wang Y, Li X, Chen H, Gao Y. Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1432-1444. [PMID: 36530516 PMCID: PMC9727275 DOI: 10.3762/bjnano.13.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Gold nanoparticles with large size exhibit preferable properties for photothermal therapy (PTT). However, the prolonged tissue retention and slow elimination of gold nanoparticles limit their therapeutic applications. Previously, gold nanoclusters carrying lipid nanoparticles (Au-LNPs) have been reported after simply mixing Au3+ with preformed diethylenetriaminepentaacetic acid lipid nanoparticles to solve this contradiction. Au-LNPs demonstrated enhanced photothermal effects in comparison to neat gold nanoparticles. To further improve the photothermal activity, we introduced the organic photothermal agent boron dipyrromethene (BODIPY) to Au-LNPs for synergistic PTT. Au- and BODIPY-grafted LNPs (AB-LNPs) were formed by simply mixing Au-LNPs with BODIPY. The BODIPY could be associated stably to Au-LNPs, and the release of BODIPY from AB-LNPs could be accelerated by laser irradiation. AB-LNPs are scalable and showed excellent photothermal effects. AB-LNPs showed enhanced cellular uptake efficiency compared to free BODIPY in 4T1 breast cancer cells. Under laser irradiation, AB-LNPs exhibited synergistic photothermal effects with significantly reduced dosage compared to monotherapy (treatments with Au-LNPs or free BODIPY alone). This study thus provides a facile and adaptive strategy for the development of a scalable and safe high-performance nanoplatform for synergistic PTT in the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Yuran Wang
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
18
|
Mei R, Wang Y, Shi S, Zhao X, Zhang Z, Wang X, Shen D, Kang Q, Chen L. Highly Sensitive and Reliable Internal-Standard Surface-Enhanced Raman Scattering Microneedles for Determination of Bacterial Metabolites as Infection Biomarkers in Skin Interstitial Fluid. Anal Chem 2022; 94:16069-16078. [DOI: 10.1021/acs.analchem.2c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rongchao Mei
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shang Shi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Dazhong Shen
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qi Kang
- Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, College of Chemistry, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
19
|
Xulu JH, Ndongwe T, Ezealisiji KM, Tembu VJ, Mncwangi NP, Witika BA, Siwe-Noundou X. The Use of Medicinal Plant-Derived Metallic Nanoparticles in Theranostics. Pharmaceutics 2022; 14:2437. [PMID: 36365255 PMCID: PMC9698412 DOI: 10.3390/pharmaceutics14112437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 08/20/2023] Open
Abstract
In the quest to effectively diagnose and treat the diseases that afflict mankind, the development of a tool capable of simultaneous detection and treatment would provide a significant cornerstone for the survival and control of these diseases. Theranostics denotes a portmanteau of therapeutics and diagnostics which simultaneously detect and treat ailments. Research advances have initiated the advent of theranostics in modern medicine. Overall, theranostics are drug delivery systems with molecular or targeted imaging agents integrated into their structure. The application of theranostics is rising exponentially due to the urgent need for treatments that can be utilized for diagnostic imaging as an aid in precision and personalised medicine. Subsequently, the emergence of nanobiotechnology and the green synthesis of metallic nanoparticles (MNPs) has provided one such avenue for nanoscale development and research. Of interest is the drastic rise in the use of medicinal plants in the synthesis of MNPs which have been reported to be potentially effective in the diagnosis and treatment of diseases. At present, medicinal plant-derived MNPs have been cited to have broad pharmacological applications and have been studied for their potential use in the treatment and management of cancer, malaria, microbial and cardiovascular diseases. The subject of this article regards the role of medicinal plants in the synthesis of MNPs and the potential role of MNPs in the field of theranostics.
Collapse
Affiliation(s)
- Jabulile Happiness Xulu
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Kenneth M. Ezealisiji
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Port Harcourt, PMB 5323 Choba, Rivers State, Nigeria
| | - Vuyelwa J. Tembu
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Nontobeko P. Mncwangi
- Department of Pharmacy Practice, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Pretoria 0204, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|
20
|
Zhu L, Yang Y, Li X, Zheng Y, Li Z, Chen H, Gao Y. Facile preparation of indocyanine green and tiny gold nanoclusters co-loaded nanocapsules for targeted synergistic sono-/photo-therapy. J Colloid Interface Sci 2022; 627:596-609. [PMID: 35872417 DOI: 10.1016/j.jcis.2022.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Photothermal therapy (PTT) and sono-photodynamic therapy (SPDT) are fast growing local treatment modalities with minimal invasiveness and high safety. Gold nanoparticles and indocyanine green (ICG) have been used as sensitizers for PTT and SPDT. However, long resident time of gold nanoparticles in tissues and fast elimination of ICG hampered their further clinical applications. Herein, we developed nanocapsules formed by hyaluronic acid and chitosan loading with ICG and tiny gold nanoclusters (TAuNCs) to overcome the shortcomings of gold nanoparticles and ICG for combined PTT and SPDT. The nanocapsules exhibited good biological stability, favorable photothermal effects, and ultrasound/near-infrared light (NIR)-responsive release behaviors. The hyaluronic acid could mediate the specific delivery of cargos to CD44 protein over-expressing cancer cells. The in vitro and in vivo results showed that TAuNCs and ICG could act synergistically to obtain satisfactory anticancer effects under NIR laser and/or ultrasound exposure induced by thermal ablation and reactive oxygen species (ROS) generation. Biodistribution and excretion studies showed that the nanocapsules had longer ICG retention time in tumor and most of the TAuNCs could be effectively excreted from the body within one month. This study thus provides a facile strategy for the development of a safe and high-performance nanoplatform for synergistic PTT/SPDT.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
21
|
Chou WC, Cheng YH, Riviere JE, Monteiro-Riviere NA, Kreyling WG, Lin Z. Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats. Part Fibre Toxicol 2022; 19:47. [PMID: 35804418 PMCID: PMC9264615 DOI: 10.1186/s12989-022-00489-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Physiologically based pharmacokinetic (PBPK) modeling is an important tool in predicting target organ dosimetry and risk assessment of nanoparticles (NPs). The methodology of building a multi-route PBPK model for NPs has not been established, nor systematically evaluated. In this study, we hypothesized that the traditional route-to-route extrapolation approach of PBPK modeling that is typically used for small molecules may not be appropriate for NPs. To test this hypothesis, the objective of this study was to develop a multi-route PBPK model for different sizes (1.4-200 nm) of gold nanoparticles (AuNPs) in adult rats following different routes of administration (i.e., intravenous (IV), oral gavage, intratracheal instillation, and endotracheal inhalation) using two approaches: a traditional route-to-route extrapolation approach for small molecules and a new approach that is based on route-specific data that we propose to be applied generally to NPs. RESULTS We found that the PBPK model using this new approach had superior performance than