1
|
Bortolami A, Forzisi Kathera-Ibarra E, Balatsky A, Dubey M, Amin R, Venkateswaran S, Dutto S, Seth I, Ashor A, Nwandiko A, Pan PY, Crockett DP, Sesti F. Abnormal cytoskeletal remodeling but normal neuronal excitability in a mouse model of the recurrent developmental and epileptic encephalopathy-susceptibility KCNB1-p.R312H variant. Commun Biol 2024; 7:1713. [PMID: 39738805 DOI: 10.1038/s42003-024-07344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Integrin_K+ Channel_Complexes (IKCs), are implicated in neurodevelopment and cause developmental and epileptic encephalopathy (DEE) through mechanisms that were poorly understood. Here, we investigate the function of neocortical IKCs formed by voltage-gated potassium (Kv) channels Kcnb1 and α5β5 integrin dimers in wild-type (WT) and homozygous knock-in (KI) Kcnb1R312H(+/+) mouse model of DEE. Kcnb1R312H(+/+) mice suffer from severe cognitive deficit and compulsive behavior. Their brains show neuronal damage in multiple areas and disrupted corticocortical and corticothalamic connectivity along with aberrant glutamatergic vesicular transport. Surprisingly, the electrical properties of Kcnb1R312H(+/+) pyramidal neurons are similar to those of WT neurons, indicating that the arginine to histidine replacement does not affect the conducting properties of the mutant channel. In contrast, fluorescence recovery after photobleaching, biochemistry, and immunofluorescence, reveal marked differences in the way WT and Kcnb1R312H(+/+) neurons modulate the remodeling of the actin cytoskeleton, a key player in the processes underlying neurodevelopment. Together these results demonstrate that Kv channels can cause multiple conditions, including epileptic seizures, through mechanisms that do not involve their conducting functions and put forward the idea that the etiology of DEE may be primarily non-ionic.
Collapse
Affiliation(s)
- Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Elena Forzisi Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Anastasia Balatsky
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Mansi Dubey
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Rusheel Amin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Srinidi Venkateswaran
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Stefania Dutto
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Ishan Seth
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Adam Ashor
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Nilo Therapeutics, New York, NY, USA
| | - Angel Nwandiko
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - David P Crockett
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Iezzi D, Cáceres-Rodríguez A, Chavis P, Manzoni OJ. Sex-specific disruptions in the developmental trajectory of anxiety due to prenatal cannabidiol exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626301. [PMID: 39677821 PMCID: PMC11642752 DOI: 10.1101/2024.12.02.626301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Many pregnant women use cannabidiol (CBD) as a natural remedy to alleviate symptoms such as nausea, insomnia, anxiety, and chronic pain. As much as 20% of pregnancies in the USA and Canada may involve the use of CBD-only products. CBD crosses the placenta and may affect fetal development, potentially leading to neuropsychiatric conditions later in life. Given the limited understanding of the effects of CBD during pregnancy, we adopted a longitudinal approach to investigate the neurodevelopmental trajectory associated with prenatal CBD exposure. Pregnant mice were administered 3 mg/kg CBD from gestational days 5 to 18. At early adolescence, offspring displayed sex-specific behavioral changes. Females, but not males, exhibited a complex anxiety-like phenotype during the elevated plus maze task. This phenotype persisted into adulthood in the open field test and was accompanied by altered reward responsiveness. Throughout post-natal life, female offspring demonstrated heightened stretch-attend postures, a risk-assessment behavior reflecting approach-avoidance tendencies and anxiety. Finally, prenatal CBD exposure increased repetitive behaviors in adult animals of both sexes, as evidenced by the marble burying task. These results provide strong evidence of sex-specific disruptions in the developmental trajectories of anxiety associated with prenatal CBD exposure. They challenge the perception that CBD is universally safe and highlight vulnerabilities linked to gestational CBD exposure.
Collapse
|
3
|
Zhang YD, Shi DD, Wang Z. Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. Neurosci Bull 2024; 40:1975-1994. [PMID: 38982026 PMCID: PMC11625044 DOI: 10.1007/s12264-024-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 07/11/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
4
|
Strydom JP, Brand L, Viljoen FP, Wolmarans DW. Differential impact of pegfilgrastim, a recombinant human granulocyte colony stimulating factor, on the neutrophil count of male and female deer mice (Peromyscus maniculatus bairdii). BMC Pharmacol Toxicol 2024; 25:52. [PMID: 39160640 PMCID: PMC11331688 DOI: 10.1186/s40360-024-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND An increasing body of research implicates inflammatory processes, including alterations in the neutrophil-lymphocyte ratio (NLR), in the pathophysiology of psychiatric illness. The deer mouse (Peromyscus maniculatus bairdii) is commonly studied for its naturalistic expression of compulsive-like behaviour. Towards future efforts to gain an understanding of how innate and adaptive immune processes might be involved in this model, we aimed to study the effects of pegfilgrastim, a pegylated recombinant human granulocyte colony-stimulating factor (g-CSF) analogue, on the NLR of both male and female deer mice. METHODS Briefly, 54 deer mice (equally distributed between sexes) were exposed to a single injection with either control or pegfilgrastim (0.1 or 1 mg/kg) (n = 18 per group). Six mice of each group (three per sex) were euthanized on days two, four and seven post-administration, their blood collected and the NLR calculated. Data were analysed by means of ordinary three-way ANOVA, followed by Bonferroni post-hoc testing. RESULTS Irrespective of dose, pegfilgrastim resulted in higher NLR values in mice of both sexes at days four and seven of testing. However, female mice exposed to the higher dose, presented with significantly higher NLR values irrespective of time, compared to male mice exposed to the same. CONCLUSION The data generated from this work highlight important dose- and sex-specific aspects of pegfilgrastim with female mice showing heighted elevation of the NLR in response to high-dose pegfilgrastim administration only. Since the innate immune components of male and female deer mice is differentially sensitive to g-CSF stimulation, our results provide a useful basis for further study of sex-specific immunological processes in deer mice.
Collapse
Affiliation(s)
- J P Strydom
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Linda Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Francois P Viljoen
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa.
| |
Collapse
|
5
|
Cording KR, Tu EM, Wang H, Agopyan-Miu AHCW, Bateup HS. Cntnap2 loss drives striatal neuron hyperexcitability and behavioral inflexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593387. [PMID: 38766169 PMCID: PMC11100810 DOI: 10.1101/2024.05.09.593387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by two major diagnostic criteria - persistent deficits in social communication and interaction, and the presence of restricted, repetitive patterns of behavior (RRBs). Evidence from both human and animal model studies of ASD suggest that alteration of striatal circuits, which mediate motor learning, action selection, and habit formation, may contribute to the manifestation of RRBs. CNTNAP2 is a syndromic ASD risk gene, and loss of function of Cntnap2 in mice is associated with RRBs. How loss of Cntnap2 impacts striatal neuron function is largely unknown. In this study, we utilized Cntnap2-/- mice to test whether altered striatal neuron activity contributes to aberrant motor behaviors relevant to ASD. We find that Cntnap2-/- mice exhibit increased cortical drive of striatal projection neurons (SPNs), with the most pronounced effects in direct pathway SPNs. This enhanced drive is likely due to increased intrinsic excitability of SPNs, which make them more responsive to cortical inputs. We also find that Cntnap2-/- mice exhibit spontaneous repetitive behaviors, increased motor routine learning, and cognitive inflexibility. Increased corticostriatal drive, in particular of the direct pathway, may contribute to the acquisition of repetitive, inflexible behaviors in Cntnap2 mice.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA
| | - Emilie M. Tu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Hongli Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| |
Collapse
|
6
|
Eissazade N, Mosavari H, Eghdami S, Boroon M, Ashrafi F, Shalbafan M. Efficacy and safety of 5-hydroxytryptamine-3 (5-HT3) receptor antagonists in augmentation with selective serotonin reuptake inhibitors (SSRIs) in the treatment of moderate to severe obsessive-compulsive disorder: a systematic review and meta-analysis of randomized clinical trials. Sci Rep 2023; 13:20837. [PMID: 38012263 PMCID: PMC10682036 DOI: 10.1038/s41598-023-47931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is the fourth most common mental disorder, and selective serotonin reuptake inhibitors (SSRIs) are the cornerstone of its pharmacological treatment. About 40-60% of the cases are treatment-refractory, and this makes searching for second-line treatment necessary. 5-Hydroxytryptamine-3 (5-HT3) antagonists are among the many medications that have been used in augmentation with SSRIs. In this systematic review and meta-analysis, we assessed the efficacy and safety of 5-HT3 receptor antagonists in augmentation with SSRIs in treating moderate to severe OCD. We searched PubMed, Web of Science, Scopus, Cochrane library, and Google Scholar for relevant trials published up to December 2022. The effect size was the mean difference in Yale-Brown obsessive compulsive scale (Y-BOCS) scores before and after receiving 5-HT3 receptor antagonist drugs in augmentation with SSRIs in moderate to severe OCD patients. We included 6 randomized-controlled trails (RCTs) with 334 patients assessing the effect of the augmentation of SSRIs with ondansetron, granisetron, and tropisetron on treating moderate to severe OCD. Our results were in favor of the experimental group in total (Z = 8.37, P < 0.00001), in the compulsion subgroup (Z = 5.22, P < 0.00001), and in the obsession subgroup (Z = 8.33, P < 0.00001). They are well-tolerated, and have mild side effects and do not result in withdrawal. Augmentation of 5-HT3 antagonists with SSRIs can be beneficial in treating moderate to severe OCD. Further multi-center trials under adequate conditions in longer periods are needed to help come up with a comprehensive action plan.
