1
|
Rondón-Ortiz AN, Zhang L, Ash PEA, Basu A, Puri S, van der Spek SJF, Wang Z, Dorrian L, Emili A, Wolozin B. Proximity labeling reveals dynamic changes in the SQSTM1 protein network. J Biol Chem 2024; 300:107621. [PMID: 39098523 PMCID: PMC11401034 DOI: 10.1016/j.jbc.2024.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Sequestosome1 (SQSTM1) is an autophagy receptor that mediates the degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network, and these interactions are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA, and KIR. Technological advances in cell biology continue to expand our knowledge of the SQSTM1 protein network and the relationship between the actions of the SQSTM1 protein network in cellular physiology and disease states. Here we apply proximity profile labeling to investigate the SQSTM1 protein interaction network by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners, and capture of novel SQSTM1 protein interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. We demonstrate the importance of the PB1 and/or UBA domains for binding network members, including the K18 domain of tau. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.
Collapse
Affiliation(s)
- Alejandro N Rondón-Ortiz
- Department of Biology, Boston University, Boston, Massachusetts, USA; Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Lushuang Zhang
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Peter E A Ash
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Boston University, Boston, Massachusetts, USA; Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, Oregon, USA
| | - Sambhavi Puri
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | | | - Zihan Wang
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Luke Dorrian
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Boston University, Boston, Massachusetts, USA; Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, Oregon, USA.
| | - Benjamin Wolozin
- Departments of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA; Center for Neurophotonics, Boston University, Boston, Massachusetts, USA; Department of Neurology, Boston University, Boston, Massachusetts, USA; Department of Pharmacology, Physiology and Biophysics, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Ortiz ANR, Zhang L, Ash PE, Basu A, Puri S, van der Spek SJ, Wang Z, Dorrian L, Emili A, Wolozin B. Proximity labeling reveals dynamic changes in the SQSTM1 protein network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571324. [PMID: 38168279 PMCID: PMC10760047 DOI: 10.1101/2023.12.12.571324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sequestosome1 (SQSTM1) is an autophagy receptor that mediates degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network, and these interactions are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA and KIR. Technological advances in cell biology continue to expand our knowledge of the SQSTM1 protein network and of the relationship of the actions of the SQSTM1 protein network in cellular physiology and disease states. Here we apply proximity profile labeling to investigate the SQSTM1 protein interaction network by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners, and capture of novel SQSTM1 protein interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. We demonstrate the importance of the PB1 and/or UBA domains for binding network members, including the K18 domain of tau. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.
Collapse
Affiliation(s)
- Alejandro N. Rondón Ortiz
- Department of Biology, Boston University, Boston, MA 02215, USA
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Lushuang Zhang
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Peter E.A. Ash
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Sambhavi Puri
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | | | - Zihan Wang
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Luke Dorrian
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Benjamin Wolozin
- Departments of Anatomy & Neurobiology, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Center for Neurophotonics, Boston University, Boston, MA 02115, USA
- Department of Neurology, Boston University, Boston, MA 02115, USA
- Department of Pharmacology, Physiology and Biophysics
| |
Collapse
|
4
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
5
|
Hook V, Podvin S, Mosier C, Boyarko B, Seyffert L, Stringer H, Rissman RA. Emerging evidence for dysregulated proteome cargoes of tau-propagating extracellular vesicles driven by familial mutations of tau and presenilin. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:588-598. [PMID: 38125374 PMCID: PMC10732590 DOI: 10.20517/evcna.2023.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tau propagation, pathogenesis, and neurotoxicity are hallmarks of neurodegenerative diseases that result in cognitive impairment. Tau accumulates in Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), chronic traumatic encephalopathy (CTE), progressive supranuclear palsy, and related tauopathies. Knowledge of the mechanisms for tau propagation in neurodegeneration is necessary for understanding the development of dementia. Exosomes, known as extracellular vesicles (EVs), have emerged as participants in promoting tau propagation. Recent findings show that EVs generated by neurons expressing familial mutations of tauopathies of FTDP-17 (P301L and V337M) (mTau) and presenilin (A246E) (mPS1) in AD induce tau propagation and accumulation after injection into rodent brain. To gain knowledge of the proteome cargoes of the mTau and mPS1 EVs that promote tau pathogenesis, this review compares the proteomes of these EVs, which results in important new questions concerning EV mechanisms of tau pathogenesis. Proteomics data show that EVs produced by mTau- and mPS1-expressing iPSC neurons share proteins involved in exocytosis and vesicle secretion and, notably, these EVs also possess differences in protein components of vesicle-mediated transport, extracellular functions, and cell adhesion. It will be important for future studies to gain an understanding of the breadth of familial genetic mutations of tau, presenilin, and other genes in promoting EV initiation of tau propagation and pathogenesis. Furthermore, elucidation of EV cargo components that mediate tau propagation will have potential as biomarkers and therapeutic strategies to ameliorate dementia of tauopathies.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Laura Seyffert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Haley Stringer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- Veterans Affairs San Diego Health System, San Diego, CA 92093, USA
| |
Collapse
|
6
|
Bitra VR, Challa SR, Adiukwu PC, Rapaka D. Tau trajectory in Alzheimer's disease: Evidence from the connectome-based computational models. Brain Res Bull 2023; 203:110777. [PMID: 37813312 DOI: 10.1016/j.brainresbull.2023.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/08/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with an impairment of cognition and memory. Current research on connectomics have now related changes in the network organization in AD to the patterns of accumulation and spread of amyloid and tau, providing insights into the neurobiological mechanisms of the disease. In addition, network analysis and modeling focus on particular use of graphs to provide intuition into key organizational principles of brain structure, that stipulate how neural activity propagates along structural connections. The utility of connectome-based computational models aids in early predicting, tracking the progression of biomarker-directed AD neuropathology. In this article, we present a short review of tau trajectory, the connectome changes in tau pathology, and the dependent recent connectome-based computational modelling approaches for tau spreading, reproducing pragmatic findings, and developing significant novel tau targeted therapies.
Collapse
Affiliation(s)
- Veera Raghavulu Bitra
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, P/Bag-0022, Gaborone, Botswana.
| | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61614, USA; KVSR Siddartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India
| | - Paul C Adiukwu
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, P/Bag-0022, Gaborone, Botswana
| | - Deepthi Rapaka
- Pharmacology Division, D.D.T. College of Medicine, Gaborone, Botswana.
| |
Collapse
|
7
|
Maniv I, Sarji M, Bdarneh A, Feldman A, Ankawa R, Koren E, Magid-Gold I, Reis N, Soteriou D, Salomon-Zimri S, Lavy T, Kesselman E, Koifman N, Kurz T, Kleifeld O, Michaelson D, van Leeuwen FW, Verheijen BM, Fuchs Y, Glickman MH. Altered ubiquitin signaling induces Alzheimer's disease-like hallmarks in a three-dimensional human neural cell culture model. Nat Commun 2023; 14:5922. [PMID: 37739965 PMCID: PMC10516951 DOI: 10.1038/s41467-023-41545-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by toxic protein accumulation in the brain. Ubiquitination is essential for protein clearance in cells, making altered ubiquitin signaling crucial in AD development. A defective variant, ubiquitin B + 1 (UBB+1), created by a non-hereditary RNA frameshift mutation, is found in all AD patient brains post-mortem. We now detect UBB+1 in human brains during early AD stages. Our study employs a 3D neural culture platform derived from human neural progenitors, demonstrating that UBB+1 alone induces extracellular amyloid-β (Aβ) deposits and insoluble hyperphosphorylated tau aggregates. UBB+1 competes with ubiquitin for binding to the deubiquitinating enzyme UCHL1, leading to elevated levels of amyloid precursor protein (APP), secreted Aβ peptides, and Aβ build-up. Crucially, silencing UBB+1 expression impedes the emergence of AD hallmarks in this model system. Our findings highlight the significance of ubiquitin signalling as a variable contributing to AD pathology and present a nonclinical platform for testing potential therapeutics.