the traditional approach. The final PBPK model was optimized rigorously using a Bayesian hierarchical approach with Markov chain Monte Carlo simulations, and then converted to a web-based interface using R Shiny. In addition, quantitative structure-activity relationships (QSAR) based multivariate linear regressions were established to predict the route-specific key biodistribution parameters (e.g., maximum uptake rate) based on the physicochemical properties of AuNPs (e.g., size, surface area, dose, Zeta potential, and NP numbers). These results showed the size and surface area of AuNPs were the main determinants for endocytic/phagocytic uptake rates regardless of the route of administration, while Zeta potential was an important parameter for the estimation of the exocytic release rates following IV administration. CONCLUSIONS This study suggests that traditional route-to-route extrapolation approaches for PBPK modeling of small molecules are not applicable to NPs. Therefore, multi-route PBPK models for NPs should be developed using route-specific data. This novel PBPK-based web interface serves as a foundation for extrapolating to other NPs and to humans to facilitate biodistribution estimation, safety, and risk assessment of NPs.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, Gainesville, FL 32610 USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608 USA
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS 66506 USA
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS 66506 USA
| | - Jim E. Riviere
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS 66506 USA
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS 66506 USA
- 1Data Consortium, Kansas State University, Olathe, KS 66061 USA
| | | | - Wolfgang G. Kreyling
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Ingolstaedter Landstrasse 1, Neuherberg, 85764 Munich, Germany
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Drive, Gainesville, FL 32610 USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608 USA
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS 66506 USA
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
22
|
Dantas GP, Ferraz FS, Andrade LM, Costa GM. Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chem Biol Interact 2022; 363:110023. [DOI: 10.1016/j.cbi.2022.110023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
23
|
Phytochemical-conjugated bio-safe gold nanoparticles in breast cancer: a comprehensive update. Breast Cancer 2022; 29:761-777. [PMID: 35578088 DOI: 10.1007/s12282-022-01368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/26/2022] [Indexed: 01/02/2023]
Abstract
Breast cancer is the most common malignancy in women and is rated among one of the three common malignancies worldwide in combination with colon and lung cancer. The escalating mortality rate of breast cancer patients has captivated the attention of the present-day researchers to come up with new management options. According to WHO, early detection, timely diagnosis and comprehensive breast cancer management are the three cornerstones for controlling breast cancer incidences per year. Multidisciplinary theragnostic approaches for simultaneous diagnosis and treatment of breast cancer have further enriched the therapeutic arsenal. Imaging and biopsy play a significant role in the diagnosis of breast cancer. The treatment plan mostly initiates with general surgery or radiation therapy followed up with adjuvant and/or neoadjuvant therapy. Conventional chemotherapeutics in breast cancer suffer from toxicity and lack of site specificity. Bio-safe gold nanoparticles hold sufficient promise for bridging this gap. Diverse phytochemicals-based synthesis routes to arrive at nano-dimensional gold with spotlight on reaction mechanisms, reaction variables, specific advantages, toxicity and their influence in breast cancer conditions are the focus of this work. This review marks the first attempt to explore the potential of phytochemical-derived nano-gold in breast cancer treatment.
Collapse
|
24
|
Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, Zhu Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2041-2067. [PMID: 35571258 PMCID: PMC9094645 DOI: 10.2147/ijn.s355142] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients’ lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients’ lives. Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery, photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xi Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xuefeng Gong
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Hao Yang
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
- Correspondence: Yuxuan Zhu, Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China, Email
| |
Collapse
|
25
|
Liu N, Li Y, Liu L, Liu X, Yin Y, Qu G, Shi J, Song M, He B, Hu L, Jiang G. Administration of Silver Nasal Spray Leads to Nanoparticle Accumulation in Rat Brain Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:403-413. [PMID: 34923819 DOI: 10.1021/acs.est.1c02532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of commercial products containing engineered nanomaterials in realistic scenarios may lead to the accumulation of exogenous particles in brain tissues. In this study, we simulated the use of silver (Ag) nasal spray in humans using Sprague-Dawley rats at 0.04 mg/kg/day. Silver-containing particles were explicitly identified in the rat brain after the administration of nasal sprays containing colloidal Ag or silver ions (Ag+) for 2 weeks using multiple methods. The accumulation of Ag-containing particles showed a delayed effect in different brain regions of the rats, with the mass concentration of particles increasing continuously for 1-2 weeks after the termination of administration. The size of the observed Ag-containing particles extracted from the brain tissues ranged from 18.3 to 120.4 nm. Further characterization by high-resolution transmission electron microscopy with energy-dispersive spectroscopy showed that the nanoparticles comprised both Ag and sulfur (S), with Ag/S atomic ratios of 1.1-7.1, suggesting that Ag-containing particles went through a series of transformations prior to or during their accumulation in the brain. Collectively, these findings provide evidence for the accumulation and transformation of Ag-containing particles in the rat brain, indicating a realistic risk to brain health resulting from the application of Ag-containing commercial products.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Gaharwar US, Pardhiya S, Rajamani P. A Perspective on Reproductive Toxicity of Metallic Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:97-117. [PMID: 36472819 DOI: 10.1007/978-3-031-12966-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnological tools have been greatly exploited in all possible fields. However, advancement of nanotechnology has raised concern about their adverse effects on human and environment. These deleterious effects cannot be ignored and need to be explored due to safety purpose. Several recent studies have demonstrated possible health hazard of nanoparticles on organism. Moreover, studies showed that toxicity of metallic nanomaterial could also lead to reproductive toxicity. Various deleterious effects have demonstrated decreased sperm motility, increased abnormal spermatozoa, altered sperm count, and altered sperm morphology. Morphological and ultrastructural changes also have been reported due to the accumulation of these nanomaterials in reproductive organs. Nonetheless, studies also suggest crossing of metallic nanoparticles through blood testes barrier and generation of oxidative stress which plays major role in reproductive toxicity. In the present study, we have incorporated updated information by gathering all available literature about various metallic nanomaterials and risk related to reproductive system.