Collapse
Affiliation(s)
- Negin Eissazade
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hesam Mosavari
- Department of Surgery, General Surgery Research Center, School of Medicine, Rasool-E Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Eghdami
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Boroon
- Department of Psychiatry, Imam Hossein Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Faria Ashrafi
- Brain and Cognition Clinic, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Mohammadreza Shalbafan
- Mental Health Research Center, Psychosocial Health Research Institute (PHRI), Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhai R, Tong G, Li Z, Song W, Hu Y, Xu S, Wei Q, Zhang X, Li Y, Liao B, Yuan C, Fan Y, Song G, Ouyang Y, Zhang W, Tang Y, Jin M, Zhang Y, Li H, Yang Z, Lin GN, Stein DJ, Xiong ZQ, Wang Z. Rhesus monkeys exhibiting spontaneous ritualistic behaviors resembling obsessive-compulsive disorder. Natl Sci Rev 2023; 10:nwad312. [PMID: 38152386 PMCID: PMC10751879 DOI: 10.1093/nsr/nwad312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric disorder that affects ∼2%-3% of the population globally. Studying spontaneous OCD-like behaviors in non-human primates may improve our understanding of the disorder. In large rhesus monkey colonies, we found 10 monkeys spontaneously exhibiting persistent sequential motor behaviors (SMBs) in individual-specific sequences that were repetitive, time-consuming and stable over prolonged periods. Genetic analysis revealed severely damaging mutations in genes associated with OCD risk in humans. Brain imaging showed that monkeys with SMBs had larger gray matter (GM) volumes in the left caudate nucleus and lower fractional anisotropy of the corpus callosum. The GM volume of the left caudate nucleus correlated positively with the daily duration of SMBs. Notably, exposure to a stressor (human presence) significantly increased SMBs. In addition, fluoxetine, a serotonergic medication commonly used for OCD, decreased SMBs in these monkeys. These findings provide a novel foundation for developing better understanding and treatment of OCD.
Collapse
Affiliation(s)
- Rongwei Zhai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zheqin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Sha Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Qiqi Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiaocheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bingbing Liao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chenyu Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yinqing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ge Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yinyin Ouyang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenxuan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yaqiu Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Minghui Jin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuxian Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dan J Stein
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
8
|
Youngblood B, Medina JC, Gehlert DR, Schwartz N. EPD1504: a novel μ-opioid receptor partial agonist attenuates obsessive-compulsive disorder (OCD)-like behaviors. Front Psychiatry 2023; 14:1170541. [PMID: 37457777 PMCID: PMC10349350 DOI: 10.3389/fpsyt.2023.1170541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 07/18/2023] Open
Abstract
Low doses of μ-opioid receptor (MOR) agonists rapidly ameliorate symptoms in treatment-resistant obsessive-compulsive disorder (OCD) patients (10-50% of OCD patients). However, the utility of MOR agonists is limited by their safety liabilities. We developed a novel MOR partial agonist (EPD1540) that has an improved respiratory safety profile when compared to buprenorphine. Buprenorphine is a MOR partial agonist primarily used in the treatment of opiate-use disorder, which in investigator-led trials, has been shown to rapidly ameliorate symptoms in treatment-resistant OCD patients. In this study, we show that doses of EPD1504 and buprenorphine that occupy small fractions of MORs in the CNS (approximately 20%) are as effective as fluoxetine at ameliorating OCD-like behaviors in two different rat models (an operant probabilistic reversal task and marble burying). Importantly, effective doses of EPD1504 did not impair either locomotor activity, or respiration under normoxic or hypercapnic conditions. Additionally, EPD1504 had effects comparable to buprenorphine in the conditioned place preference assay. These results indicate that EPD1504 may provide a safer alternative to buprenorphine for the treatment of OCD patients.
Collapse
|
9
|
Overk C, Fiorini E, Babolin C, Vukicevic M, Morici C, Madani R, Eligert V, Kosco-Vilbois M, Roberts A, Becker A, Pfeifer A, Mobley WC. Modeling Alzheimer's disease related phenotypes in the Ts65Dn mouse: impact of age on Aβ, Tau, pTau, NfL, and behavior. Front Neurosci 2023; 17:1202208. [PMID: 37449271 PMCID: PMC10336548 DOI: 10.3389/fnins.2023.1202208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction People with DS are highly predisposed to Alzheimer's disease (AD) and demonstrate very similar clinical and pathological features. Ts65Dn mice are widely used and serve as the best-characterized animal model of DS. Methods We undertook studies to characterize age-related changes for AD-relevant markers linked to Aβ, Tau, and phospho-Tau, axonal structure, inflammation, and behavior. Results We found age related changes in both Ts65Dn and 2N mice. Relative to 2N mice, Ts65Dn mice showed consistent increases in Aβ40, insoluble phospho-Tau, and neurofilament light protein. These changes were correlated with deficits in learning and memory. Discussion These data have implications for planning future experiments aimed at preventing disease-related phenotypes and biomarkers. Interventions should be planned to address specific manifestations using treatments and treatment durations adequate to engage targets to prevent the emergence of phenotypes.
Collapse
Affiliation(s)
- Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | | | | | | | | | | | | | | | - Amanda Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Ann Becker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | | | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Izyurov AE, Plyusnina AV, Kulikova EA, Kulikov AV, Khotskin NV. Lethal Yellow Mutation Causes Anxiety, Obsessive-compulsive Behavior and Affects the Brain Melanocortin System in Males and Females of Mice. Curr Protein Pept Sci 2023; 24:329-338. [PMID: 36941814 DOI: 10.2174/1389203724666230320145556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND The brain melanocortin system regulates numerous physiological functions and kinds of behavior. The agouti protein inhibits melanocortin receptors in melanocytes. The lethal yellow (AY) mutation puts the Agouti gene under the control of the Raly gene promotor and causes the agouti protein expression in the brain. In the present article, we investigated the effects of the AY mutation on brain mRNA levels of Agouti, Raly, and melanocortin-related genes such as Agrp, Pomc, Mc3r, Mc4r, and their relationship to behavior. METHODS The experiment was performed on 6-month-old males and females of AY/a and a/a (control) mice. Anxiety and obsessive-compulsive behavior were studied in elevated plus-maze and marble- burying tests. The mRNA levels were quantified by qPCR. RESULTS AY mutation caused anxiety in males and obsessive-compulsive behavior in females. Positive correlation between Agouti and Raly genes mRNA levels were shown in the hypothalamus, hippocampus, and frontal cortex in AY/a mice. Reduced RNA concentrations of Mc3r and Mc4r genes were found respectively in the hypothalamus and frontal cortex in AY/a males. The Raly gene expression positively correlates with mRNA concentrations of the Mc3r gene in the hypothalamus and the Mc4r gene in the hypothalamus and frontal cortex. CONCLUSION Possible association of obsessive-compulsive behavior with reduced Raly, Mc3r, or Mc4r gene expression is suggested.
Collapse
Affiliation(s)
- Arseniy E Izyurov
- Department of Genetic Collections of Neural Disorders, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Alexandra V Plyusnina
- Department of Genetic Collections of Neural Disorders, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Elizabeth A Kulikova
- Department of Psychoneuropharmacology, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Alexander V Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Nikita V Khotskin
- Department of Genetic Collections of Neural Disorders, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|
11
|
Odland AU, Kristensen JL, Andreasen JT. Animal Behavior in Psychedelic Research. Pharmacol Rev 2022; 74:1176-1205. [PMID: 36180111 DOI: 10.1124/pharmrev.122.000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Psychedelic-assisted psychotherapy holds great promise in the treatment of mental health disorders. Research into 5-hydroxytryptamine 2A receptor (5-HT2AR) agonist psychedelic compounds has increased dramatically over the past two decades. In humans, these compounds produce drastic effects on consciousness, and their therapeutic potential relates to changes in the processing of emotional, social, and self-referential information. The use of animal behavior to study psychedelics is under debate, and this review provides a critical perspective on the translational value of animal behavior studies in psychedelic research. Acute activation of 5-HT2ARs produces head twitches and unique discriminative cues, disrupts sensorimotor gating, and stimulates motor activity while inhibiting exploration in rodents. The acute treatment with psychedelics shows discrepant results in conventional rodent tests of depression-like behaviors but generally induces anxiolytic-like effects and inhibits repetitive behavior in rodents. Psychedelics impair waiting impulsivity but show discrepant effects in other tests of cognitive function. Tests of social interaction also show conflicting results. Effects on measures of time perception depend on the experimental schedule. Lasting or delayed effects of psychedelics in rodent tests related to different behavioral domains appear to be rather sensitive to changes in experimental protocols. Studying the effects of psychedelics on animal behaviors of relevance to effects on psychiatric symptoms in humans, assessing lasting effects, publishing negative findings, and relating behaviors in rodents and humans to other more translatable readouts, such as neuroplastic changes, will improve the translational value of animal behavioral studies in psychedelic research. SIGNIFICANCE STATEMENT: Psychedelics like LSD and psilocybin have received immense interest as potential new treatments of psychiatric disorders. Psychedelics change high-order consciousness in humans, and there is debate about the use of animal behavior studies to investigate these compounds. This review provides an overview of the behavioral effects of 5-HT2AR agonist psychedelics in laboratory animals and discusses the translatability of the effects in animals to effects in humans. Possible ways to improve the utility of animal behavior in psychedelic research are discussed.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
12
|
de Bartolomeis A, Barone A, Vellucci L, Mazza B, Austin MC, Iasevoli F, Ciccarelli M. Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: a Systematic Review. Mol Neurobiol 2022; 59:6460-6501. [PMID: 35963926 PMCID: PMC9463235 DOI: 10.1007/s12035-022-02976-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Evidence from clinical, preclinical, and post-mortem studies supports the inflammatory/immune hypothesis of schizophrenia pathogenesis. Less evident is the link between the inflammatory background and two well-recognized functional and structural findings of schizophrenia pathophysiology: the dopamine-glutamate aberrant interaction and the alteration of dendritic spines architecture, both believed to be the “quantal” elements of cortical-subcortical dysfunctional network. In this systematic review, we tried to capture the major findings linking inflammation, aberrant glutamate-dopamine interaction, and post-synaptic changes under a direct and inverse translational perspective, a paramount picture that at present is lacking. The inflammatory effects on dopaminergic function appear to be bidirectional: the inflammation influences dopamine release, and dopamine acts as a regulator of discrete inflammatory processes involved in schizophrenia such as dysregulated interleukin and kynurenine pathways. Furthermore, the link between inflammation and glutamate is strongly supported by clinical studies aimed at exploring overactive microglia in schizophrenia patients and maternal immune activation models, indicating impaired glutamate regulation and reduced N-methyl-D-aspartate receptor (NMDAR) function. In addition, an inflammatory/immune-induced alteration of post-synaptic density scaffold proteins, crucial for downstream NMDAR signaling and synaptic efficacy, has been demonstrated. According to these findings, a significant increase in plasma inflammatory markers has been found in schizophrenia patients compared to healthy controls, associated with reduced cortical integrity and functional connectivity, relevant to the cognitive deficit of schizophrenia. Finally, the link between altered inflammatory/immune responses raises relevant questions regarding potential new therapeutic strategies specifically for those forms of schizophrenia that are resistant to canonical antipsychotics or unresponsive to clozapine.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy. .,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy.