Collapse
Affiliation(s)
- Inbal Maniv
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Mahasen Sarji
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Anwar Bdarneh
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alona Feldman
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Ankawa
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elle Koren
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Inbar Magid-Gold
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Noa Reis
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Despina Soteriou
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shiran Salomon-Zimri
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tali Lavy
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ellina Kesselman
- The Wolfson Department of Chemical Engineering, The Technion Center for Electron Microscopy of Soft Matter, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Naama Koifman
- The Wolfson Department of Chemical Engineering, The Technion Center for Electron Microscopy of Soft Matter, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Thimo Kurz
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Oded Kleifeld
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Daniel Michaelson
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Fred W van Leeuwen
- Department of Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Bert M Verheijen
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Yaron Fuchs
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel.
- Augmanity, Rehovot, 7670308, Israel.
| | - Michael H Glickman
- Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
8
|
Liang T, Wu Z, Li J, Wu S, Shi W, Wang L. The emerging double-edged sword role of exosomes in Alzheimer's disease. Front Aging Neurosci 2023; 15:1209115. [PMID: 37396664 PMCID: PMC10314126 DOI: 10.3389/fnagi.2023.1209115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive loss of memory and cognitive dysfunction. The primary pathological hallmarks of AD are senile plaques formed by deposition of amyloid β (Aβ) protein, intracellular neurofibrillary tangles resulting from hyperphosphorylation of microtubule-associated protein tau, and loss of neurons. At present, although the exact pathogenesis of AD is still unclear and there is a lack of effective treatment for AD in clinical practice, researchers have never stopped exploring the pathogenic mechanism of AD. In recent years, with the rise of the research of extracellular vesicles (EVs), people gradually realize that EVs also play important roles in neurodegenerative diseases. Exosomes, as a member of the small EVs, are regarded as carriers for information exchange and material transport between cells. Many cells of the central nervous system can release exosomes in both physiological and pathological conditions. Exosomes derived from damaged nerve cells can not only participate in Aβ production and oligomerization, but also disseminate the toxic proteins of Aβ and tau to neighboring neurons, thereby acting as "seeds" to amplify the toxic effects of misfolded proteins. Furthermore, exosomes may also be involved in the degradation and clearance process of Aβ. There is increasing evidence to suggest that exosomes play multiple roles in AD. Just like a double-edged sword, exosomes can participate in AD pathology in a direct or indirect way, causing neuronal loss, and can also participate in alleviating the pathological progression of AD. In this review, we summarize and discuss the current reported research findings on this double-edged role of exosomes in AD.
Collapse
Affiliation(s)
- Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zubo Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wuhe Shi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
10
|
Nieves Torres D, Lee SH. Inter-neuronal signaling mediated by small extracellular vesicles: wireless communication? Front Mol Neurosci 2023; 16:1187300. [PMID: 37181650 PMCID: PMC10172472 DOI: 10.3389/fnmol.2023.1187300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional inter-neuronal communication conceptualizes the wired method of chemical synapses that physically connect pre-and post-synaptic neurons. In contrast, recent studies indicate that neurons also utilize synapse-independent, hence "wireless" broadcasting-type communications via small extracellular vesicles (EVs). Small EVs including exosomes are secreted vesicles released by cells and contain a variety of signaling molecules including mRNAs, miRNAs, lipids, and proteins. Small EVs are subsequently absorbed by local recipient cells via either membrane fusion or endocytic processes. Therefore, small EVs enable cells to exchange a "packet" of active biomolecules for communication purposes. It is now well established that central neurons also secrete and uptake small EVs, especially exosomes, a type of small EVs that are derived from the intraluminal vesicles of multivesicular bodies. Specific molecules carried by neuronal small EVs are shown to affect a variety of neuronal functions including axon guidance, synapse formation, synapse elimination, neuronal firing, and potentiation. Therefore, this type of volume transmission mediated by small EVs is thought to play important roles not only in activity-dependent changes in neuronal function but also in the maintenance and homeostatic control of local circuitry. In this review, we summarize recent discoveries, catalog neuronal small EV-specific biomolecules, and discuss the potential scope of small EV-mediated inter-neuronal signaling.
Collapse
Affiliation(s)
- Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sang H Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Sang H. Lee,
| |
Collapse
|
11
|
Effect of cell culture media on extracellular vesicle secretion from mesenchymal stromal cells and neurons. Eur J Cell Biol 2022; 101:151270. [PMID: 35987046 DOI: 10.1016/j.ejcb.2022.151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) secreted by neuronal cells in vitro have promising therapeutic potential for brain diseases. Optimization of cell culture conditions and methodologies for high-yield isolation of EVs for preclinical and clinical applications, however, remains a challenge. OBJECTIVE To probe the cell culture conditions required for optimal EV secretion by human-derived neuronal cells. METHODOLOGY First, we optimized the EV purification protocol using human mesenchymal stromal cell (MSC) cultures. Next, we compared the effects of different variables in human pluripotent stem cell (hPSC)-derived neuronal cultures on EV secretion. EVs were isolated from cell conditioned media (CCM) and control media with no cells (NCC) using ultrafiltration combined with size-exclusion chromatography (SEC). The hPSC neurons were cultured in 2 different media from which EVs were collected at 2 maturation time-points (days 46 and 60). Stimulation with 25 mM KCl was also evaluated as an activator of EV secretion by neurons. The collected SEC fractions were analyzed by nanoparticle tracking analysis (NTA), protein concentration assay, and blinded transmission electron microscopy (TEM). RESULTS A peak in cup-shaped particles was observed in SEC fractions 7-10 of MSC samples, but not corresponding media controls, indicating successful isolation of EVs. Culture medium had no significant effect on EV yield. The EV yield of the samples did not differ significantly according to the culture media used or the cell maturation time-points. Stimulation of neurons with KCl for 3 h reduced rather than increased the EV yield. CONCLUSIONS We demonstrated successful EV isolation from MSC and neuronal cells using an ultrafiltration-SEC method. The EV yield from MSC and neuronal cultures exhibited a large batch effect, apparently related to the culture media used, highlighting the importance of including NCC as a negative control in all cell culture experiments.
Collapse
|
12
|
Weng S, Lai QL, Wang J, Zhuang L, Cheng L, Mo Y, Liu L, Zhao Z, Zhang Y, Qiao S. The Role of Exosomes as Mediators of Neuroinflammation in the Pathogenesis and Treatment of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:899944. [PMID: 35837481 PMCID: PMC9273880 DOI: 10.3389/fnagi.2022.899944] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disease characterized by progressive dementia. Accumulation of β–amyloid peptide 1–42 and phosphorylation of tau protein in the brain are the two main pathological features of AD. However, comprehensive studies have shown that neuroinflammation also plays a crucial role in the pathogenesis of AD. Neuroinflammation is associated with neuronal death and abnormal protein aggregation and promotes the pathological process of β-amyloid peptide 1–42 and tau protein. The inflammatory components associated with AD include glial cells, complement system, cytokines and chemokines. In recent years, some researchers have focused on exosomes, a type of membrane nano vesicles. Exosomes can transport proteins, lipids, microRNAs and other signaling molecules to participate in a variety of signaling pathways for signal transmission or immune response, affecting the activity of target cells and participating in important pathophysiological processes. Therefore, exosomes play an essential role in intercellular communication and may mediate neuroinflammation to promote the development of AD. This paper reviews the occurrence and development of neuroinflammation and exosomes in AD, providing a deeper understanding of the pathogenesis of AD. Furthermore, the role of exosomes in the pathogenesis and treatment of AD is further described, demonstrating their potential as therapeutic targets for neuroinflammation and AD in the future.