Collapse
Affiliation(s)
- Usha Singh Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
27
|
Liu Y, Wen H, Wu X, Wu M, Liu L, Wang J, Huo G, Lyu J, Xie L, Dan M. The Bio-Persistence of Reversible Inflammatory, Histological Changes and Metabolic Profile Alterations in Rat Livers after Silver/Gold Nanorod Administration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2656. [PMID: 34685095 PMCID: PMC8538332 DOI: 10.3390/nano11102656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
As a widely applied nanomaterial, silver nanomaterials (AgNMs) have increased public concern about their potential adverse biological effects. However, there are few related researches on the long-term toxicity, especially on the reversibility of AgNMs in vivo. In the current study, this issue was tackled by exploring liver damage after an intravenous injection of silver nanorods with golden cores (Au@AgNRs) and its potential recovery in a relatively long term (8 w). After the administration of Au@AgNRs into rats, Ag was found to be rapidly cleared from blood within 10 min and mainly accumulated in liver as well as spleen until 8 w. All detected parameters almost displayed a two-stage response to Au@AgNRs administration, including biological markers, histological changes and metabolic variations. For the short-term (2 w) responses, some toxicological parameters (hematological changes, cytokines, liver damages etc.) significantly changed compared to control and AuNRs group. However, after a 6-week recovery, all abovementioned changes mostly returned to the normal levels in the Au@AgNRs group. These indicated that after a lengthy period, acute bioeffects elicited by AgNMs could be followed by the adaptive recovery, which will provide a novel and valuable toxicity mechanism of AgNMs for potential biomedical applications of AgNMs.
Collapse
Affiliation(s)
- Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao Zhongguancun, Haidian District, Beijing 100190, China;
| | - Hairuo Wen
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, No. 8 Hongda Mid-Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing 100176, China; (H.W.); (J.W.); (G.H.); or (J.L.)
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao Zhongguancun, Haidian District, Beijing 100190, China; (X.W.); (M.W.); (L.L.)
| | - Meiyu Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao Zhongguancun, Haidian District, Beijing 100190, China; (X.W.); (M.W.); (L.L.)
| | - Lin Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao Zhongguancun, Haidian District, Beijing 100190, China; (X.W.); (M.W.); (L.L.)
| | - Jiahui Wang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, No. 8 Hongda Mid-Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing 100176, China; (H.W.); (J.W.); (G.H.); or (J.L.)
| | - Guitao Huo
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, No. 8 Hongda Mid-Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing 100176, China; (H.W.); (J.W.); (G.H.); or (J.L.)
| | - Jianjun Lyu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, No. 8 Hongda Mid-Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing 100176, China; (H.W.); (J.W.); (G.H.); or (J.L.)
- Department of Pathology, InnoStar Bio-Tech Nantong Co., Ltd., Nantong 226133, China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao Zhongguancun, Haidian District, Beijing 100190, China; (X.W.); (M.W.); (L.L.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo Dan
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, No. 8 Hongda Mid-Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing 100176, China; (H.W.); (J.W.); (G.H.); or (J.L.)