| | - Annarita Barone
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Benedetta Mazza
- Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mark C Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University (ISU), Pocatello, ID, USA
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
The Early-Life «Programming» of Anxiety-Driven Behaviours in Adulthood as a Product of Predator-Driven Evolution. Evol Biol 2022. [DOI: 10.1007/s11692-022-09571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Milton LK, Patton T, O'Keeffe M, Oldfield BJ, Foldi CJ. In pursuit of biomarkers for predicting susceptibility to activity-based anorexia in adolescent female rats. Int J Eat Disord 2022; 55:664-677. [PMID: 35302253 PMCID: PMC9311799 DOI: 10.1002/eat.23705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Identifying risk factors that contribute to the development of anorexia nervosa (AN) is critical for the implementation of early intervention strategies. Anxiety, obsessive-compulsive behavior, and immune dysfunction may be involved in the development of AN; however, their direct influence on susceptibility to the condition remains unclear. Here, we used the activity-based anorexia (ABA) model to examine whether activity, anxiety-like behavior, compulsive behavior, and circulating immune markers predict the subsequent development of pathological weight loss. METHOD Female Sprague-Dawley rats (n = 44) underwent behavioral testing before exposure to ABA conditions after which they were separated into susceptible and resistant subpopulations. Blood was sampled before behavioral testing and after recovery from ABA to screen for proinflammatory cytokines. RESULTS Rats that were vulnerable to pathological weight loss differed significantly from resistant rats on all key ABA parameters. While the primary measures of anxiety-like or compulsive behavior were not shown to predict vulnerability to ABA, increased locomotion and anxiety-like behavior were both associated with the extent of weight loss in susceptible but not resistant animals. Moreover, the change in expression of proinflammatory markers IL-4 and IL-6 evoked by ABA was associated with discrete vulnerability factors. Intriguingly, behavior related to risk assessment was shown to predict vulnerability to ABA. DISCUSSION We did not find undisputable behavioral or immune predictors of susceptibility to pathological weight loss in the ABA rat model. Future research should examine the role of cognition in the development of ABA, dysfunction of which may represent an endophenotype linking anorectic, anxiety-like and compulsive behavior. PUBLIC SIGNIFICANCE Anorexia nervosa (AN) has among the highest mortality rates of all psychiatric disorders and treatment options remain limited in their efficacy. Understanding what types of risk factors contribute to the development of AN is essential for implementing early intervention strategies. This study describes how some of the most common psychological features of AN could be used to predict susceptibility to pathological weight loss in a well-established animal model.
Collapse
Affiliation(s)
- Laura Karina Milton
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia,Monash Biomedicine Discovery InstituteClaytonVictoriaAustralia
| | - Timothy Patton
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneElizabethVictoriaAustralia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Brian John Oldfield
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia,Monash Biomedicine Discovery InstituteClaytonVictoriaAustralia
| | - Claire Jennifer Foldi
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia,Monash Biomedicine Discovery InstituteClaytonVictoriaAustralia
| |
Collapse
|
15
|
Leonardi I, Gao IH, Lin WY, Allen M, Li XV, Fiers WD, De Celie MB, Putzel GG, Yantiss RK, Johncilla M, Colak D, Iliev ID. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 2022; 185:831-846.e14. [PMID: 35176228 PMCID: PMC8897247 DOI: 10.1016/j.cell.2022.01.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.
Collapse
Affiliation(s)
- Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iris H. Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Woan-Yu Lin
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Megan Allen
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA
| | - Xin V. Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - William D. Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Meghan Bialt De Celie
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G. Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Rhonda K. Yantiss
- MJ Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Melanie Johncilla
- MJ Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York City, NY, USA.,Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medical College, Cornell University, New York City, NY, USA
| | - Iliyan D. Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
16
|
Rafi H, Rafiq H, Farhan M. Inhibition of NMDA receptors by agmatine is followed by GABA/glutamate balance in benzodiazepine withdrawal syndrome. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Drug withdrawal syndrome occurs due to abrupt cessation of an addictive substance. Dependence to diazepam can be manifested by withdrawal syndrome which may include symptoms such as irritability, psychosis, sleep disturbance, seizures, mood disturbance, and anxiety. Studies have described the therapeutic role of agmatine in various neurological disorders such as depressive mood, learning deficits, anxiety, memory impairment, and psychosis. Various studies have also validated agmatine as a putant neuromodulator and revealed its mechanism of action with other neurotransmitters. The study was designed to reveal the potentials of agmatine in benzodiazepine withdrawal syndrome by maintaining GABA/glutamate balance. The study aimed to determine the underlying mechanism of action of agmatine at synaptic level using behavioral and biochemical evaluations.
Results
Agmatine significantly enhanced locomotion in open filed test and decreased anxiety as observed in elevated plus maze test (p < 0.01). Agmatine also reduced withdrawal symptoms scores along with compulsive behaviors in marble burying test and improved muscular strength by decreasing latency to fall in inverted screen test (p < 0.01). Moreover, agmatine established GABA/glutamate balance by increasing GABA levels and decreased glutamate concentration significantly (p < 0.01).
Conclusion
The present study reveals the possible mechanism of action of agmatine on NMDA receptor at GABA interneurons and glutamate post synaptic neuron that may lead to GABA/glutamate balance during withdrawal syndrome.
Collapse
|
17
|
King G, Veros KM, MacLaren DAA, Leigh MPK, Spernyak JA, Clark SD. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology. Eur J Neurosci 2021; 54:7688-7709. [PMID: 34668254 DOI: 10.1111/ejn.15496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Progressive Supranuclear Palsy (PSP) is the most common atypical parkinsonism and exhibits hallmark symptomology including motor function impairment and dysexecutive dementia. In contrast to Parkinson's disease, the underlying pathology displays aggregation of the protein tau, which is also seen in disorders such as Alzheimer's disease. Currently, there are no pharmacological treatments for PSP, and drug discovery efforts are hindered by the lack of an animal model specific to PSP. Based on previous results and clinical pathology, it was hypothesized that viral deposition of tau in cholinergic neurons within the hindbrain would produce a tauopathy along neural connections to produce PSP-like symptomology and pathology. By using a combination of ChAT-CRE rats and CRE-dependent AAV vectors, wildtype human tau (the PSP-relevant 1N4R isoform; hTau) was expressed in hindbrain cholinergic neurons. Compared to control subjects (GFP), rats with tau expression displayed deficits in a variety of behavioural paradigms: acoustic startle reflex, marble burying, horizontal ladder and hindlimb motor reflex. Postmortem, the hTau rats had significantly reduced number of cholinergic pedunculopontine tegmentum and dopaminergic substantia nigra neurons, as well as abnormal tau deposits. This preclinical model has multiple points of convergence with the clinical features of PSP, some of which distinguish between PSP and Parkinson's disease.
Collapse
Affiliation(s)
- Gabriella King
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Kaliana M Veros
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | | | | | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
18
|
Mitra S, Bult-Ito A. Bidirectional Behavioral Selection in Mice: A Novel Pre-clinical Approach to Examining Compulsivity. Front Psychiatry 2021; 12:716619. [PMID: 34566718 PMCID: PMC8458042 DOI: 10.3389/fpsyt.2021.716619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) and related disorders (OCRD) is one of the most prevalent neuropsychiatric disorders with no definitive etiology. The pathophysiological attributes of OCD are driven by a multitude of factors that involve polygenic mechanisms, gender, neurochemistry, physiological status, environmental exposures and complex interactions among these factors. Such complex intertwining of contributing factors imparts clinical heterogeneity to the disorder making it challenging for therapeutic intervention. Mouse strains selected for excessive levels of nest- building behavior exhibit a spontaneous, stable and predictable compulsive-like behavioral phenotype. These compulsive-like mice exhibit heterogeneity in expression of compulsive-like and other adjunct behaviors that might serve as a valuable animal equivalent for examining the interactions of genetics, sex and environmental factors in influencing the pathophysiology of OCD. The current review summarizes the existing findings on the compulsive-like mice that bolster their face, construct and predictive validity for studying various dimensions of compulsive and associated behaviors often reported in clinical OCD and OCRD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- OCRD Biomed LLC, Fairbanks, AK, United States
| |
Collapse
|
19
|
Bakker GM. Psychotherapy outcome research: Implications of a new clinical taxonomy. Clin Psychol Psychother 2021; 29:178-199. [PMID: 34180112 DOI: 10.1002/cpp.2638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
Since the publication of DSM-III in 1980, the scientist-practitioner gap in clinical psychology has expanded, as almost all outcome research in clinical psychology has been on diagnosed mental disorders within a medical model using drug trial methodologies, whereas most practising clinicians undertake functional analyses and case formulations of clinical psychological problems (CPPs) and then apply tailored interventions within an ongoing hypothesis-testing methodology. But comparatively reliable assessment and generalizable conclusions in psychotherapy outcome research require a comprehensive theory-derived conception or operational definition of 'CPPs', standardized functional analyses, and a taxonomy of CPPs comparable to DSM's listings of mental disorders. An alternative conception and taxonomy of CPPs have recently been proposed, offering improvements in the reliability and generalizability of case formulation-based psychotherapy outcome research. It conceives of CPPs as instances of the formation and operation of self-sustaining problem-maintaining circles (PMCs) of psychological-level causal elements-that is, at the level of cognitions, behaviours, emotions, and events or situations (stimuli). The paper describes this new conception of CPPs, a subsequent nascent taxonomy of evidence-based PMCs which standardizes the underlying mechanisms that maintain CPPs, and ensuing benefits to research (as well as to practice) in clinical psychology. These benefits include being able to encompass all treatment-worthy CPPs, not just diagnosable mental disorders; to assess theory-derived intervention strategies, not just arbitrary therapy bundles; and to directly feed back into psychological theories, not just expand an atheoretical list of patented "evidence supported therapies."