Collapse
Affiliation(s)
- Shiting Weng
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Junjun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Liying Zhuang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lin Cheng
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yejia Mo
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lu Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Zexian Zhao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Ying Zhang
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
- *Correspondence: Song Qiao,
| |
Collapse
|
13
|
Proteomics for comprehensive characterization of extracellular vesicles in neurodegenerative disease. Exp Neurol 2022; 355:114149. [PMID: 35732219 DOI: 10.1016/j.expneurol.2022.114149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles ubiquitously released by almost every cell type. A specific and selective constituents of EVs loaded with variety of proteins, lipids, small noncoding RNAs, and long non-coding RNAs are reflective of cellular events, type, and physiologic/pathophysiologic status of the cell of origin. Moreover, these molecular contents carry information from the cell of origin to recipient cells, modulating intercellular communication. Recent studies demonstrated that EVs not only play a neuroprotective role by mediating the removal of toxic proteins, but also emerge as an important player in various neurodegenerative disease onset and progression through facilitating of misfolded proteins propagation. For this reason, neurodegenerative disease-associated differences in EV proteome relative to normal EVs can be used to fulfil diagnostic, prognostic, and therapeutic purposes. Nonetheless, characterizing EV proteome obtained from biological samples (brain tissue and body fluids, including urea, blood, saliva, and CSF) is a challenging task. Herein, we review the status of EV proteome profiling and the updated discovery of potential biomarkers for the diagnosis of neurodegenerative disease with an emphasis on the integration of high-throughput advanced mass spectrometry (MS) technologies for both qualitative and quantitative analysis of EVs in different clinical tissue/body fluid samples in past five years.
Collapse
|
14
|
Impact of endolysosomal dysfunction upon exosomes in neurodegenerative diseases. Neurobiol Dis 2022; 166:105651. [DOI: 10.1016/j.nbd.2022.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
|
15
|
Ledreux A, Thomas S, Hamlett ED, Trautman C, Gilmore A, Rickman Hager E, Paredes DA, Margittai M, Fortea J, Granholm AC. Small Neuron-Derived Extracellular Vesicles from Individuals with Down Syndrome Propagate Tau Pathology in the Wildtype Mouse Brain. J Clin Med 2021; 10:3931. [PMID: 34501378 PMCID: PMC8432237 DOI: 10.3390/jcm10173931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) pathology at a young age, including amyloid plaques and neurofibrillary tangles (NFTs). Tau pathology can spread via extracellular vesicles, such as exosomes. The cargo of neuron-derived small extracellular vesicles (NDEVs) from individuals with DS contains p-Tau at an early age. The goal of the study was to investigate whether NDEVs isolated from the blood of individuals with DS can spread Tau pathology in the brain of wildtype mice. We purified NDEVs from the plasma of patients with DS-AD and controls and injected small quantities using stereotaxic surgery into the dorsal hippocampus of adult wildtype mice. Seeding competent Tau conformers were amplified in vitro from DS-AD NDEVs but not NDEVs from controls. One month or 4 months post-injection, we examined Tau pathology in mouse brains. We found abundant p-Tau immunostaining in the hippocampus of the mice injected with DS-AD NDEVs compared to injections of age-matched control NDEVs. Double labeling with neuronal and glial markers showed that p-Tau staining was largely found in neurons and, to a lesser extent, in glial cells and that p-Tau immunostaining was spreading along the corpus callosum and the medio-lateral axis of the hippocampus. These studies demonstrate that NDEVs from DS-AD patients exhibit Tau seeding capacity and give rise to tangle-like intracellular inclusions.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Sarah Thomas
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Camille Trautman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Emily Rickman Hager
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Daniel A. Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Juan Fortea
- Hospital de la Santa Creu i Sant Pau and Catalan Down Syndrome Foundation, 08041 Barcelona, Spain;
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| |
Collapse
|
16
|
Vandendriessche C, Balusu S, Van Cauwenberghe C, Brkic M, Pauwels M, Plehiers N, Bruggeman A, Dujardin P, Van Imschoot G, Van Wonterghem E, Hendrix A, Baeke F, De Rycke R, Gevaert K, Vandenbroucke RE. Importance of extracellular vesicle secretion at the blood-cerebrospinal fluid interface in the pathogenesis of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:143. [PMID: 34425919 PMCID: PMC8381545 DOI: 10.1186/s40478-021-01245-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in the pathogenesis of Alzheimer's disease (AD). We previously reported that the blood-cerebrospinal fluid (CSF) interface, formed by the choroid plexus epithelial (CPE) cells, releases an increased amount of EVs into the CSF in response to peripheral inflammation. Here, we studied the importance of CP-mediated EV release in AD pathogenesis. We observed increased EV levels in the CSF of young transgenic APP/PS1 mice which correlated with high amyloid beta (Aβ) CSF levels at this age. The intracerebroventricular (icv) injection of Aβ oligomers (AβO) in wild-type mice revealed a significant increase of EVs in the CSF, signifying that the presence of CSF-AβO is sufficient to induce increased EV secretion. Using in vivo, in vitro and ex vivo approaches, we identified the CP as a major source of the CSF-EVs. Interestingly, AβO-induced, CP-derived EVs induced pro-inflammatory effects in mixed cortical cultures. Proteome analysis of these EVs revealed the presence of several pro-inflammatory proteins, including the complement protein C3. Strikingly, inhibition of EV production using GW4869 resulted in protection against acute AβO-induced cognitive decline. Further research into the underlying mechanisms of this EV secretion might open up novel therapeutic strategies to impact the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sriram Balusu
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marjana Brkic
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Marie Pauwels
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nele Plehiers
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Femke Baeke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, Ghent, Belgium
| | - Riet De Rycke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
17
|
Shen Y, Hu H, Fan C, Wang Q, Zou T, Ye B, Xiang M. Sensorineural hearing loss may lead to dementia-related pathological changes in hippocampal neurons. Neurobiol Dis 2021; 156:105408. [PMID: 34082124 DOI: 10.1016/j.nbd.2021.105408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Presbycusis contributes to cognitive decline and Alzheimer's disease. However, most research in this area involves clinical observations and statistical modeling, and few studies have examined the relationship between hearing loss and the molecular changes that lead to cognitive dysfunction. The present study investigated whether hearing loss contributes to dementia in the absence of aging and noise using a mouse model of severe bilateral hearing loss induced by kanamycin (1000 mg/kg) and furosemide (400 mg/kg). Immunohistochemistry, silver staining, immunofluorescence analysis, and Western blotting were used to observe pathological changes in different regions of the hippocampus in animals with hearing loss. Changes in the cognitive function of animals with hearing loss were assessed using the Morris water maze test. The results showed that neurons began to degenerate 60 days after hearing loss, and this degeneration was accompanied by structural disorganization and decreased neurogenesis. The level of phosphorylated tau increased over time. Increases in escape latency and distance traveled during the training phase of the Morris water maze test were observed 90 days after hearing loss. Activated microglia and astrocytes with increased levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected in the hippocampus. These results suggest that hearing loss alone causes neuronal degeneration, inhibition of neurogenesis, increased tau protein phosphorylation, and increased neuroinflammation in the hippocampus. Early intervention in individuals with hearing loss may reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
18
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
19
|
Potential therapeutic natural products against Alzheimer's disease with Reference of Acetylcholinesterase. Biomed Pharmacother 2021; 139:111609. [PMID: 33915501 DOI: 10.1016/j.biopha.2021.111609] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), is the most common type of dementia primarily affecting the later years of life. Its prevalence is likely to increase in any aging population and will be a major burden on healthcare system by the mid of the century. Despite scientific and technological breakthroughs in the last 50 years, that have expanded our understanding of the disease on a system, cellular and molecular level, therapies that could stop or slow the progression of the disease are still unavailable. The Food and Drug Administration (FDA), has approved acetylcholinesterase (AChE) inhibitors (donepezil, galantamine, tacrine and rivastigmine) and glutamate receptor antagonist (memantine) for the treatment of AD. In this review we summarize the studies reporting phytocompounds and extracts from medicinal plants that show AChE inhibitory activities and could be of potential benefit in AD. Future research directions are suggested and recommendations made to expand the use of medicinal plants and their formulations to prevent, mitigate and treat AD.