- The State Key Laboratory of New Pharmaceutical Preparations and Excipients, 226 Huanghe Road, Shijiazhuang 050035, China
| |
Collapse
|
28
|
Ozcicek I, Aysit N, Cakici C, Aydeger A. The effects of surface functionality and size of gold nanoparticles on neuronal toxicity, apoptosis, ROS production and cellular/suborgan biodistribution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112308. [PMID: 34474859 DOI: 10.1016/j.msec.2021.112308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles are emerging as promising nanomaterials to create nanoscale therapeutic delivery systems. The aim of the study was to synthesis of highly monodisperse and stable gold nanoparticles functionalized with polyethyleneimine (PEI) and polyethylene glycol (PEG), multiparametric investigation of their neuronal toxicological effects and evaluation of the cellular/suborgan biodistribution. Gold nanoparticles (AuNP20 and AuNP50) were synthesized and their surfaces were electrostatically modified by PEI and PEG. Dorsal root ganglion (DRG) sensory neurones were isolated from BALB/c mice. Cell viability, apoptosis and ROS production were evaluated in vitro. Cellular and suborgan biodisribution of the AuNPs were investigated using inductively coupled plasma mass spectrometry (ICP-MS) technique. PEI and PEG surface coating increased both biocompatibility and biodistribution of the AuNPs. ICP-MS measurements showed the presence of gold in liver, spleen, kidney, heart, blood and brain within a 30 days period. The size and surface chemistry of the AuNPs are important parameters for potential nanoteranostic applications in the future studies.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| | - Nese Aysit
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Medical Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Asel Aydeger
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
29
|
Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep 2021; 26:100991. [PMID: 33912692 PMCID: PMC8063742 DOI: 10.1016/j.bbrep.2021.100991] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Collapse
Affiliation(s)
- A. Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - C. Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - D. Cui
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
30
|
Kozics K, Sramkova M, Kopecka K, Begerova P, Manova A, Krivosikova Z, Sevcikova Z, Liskova A, Rollerova E, Dubaj T, Puntes V, Wsolova L, Simon P, Tulinska J, Gabelova A. Pharmacokinetics, Biodistribution, and Biosafety of PEGylated Gold Nanoparticles In Vivo. NANOMATERIALS 2021; 11:nano11071702. [PMID: 34203551 PMCID: PMC8305691 DOI: 10.3390/nano11071702] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Despite the obvious advantages of gold nanoparticles for biomedical applications, controversial and incomplete toxicological data hamper their widespread use. Here, we present the results from an in vivo toxicity study using gold nanoparticles coated with polyethylene glycol (PEG-AuNPs). The pharmacokinetics and biodistribution of PEG-AuNPs were examined in the rat’s liver, lung, spleen, and kidney after a single i.v. injection (0.7 mg/kg) at different time intervals. PEG-AuNPs had a relatively long blood circulation time and accumulated primarily in the liver and spleen, where they remained for up to 28 days after administration. Increased cytoplasmic vacuolation in hepatocytes 24 h and 7 days after PEG-AuNPs exposure and apoptotic-like cells in white splenic pulp 24 h after administration has been detected, however, 28 days post-exposure were no longer observed. In contrast, at this time point, we identified significant changes in lipid metabolism, altered levels of liver injury markers, and elevated monocyte count, but without marked biological relevance. In blood cells, no DNA damage was present in any of the studied time intervals, with the exception of DNA breakage transiently detected in primary kidney cells 4 h post-injection. Our results indicate that the tissue accumulation of PEG-AuNPs might result in late toxic effects.
Collapse
Affiliation(s)
- Katarina Kozics
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center SAS, 845 05 Bratislava, Slovakia; (M.S.); (K.K.); (P.B.); (A.G.)
- Correspondence:
| | - Monika Sramkova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center SAS, 845 05 Bratislava, Slovakia; (M.S.); (K.K.); (P.B.); (A.G.)
| | - Kristina Kopecka
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center SAS, 845 05 Bratislava, Slovakia; (M.S.); (K.K.); (P.B.); (A.G.)
| | - Patricia Begerova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center SAS, 845 05 Bratislava, Slovakia; (M.S.); (K.K.); (P.B.); (A.G.)
| | - Alena Manova
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia;
| | - Zora Krivosikova
- Department of Clinical and Experimental Pharmacotherapy, Slovak Medical University in Bratislava, 833 03 Bratislava, Slovakia;
| | - Zuzana Sevcikova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Aurelia Liskova
- Laboratory of Immunotoxicology, Slovak Medical University in Bratislava, 833 03 Bratislava, Slovakia; (A.L.); (J.T.)
| | - Eva Rollerova
- Laboratory of Toxicology, Slovak Medical University in Bratislava, 833 03 Bratislava, Slovakia; (E.R.); (L.W.)
| | - Tibor Dubaj
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; (T.D.); (P.S.)
| | - Victor Puntes
- Catalan Institute of Nanotechnology, UAB Campus, 08193 Bellaterra, Barcelona, Spain;
| | - Ladislava Wsolova
- Laboratory of Toxicology, Slovak Medical University in Bratislava, 833 03 Bratislava, Slovakia; (E.R.); (L.W.)
| | - Peter Simon
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; (T.D.); (P.S.)
| | - Jana Tulinska
- Laboratory of Immunotoxicology, Slovak Medical University in Bratislava, 833 03 Bratislava, Slovakia; (A.L.); (J.T.)
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center SAS, 845 05 Bratislava, Slovakia; (M.S.); (K.K.); (P.B.); (A.G.)
| |
Collapse
|
31
|
Galúcio JMP, de Souza SGB, Vasconcelos AA, Lima AKO, da Costa KS, de Campos Braga H, Taube PS. Synthesis, Characterization, Applications, and Toxicity of Green Synthesized Nanoparticles. Curr Pharm Biotechnol 2021; 23:420-443. [PMID: 34355680 DOI: 10.2174/1389201022666210521102307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1-100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.
Collapse
Affiliation(s)
| | | | | | - Alan Kelbis Oliveira Lima
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Kauê Santana da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Sérgio Taube
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| |
Collapse
|
32
|
Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021; 9:647905. [PMID: 33928072 PMCID: PMC8076689 DOI: 10.3389/fbioe.2021.647905] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Conventional cancer treatments, such as surgical resection, radiotherapy, and chemotherapy, have achieved significant progress in cancer therapy. Nevertheless, some limitations (such as toxic side effects) are still existing for conventional therapies, which motivate efforts toward developing novel theranostic avenues. Owning many merits such as easy surface modification, unique optical properties, and high biocompatibility, gold nanoparticles (AuNPs and GNPs) have been engineered to serve as targeted delivery vehicles, molecular probes, sensors, and so on. Their small size and surface characteristics enable them to extravasate and access the tumor microenvironment (TME), which is a promising solution to realize highly effective treatments. Moreover, stimuli-responsive properties (respond to hypoxia and acidic pH) of nanoparticles to TME enable GNPs’ unrivaled control for effective transport of therapeutic cargos. In this review article, we primarily introduce the basic properties of GNPs, further discuss the recent progress in gold nanoparticles for cancer theranostics, with an additional concern about TME stimuli-responsive studies.
Collapse
Affiliation(s)
- Qinyue Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingjing Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Thapa RK, Diep DB, Tønnesen HH. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00525-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Background
Antimicrobial peptides (AMPs) have gained wide interest as viable alternatives to antibiotics owing to their potent antimicrobial effects and the low propensity of resistance development. However, their physicochemical properties (solubility, charge, hydrophobicity/hydrophilicity), stability issues (proteolytic or enzymatic degradation, aggregation, chemical degradation), and toxicities (interactions with blood components or cellular toxicities) limit their therapeutic applications.