Collapse
Affiliation(s)
- Gary M Bakker
- School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
20
|
Chen X, Yue J, Luo Y, Huang L, Li B, Wen S. Distinct behavioral traits and associated brain regions in mouse models for obsessive-compulsive disorder. Behav Brain Funct 2021; 17:4. [PMID: 34006308 PMCID: PMC8132448 DOI: 10.1186/s12993-021-00177-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a mental disease with heterogeneous behavioral phenotypes, including repetitive behaviors, anxiety, and impairments in cognitive functions. The brain regions related to the behavioral heterogeneity, however, are unknown. METHODS We systematically examined the behavioral phenotypes of three OCD mouse models induced by pharmacological reagents [RU24969, 8-hydroxy-DPAT hydrobromide (8-OH-DPAT), and 1-(3-chlorophenyl) piperazine hydrochloride-99% (MCPP)], and compared the activated brain regions in each model, respectively. RESULTS We found that the mouse models presented distinct OCD-like behavioral traits. RU24969-treated mice exhibited repetitive circling, anxiety, and impairments in recognition memory. 8-OH-DPAT-treated mice exhibited excessive spray-induced grooming as well as impairments in recognition memory. MCPP-treated mice showed only excessive self-grooming. To determine the brain regions related to these distinct behavioral traits, we examined c-fos expression to indicate the neuronal activation in the brain. Our results showed that RU24969-treated mice exhibited increased c-fos expression in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), prelimbic cortex (PrL), infralimbic cortex (IL), nucleus accumbens (NAc), hypothalamus, bed nucleus of the stria terminalis, lateral division, intermediate part (BSTLD), and interstitial nucleus of the posterior limb of the anterior commissure, lateral part (IPACL), whereas in 8-OH-DPAT-treated mice showed increased c-fos expression in the ACC, PrL, IL, OFC, NAc shell, and hypothalamus. By contrast, MCPP did not induce higher c-fos expression in the cortex than control groups. CONCLUSION Our results indicate that different OCD mouse models exhibited distinct behavioral traits, which may be mediated by the activation of different brain regions.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 Meihua West Road, Zhuhai, 519000, Guangdong Province, China
| | - Jihui Yue
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 Meihua West Road, Zhuhai, 519000, Guangdong Province, China
| | - Yuchong Luo
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 Meihua West Road, Zhuhai, 519000, Guangdong Province, China
| | - Lianyan Huang
- Neuroscience Program, Department of Pathophysiology, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510810, China.
| | - Boxing Li
- Neuroscience Program, Department of Physiology, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510810, China.
| | - Shenglin Wen
- Department of Psychology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No.52 Meihua West Road, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
21
|
Gimenez-Llort L, Alveal-Mellado D. Digging Signatures in 13-Month-Old 3xTg-AD Mice for Alzheimer's Disease and Its Disruption by Isolation Despite Social Life Since They Were Born. Front Behav Neurosci 2021; 14:611384. [PMID: 33536883 PMCID: PMC7847935 DOI: 10.3389/fnbeh.2020.611384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
The severity of this pandemic's scenarios will leave significant psychological traces in low resistant and resilient individuals. Increased incidence of depression, anxiety, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder has already been reported. The loss of human lives and the implementation of physical distance measures in the pandemic and post-COVID scenarios may have a greater impact on the elderly, mostly in those with dementia, as OCD and other neuropsychiatric symptoms (NPS) are quite prevalent in this population. Modeling NPS in animals relies in neuroethological perspectives since the response to new situations and traumatic events, critical for survival and adaptation to the environment, is strongly preserved in the phylogeny. In the laboratory, mice dig vigorously in deep bedding to bury food pellets or small objects they may find. This behavior, initially used to screen anxiolytic activity, was later proposed to model better meaningless repetitive and perseverative behaviors characteristic of OCD or autism spectrum disorders. Other authors found that digging can also be understood as part of the expression of the animals' general activity. In the present brief report, we studied the digging ethograms in 13-month-old non-transgenic and 3xTg-AD mice modeling normal aging and advanced Alzheimer's disease (AD), respectively. This genetic model presents AD-like cognitive dysfunction and NPS-like phenotype, with high mortality rates at this age, mostly in males. This allowed us to observe the digging pattern's disruption in a subgroup of 3xTg-AD mice that survived to their cage mates. Two digging paradigms involving different anxiogenic and contextual situations were used to investigate their behavior. The temporal course and intensity of digging were found to increase in those 3xTg-AD mice that had lost their "room partners" despite having lived in social structures since they were born. However, when tested under neophobia conditions, this behavior's incidence was low (delayed), and the temporal pattern was disrupted, suggesting worsening of this NPS-like profile. The outcomes showed that this combined behavioral paradigm unveiled distinct features of digging signatures that can be useful to study these perseverative behaviors and their interplay with anxiety states already present in the AD scenario and their worsening by naturalistic/forced isolation.
Collapse
Affiliation(s)
- Lydia Gimenez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Mishra RK, Mishra A, Gupta A. Magic Shotgun Nature with Scattergun Approach of Curcumin Repurposing in Obsessive-compulsive Disorder: A Novel Metaphysician of Drug Discovery. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 20:975-981. [PMID: 33970849 DOI: 10.2174/1871527320666210506185510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Obsessive-Compulsive Disorder (OCD) is an intricate, debilitating neuropsychiatric disorder. Exclusively, Selective Serotonin Reuptake Inhibitors (SSRIs) are effective agents used for the treatment of OCD. However, SSRIs are not a magic pill-they do not respond adequately to everybody. In this consideration, a single drug target (magic bullet) is only a slightly superior option for all patients with a lot of pathognomonic signs. OBJECTIVE The principal aim of the current study was to check the potential contribution of repurposing of magic shotgun nature of curcumin (rhizomes of Curcuma longa) with scattergun approach- proceeding a pioneer 'fine-tune' for obsessive-compulsive disorder. METHOD Swiss albino mice (male 20 to 25 gram) were grouped into different groups (n = 6) used for the MBB (marble-burying behaviour) and MA (motor activity) test as a model for evaluation of anti-compulsive activity (Anti-OCD). Ethanolic extract of Curcuma longa (EECL-10, 15, 25, 40 mg/kg), or SSRI (fluoxetine 5, 10, 15 mg/kg) followed by pre-treated with either sub effective dose of fluoxetine attenuated MBB without effected the MA, or neurotoxin p-chlorophenyl alanine induced compulsive behavior and specific 5-HT receptors agonists/ antagonist, intraperitoneally revealed neuromodulation. RESULTS EECL (40 mg/kg) significantly attenuated the MBB. Although, during treatments, none of the above had any critical impact on MA. p < 0.05 was considered significant in every case. CONCLUSION Multiple drug-target interactions with multifarious biogenic receptors, supervene unexpected side effects followed by the repurposing of wanted effects (scattergun effect) were evoked by curcumin treatment. Finally, the study shows that EECL (curcumin) has anti-compulsive activity, which is mediated by neuromodulation with 5-HT receptors.
Collapse
Affiliation(s)
- Rahul Kumar Mishra
- Department of Pharmacology, Faculty of Pharmacy, Institute of Technology and Management GIDA Gorakhpur (Dr. A P J Abdul Kalam Technical University Lucknow), U.P, India
| | - Ashutosh Mishra
- Department of Pharmacognosy, Faculty of Pharmacy, Kashi Institute of Pharmacy, Varanasi (Dr. A P J Abdul Kalam Technical University Lucknow), U.P, India
| | - Amresh Gupta
- Department of Pharmacognosy, Faculty of Pharmacy, Goel Institute of Pharmacy, Lucknow (Dr. A P J Abdul Kalam Technical University Lucknow), U.P, India
| |
Collapse
|
23
|
Ozkul Y, Taheri S, Bayram KK, Sener EF, Mehmetbeyoglu E, Öztop DB, Aybuga F, Tufan E, Bayram A, Dolu N, Zararsiz G, Kianmehr L, Beyaz F, Doganyigit Z, Cuzin F, Rassoulzadegan M. A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep 2020; 10:9011. [PMID: 32514154 PMCID: PMC7280218 DOI: 10.1038/s41598-020-65847-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental pathologies that impair social communication and cause repetitive behaviors. The suggested roles of noncoding RNAs in pathology led us to perform a comparative analysis of the microRNAs expressed in the serum of human ASD patients. The analysis of a cohort of 45 children with ASD revealed that six microRNAs (miR-19a-3p, miR-361-5p, miR-3613-3p, miR-150-5p, miR-126-3p, and miR-499a-5p) were expressed at low to very low levels compared to those in healthy controls. A similar but less pronounced decrease was registered in the clinically unaffected parents of the sick children and in their siblings but never in any genetically unrelated control. Results consistent with these observations were obtained in the blood, hypothalamus and sperm of two of the established mouse models of ASD: valproic acid-treated animals and Cc2d1a+/- heterozygotes. In both instances, the same characteristic miRNA profile was evidenced in the affected individuals and inherited together with disease symptoms in the progeny of crosses with healthy animals. The consistent association of these genetic regulatory changes with the disease provides a starting point for evaluating the changes in the activity of the target genes and, thus, the underlying mechanism(s). From the applied societal and medical perspectives, once properly confirmed in large cohorts, these observations provide tools for the very early identification of affected children and progenitors.