Collapse
|
20
|
Continuous Monitoring of Tau-Induced Neurotoxicity in Patient-Derived iPSC-Neurons. J Neurosci 2021; 41:4335-4348. [PMID: 33893219 PMCID: PMC8143197 DOI: 10.1523/jneurosci.2590-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Abstract
Tau aggregation within neurons is a critical feature of Alzheimer's disease (AD) and related tauopathies. It is believed that soluble pathologic tau species seed the formation of tau aggregates in a prion-like manner and propagate through connected neurons during the progression of disease. Both soluble and aggregated forms of tau are thought to have neurotoxic properties. In addition, different strains of misfolded tau may cause differential neurotoxicity. In this work, we present an accelerated human neuronal model of tau-induced neurotoxicity that incorporates both soluble tau species and tau aggregation. Using patient-derived induced pluripotent stem cell (iPSC) neurons expressing a tau aggregation biosensor, we develop a cell culture system that allows continuous assessment of both induced tau aggregation and neuronal viability at single-cell resolution for periods of >1 week. We show that exogenous tau “seed” uptake, as measured by tau repeat domain (TauRD) reporter aggregation, increases the risk for subsequent neuronal death in vitro. These results are the first to directly visualize neuronal TauRD aggregation and subsequent cell death in single human iPSC neurons. Specific morphologic strains or patterns of TauRD aggregation are then identified and associated with differing neurotoxicity. Furthermore, we demonstrate that familial AD iPSC neurons expressing the PSEN1 L435F mutation exhibit accelerated TauRD aggregation kinetics and a tau strain propagation bias when compared with control iPSC neurons. SIGNIFICANCE STATEMENT Neuronal intracellular aggregation of the microtubule binding protein tau occurs in Alzheimer's disease and related neurodegenerative tauopathies. Tau aggregates are believed to spread from neuron to neuron via prion-like misfolded tau seeds. Our work develops a human neuronal live-imaging system to visualize seeded tau aggregation and tau-induced neurotoxicity within single neurons. Using an aggregation-sensing tau reporter, we find that neuronal uptake and propagation of tau seeds reduces subsequent survival. In addition, human induced pluripotent stem cell (iPSC) neurons carrying an Alzheimer's disease-causing mutation in presenilin-1 undergo tau seeding more rapidly than control iPSC neurons. However, they do not show subsequent differences in neuronal survival. Finally, specific morphologies of tau aggregates are associated with increased neurotoxicity.
Collapse
|
21
|
Asher DM, Belay E, Bigio E, Brandner S, Brubaker SA, Caughey B, Clark B, Damon I, Diamond M, Freund M, Hyman BT, Jucker M, Keene CD, Lieberman AP, Mackiewicz M, Montine TJ, Morgello S, Phelps C, Safar J, Schneider JA, Schonberger LB, Sigurdson C, Silverberg N, Trojanowski JQ, Frosch MP. Risk of Transmissibility From Neurodegenerative Disease-Associated Proteins: Experimental Knowns and Unknowns. J Neuropathol Exp Neurol 2021; 79:1141-1146. [PMID: 33000167 PMCID: PMC7577514 DOI: 10.1093/jnen/nlaa109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies in animal models demonstrate that certain misfolded proteins associated with neurodegenerative diseases can support templated misfolding of cognate native proteins, to propagate across neural systems, and to therefore have some of the properties of classical prion diseases like Creutzfeldt-Jakob disease. The National Institute of Aging convened a meeting to discuss the implications of these observations for research priorities. A summary of the discussion is presented here, with a focus on limitations of current knowledge, highlighting areas that appear to require further investigation in order to guide scientific practice while minimizing potential exposure or risk in the laboratory setting. The committee concluded that, based on all currently available data, although neurodegenerative disease-associated aggregates of several different non-prion proteins can be propagated from humans to experimental animals, there is currently insufficient evidence to suggest more than a negligible risk, if any, of a direct infectious etiology for the human neurodegenerative disorders defined in part by these proteins. Given the importance of this question, the potential for noninvasive human transmission of proteopathic disorders is deserving of further investigation.
Collapse
Affiliation(s)
- David M Asher
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Ermias Belay
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eileen Bigio
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London
| | - Scott A Brubaker
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Brychan Clark
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marc Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle Freund
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Miroslaw Mackiewicz
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Creighton Phelps
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiri Safar
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina Sigurdson
- Department of Pathology, University of California - San Diego, San Diego, California
| | - Nina Silverberg
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, University of Washington, Seattle, Washington.,C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Yan M, Zheng T. Role of the endolysosomal pathway and exosome release in tau propagation. Neurochem Int 2021; 145:104988. [PMID: 33582164 DOI: 10.1016/j.neuint.2021.104988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
The progressive deposition of misfolded and aggregated forms of Tau protein in the brain is a pathological hallmark of tauopathies, such as Alzheimer's disease (AD) and frontotemporal degeneration (FTD). The misfolded Tau can be released into the extracellular space and internalized by neighboring cells, acting as seeds to trigger the robust conversion of soluble Tau into insoluble filamentous aggregates in a prion-like manner, ultimately contributing to the progression of the disease. However, molecular mechanisms accountable for the propagation of Tau pathology are poorly defined. We reviewed the Tau processing imbalance in endosomal, lysosomal, and exosomal pathways in AD. Increased exosome release counteracts the endosomal-lysosomal dysfunction of Tau processing but increases the number of aggregates and the propagation of Tau. This review summarizes our current understanding of the underlying tauopathy mechanisms with an emphasis on the emerging role of the endosomal-lysosomal-exosome pathways in this process. The components CHMP6, TSG101, and other components of the ESCRT complex, as well as Rab GTPase such as Rab35 and Rab7A, regulate vesicle cargoes routing from endosome to lysosome and affect Tau traffic, degradation, or secretion. Thus, the significant molecular pathways that should be potential therapeutic targets for treating tauopathies are determined.
Collapse
Affiliation(s)
- Minli Yan
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, 310009, China.
| |
Collapse
|
23
|
Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry 2021; 26:2685-2706. [PMID: 33495544 PMCID: PMC8505258 DOI: 10.1038/s41380-020-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Collapse
|
24
|
Aulston B, Liu Q, Mante M, Florio J, Rissman RA, Yuan SH. Extracellular Vesicles Isolated from Familial Alzheimer's Disease Neuronal Cultures Induce Aberrant Tau Phosphorylation in the Wild-Type Mouse Brain. J Alzheimers Dis 2020; 72:575-585. [PMID: 31594233 DOI: 10.3233/jad-190656] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of secreted particles consisting of microvesicles, which are released by budding of the cellular membrane, and exosomes, which are secreted through exocytosis from multivesicular bodies. EV cargo consists of a wide range of proteins and nucleic acids that can be transferred between cells. Importantly, EVs may be pathogenically involved in neurodegenerative diseases such as Alzheimer's disease (AD). While EVs derived from AD neurons have been found to be neurotoxic in vitro, little is known about the pathological consequences of AD EVs in vivo. Furthermore, although all known familial AD (fAD) mutations involve either amyloid-β protein precursor (AβPP) or the machinery that processes AβPP, hyperphosphorylation of the microtubule associated protein tau appears to play a critical role in fAD-associated neurodegeneration, and previous reports suggest EVs may propagate tau pathology in the AD brain. Therefore, we hypothesized that fAD EVs may have a mechanistic involvement in the development of fAD-associated tau pathology. To test this, we isolated EVs from iPSC-derived neuronal cultures generated from an fAD patient harboring a A246E mutation to presenilin-1 and stereotactically injected these EVs into the hippocampi of wild-type C57BL/6 mice. Five weeks after injection, mice were euthanized and pathology evaluated. Mice injected with fAD EVs displayed increased tau phosphorylation at multiple sites relative to PBS and non-disease control EV injected groups. Moreover, fAD EV injected hippocampi contained significantly more tau inclusions in the CA1 hippocampal neuronal field than controls. In total, these findings identify EVs as a potential mediator of fAD-associated tau dysregulation and warrant future studies to investigate the therapeutic potential of EV-targeted treatments for fAD.