Area covered
Nanomedicine-based therapeutic delivery is an emerging concept. The AMP loaded nanoparticles have been prepared and investigated for their antimicrobial effects. In this review, we will discuss different nanomedicine-based AMP delivery systems including metallic nanoparticles, lipid nanoparticles, polymeric nanoparticles, and their hybrid systems along with their future prospects for potent antimicrobial efficacy.
Expert opinion
Nanomedicine-based AMP delivery is a recent approach to the treatment of bacterial infections. The advantageous properties of nanoparticles including the enhancement of AMP stability, controlled release, and targetability make them suitable for the augmentation of AMP activity. Modifications in the nanomedicine-based approach are required to overcome the problems of nanoparticle instability, shorter residence time, and toxicity. Future rigorous studies for both the AMP loaded nanoparticle preparation and characterization, and detailed evaluations of their in vitro and in vivo antimicrobial effects and toxicities, are essential.
Collapse
|
34
|
Gupta N, Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188532. [PMID: 33667572 DOI: 10.1016/j.bbcan.2021.188532] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The present communication summarizes the importance, understanding and advancement in the photothermal therapy of cancer using gold nanoparticles. Photothermal therapy was used earlier as a single line therapy, but using a combination of photothermal therapy with other therapies like immunotherapy, chemotherapy, photodynamic therapy; efficient therapy management can be achieved. As it was discussed in many studies that gold nanoparticles are treated as idyllic photothermal transducers due to their structural dimensions, which enables them to strongly absorb near infrared light. Gold nanoparticles which are mediated for photothermal therapy can warn cancer cells to chemotherapy, regulate genes and immunotherapy by enhancing the cell permeability and intracellular delivery. The necrosis process and apoptosis depend on the power of laser and temperature within the cancerous tissues which are reached during irradiation. Cells death mechanism is also important because the cells which died through the process of necrosis can endorse secondary tumor growth while the cells which died through apoptosis may provoke the immune response to inhibit the development of secondary tumor growth. To decrease the in vivo barriers, gold nanostructures are again modified with targeting ligand and bio-responsive linker. The manuscript summarizes that the use of gold nanoparticles is capable of inhibiting the growth of cancerous cells by using photothermal therapy which has lesser adverse effects compared to other line therapies.
Collapse
Affiliation(s)
- Nandan Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
35
|
Habib S, Ariatti M, Singh M. Anti- c-myc RNAi-Based Onconanotherapeutics. Biomedicines 2020; 8:E612. [PMID: 33333729 PMCID: PMC7765184 DOI: 10.3390/biomedicines8120612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Overexpression of the c-myc proto-oncogene features prominently in most human cancers. Early studies established that inhibiting the expression of oncogenic c-myc, produced potent anti-cancer effects. This gave rise to the notion that an appropriate c-myc silencing agent might provide a broadly applicable and more effective form of cancer treatment than is currently available. The endogenous mechanism of RNA interference (RNAi), through which small RNA molecules induce gene silencing by binding to complementary mRNA transcripts, represents an attractive avenue for c-myc inhibition. However, the development of a clinically viable, anti-c-myc RNAi-based platform is largely dependent upon the design of an appropriate carrier of the effector nucleic acids. To date, organic and inorganic nanoparticles were assessed both in vitro and in vivo, as carriers of small interfering RNA (siRNA), DICER-substrate siRNA (DsiRNA), and short hairpin RNA (shRNA) expression plasmids, directed against the c-myc oncogene. We review here the various anti-c-myc RNAi-based nanosystems that have come to the fore, especially between 2005 and 2020.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag, Durban X54001, South Africa; (S.H.); (M.A.)
| |
Collapse
|
36
|
Abdelsattar AS, Dawoud A, Helal MA. Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 2020; 15:66-95. [PMID: 33283572 DOI: 10.1080/17435390.2020.1842537] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of using engineered nanoparticles in various medical applications entails a deep understanding of their interaction with biological macromolecules. Molecular docking simulation is now widely used to study the binding of different types of nanoparticles with proteins and nucleic acids. This helps not only in understanding the mechanism of their biological action but also in predicting any potential toxicity. In this review, the computational techniques used in studying the nanoparticles interaction with biological macromolecules are covered. Then, a comprehensive overview of the docking studies performed on various types of nanoparticles will be offered. The implication of these predicted interactions in the biological activity and/or toxicity is also discussed for each type of nanoparticles.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
37
|
Vilas-Boas V, Vinken M. Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch Toxicol 2020; 95:27-52. [PMID: 33155068 DOI: 10.1007/s00204-020-02940-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The unique physicochemical properties of materials at nanoscale have opened a plethora of opportunities for applications in the pharmaceutical and medical field, but also in consumer products from food and cosmetics industries. As a consequence, daily human exposure to nanomaterials through distinct routes is considerable and, therefore, may raise health concerns. Many nanomaterials have been described to accumulate and induce adversity in the liver. Among these, silica and some types of metallic nanoparticles are the most broadly used in consumer products and, therefore, the most studied and reported. The reviewed literature was collected from PubMed.gov during the month of March 2020 using the search words "nanomaterials induced hepatotoxicity", which yielded 181 papers. This present paper reviews the hepatotoxic effects of nanomaterials described in in vitro and in vivo studies, with emphasis on the underlying mechanisms. The induction of oxidative stress and inflammation are the manifestations of toxicity most frequently reported following exposure of cells or animal models to different nanomaterials. Furthermore, the available in vitro models for the evaluation of the hepatotoxic effects of nanomaterials are discussed, highlighting the continuous interest in the development of more advanced and reliable in vitro models for nanotoxicology.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
38
|
Tsang VT, Li X, Wong TT. A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations. SENSORS 2020; 20:s20195595. [PMID: 33003566 PMCID: PMC7582683 DOI: 10.3390/s20195595] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022]
Abstract
Optical-based sensing approaches have long been an indispensable way to detect molecules in biological tissues for various biomedical research and applications. The advancement in optical microscopy is one of the main drivers for discoveries and innovations in both life science and biomedical imaging. However, the shallow imaging depth due to the use of ballistic photons fundamentally limits optical imaging approaches’ translational potential to a clinical setting. Photoacoustic (PA) tomography (PAT) is a rapidly growing hybrid imaging modality that is capable of acoustically detecting optical contrast. PAT uniquely enjoys high-resolution deep-tissue imaging owing to the utilization of diffused photons. The exploration of endogenous contrast agents and the development of exogenous contrast agents further improve the molecular specificity for PAT. PAT’s versatile design and non-invasive nature have proven its great potential as a biomedical imaging tool for a multitude of biomedical applications. In this review, representative endogenous and exogenous PA contrast agents will be introduced alongside common PAT system configurations, including the latest advances of all-optical acoustic sensing techniques.