Collapse
Affiliation(s)
- Yusuf Ozkul
- Erciyes University Medical Faculty, Medical Genetics Department, Kayseri, Turkey. .,Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.
| | - Serpil Taheri
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.,Erciyes University Medical Faculty, Medical Biology Department, Kayseri, Turkey
| | - Kezban Korkmaz Bayram
- Erciyes University Medical Faculty, Medical Genetics Department, Kayseri, Turkey.,Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Elif Funda Sener
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.,Erciyes University Medical Faculty, Medical Biology Department, Kayseri, Turkey
| | - Ecmel Mehmetbeyoglu
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Didem Behice Öztop
- Ankara University, Medical Faculty, Child and Adolescent Psychiatry Department, Ankara, Turkey
| | - Fatma Aybuga
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Esra Tufan
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Arslan Bayram
- Erciyes University Medical Faculty, Medical Genetics Department, Kayseri, Turkey
| | - Nazan Dolu
- Baskent University, Medical Faculty, Physiology Department, Ankara, Turkey
| | - Gokmen Zararsiz
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | | | - Feyzullah Beyaz
- Erciyes University Veterinary Faculty, Histology and Embryology Department, Kayseri, Turkey
| | - Züleyha Doganyigit
- Bozok University, Medical Faculty, Histology and Embryology Department, Yozgat, Turkey
| | | | - Minoo Rassoulzadegan
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey. .,Université Côte d'Azur, CNRS, Inserm, France.
| |
Collapse
|
24
|
Naturalistic operant responses in deer mice (Peromyscus maniculatus bairdii) and its response to outcome manipulation and serotonergic intervention. Behav Pharmacol 2020; 31:343-358. [DOI: 10.1097/fbp.0000000000000536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1-39. [PMID: 30361863 DOI: 10.3758/s13415-018-00653-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rodent marble-burying behavior in the marble-burying test (MBT) is employed as a model or measure to study anxiety- and compulsive-like behaviors or anxiolytic and anticompulsive drug action. However, the test responds variably to a range of pharmacological interventions, and little consensus exists regarding specific methodologies for its execution. Regardless, the test is widely applied to investigate the effects of pharmacological, genetic, and behavioral manipulations on purported behaviors related to the said neuropsychiatric constructs. Therefore, in the present review we attempt to expound the collective translational significance of the MBT. We do this by (1) reviewing burying behavior as a natural behavioral phenotype, (2) highlighting key aspects of anxiety and obsessive-compulsive disorder from a translational perspective, (3) reviewing the history and proof of concept of the MBT, (4) critically appraising potential methodological confounds in execution of the MBT, and (5) dissecting responses of the MBT to various pharmacological interventions. We conclude by underlining that the collective translational value of the MBT will be strengthened by contextually valid experimental designs and objective reporting of data.
Collapse
|
26
|
Straathof M, Blezer ELA, van Heijningen C, Smeele CE, van der Toorn A, Buitelaar JK, Glennon JC, Otte WM, Dijkhuizen RM. Structural and functional MRI of altered brain development in a novel adolescent rat model of quinpirole-induced compulsive checking behavior. Eur Neuropsychopharmacol 2020; 33:58-70. [PMID: 32151497 DOI: 10.1016/j.euroneuro.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 01/31/2023]
Abstract
Obsessive-compulsive disorder (OCD) is increasingly considered to be a neurodevelopmental disorder. However, despite insights in neural substrates of OCD in adults, less is known about mechanisms underlying compulsivity during brain development in children and adolescents. Therefore, we developed an adolescent rat model of compulsive checking behavior and investigated developmental changes in structural and functional measures in the frontostriatal circuitry. Five-weeks old Sprague Dawley rats were subcutaneously injected with quinpirole (n = 21) or saline (n = 20) twice a week for five weeks. Each injection was followed by placement in the middle of an open field table, and compulsive behavior was quantified as repeated checking behavior. Anatomical, resting-state functional and diffusion MRI at 4.7T were conducted before the first and after the last quinpirole/saline injection to measure regional volumes, functional connectivity and structural integrity in the brain, respectively. After consecutive quinpirole injections, adolescent rats demonstrated clear checking behavior and repeated travelling between two open-field zones. MRI measurements revealed an increase of regional volumes within the frontostriatal circuits and an increase in fractional anisotropy (FA) in white matter areas during maturation in both experimental groups. Quinpirole-injected rats showed a larger developmental increase in FA values in the internal capsule and forceps minor compared to control rats. Our study points toward a link between development of compulsive behavior and altered white matter maturation in quinpirole-injected adolescent rats, in line with observations in pediatric patients with compulsive phenotypes. This novel animal model provides opportunities to investigate novel treatments and underlying mechanisms for patients with early-onset OCD specifically.
Collapse
Affiliation(s)
- Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Caroline van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Christel E Smeele
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands; Department of Pediatric Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
27
|
Abounoori M, Maddah MM, Akbari E, Houshmand G, Ardeshiri MR. The Effect of Orexin Receptor Antagonism on Quinpirole-Induced Compulsive-Like Checking Behavior in Rats. Neurotox Res 2020; 38:18-26. [PMID: 32207079 DOI: 10.1007/s12640-020-00196-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022]
Abstract
The orexinergic system supposedly plays a role in stress circuits for arousing behaviors during anxiety, suggesting that it may play a role also in neural circuits mediating the compulsive behavior characteristic of obsessive-compulsive disorder (OCD). This study aims to investigate the roles of the orexinergic system in the development of OCD behaviors, using as preparation the induction of compulsive checking by chronic treatment with the D2/D3 agonist, quinpirole. Repeated injections of quinpirole (0.5 mg/kg, twice per week for a total of 10 injections) were used to induce compulsive checking. In separate groups of rats, OX1R (SB334867-A; 10 μg i.c.v) and OX2R (TCS-OX2-29; 10 μg i.c.v) receptor antagonists were co-administered together with quinpirole. Checking behavior in a large open field was measured after the first, fifth, and tenth injections of the drugs. SB334867-A attenuated checking behavior and the level of anxiety. TCS-OX2-29 administration ameliorated anxiety but did not block the development of compulsive checking. Orexin 1 receptors seem to play a more critical role than orexin 2 receptors in the induction of compulsive checking. Considering that the quinpirole sensitization model of OCD involves activation of dopamine systems and sensitization to quinpirole, it is suggested that neural interaction between orexigenic and dopamine systems may be important in the pathogenesis of OCD.
Collapse
Affiliation(s)
- Mahdi Abounoori
- Medical Student, Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Moein Maddah
- Medical Student, Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Esmaeil Akbari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, P.O. Box: 481751665, Sari, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Motahareh Rouhi Ardeshiri
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. .,Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, P.O. Box: 481751665, Sari, Iran.
| |
Collapse
|
28
|
Armstrong JL, Casey AB, Saraf TS, Mukherjee M, Booth RG, Canal CE. ( S)-5-(2'-Fluorophenyl)- N, N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine, a Serotonin Receptor Modulator, Possesses Anticonvulsant, Prosocial, and Anxiolytic-like Properties in an Fmr1 Knockout Mouse Model of Fragile X Syndrome and Autism Spectrum Disorder. ACS Pharmacol Transl Sci 2020; 3:509-523. [PMID: 32566916 DOI: 10.1021/acsptsci.9b00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disabilities and a plethora of neuropsychiatric symptoms. FXS is the leading monogenic cause of autism spectrum disorder (ASD), which is defined clinically by repetitive and/or restrictive patterns of behavior and social communication deficits. Epilepsy and anxiety are also common in FXS and ASD. Serotonergic neurons directly innervate and modulate the activity of neurobiological circuits altered in both disorders, providing a rationale for investigating serotonin receptors (5-HTRs) as targets for FXS and ASD drug discovery. Previously we unveiled an orally active aminotetralin, (S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT), that exhibits partial agonist activity at 5-HT1ARs, 5-HT2CRs, and 5-HT7Rs and that reduces repetitive behaviors and increases social approach behavior in wild-type mice. Here we report that in an Fmr1 knockout mouse model of FXS and ASD, FPT is prophylactic for audiogenic seizures. No FPT-treated mice displayed audiogenic seizures, compared to 73% of vehicle-treated mice. FPT also exhibits anxiolytic-like effects in several assays and increases social interactions in both Fmr1 knockout and wild-type mice. Furthermore, FPT increases c-Fos expression in the basolateral amygdala, which is a preclinical effect produced by anxiolytic medications. Receptor pharmacology assays show that FPT binds competitively and possesses rapid association and dissociation kinetics at 5-HT1ARs and 5-HT7Rs, yet has slow association and rapid dissociation kinetics at 5-HT2CRs. Finally, we reassessed and report FPT's affinity and function at 5-HT1ARs, 5-HT2CRs, and 5-HT7Rs. Collectively, these observations provide mounting support for further development of FPT as a pharmacotherapy for common neuropsychiatric symptoms in FXS and ASD.
Collapse
Affiliation(s)
- Jessica L Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Austen B Casey
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Tanishka S Saraf
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Munmun Mukherjee
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Raymond G Booth
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
29
|
van Staden C, de Brouwer G, Botha TL, Finger-Baier K, Brand SJ, Wolmarans D. Dopaminergic and serotonergic modulation of social reward appraisal in zebrafish (Danio rerio) under circumstances of motivational conflict: Towards a screening test for anti-compulsive drug action. Behav Brain Res 2020; 379:112393. [PMID: 31785362 DOI: 10.1016/j.bbr.2019.112393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
Abstract
Cognitive flexibility, shown to be impaired in patients presenting with compulsions, is dependent on balanced dopaminergic and serotonergic interaction. Towards the development of a zebrafish (Danio rerio) screening test for anti-compulsive drug action, we manipulated social reward appraisal under different contexts by means of dopaminergic (apomorphine) and serotonergic (escitalopram) intervention. Seven groups of zebrafish (n = 6 per group) were exposed for 24 days (1 h per day) to either control (normal tank water), apomorphine (50 or 100 μg/L), escitalopram (500 or 1000 μg/L) or a combination (A100/E500 or A100/E1000 μg/L). Contextual reward appraisal was assessed over three phases i.e. Phase 1 (contingency association), Phase 2 (dissociative testing), and Phase 3 (re-associative testing). We demonstrate that 1) sight of social conspecifics is an inadequate motivational reinforcer under circumstances of motivational conflict, 2) dopaminergic and serotonergic intervention lessens the importance of an aversive stimulus, increasing the motivational valence of social reward, 3) while serotoninergic intervention maintains reward directed behavior, high-dose dopaminergic intervention bolsters cue-directed responses and 4) high-dose escitalopram reversed apomorphine-induced behavioral inflexibility. The results reported here are supportive of current dopamine-serotonin opponency theories and confirm the zebrafish as a potentially useful species in which to investigate compulsive-like behaviors.