Collapse
Affiliation(s)
- Brent Aulston
- University of California, San Diego, Department of Neurosciences, La Jolla, CA, USA
| | - Qing Liu
- University of California, San Diego, Department of Neurosciences, La Jolla, CA, USA
| | - Michael Mante
- University of California, San Diego, Department of Neurosciences, La Jolla, CA, USA
| | - Jazmin Florio
- University of California, San Diego, Department of Neurosciences, La Jolla, CA, USA
| | - Robert A Rissman
- University of California, San Diego, Department of Neurosciences, La Jolla, CA, USA.,Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Shauna H Yuan
- University of California, San Diego, Department of Neurosciences, La Jolla, CA, USA
| |
Collapse
|
25
|
Vandendriessche C, Bruggeman A, Van Cauwenberghe C, Vandenbroucke RE. Extracellular Vesicles in Alzheimer's and Parkinson's Disease: Small Entities with Large Consequences. Cells 2020; 9:cells9112485. [PMID: 33203181 PMCID: PMC7696752 DOI: 10.3390/cells9112485] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are incurable, devastating neurodegenerative disorders characterized by the formation and spreading of protein aggregates throughout the brain. Although the exact spreading mechanism is not completely understood, extracellular vesicles (EVs) have been proposed as potential contributors. Indeed, EVs have emerged as potential carriers of disease-associated proteins and are therefore thought to play an important role in disease progression, although some beneficial functions have also been attributed to them. EVs can be isolated from a variety of sources, including biofluids, and the analysis of their content can provide a snapshot of ongoing pathological changes in the brain. This underlines their potential as biomarker candidates which is of specific relevance in AD and PD where symptoms only arise after considerable and irreversible neuronal damage has already occurred. In this review, we discuss the known beneficial and detrimental functions of EVs in AD and PD and we highlight their promising potential to be used as biomarkers in both diseases.
Collapse
Affiliation(s)
- Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-3313730
| |
Collapse
|
26
|
Venkataraman L, Fair SR, McElroy CA, Hester ME, Fu H. Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease. Stem Cell Rev Rep 2020; 18:696-717. [PMID: 33180261 PMCID: PMC7658915 DOI: 10.1007/s12015-020-10068-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Many neurodegenerative diseases (NDs) such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis and Huntington’s disease, are characterized by the progressive accumulation of abnormal proteinaceous assemblies in specific cell types and regions of the brain, leading to cellular dysfunction and brain damage. Although animal- and in vitro-based studies of NDs have provided the field with an extensive understanding of some of the mechanisms underlying these diseases, findings from these studies have not yielded substantial progress in identifying treatment options for patient populations. This necessitates the development of complementary model systems that are better suited to recapitulate human-specific features of ND pathogenesis. Three-dimensional (3D) culture systems, such as cerebral organoids generated from human induced pluripotent stem cells, hold significant potential to model NDs in a complex, tissue-like environment. In this review, we discuss the advantages of 3D culture systems and 3D modeling of NDs, especially AD and FTD. We also provide an overview of the challenges and limitations of the current 3D culture systems. Finally, we propose a few potential future directions in applying state-of-the-art technologies in 3D culture systems to understand the mechanisms of NDs and to accelerate drug discovery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Lalitha Venkataraman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Mark E Hester
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Finkbeiner S. Functional genomics, genetic risk profiling and cell phenotypes in neurodegenerative disease. Neurobiol Dis 2020; 146:105088. [PMID: 32977020 PMCID: PMC7686089 DOI: 10.1016/j.nbd.2020.105088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/03/2022] Open
Abstract
Human genetics provides unbiased insights into the causes of human disease, which can be used to create a foundation for effective ways to more accurately diagnose patients, stratify patients for more successful clinical trials, discover and develop new therapies, and ultimately help patients choose the safest and most promising therapeutic option based on their risk profile. But the process for translating basic observations from human genetics studies into pathogenic disease mechanisms and treatments is laborious and complex, and this challenge has particularly slowed the development of interventions for neurodegenerative disease. In this review, we discuss the many steps in the process, the important considerations at each stage, and some of the latest tools and technologies that are available to help investigators translate insights from human genetics into diagnostic and therapeutic strategies that will lead to the sort of advances in clinical care that make a difference for patients.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Center for Systems and Therapeutics, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of Califorina, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Hou Y, Liu Y, Liang S, Ding R, Mo S, Yan D, Li D. The novel target:exosoms derived from M2 macrophage. Int Rev Immunol 2020; 40:183-196. [PMID: 32783545 DOI: 10.1080/08830185.2020.1800687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
More and more exosome-based therapeutics are being developed with advances in nanotechnology and precision medicine. Exosome is a kind of tiny vesicles with a bilayer of phospholipids, which can transfer biological macromolecules to recipients to influence the biological process. M2 macrophages are closely related to the occurrence and development of serious diseases such as tumor. In addition to the traditional concept of macrophage functions such as opsonization, secretion of cytokines and other soluble factors, some studies have found that the exosome derived from M2 macrophages can influence the development of disease by carrying microRNA, long noncodingRNA and functional proteins to regulate target gene expression as well as related proteins synthesis recently. Here, we outlined the biogenesis of the exosome and its biological functions in disease. Then we focused on elucidating the effects of the exosome derived from M2 macrophages on several diseases and its mechanisms. Finally, we discussed the appropriateness and inappropriateness in existing potential applications based on exosomes and macrophages.
Collapse
Affiliation(s)
- Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Yuntong Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Shu Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Ru Ding
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Shuqian Mo
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
29
|
Podvin S, Jones A, Liu Q, Aulston B, Ransom L, Ames J, Shen G, Lietz CB, Jiang Z, O'Donoghue AJ, Winston C, Ikezu T, Rissman RA, Yuan S, Hook V. Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses. Mol Cell Proteomics 2020; 19:1017-1034. [PMID: 32295833 PMCID: PMC7261814 DOI: 10.1074/mcp.ra120.002079] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Accumulation and propagation of hyperphosphorylated Tau (p-Tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating Tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-Tau pathology after injection into mouse brain. To gain an understanding of the mTau exosome cargo involved in Tau pathogenesis, these pathogenic exosomes were analyzed by proteomics and bioinformatics. The data showed that mTau expression dysregulates the exosome proteome to result in 1) proteins uniquely present only in mTau, and not control exosomes, 2) the absence of proteins in mTau exosomes, uniquely present in control exosomes, and 3) shared proteins which were significantly upregulated or downregulated in mTau compared with control exosomes. Notably, mTau exosomes (not control exosomes) contain ANP32A (also known as I1PP2A), an endogenous inhibitor of the PP2A phosphatase which regulates the phosphorylation state of p-Tau. Several of the mTau exosome-specific proteins have been shown to participate in AD mechanisms involving lysosomes, inflammation, secretases, and related processes. Furthermore, the mTau exosomes lacked a substantial portion of proteins present in control exosomes involved in pathways of localization, vesicle transport, and protein binding functions. The shared proteins present in both mTau and control exosomes represented exosome functions of vesicle-mediated transport, exocytosis, and secretion processes. These data illustrate mTau as a dynamic regulator of the biogenesis of exosomes to result in acquisition, deletion, and up- or downregulation of protein cargo to result in pathogenic mTau exosomes capable of in vivo propagation of p-Tau neuropathology in mouse brain.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Alexander Jones
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Qing Liu
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California
| | - Brent Aulston
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California
| | - Linnea Ransom
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Janneca Ames
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Gloria Shen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Christopher B Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Charisse Winston
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Department of Neurology, Alzheimer's Disease Research Center, Boston University, School of Medicine, Boston, Massachusetts
| | - Robert A Rissman
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, La Jolla, California
| | - Shauna Yuan
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California; Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
30
|
Brunello CA, Merezhko M, Uronen RL, Huttunen HJ. Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 2020; 77:1721-1744. [PMID: 31667556 PMCID: PMC7190606 DOI: 10.1007/s00018-019-03349-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer's disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.