Collapse
|
39
|
Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. NANOSCALE ADVANCES 2020; 2:3734-3763. [PMID: 36132767 PMCID: PMC9417516 DOI: 10.1039/d0na00286k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/25/2020] [Indexed: 05/10/2023]
Abstract
Nanomaterials are currently widely exploited for their potential in the development of novel cancer therapies, and so far, mainly nanoparticles (NPs) consisting of liposomes and polymers have made their way into the clinic. However, major bottlenecks for the clinical translation of other types of NPs (i.e. inorganic) are the lack of knowledge concerning their long-term distribution in vivo and their potential toxicity. To counter this, various research groups have worked on soluble NPs, such as zinc oxide (ZnO), copper oxide (CuO), and silver (Ag), which tend to dissolve spontaneously into their ionic form, releasing toxic metal ions and leading to reactive oxygen species (ROS) generation when exposed to cellular environments. By fine-tuning the dissolution kinetics of these NPs, it is possible to control the level of ROS production and thus cytotoxicity to selectively destroy tumor tissue. Specifically, cancer cells tend to exhibit a higher basal level of oxidative stress compared to normal cells due to their higher metabolic rates, and therefore, by engineering NPs that generate sufficient ROS that barely exceed toxic thresholds in cancer cells, normal cells will only experience reversible transient damage. This review focuses on the use of these soluble inorganic NPs for selective cancer therapy and on the various in vitro and in vivo studies that have aimed to control the dissolution kinetics of these NPs, either through particle doping or surface modifications.
Collapse
Affiliation(s)
- Christy Maksoudian
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Neshat Saffarzadeh
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Evelien Hesemans
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Nora Dekoning
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Kiana Buttiens
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Stefaan J Soenen
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| |
Collapse
|
40
|
Malaviya P, Shukal D, Vasavada AR. Nanotechnology-based Drug Delivery, Metabolism and Toxicity. Curr Drug Metab 2020; 20:1167-1190. [PMID: 31902350 DOI: 10.2174/1389200221666200103091753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 11/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanoparticles (NPs) are being used extensively owing to their increased surface area, targeted delivery and enhanced retention. NPs have the potential to be used in many disease conditions. Despite widespread use, their toxicity and clinical safety still remain a major concern. OBJECTIVE The purpose of this study was to explore the metabolism and toxicological effects of nanotherapeutics. METHODS Comprehensive, time-bound literature search was done covering the period from 2010 till date. The primary focus was on the metabolism of NP including their adsorption, degradation, clearance, and bio-persistence. This review also focuses on updated investigations on NPs with respect to their toxic effects on various in vitro and in vivo experimental models. RESULTS Nanotechnology is a thriving field of biomedical research and an efficient drug delivery system. Further their applications are under investigation for diagnosis of disease and as medical devices. CONCLUSION The toxicity of NPs is a major concern in the application of NPs as therapeutics. Studies addressing metabolism, side-effects and safety of NPs are desirable to gain maximum benefits of nanotherapeutics.
Collapse
Affiliation(s)
- Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India.,Ph.D. Scholars, Manipal Academy of Higher Education, Manipal, India
| | - Dhaval Shukal
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India.,Ph.D. Scholars, Manipal Academy of Higher Education, Manipal, India
| | - Abhay R Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India
| |
Collapse
|
41
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
42
|
Egorova E, van Rijt MMJ, Sommerdijk N, Gooris GS, Bouwstra JA, Boyle AL, Kros A. One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile. ACS NANO 2020; 14:5874-5886. [PMID: 32348119 PMCID: PMC7254838 DOI: 10.1021/acsnano.0c01021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The functionalization of gold nanoparticles (GNPs) with peptidic moieties can prevent their aggregation and facilitate their use for applications both in vitro and in vivo. To date, no peptide-based coating has been shown to stabilize GNPs larger than 30 nm in diameter; such particles are of interest for applications including vaccine development, drug delivery, and sensing. Here, GNPs with diameters of 20, 40, and 100 nm are functionalized with peptide amphiphiles. Using a combination of transmission electron microscopy, UV-vis spectroscopy, and dynamic light scattering, we show that GNPs up to 100 nm in size can be stabilized by these molecules. Moreover, we demonstrate that these peptide amphiphiles form curvature-dependent, ordered structures on the surface of the GNPs and that the GNPs remain disperse at high-salt concentrations and in the presence of competing thiol-containing molecules. These results represent the development of a peptide amphiphile-based coating system for GNPs which has the potential to be beneficial for a wide range of biological applications, in addition to image enhancement and catalysis.