Collapse
Affiliation(s)
- C van Staden
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - T L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - K Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - S J Brand
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - D Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
30
|
Dixit PV, Sahu R, Mishra DK. Marble-burying behavior test as a murine model of compulsive-like behavior. J Pharmacol Toxicol Methods 2020; 102:106676. [PMID: 31954839 DOI: 10.1016/j.vascn.2020.106676] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/04/2023]
Abstract
Object burying by rodents is a popular screening tool for anxiolytic agents. However, modulation of marble-burying by serotonin reuptake inhibitors prompted its link to obsessive-compulsive disorder/compulsive-like behavior. The Marble-burying behavior test is an acute test; however, some investigators incorporate the sub-acute treatment regimen as an essential component for screening anti-compulsive agents. The test exhibits between-laboratory methodological differences and demonstrates positive treatment responses to an array of pharmacotherapies, creating doubts about its predictive validity and construct validity. Numerous reviews are available on marble-burying behavior test, which incorporates the test as a part of anti-compulsive behavior-like screens, but none has made it a sole subject-matter for discussion. This review attempts to provide a comprehensive account of the marble-burying test as a model of compulsive-like disorders. It envisages the model's scientific origins, the preclinical research done and its correlation with the clinical research outcomes, and a detailed discussion about its validity. In conclusion, there appears a need to address the issue of construct and predictive validity of the model authoritatively; or the paradigm may remain squandered in the field of obsessive-compulsive disorder research.
Collapse
Affiliation(s)
- Pankaj Vinod Dixit
- Indore Institute of Pharmacy, Rau-Pithampur Road, Opposite Indian Institute of Management, Rau, Indore, 453331, M.P., India.
| | - Rohit Sahu
- Indore Institute of Pharmacy, Rau-Pithampur Road, Opposite Indian Institute of Management, Rau, Indore, 453331, M.P., India
| | - Dinesh Kumar Mishra
- Indore Institute of Pharmacy, Rau-Pithampur Road, Opposite Indian Institute of Management, Rau, Indore, 453331, M.P., India
| |
Collapse
|
31
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
32
|
Zhan Y, Xia J, Wang X. Effects of glutamate-related drugs on anxiety and compulsive behavior in rats with obsessive-compulsive disorder. Int J Neurosci 2019; 130:551-560. [PMID: 31680595 DOI: 10.1080/00207454.2019.1684276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuhua Zhan
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Xia
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xumei Wang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Szczepanik JC, de Almeida GRL, Cunha MP, Dafre AL. Repeated Methylglyoxal Treatment Depletes Dopamine in the Prefrontal Cortex, and Causes Memory Impairment and Depressive-Like Behavior in Mice. Neurochem Res 2019; 45:354-370. [PMID: 31786717 DOI: 10.1007/s11064-019-02921-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl molecule that promotes the formation of advanced glycation end products (AGEs), which are believed to play a key role in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, Swiss mice were treated with MGO by intraperitoneal injection to investigate its effects on motor activity, mood, and cognition. Acute MGO treatment heavily decreased locomotor activity in the open field test at higher doses (80-200 mg/kg), an effect not observed at lower doses (10-50 mg/kg). Several alterations were observed 4 h after a single MGO injection (10-50 mg/kg): (a) plasma MGO levels were increased, (b) memory was impaired (object location task), (c) anxiolytic behavior was observed in the open field and marble burying test, and (d) depressive-like behavior was evidenced as evaluated by the tail suspension test. Biochemical alterations in the glutathione and glyoxalase systems were not observed 4 h after MGO treatment. Mice were also treated daily with MGO at 0, 10, 25 and 50 mg/kg for 11 days. From the 5th to the 11th day, several behavioral end points were evaluated, resulting in: (a) absence of motor impairment as evaluated in the open field, horizontal bars and pole test, (b) depressive-like behavior observed in the tail suspension test, and (c) cognitive impairments detected on working, short- and long-term memory when mice were tested in the Y-maze spontaneous alternation, object location and recognition tests, and step-down inhibitory avoidance task. An interesting finding was a marked decrease in dopamine levels in the prefrontal cortex of mice treated with 50 mg/kg MGO for 11 days, along with a ~ 25% decrease in the Glo1 content. The MGO-induced dopamine depletion in the prefrontal cortex may be related to the observed memory deficits and depressive-like behavior, an interesting topic to be further studied as a potentially novel route for MGO toxicity.
Collapse
Affiliation(s)
- Jozimar Carlos Szczepanik
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gudrian Ricardo Lopes de Almeida
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Mauricio Peña Cunha
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Alcir Luiz Dafre
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
34
|
Witt NA, Lee B, Ghent K, Zhang WQ, Pehrson AL, Sánchez C, Gould GG. Vortioxetine Reduces Marble Burying but Only Transiently Enhances Social Interaction Preference in Adult Male BTBR T +Itpr3 tf/J Mice. ACS Chem Neurosci 2019; 10:4319-4327. [PMID: 31468969 DOI: 10.1021/acschemneuro.9b00386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vortioxetine is a multimodal antidepressant with agonist activity at serotonin (5-HT)1A and 5-HT1B receptors that blocks the 5-HT transporter (SERT). Previously in male BTBR T+Itpr3tf/J (BTBR) mice, the 5-HT1A partial agonist buspirone and SERT blocker fluoxetine enhanced social interaction but did not reduce marble burying. We hypothesized that vortioxetine through its actions at SERT and 5-HT1A could improve BTBR sociability and via 5-HT1B could reduce burying better than sertraline, a selective SERT blocker. Vortioxetine (5-10 mg/kg) or sertraline (2 mg/kg) was administered 30 min presociability and 75 min prior to marble burying tests. Vortioxetine (10 mg/kg) occupancy (%) was 84 ± 1 for SERT, 31 ± 12 for 5-HT1A, and 80 ± 5 for 5-HT1B in brain at 110 min postinjection, and serum oxytocin was 24% lower (p < 0.01) in vortioxetine-treated mice. Vortioxetine reduced novel object investigation, whereas sertraline enhanced overall sociability. However, the vortioxetine-induced increase in social sniffing was transient, as it was lost with 60-120 min presociability test delays in subsequent experiments. Vortioxetine and sertraline both reduced BTBR marble burying. Based on vortioxetine occupancy, actions at SERT and/or 5-HT1B are more likely to underlie its behavioral effects than 5-HT1A. Overall, vortioxetine has great potential for suppressing restrictive-repetitive behaviors, but it appears less promising as a sociability enhancer.
Collapse
Affiliation(s)
- Nasriya A. Witt
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Benita Lee
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- University of Texas, Austin, Texas 78705, United States
| | - Kaylee Ghent
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- Trinity University, San Antonio, Texas 78212, United States
| | - Wynne Q. Zhang
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- Baylor College of Medicine, Houston, Texas 77030, United States
| | - Alan L. Pehrson
- Department of Psychology, Monclair State University, Montclair, New Jersey 07043, United States
| | - Connie Sánchez
- Institute of Clinical Medicine, Translational Neuropsychiatry, University of Aarhus, Risskov, Denmark 8240
| | - Georgianna G. Gould
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
35
|
Howe JR, Bear MF, Golshani P, Klann E, Lipton SA, Mucke L, Sahin M, Silva AJ. The mouse as a model for neuropsychiatric drug development. Curr Biol 2019; 28:R909-R914. [PMID: 30205056 DOI: 10.1016/j.cub.2018.07.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Much has been written about the validity of mice as a preclinical model for brain disorders. Critics cite numerous examples of apparently effective treatments in mouse models that failed in human clinical trials, raising the possibility that the two species' neurobiological differences could explain the high translational failure rate in psychiatry and neurology (neuropsychiatry). However, every stage of translation is plagued by complex problems unrelated to neurobiological conservation. Therefore, although these case studies are intriguing, they cannot alone determine whether these differences observed account for translation failures. Our analysis of the literature indicates that most neuropsychiatric treatments used in humans are at least partially effective in mouse models, suggesting that neurobiological differences are unlikely to be the main cause of neuropsychiatric translation failures.