Collapse
Affiliation(s)
- Cecilia A Brunello
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Maria Merezhko
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Riikka-Liisa Uronen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Henri J Huttunen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
31
|
Pascual M, Ibáñez F, Guerri C. Exosomes as mediators of neuron-glia communication in neuroinflammation. Neural Regen Res 2020; 15:796-801. [PMID: 31719239 PMCID: PMC6990780 DOI: 10.4103/1673-5374.268893] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years, a type of extracellular vesicles named exosomes has emerged that play an important role in intercellular communication under physiological and pathological conditions. These nanovesicles (30-150 nm) contain proteins, RNAs and lipids, and their internalization by bystander cells could alter their normal functions. This review focuses on recent knowledge about exosomes as messengers of neuron-glia communication and their participation in the physiological and pathological functions in the central nervous system. Special emphasis is placed on the role of exosomes under toxic or pathological stimuli within the brain, in which the glial exosomes containing inflammatory molecules are able to communicate with neurons and contribute to the pathogenesis of neuroinflammation and neurodegenerative disorders. Given the small size and characteristics of exosomes, they can cross the blood-brain barrier and be used as biomarkers and diagnosis for brain disorders and neuropathologies. Finally, although the application potential of exosome is still limited, current studies indicate that exosomes represent a promising strategy to gain pathogenic information to identify therapeutically targets and biomarkers for neurological disorders and neuroinflammation.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Francesc Ibáñez
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
32
|
Verelst J, Geukens N, Eddarkaoui S, Vliegen D, De Smidt E, Rosseels J, Franssens V, Molenberghs S, Francois C, Stoops E, Bjerke M, Engelborghs S, Laghmouchi M, Carmans S, Buée L, Vanmechelen E, Winderickx J, Thomas D. A Novel Tau Antibody Detecting the First Amino-Terminal Insert Reveals Conformational Differences Among Tau Isoforms. Front Mol Biosci 2020; 7:48. [PMID: 32296712 PMCID: PMC7136581 DOI: 10.3389/fmolb.2020.00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
As human Tau undergoes pathologically relevant post-translational modifications when expressed in yeast, the use of humanized yeast models for the generation of novel Tau monoclonal antibodies has previously been proven to be successful. In this study, human Tau2N4R-ΔK280 purified from yeast was used for the immunization of mice and subsequent selection of high affinity Tau-specific monoclonal antibodies. The characterization of four novel antibodies in different Tau model systems yielded a phosphorylation-dependent antibody (15A10), an antibody directed to the first microtubule-binding repeat domain (16B12), a carboxy-terminal antibody (20G10) and an antibody targeting an epitope on the hinge of the first and second amino-terminal insert (18F12). The latter was found to be conformation-dependent, suggesting structural differences between the Tau splicing isoforms and allowing insight in the roles played by the amino-terminal inserts. As this monoclonal antibody also has the capacity to detect tangle-like structures in different transgenic Tau mice and neurofibrillary tangles in brain sections of patients diagnosed with Alzheimer's disease, we also tested the diagnostic potential of 18F12 in a pilot study and found this monoclonal antibody to have the ability to discriminate Alzheimer's disease patients from control individuals based on increased Tau levels in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Joke Verelst
- Functional Biology, KU Leuven, Heverlee, Belgium
| | | | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | | | | | | | | | | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | | | | | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | |
Collapse
|
33
|
Winston CN, Aulston B, Rockenstein EM, Adame A, Prikhodko O, Dave KN, Mishra P, Rissman RA, Yuan SH. Neuronal Exosome-Derived Human Tau is Toxic to Recipient Mouse Neurons in vivo. J Alzheimers Dis 2020; 67:541-553. [PMID: 30584143 DOI: 10.3233/jad-180776] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Progressive accumulation of aggregation-prone proteins, amyloid-β (Aβ) and hyperphosphorylated tau (p-tau), are the defining hallmarks of Alzheimer's disease (AD). The mechanisms by which Aβ and p-tau are transmitted throughout the diseased brain are not yet completely understood. Interest in exosome research has grown dramatically over the past few years, specifically due to their potential role as biomarkers for staging of neurodegenerative diseases, including AD. Despite their diagnostic utility, the pathogenic potential of exosomes has yet to be fully elucidated. In this study, we use a series of recombinant tau antibodies to characterize a new model of human tau in vivo. Exosome suspensions derived from neuronally-differentiated, human induced pluripotent stem cells that express the repeat domain of tau P301L and V337M mutations (NiPSCEs) were injected into the wild-type mouse brain and pathological changes were characterized by immunostaining at one- (1 m) and two-month (2 m) post-injection. We found that tau inclusions were present throughout the brain at 2 m post-injection, which were detectable using antibodies raised against full-length tau (K9JA) and misfolded tau (MC1). Furthermore, we found that phosphorylated tau immunoreactivity was elevated 1 m post-injection, which was surprisingly normalized after 2 m. Finally, we observed extensive degeneration of neuronal dendrites in both ipsilateral and contralateral hippocampi in NiPSCE treated mice. In summary, we demonstrate that exosomes are sufficient to cause long-distance propagation of tau pathology and neurodegeneration in vivo. These novel findings support an active role of exosomes in AD pathogenesis.
Collapse
Affiliation(s)
- Charisse N Winston
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Brent Aulston
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward M Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Olga Prikhodko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kishan N Dave
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Priyanka Mishra
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol 2020; 139:3-25. [PMID: 31686182 PMCID: PMC6942016 DOI: 10.1007/s00401-019-02087-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022]
Abstract
The term “propagon” is used to define proteins that may transmit misfolding in vitro, in tissues or in organisms. Among propagons, misfolded tau is thought to be involved in the pathogenic mechanisms of various “tauopathies” that include Alzheimer's disease, progressive supranuclear palsy, and argyrophilic grain disease. Here, we review the available data in the literature and point out how the prion-like tau propagation has been extended from Alzheimer's disease to tauopathies. First, in Alzheimer’s disease, the progression of tau aggregation follows stereotypical anatomical stages which may be considered as spreading. The mechanisms of the propagation are now subject to intensive and controversial research. It has been shown that tau may be secreted in the interstitial fluid in an active manner as reflected by high and constant concentration of extracellular tau during Alzheimer’s pathology. Animal and cell models have been devised to mimic tau seeding and propagation, and despite their limitations, they have further supported to the prion-like propagation hypothesis. Finally, such new ways of thinking have led to different therapeutic strategies in anti-tau immunotherapy among tauopathies and have stimulated new clinical trials. However, it appears that the prion-like propagation hypothesis mainly relies on data obtained in Alzheimer’s disease. From this review, it appears that further studies are needed (1) to characterize extracellular tau species, (2) to find the right pathological tau species to target, (3) to follow in vivo tau pathology by brain imaging and biomarkers and (4) to interpret current clinical trial results aimed at reducing the progression of these pathologies. Such inputs will be essential to have a comprehensive view of these promising therapeutic strategies in tauopathies.
Collapse
|
35
|
Winston CN, Romero HK, Ellisman M, Nauss S, Julovich DA, Conger T, Hall JR, Campana W, O’Bryant SE, Nievergelt CM, Baker DG, Risbrough VB, Rissman RA. Assessing Neuronal and Astrocyte Derived Exosomes From Individuals With Mild Traumatic Brain Injury for Markers of Neurodegeneration and Cytotoxic Activity. Front Neurosci 2019; 13:1005. [PMID: 31680797 PMCID: PMC6797846 DOI: 10.3389/fnins.2019.01005] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mTBI) disproportionately affects military service members and is very difficult to diagnose. To-date, there is currently no blood-based, diagnostic biomarker for mTBI cases with persistent post concussive symptoms. To examine the potential of neuronally-derived (NDE) and astrocytic-derived (ADE) exosome cargo proteins as biomarkers of chronic mTBI in younger adults, we examined plasma exosomes from a prospective longitudinal study of combat-related risk and resilience, marine resiliency study II (MRSII). After return from a combat-deployment participants were interviewed to assess TBI exposure while on deployment. Plasma exosomes from military service members with mTBI (mean age, 21.7 years, n = 19, avg. days since injury 151), and age-matched, controls (deployed service members who did not endorse a deployment-related TBI or a pre-deployment history of TBI; mean age, 21.95 years, n = 20) were precipitated and enriched against a neuronal adhesion protein, L1-CAM, and an astrocyte marker, glutamine aspartate transporter (GLAST) using magnetic beads to immunocapture the proteins and subsequently selected by fluorescent activated cell sorting (FACS). Extracted protein cargo from NDE and ADE preparations were quantified for protein levels implicated in TBI neuropathology by standard ELISAs and on the ultra-sensitive single molecule assay (Simoa) platform. Plasma NDE and ADE levels of Aβ42 were significantly higher while plasma NDE and ADE levels of the postsynaptic protein, neurogranin (NRGN) were significantly lower in participants endorsing mTBI exposure compared to controls with no TBI history. Plasma NDE and ADE levels of Aβ40, total tau, and neurofilament light (NFL), P-T181-tau, P-S396-tau were either undetectable or not significantly different between the two groups. In an effort to understand the pathogenetic potential of NDE and ADE cargo proteins, neuron-like cultures were treated with NDE and ADE preparations from TBI and non-TBI groups. Lastly, we determined that plasma NDE but not ADE cargo proteins from mTBI samples were found to be toxic to neuron-like recipient cells in vitro. These data support the presence of markers of neurodegeneration in NDEs of mTBI and suggest that these NDEs can be used as tools to identify pathogenic mechanisms of TBI.