Collapse
Affiliation(s)
- Elena
A. Egorova
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Mark M. J. van Rijt
- Laboratory
of Physical Chemistry and the Centre for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The
Netherlands
| | - Nico Sommerdijk
- Radboud
Institute for Molecular Life Sciences, Radboud
University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Gert S. Gooris
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Joke A. Bouwstra
- Division
of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Aimee L. Boyle
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| |
Collapse
|
43
|
Colino CI, Lanao JM, Gutierrez-Millan C. Targeting of Hepatic Macrophages by Therapeutic Nanoparticles. Front Immunol 2020; 11:218. [PMID: 32194546 PMCID: PMC7065596 DOI: 10.3389/fimmu.2020.00218] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatic macrophage populations include different types of cells with plastic properties that can differentiate into diverse phenotypes to modulate their properties in response to different stimuli. They often regulate the activity of other cells and play an important role in many hepatic diseases. In response to those pathological situations, they are activated, releasing cytokines and chemokines; they may attract circulating monocytes and exert functions that can aggravate the symptoms or drive reparation processes. As a result, liver macrophages are potential therapeutic targets that can be oriented toward a variety of aims, with emergent nanotechnology platforms potentially offering new perspectives for macrophage vectorization. Macrophages play an essential role in the final destination of nanoparticles (NPs) in the organism, as they are involved in their uptake and trafficking in vivo. Different types of delivery nanosystems for macrophage recognition and targeting, such as liposomes, solid-lipid, polymeric, or metallic nanoparticles, have been developed. Passive targeting promotes the accumulation of the NPs in the liver due to their anatomical and physiological features. This process is modulated by NP characteristics such as size, charge, and surface modifications. Active targeting approaches with specific ligands may also be used to reach liver macrophages. In order to design new systems, the NP recognition mechanism of macrophages must be understood, taking into account that variations in local microenvironment may change the phenotype of macrophages in a way that will affect the uptake and toxicity of NPs. This kind of information may be applied to diseases where macrophages play a pathogenic role, such as metabolic disorders, infections, or cancer. The kinetics of nanoparticles strongly affects their therapeutic efficacy when administered in vivo. Release kinetics could predict the behavior of nanosystems targeting macrophages and be applied to improve their characteristics. PBPK models have been developed to characterize nanoparticle biodistribution in organs of the reticuloendothelial system (RES) such as liver or spleen. Another controversial issue is the possible toxicity of non-degradable nanoparticles, which in many cases accumulate in high percentages in macrophage clearance organs such as the liver, spleen, and kidney.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
44
|
Gao Y, Mu Q, Zhu L, Li Z, Ho RJY. Optimizing a Novel Au-Grafted Lipid Nanoparticle Through Chelation Chemistry for High Photothermal Biologic Activity. J Pharm Sci 2020; 109:1780-1788. [PMID: 32081720 DOI: 10.1016/j.xphs.2020.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
Gold nanoparticles through nucleation of Au clusters have been extensively studied. However, due to low potency, prolonged tissue retention, and irreversible accumulation, the safety considerations have limited their therapeutic and diagnostic applications. Novel gold nanostructures with retained physical properties and higher biodegradability could be prepared by alternative approaches. Previously, a lipid nanoparticle (LNP) platform carrying gadolinium (Gd3+) has been reported to eliminate through the biliary without accumulation in the liver or kidney within 24 h. Inspired by this discovery, we investigated a new approach of forming gold nanoparticles using preformed LNPs grafting diethylenetriamine-pentaacetic acid as a chelating agent. Tiny Au nanoparticles are formed by simply mixing Au3+ with preformed diethylenetriamine-pentaacetic acid-LNP. The Au3+ associates stably to these LNPs after a systematic optimization. The Au-grafted LNPs are scalable and showed excellent photothermal effects when subjected to near-infrared light irradiation. They exhibit enhanced light-induced tumor cell killing at higher efficiency, compared with that of classical gold nanoparticles (citrated reduced). Given an additional small dose (2 Gy) of gamma irradiation, Au-grafted LNP could produce synergistic photothermal and radiotherapeutic effects under reduced light dose. The simple and adaptive nanoparticle design may enhance the margin of safety of gold nanoparticles in the treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Lisheng Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195; Department of Bioengineering, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
45
|
Pharmacokinetics, tissue distribution and safety of gold nanoparticle/PKC Delta inhibitor peptide hybrid in rats. Nanotoxicology 2019; 14:341-354. [DOI: 10.1080/17435390.2019.1702731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
One-pot synthesis and characterization of ovalbumin-conjugated gold nanoparticles: A comparative study of adjuvanticity against the physical mixture of ovalbumin and gold nanoparticles. Int J Pharm 2019; 571:118704. [PMID: 31536763 DOI: 10.1016/j.ijpharm.2019.118704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 11/21/2022]
Abstract
Only few adjuvants are licensed for use in humans and there is a need to develop safe and improved vaccine adjuvants. In this study, we report the one-pot synthesis of antigen ovalbumin (OVA)-conjugated gold nanoparticles (OVA@GNPs). A systematical study was performed by comparing OVA@GNPs with the simple mixture of OVA and gold nanoparticles (OVA+GNPs), including their physiochemical properties through spectrometric and electrophoretic analysis, in vitro stability, cytotoxicity and cellular uptake, and in vivo humoral immune responses following subcutaneous and transcutaneous immunization in mice. The results demonstrate a much stronger interaction between protein and GNPs in OVA@GNPs than OVA+GNPs, which makes OVA@GNPs more stable under in vitro conditions than OVA+GNPs with the ability to induce 4 times higher OVA-specific serum IgG titers following subcutaneous immunization. We also show the dose sparing of OVA@GNPs, as the dosage for aluminum adjuvant required to reach to an equivalent OVA-specific antibody titer was almost five times higher than OVA@GNPs. However, we found that the co-administration of small-sized GNPs had a limited ability for the transcutaneous delivery of OVA. These results demonstrate the potential application of one-pot synthesis approach for producing antigen protein-conjugated gold nanoparticles for vaccine delivery.