Collapse
Affiliation(s)
- James R Howe
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Current address: Neurosciences Graduate Program, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peyman Golshani
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stuart A Lipton
- Neuroscience Translational Center and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, and Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Wolmarans DW, Stein DJ, Harvey BH. A Psycho-Behavioral Perspective on Modelling Obsessive-Compulsive Disorder (OCD) in Animals: The Role of Context. Curr Med Chem 2019; 25:5662-5689. [PMID: 28545371 DOI: 10.2174/0929867324666170523125256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/18/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023]
Abstract
Obsessive-compulsive disorder is a heterogeneous and debilitating condition, characterized by intrusive thoughts and compulsive repetition. Animal models of OCD are important tools that have the potential to contribute significantly to our understanding of the condition. Although there is consensus that pre-clinical models are valuable in elucidating the underlying neurobiology in psychiatric disorders, the current paper attempts to prompt ideas on how interpretation of animal behavior can be expanded upon to more effectively converge with the human disorder. Successful outcomes in psychopharmacology involve rational design and synthesis of novel compounds and their testing in well-designed animal models. As part of a special journal issue on OCD, this paper will 1) review the psychobehavioral aspects of OCD that are of importance on how the above ideas can be articulated, 2) briefly elaborate on general issues that are important for the development of animal models of OCD, with a particular focus on the role and importance of context, 3) propose why translational progress may often be less than ideal, 4) highlight some of the significant contributions afforded by animal models to advance understanding, and 5) conclude by identifying novel behavioral constructs for future investigations that may contribute to the face, predictive and construct validity of OCD animal models. We base these targets on an integrative approach to face and construct validity, and note that the issue of treatment-resistance in the clinical context should receive attention in current animal models of OCD.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.,MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
37
|
Babbs RK, Beierle JA, Ruan QT, Kelliher JC, Chen MM, Feng AX, Kirkpatrick SL, Benitez FA, Rodriguez FA, Pierre JJ, Anandakumar J, Kumar V, Mulligan MK, Bryant CD. Cyfip1 Haploinsufficiency Increases Compulsive-Like Behavior and Modulates Palatable Food Intake in Mice: Dependence on Cyfip2 Genetic Background, Parent-of Origin, and Sex. G3 (BETHESDA, MD.) 2019; 9:3009-3022. [PMID: 31324746 PMCID: PMC6723122 DOI: 10.1534/g3.119.400470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Binge eating (BE) is a heritable trait associated with eating disorders and involves episodes of rapid, large amounts of food consumption. We previously identified cytoplasmic FMR1-interacting protein 2 (Cyfip2) as a genetic factor underlying compulsive-like BE in mice. CYFIP2 is a homolog of CYFIP1 which is one of four paternally-deleted genes in patients with Type I Prader-Willi Syndrome (PWS), a neurodevelopmental disorder whereby 70% of cases involve paternal 15q11-q13 deletion. PWS symptoms include hyperphagia, obesity (if untreated), cognitive deficits, and obsessive-compulsive behaviors. We tested whether Cyfip1 haploinsufficiency (+/-) would enhance compulsive-like behavior and palatable food (PF) intake in a parental origin- and sex-dependent manner on two Cyfip2 genetic backgrounds, including the BE-prone C57BL/6N (Cyfip2N/N) background and the BE-resistant C57BL/6J (Cyfip2J/J) background. Cyfip1+/- mice showed increased compulsive-like behavior on both backgrounds and increased PF intake on the Cyfip2N/N background. In contrast, maternal Cyfip1 haploinsufficiency on the BE-resistant Cyfip2J/J background induced a robust escalation in PF intake in wild-type Cyfip1J/J males while having no effect in Cyfip1J/- males. Notably, induction of behavioral phenotypes in wild-type males following maternal Fmr1+/- has previously been reported. In the hypothalamus, there was a paternally-enhanced reduction in CYFIP1 protein whereas in the nucleus accumbens, there was a maternally-enhanced reduction in CYFIP1 protein. Nochange in FMR1 protein (FMRP) was observed in Cyfip1+/- mice, regardless of parental origin. To summarize, Cyfip1 haploinsufficiency increased compulsive-like behavior and induced genetic background-dependent, sex-dependent, and parent-of-origin-dependent effects on PF consumption and CYFIP1 expression that could have relevance for neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Richard K Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
- T32 NIGMS Training Program in Biomolecular Pharmacology
- Boston University's Transformative Training Program in Addiction Science (TTPAS), Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118
| | - Qiu T Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
- T32 NIGMS Training Program in Biomolecular Pharmacology
- Boston University's Transformative Training Program in Addiction Science (TTPAS), Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Ashley X Feng
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Stacey L Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Fabiola A Benitez
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Fred A Rodriguez
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Johanne J Pierre
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Jeya Anandakumar
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Vivek Kumar
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, and
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, 71 S. Manassas St, Memphis, TN 38163
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| |
Collapse
|
38
|
Kasten CR, Holmgren EB, Wills TA. Metabotropic Glutamate Receptor Subtype 5 in Alcohol-Induced Negative Affect. Brain Sci 2019; 9:E183. [PMID: 31366097 PMCID: PMC6721373 DOI: 10.3390/brainsci9080183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
Allosteric modulators of metabotropic glutamate 5 receptors (mGlu5 receptors) have been identified as a promising treatment to independently alleviate both negative affective states and ethanol-seeking and intake. However, these conditions are often comorbid and might precipitate one another. Acute and protracted ethanol withdrawal can lead to negative affective states. In turn, these states are primary drivers of alcohol relapse, particularly among women. The current review synthesizes preclinical studies that have observed the role of mGlu5 receptor modulation in negative affective states following ethanol exposure. The primary behavioral assays discussed are ethanol-seeking and intake, development and extinction of ethanol-associated cues and contexts, behavioral despair, and anxiety-like activity. The work done to-date supports mGlu5 receptor modulation as a promising target for mediating negative affective states to reduce ethanol intake or prevent relapse. Limitations in interpreting these data include the lack of models that use alcohol-dependent animals, limited use of adolescent and female subjects, and a lack of comprehensive evaluations of negative affective-like behavior.
Collapse
Affiliation(s)
- Chelsea R Kasten
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA
| | - Eleanor B Holmgren
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA
| | - Tiffany A Wills
- LSU Health Sciences Center-New Orleans, Department of Cell Biology and Anatomy, Medical Education Building, 1901 Perdido Street, Room 6103, New Orleans, LA 70112, USA.
| |
Collapse
|
39
|
Odland AU, Jessen L, Fitzpatrick CM, Andreasen JT. 8-OH-DPAT Induces Compulsive-like Deficit in Spontaneous Alternation Behavior: Reversal by MDMA but Not Citalopram. ACS Chem Neurosci 2019; 10:3094-3100. [PMID: 31244057 DOI: 10.1021/acschemneuro.8b00593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rodents exhibit natural exploratory behaviors, which can be measured by the spontaneous alternation behavior (SAB) test. Perseverance in this test induced by the 5-hydroxytryptamine 1A receptor (5-HT1AR) agonist, 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT), resembles compulsive behaviors observed in humans and manifests as reduced alternation ratio. This study characterized 8-OH-DPAT-induced perseverance in the SAB test in C57BL/6JOlaHsd male mice by coadministration of WAY100635, citalopram and the 5-HT releasing agent, 3,4-methylenedioxymethamphetamine (MDMA), to deepen the understanding of 5-HT-dependent mechanisms. The 5-HT1AR mechanism of 8-OH-DPAT (1.0 mg/kg, p < 0.01) on perseverance was confirmed by coadministration of the 5-HT1AR antagonist, WAY100635 (2.0 mg/kg, p < 0.05), which attenuated the effects of 8-OH-DPAT. Such effects could also be reversed by MDMA (1.0 mg/kg, p < 0.05; 10.0 mg/kg, p < 0.001) but not citalopram. These findings confirm the importance of 5-HT in regulating perseverative behavior. Future investigations are required to determine the predictive validity of the 8-OH-DPAT-disrupted SAB test as an inducible mouse model of compulsivity.
Collapse
Affiliation(s)
- Anna U. Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lea Jessen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ciarán M. Fitzpatrick
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jesper T. Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
40
|
Bakker GM. A new conception and subsequent taxonomy of clinical psychological problems. BMC Psychol 2019; 7:46. [PMID: 31291999 PMCID: PMC6617608 DOI: 10.1186/s40359-019-0318-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A taxonomy of the objects of study, theory, assessment, and intervention is critical to the development of all clinical sciences. Clinical psychology has been conceptually and administratively dominated by the taxonomy of an adjacent discipline - psychiatry's Diagnostic and statistical manual of mental disorders (DSM). Many have called for a 'paradigm shift' away from a medical nosology of diseases toward clinical psychology's own taxonomy of clinical psychological problems (CPPs), without being able to specify what is to be listed and classified. MAIN TEXT An examination of DSM's problems for clinical psychology, especially its lack of clinical utility, and a search for the essence of CPPs in what clinical psychologists actually do, leads to the proposal that: The critical psychological-level phenomenon underlying CPPs is the occurrence of 'problem-maintaining circles' (PMCs) of causally related cognitions, emotions, behaviours, and/or stimuli. This concept provides an empirically-derived, theory-based, treatment-relevant, categorical, essentialist, parsimonious, and nonstigmatizing definition of CPPs. It distinguishes psychological problems in which PMCs have not (yet?) formed, and which may respond to 'counseling', clinical psychological problems in which active PMCs require clinical intervention, and psychopathological problems which are unlikely to be 'cured' by PMC-breaking alone. CONCLUSION A subsequent classification and coding system of PMCs is proposed, and expected benefits to research, communication, and the quality of case formulation in clinical psychology are described, reliant upon a development effort of some meaningful fraction of that which has been devoted to the DSM.
Collapse
Affiliation(s)
- Gary M Bakker
- School of Medicine, University of Tasmania, Locked Bag 1377, Launceston, Tasmania, 7250, Australia.
| |
Collapse
|
41
|
Kulikova EA, Kulikov AV. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models. Expert Opin Ther Targets 2019; 23:655-667. [PMID: 31216212 DOI: 10.1080/14728222.2019.1634691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Tryptophan hydroxylase 2 (TPH2) is the key, rate-limiting enzyme of serotonin (5-HT) synthesis in the brain. Some polymorphic variants of the human Tph2 gene are associated with psychiatric disorders. Area covered: This review focuses on the mechanisms underlying the association between the TPH2 activity and behavioral disturbances in models of psychiatric disorders. Specifically, it discusses: 1) genetic and posttranslational mechanisms defining the TPH2 activity, 2) behavioral effects of knockout and loss-of-function mutations in the mouse Tph2 gene, 3) pharmacological inhibition and the activation of the TPH2 activity and 4) alterations in the brain TPH2 activity in animal models of psychiatric disorders. We show the dual role of the TPH2 activity: both deficit and excess of the TPH2 activity cause significant behavioral disturbances in animal models of depression, anxiety, aggression, obsessive-compulsive disorders, schizophrenia, and catalepsy. Expert opinion: Pharmacological chaperones correcting the structure of the TPH2 molecule are promising tools for treatment of some hereditary psychiatric disorders caused by loss-of-function mutations in the human Tph2 gene; while some stress-induced affective disorders, associated with the elevated TPH2 activity, may be effectively treated by TPH2 inhibitors. This dual role of TPH2 should be taken into consideration during therapy of psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Kulikova
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| | - Alexander V Kulikov
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| |
Collapse
|
42
|
Pulina NA, Kuznetsov AS, Krasnova AI, Novikova VV. Synthesis, Antimicrobial Activity, and Behavioral Response Effects of N-Substituted 4-Aryl-2-Hydroxy-4-Oxobut-2-Enoic Acid Hydrazides and Their Metal Complexes. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01983-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Behavioural and metabolomic changes from chronic dietary exposure to low-level deoxynivalenol reveal impact on mouse well-being. Arch Toxicol 2019; 93:2087-2102. [PMID: 31065730 DOI: 10.1007/s00204-019-02470-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
The mycotoxin deoxynivalenol (DON) has a high global prevalence in grain-based products. Biomarkers of exposure are detectable in most humans and farm animals. Considering the acute emetic and chronic anorexigenic toxicity of DON, maximum levels for food and feed have been implemented by food authorities. The tolerable daily intake (TDI) is 1 µg/kg body weight (bw)/day for the sum of DON and its main derivatives, which was based on the no-observed adverse-effect level (NOAEL) of 100 µg DON/kg bw/day for anorexic effects in rodents. Chronic exposure to a low-DON dose can, however, also cause inflammation and imbalanced neurotransmitter levels. In the present study, we therefore investigated the impact of a 2-week exposure at the NOAEL in mice by performing behavioural experiments, monitoring brain activation by c-Fos expression, and analysing changes in the metabolomes of brain and serum. We found that DON affected neuronal activity and innate behaviour in both male and female mice. Metabolite profiles were differentiable between control and treated mice. The behavioural changes evidenced at NOAEL reduce the safety margin to the established TDI and may be indicative of a risk for human health.