Collapse
Affiliation(s)
- Charisse N. Winston
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Haylie K. Romero
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Maya Ellisman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Sophie Nauss
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - David A. Julovich
- Department of Pharmacology and Neuroscience, Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Tori Conger
- Department of Pharmacology and Neuroscience, Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - James R. Hall
- Department of Pharmacology and Neuroscience, Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Wendy Campana
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Sid E. O’Bryant
- Department of Pharmacology and Neuroscience, Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Caroline M. Nievergelt
- Center of Excellence for Stress and Mental Health, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Dewleen G. Baker
- Center of Excellence for Stress and Mental Health, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Victoria B. Risbrough
- Center of Excellence for Stress and Mental Health, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| |
Collapse
|
36
|
Gibbons GS, Banks RA, Kim B, Changolkar L, Riddle DM, Leight SN, Irwin DJ, Trojanowski JQ, Lee VMY. Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies. J Neuropathol Exp Neurol 2019; 77:216-228. [PMID: 29415231 DOI: 10.1093/jnen/nly010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aggregation of tau into fibrillar structures within the CNS is a pathological hallmark of a clinically heterogeneous set of neurodegenerative diseases termed tauopathies. Unique misfolded conformations of tau, referred to as strains, are hypothesized to underlie the distinct neuroanatomical and cellular distribution of pathological tau aggregates. Here, we report the identification of novel tau monoclonal antibodies (mAbs) that selectively bind to an Alzheimer disease (AD)-specific conformation of pathological tau. Immunohistochemical analysis of tissue from various AD and nonAD tauopathies demonstrate selective binding of mAbs GT-7 and GT-38 to AD tau pathologies and absence of immunoreactivity for tau aggregates that are diagnostic of corticobasal degenerations (CBD), progressive supranuclear palsy (PSP), and Pick's disease (PiD). In cases with co-occurring AD tauopathy, GT-7 and GT-38 distinguish comorbid AD tau from pathological tau in frontotemporal lobar degeneration characterized by tau inclusions (FTLD-Tau), as confirmed by the presence of both 3 versus 4 microtubule-binding repeat isoforms (3R and 4R tau isoforms, respectively), in AD neurofibrillary tangles but not in the tau aggregates of CBD, PSP, or PiD. These findings support the concept of an AD-specific tau strain. The mAbs described here enable the selective detection of AD tau pathology in nonAD tauopathies.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Rachel A Banks
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Bumjin Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Dawn M Riddle
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Susan N Leight
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Irwin
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|
38
|
Madav Y, Wairkar S, Prabhakar B. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer's disease. Brain Res Bull 2019; 146:171-184. [PMID: 30634016 DOI: 10.1016/j.brainresbull.2019.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has been a global concern for years due to its severe implications that affects the quality of life of the patients. The available line of therapy for treating Alzheimer's includes acetylcholinesterase inhibitors, NMDA(N-methyl-D-aspartate) antagonists and their combination which gives only symptomatic relief rather than treating the root cause of AD. Senile plaques and neurofibrillary tangles are the characteristic features underlying Alzheimer's pathology. Several attempts have been made towards exploring the niceties of these hallmarks and targeting various aspects of amyloid and tau pathology at different stages to eliminate the ultimate cause. Approaches targeting cleavage and formation of toxic amyloid fragments by secretases, aggregation of amyloid monofilaments, and immunotherapy against amyloid deposits has been extensively studied to treat amyloid pathology. Similarly, for tau pathology, tau hyperphosphorylation, microtubule stabilization, anti-tau immunotherapy has been explored. This article focuses on AD pathology and current pharmacotherapy, precisely for amyloid and tau. Furthermore, preclinical and clinical studies along with potential leads discovered under these approaches have also been included in this article. However, despite extensive research in drug development, overcoming clinical barrier still remain a major challenge for Alzheimer's pharmacotherapy.
Collapse
Affiliation(s)
- Yamini Madav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
39
|
Dujardin S, Hyman BT. Tau Prion-Like Propagation: State of the Art and Current Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:305-325. [PMID: 32096046 DOI: 10.1007/978-981-32-9358-8_23] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It has been almost a decade since the hypothesis of active tau protein propagation in Alzheimer's disease and associated tauopathies was formally raised. We view tau propagation as a cascade of events, starting with early tau misfolding, followed by transfer to another, anatomically connected, cell, contaminating in corruption of endogenous tau in the recipient cell through a seeding mechanism of templated misfolding. These mechanisms are very similar to those of other proteinopathies and to ideas about how prion pathologies spread through the brain. Nonetheless, the specific mechanisms underlying each of these steps remains uncertain and is a fertile ground for new experimental approaches potentially requiring new experimental models. We review, here, the state of the art of the research on tau prion-like propagation and we highlight some key challenges to understanding the detailed mechanisms of cell to cell propagation.
Collapse
Affiliation(s)
- Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA.
| |
Collapse
|
40
|
Yuan SH, Hiramatsu N, Liu Q, Sun XV, Lenh D, Chan P, Chiang K, Koo EH, Kao AW, Litvan I, Lin JH. Tauopathy-associated PERK alleles are functional hypomorphs that increase neuronal vulnerability to ER stress. Hum Mol Genet 2018; 27:3951-3963. [PMID: 30137327 PMCID: PMC6216228 DOI: 10.1093/hmg/ddy297] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by tau protein pathology in the nervous system. EIF2AK3 (eukaryotic translation initiation factor 2 alpha kinase 3), also known as PERK (protein kinase R-like endoplasmic reticulum kinase), was identified by genome-wide association study as a genetic risk factor in several tauopathies. PERK is a key regulator of the Unfolded Protein Response (UPR), an intracellular signal transduction mechanism that protects cells from endoplasmic reticulum (ER) stress. PERK variants had previously been identified in Wolcott-Rallison Syndrome, a rare autosomal recessive metabolic disorder, and these variants completely abrogated the function of PERK's kinase domain or prevented PERK expression. In contrast, the PERK tauopathy risk variants were distinct from the Wolcott-Rallison variants and introduced missense alterations throughout the PERK protein. The function of PERK tauopathy variants and their effects on neurodegeneration are unknown. Here, we discovered that tauopathy-associated PERK alleles showed reduced signaling activity and increased PERK protein turnover compared to protective PERK alleles. We found that iPSC-derived neurons carrying PERK risk alleles were highly vulnerable to ER stress-induced injury with increased tau pathology. We found that chemical inhibition of PERK in human iPSC-derived neurons also increased neuronal cell death in response to ER stress. Our results indicate that tauopathy-associated PERK alleles are functional hypomorphs during the UPR. We propose that reduced PERK function leads to neurodegeneration by increasing neuronal vulnerability to ER stress-associated damage. In this view, therapies to enhance PERK signaling would benefit at-risk carriers of hypomorphic alleles.