Collapse
|
47
|
A Metabolomic Approach for the In Vivo Study of Gold Nanospheres and Nanostars after a Single-Dose Intravenous Administration to Wistar Rats. NANOMATERIALS 2019; 9:nano9111606. [PMID: 31726761 PMCID: PMC6915599 DOI: 10.3390/nano9111606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Gold nanoparticles (AuNPs) are promising nanoplatforms for drug therapy, diagnostic and imaging. However, biological comparison studies for different types of AuNPs fail in consistency due to the lack of sensitive methods to detect subtle differences in the expression of toxicity. Therefore, innovative and sensitive approaches such as metabolomics are much needed to discriminate toxicity, specially at low doses. The current work aims to compare the in vivo toxicological effects of gold nanospheres versus gold nanostars (of similar ~40 nm diameter and coated with 11-mercaptoundecanoic acid) 24 h after an intravenous administration of a single dose (1.33 × 1011 AuNPs/kg) to Wistar rats. The biodistribution of both types of AuNPs was determined by graphite furnace atomic absorption spectroscopy. The metabolic effects of the AuNPs on their main target organ, the liver, were analyzed using a GC-MS-based metabolomic approach. Conventional toxicological endpoints, including the levels of ATP and reduced and oxidized glutathione, were also investigated. The results show that AuNPs preferentially accumulate in the liver and, to a lesser extent, in the spleen and lungs. In other organs (kidney, heart, brain), Au content was below the limit of quantification. Reduced glutathione levels increased for both nanospheres and nanostars in the liver, but ATP levels were unaltered. Multivariate analysis showed a good discrimination between the two types of AuNPs (sphere- versus star-shaped nanoparticles) and compared to control group. The metabolic pathways involved in the discrimination were associated with the metabolism of fatty acids, pyrimidine and purine, arachidonic acid, biotin, glycine and synthesis of amino acids. In conclusion, the biodistribution, toxicological, and metabolic profiles of gold nanospheres and gold nanostars were described. Metabolomics proved to be a very useful tool for the comparative study of different types of AuNPs and raised awareness about the pathways associated to their distinct biological effects.
Collapse
|
48
|
Dos Santos Haupenthal DP, Mendes C, de Bem Silveira G, Zaccaron RP, Corrêa MEAB, Nesi RT, Pinho RA, da Silva Paula MM, Silveira PCL. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. J Biomed Mater Res A 2019; 108:103-115. [PMID: 31502356 DOI: 10.1002/jbm.a.36796] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The bacterial lipopolysaccharide (LPS) is a highly toxic molecule derived from the outer membrane of gram-negative bacteria. LPS endotoxin affects the lungs and is used as a model of acute pulmonary inflammation affecting the cellular morphology of the organ. Previously, gold nanoparticles (GNPs) have been shown to demonstrate anti-inflammatory and antioxidative activity in muscle and epithelial injury models. The objective of this study was to investigate the effect of the intraperitoneal treatment using GNPs on the inflammatory response and pulmonary oxidative stress induced by LPS. Wistar rats were divided into four groups (N = 10): Sham; Sham + GNPs 2.5 mg/kg; LPS; and LPS + GNPs 2.5 mg/kg. Treatment with LPS upregulated the levels of markers of cellular and hepatic damage (CK, LDH, AST, and alanine aminotransferase); however, the group treated with only GNPs exhibited no toxicity. Treatment with GNPs reversed LPS-induced changes with respect to total peritoneal leukocyte count and the pulmonary levels of pro-inflammatory cytokines (IFN-γ and IL-6). Histological analysis revealed that treatment with GNPs reversed the increase in alveolar septum thickness due to LPS-induced fibrosis. In addition, treatment with GNPs decreased production of oxidants (nitrite and DCFH), reduced oxidative damage (carbonyl and sulfhydryl), and downregulated activities of superoxide dismutase and catalase. Treatment with GNPs did not showed toxicity; however, it exhibited anti-inflammatory and antioxidative activity that reversed morphological alterations induced by LPS.
Collapse
Affiliation(s)
- Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Renata Tiscoski Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
49
|
Tian Q, Li Y, Jiang S, An L, Lin J, Wu H, Huang P, Yang S. Tumor pH-Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902926. [PMID: 31448572 DOI: 10.1002/smll.201902926] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/28/2019] [Indexed: 05/14/2023]
Abstract
Tumor-microenvironment-responsive theranostics have great potential for precision diagnosis and effective treatment of cancer. Polyaniline (PANI) is the first reported pH-responsive organic photothermal agent and is widely used as a theranostic agent. However, tumor pH-responsive PANI-based theranostic agents are not explored, mainly because the conversion from the emeraldine base (EB) to emeraldine salt (ES) state of PANI requires pH < 4, which is lower than tumor acidic microenvironment. Herein, a tumor pH-responsive PANI-based theranostic agent is designed and prepared for amplified photoacoustic imaging guided augmented photothermal therapy (PTT), through intermolecular acid-base reactions between carboxyl groups of bovine serum albumin (BSA) and imine moieties of PANI. The albumin/PANI assemblies (BSA-PANI) can convert from the EB to ES state at pH < 7, accompanied by the absorbance redshift from visible to near-infrared region. Both in vitro and in vivo results demonstrate that tumor acidic microenvironment can trigger both the photoacoustic imaging (PAI) signal amplification and the PTT efficacy enhancement of BSA-PANI assemblies. This work not only highlights that BSA-PANI assemblies overcome the limitation of low-pH protonation, but also provides a facile assembly strategy for a tumor pH-responsive PANI-based nanoplatform for cancer theranostics.
Collapse
Affiliation(s)
- Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Yaping Li
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Huixia Wu
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
50
|
Naz F, Kumar Dinda A, Kumar A, Koul V. Investigation of ultrafine gold nanoparticles (AuNPs) based nanoformulation as single conjugates target delivery for improved methotrexate chemotherapy in breast cancer. Int J Pharm 2019; 569:118561. [DOI: 10.1016/j.ijpharm.2019.118561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 11/27/2022]
|