Collapse
|
44
|
Servaes S, Glorie D, Stroobants S, Staelens S. Neuroreceptor kinetics in rats repeatedly exposed to quinpirole as a model for OCD. PLoS One 2019; 14:e0213313. [PMID: 30845202 PMCID: PMC6405120 DOI: 10.1371/journal.pone.0213313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is a chronic, incapacitating, early onset psychiatric disorder that is characterized by obsessions and compulsions originating from a disturbance in the cortico-striato-thalamico-cortical circuit. We implemented the preclinical quinpirole (QP) rat model for compulsive checking in OCD to analyse the behaviour and visualize the D2R, mGluR5 and GLT1 density in order to contribute to the understanding of the neuroreceptor kinetics. Methods Animals (n = 14) were exposed to either saline (1 mL/kg) or QP (dopamine D2-agonist, 0.5 mg/kg) twice-weekly during 7 weeks. After each injection animals were placed on an open field test. After model setup, animals were placed in a behavioural cage equipped with tracking software and hardware in order to analyse the behaviour. Subsequently, sagittal slides were made of the CP in the right hemisphere and a staining was done with the D2R, mGluR5 and GLT-1 antibody to visualize the corresponding receptor. Results The QP animals displayed a strong increase in travelled distance (+596.70%) and in the number of homebase visits (+1222.90%) compared to the control animals. After chronic exposure to QP, animals had a significantly (p < 0.05) higher percentage of D2R density in the CP (7.92% ± 0.48%) versus 6.66% ± 0.28% in animals treated with saline. There were no differences for mGluR5 and GLT1 receptor density. Conclusions Chronic exposure to QP leads to hyperlocomotion and an increase in D2R density. Furthermore, as mGluR5 and GLT1 density did not seem to be directly affected, decreased levels of glutamate might have influenced the binding potential in earlier reports.
Collapse
Affiliation(s)
- Stijn Servaes
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Dorien Glorie
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Edegem, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
45
|
Wood J, LaPalombara Z, Ahmari SE. Monoamine abnormalities in the SAPAP3 knockout model of obsessive-compulsive disorder-related behaviour. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0023. [PMID: 29352023 DOI: 10.1098/rstb.2017.0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a leading cause of illness-related disability, but the neural mechanisms underlying OCD symptoms are unclear. One potential mechanism of OCD pathology is monoamine dysregulation. Because of the difficulty of studying monoamine signalling in patients, animal models offer a viable alternative to understanding this aspect of OCD pathophysiology. We used HPLC to characterize post-mortem monoamine levels in lateral orbitofrontal cortex (OFC), medial OFC, medial prefrontal cortex and dorsal and ventral striatum of SAPAP-3 knockout (KO) mice, a well-validated model of compulsive-like behaviours in OCD. As predicted from previous studies, excessive grooming was significantly increased in SAPAP-3 KO mice. Overall levels of the serotonin metabolite 5-hydroxyindoleacetic acid (HIAA) and the ratio of 5HIAA/serotonin (serotonin turnover) were increased in all cortical and striatal regions examined. In addition, dihydroxyphenylacetic acid/dopamine ratio was increased in lateral OFC, and HVA/dopamine ratio was increased in lateral and medial OFC. No baseline differences in serotonin or dopamine tissue content were observed. These data provide evidence of monoaminergic dysregulation in a translational model of OCD symptoms and are consistent with aberrant cortical and striatal serotonin and dopamine release/metabolism in SAPAP-3 KO mice. These results are guiding ongoing experiments using circuit and cell-type specific manipulations of dopamine and serotonin to determine the contributions of these monoaminergic systems to compulsive behaviours, and serve here as a touchstone for an expanded discussion of these techniques for precise circuit dissection.This article is part of the discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Jesse Wood
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| | - Zoe LaPalombara
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA .,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| |
Collapse
|
46
|
Costa G, Serra M, Pintori N, Casu MA, Zanda MT, Murtas D, De Luca MA, Simola N, Fattore L. The novel psychoactive substance methoxetamine induces persistent behavioral abnormalities and neurotoxicity in rats. Neuropharmacology 2019; 144:219-232. [DOI: 10.1016/j.neuropharm.2018.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|
47
|
Tosta CL, Silote GP, Fracalossi MP, Sartim AG, Andreatini R, Joca SRL, Beijamini V. S-ketamine reduces marble burying behaviour: Involvement of ventromedial orbitofrontal cortex and AMPA receptors. Neuropharmacology 2019; 144:233-243. [DOI: 10.1016/j.neuropharm.2018.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/19/2022]
|
48
|
Social and anxiety-like behaviors contribute to nicotine self-administration in adolescent outbred rats. Sci Rep 2018; 8:18069. [PMID: 30584246 PMCID: PMC6305389 DOI: 10.1038/s41598-018-36263-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
Both emotional and social traits interact with genetic factors to influence smoking behavior. We previously established a socially acquired nicotine intravenous self-administration model where social learning of a nicotine-associated odor cue reversed conditioned flavor aversion and promoted nicotine intake. In this study, we first phenotyped ~800 adolescent heterogeneous stock rats in open field, novel object interaction, social interaction, elevated plus maze, and marble burying behaviors. These rats were then phenotyped on socially acquired nicotine self-administration. We found 243 significant correlations between different behavioral tests. Principal component regression analysis found that ~10-20% of the variance in nicotine-related measures, such as intake during the first or the last three fixed-ratio sessions, the progressive ratio session, and reinstatement behavior, can be explained by variations in behavioral traits. Factors corresponding to social behavior and anxiety were among the strongest predictors of nicotine intake and reinstatement of nicotine-seeking behavior. We also found many sex differences in behavioral measures. These data indicated that the genetic diversity of this population, in combination with social behaviour and anxiety, are significant contributors to the divergent nicotine self-administration behavior and indicated a high probability of discovering sex-specific genetic mechanisms for nicotine intake in future genome-wide association studies.
Collapse
|
49
|
Lee KM, Coelho MA, Class MA, Sern KR, Bocz MD, Szumlinski KK. mGlu5 Receptor Blockade Within the Nucleus Accumbens Shell Reduces Behavioral Indices of Alcohol Withdrawal-Induced Anxiety in Mice. Front Pharmacol 2018; 9:1306. [PMID: 30483137 PMCID: PMC6243038 DOI: 10.3389/fphar.2018.01306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Withdrawal from binge-drinking increases negative affect, coinciding with increased expression of the metabotropic glutamate receptor 5 (mGlu5) within the shell of the nucleus accumbens (AcbSh). Supporting a causal-effect relationship, systemic treatment with the mGlu5 receptor antagonist MTEP [3-((2-Methyl-4-thiazolyl)ethynyl)pyridine] is anxiolytic in binge-drinking adult and adolescent mice. Here, we employed neuropharmacological approaches to examine the functional relevance of AcbSh mGlu5 for behavioral indices of alcohol withdrawal-induced hyper-anxiety. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice consumed alcohol under modified Drinking-in-the-Dark procedures (10, 20, and 40% alcohol v/v) for 14 days. At an alcohol withdrawal time-point when mice manifest robust behavioral signs of hyper-anxiety (1 and 28 days withdrawal for adults and adolescents, respectively), mice were infused intra-AcbSh with 0, 1 or 10 μg MTEP and then affect was assayed in the light-dark shuttle box, marble-burying and forced swim tests. Brain tissue was collected to evaluate changes in Egr1 (early growth response protein 1) induction to index AcbSh neuronal activity. As expected, alcohol-experienced mice exhibited behavioral signs of hyper-emotionality. The anxiolytic effects of intra-AchSh MTEP were modest, but dose-dependent, and varied with age of drinking-onset. In adult-onset mice, only the 1 μg MTEP dose reduced withdrawal-induced hyper-anxiety, whereas only the higher dose was effective in adolescent-onset animals. MTEP reduced Egr1 expression within the AcbSh, irrespective of alcohol drinking history or age of drinking-onset. However, only the high MTEP dose reduced Egr1 expression in adolescent-onset binging mice. These results implicate AcbSh mGlu5 in modulating alcohol withdrawal-induced negative affect and suggest age differences in the neurobiological effects of alcohol withdrawal and behavioral responsiveness to mGlu5 blockade within the AcbSh.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michal A. Coelho
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - MacKayla A. Class
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kimberly R. Sern
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mark D. Bocz
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
50
|
Animals, anxiety, and anxiety disorders: How to measure anxiety in rodents and why. Behav Brain Res 2018; 352:81-93. [DOI: 10.1016/j.bbr.2017.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 12/31/2022]
|