Collapse
Affiliation(s)
- Shauna H Yuan
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Nobuhiko Hiramatsu
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | - Qing Liu
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Xuehan Victoria Sun
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | - David Lenh
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Priscilla Chan
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | - Karen Chiang
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | - Edward H Koo
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
- Departments of Medicine and Physiology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Aimee W Kao
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Jonathan H Lin
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
41
|
Chen HH, Liu P, Auger P, Lee SH, Adolfsson O, Rey-Bellet L, Lafrance-Vanasse J, Friedman BA, Pihlgren M, Muhs A, Pfeifer A, Ernst J, Ayalon G, Wildsmith KR, Beach TG, van der Brug MP. Calpain-mediated tau fragmentation is altered in Alzheimer's disease progression. Sci Rep 2018; 8:16725. [PMID: 30425303 PMCID: PMC6233188 DOI: 10.1038/s41598-018-35130-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
The aggregation of intracellular tau protein is a major hallmark of Alzheimer's disease (AD). The extent and the stereotypical spread of tau pathology in the AD brain are correlated with cognitive decline during disease progression. Here we present an in-depth analysis of endogenous tau fragmentation in a well-characterized cohort of AD and age-matched control subjects. Using protein mass spectrometry and Edman degradation to interrogate endogenous tau fragments in the human brain, we identified two novel proteolytic sites, G323 and G326, as major tau cleavage events in both normal and AD cortex. These sites are located within the sequence recently identified as the structural core of tau protofilaments, suggesting an inhibitory mechanism of fibril formation. In contrast, a different set of novel cleavages showed a distinct increase in late stage AD. These disease-associated sites are located outside of the protofilament core sequence. We demonstrate that calpain 1 specifically cleaves at both the normal and diseased sites in vitro, and the site selection is conformation-dependent. Monomeric tau is predominantly cleaved at G323/G326 (normal sites), whereas oligomerization increases cleavages at the late-AD-associated sites. The fragmentation patterns specific to disease and healthy states suggest novel regulatory mechanisms of tau aggregation in the human brain.
Collapse
Affiliation(s)
- Hsu-Hsin Chen
- Biomarker Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA.
| | - Peter Liu
- Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Paul Auger
- Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Seung-Hye Lee
- Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Oskar Adolfsson
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015, Lausanne, Switzerland
| | - Lorianne Rey-Bellet
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015, Lausanne, Switzerland
| | | | - Brad A Friedman
- Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Maria Pihlgren
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015, Lausanne, Switzerland
| | - Andreas Muhs
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015, Lausanne, Switzerland
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015, Lausanne, Switzerland
| | - James Ernst
- Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Gai Ayalon
- Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Kristin R Wildsmith
- Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, 10515W, Santa Fe Drive, Sun City, AZ, USA
| | - Marcel P van der Brug
- Biomarker Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA.,Therapeutics Division, Clover Health, 22 4th Street, San Francisco, CA, USA
| |
Collapse
|
42
|
Iqbal K, Liu F, Gong CX. Recent developments with tau-based drug discovery. Expert Opin Drug Discov 2018; 13:399-410. [DOI: 10.1080/17460441.2018.1445084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
43
|
Guix FX, Corbett GT, Cha DJ, Mustapic M, Liu W, Mengel D, Chen Z, Aikawa E, Young-Pearse T, Kapogiannis D, Selkoe DJ, Walsh DM. Detection of Aggregation-Competent Tau in Neuron-Derived Extracellular Vesicles. Int J Mol Sci 2018; 19:E663. [PMID: 29495441 PMCID: PMC5877524 DOI: 10.3390/ijms19030663] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/10/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022] Open
Abstract
Progressive cerebral accumulation of tau aggregates is a defining feature of Alzheimer's disease (AD). A popular theory that seeks to explain the apparent spread of neurofibrillary tangle pathology proposes that aggregated tau is passed from neuron to neuron. Such a templated seeding process requires that the transferred tau contains the microtubule binding repeat domains that are necessary for aggregation. While it is not clear how a protein such as tau can move from cell to cell, previous reports have suggested that this may involve extracellular vesicles (EVs). Thus, measurement of tau in EVs may both provide insights on the molecular pathology of AD and facilitate biomarker development. Here, we report the use of sensitive immunoassays specific for full-length (FL) tau and mid-region tau, which we applied to analyze EVs from human induced pluripotent stem cell (iPSC)-derived neuron (iN) conditioned media, cerebrospinal fluid (CSF), and plasma. In each case, most tau was free-floating with a small component inside EVs. The majority of free-floating tau detected by the mid-region assay was not detected by our FL assays, indicating that most free-floating tau is truncated. Inside EVs, the mid-region assay also detected more tau than the FL assay, but the ratio of FL-positive to mid-region-positive tau was higher inside exosomes than in free solution. These studies demonstrate the presence of minute amounts of free-floating and exosome-contained FL tau in human biofluids. Given the potential for FL tau to aggregate, we conclude that further investigation of these pools of extracellular tau and how they change during disease is merited.
Collapse
Affiliation(s)
- Francesc X. Guix
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Grant T. Corbett
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Diana J. Cha
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (M.M.); (D.K.)
| | - Wen Liu
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - David Mengel
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Zhicheng Chen
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Tracy Young-Pearse
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (M.M.); (D.K.)
| | - Dennis J. Selkoe
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| |
Collapse
|
44
|
Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer's Disease Therapy: Insights from Novel Mechanisms Beyond Memory Defects. Front Neurosci 2018; 12:37. [PMID: 29467605 PMCID: PMC5808215 DOI: 10.3389/fnins.2018.00037] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia in late life, will become even more prevalent by midcentury, constituting a major global health concern with huge implications for individuals and society. Despite scientific breakthroughs during the past decades that have expanded our knowledge on the cellular and molecular bases of AD, therapies that effectively halt disease progression are still lacking, and focused efforts are needed to address this public health challenge. Because AD is classically recognized as a disease of memory, studies have mainly focused on investigating memory-associated brain defects. However, compelling evidence has indicated that additional brain regions, not classically linked to memory, are also affected in the course of disease. In this review, we outline the current understanding of key pathophysiological mechanisms in AD and their clinical manifestation. We also highlight how considering the complex nature of AD pathogenesis, and exploring repurposed drug approaches can pave the road toward the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Rudimar L. Frozza
- Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
45
|
Protein Biomarkers and Neuroproteomics Characterization of Microvesicles/Exosomes from Human Cerebrospinal Fluid Following Traumatic Brain Injury. Mol Neurobiol 2017; 55:6112-6128. [PMID: 29188495 DOI: 10.1007/s12035-017-0821-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022]
Abstract
Recently, there have been emerging interests in the area of microvesicles and exosome (MV/E) released from brain cells in relation to neurodegenerative diseases. However, only limited studies focused on MV/E released post-traumatic brain injury (TBI) as they highlight on the mechanistic roles of released proteins. This study sought to examine if CSF samples from severe TBI patients contain MV/E with unique protein contents. First, nanoparticle tracking analysis determined MV/E from TBI have a mode of 74-98 nm in diameter, while control CSF MV/E have a mode of 99-104 nm. Also, there are more MV/E were isolated from TBI CSF (27.8-33.6 × 108/mL) than from control CSF (13.1-18.5 × 108/mL). Transmission electron microscopy (TEM) visualization also confirmed characteristic MV/E morphology. Using targeted immunoblotting approach, we observed the presence of several known TBI biomarkers such as αII-spectrin breakdown products (BDPs), GFAP, and its BDPs and UCH-L1 in higher concentrations in MV/E from TBI CSF than their counterparts from control CSF. Furthermore, we found presynaptic terminal protein synaptophysin and known exosome marker Alix enriched in MV/E from human TBI CSF. In parallel, we conducted nRPLC-tandem mass spectrometry-based proteomic analysis of two control and two TBI CSF samples. Ninety-one proteins were identified with high confidence in MV/E from control CSF, whereas 466 proteins were identified in the counterpart from TBI CSF. MV/E isolated from human CSF contain cytoskeletal proteins, neurite-outgrowth related proteins, and synaptic proteins, extracellular matrix proteins, and complement protein C1q subcomponent subunit B. Taken together, following severe TBI, the injured human brain released increased number of extracellular microvesicles/exosomes (MV/E) into CSF. These TBI MV/E contain several known TBI biomarkers and previously undescribed brain protein markers. It is also possible that such TBI-specific MV/E might contain cell to cell communication factors related to both cell death signaling a well as neurodegeneration pathways.
Collapse
|