1
|
Vannucci A, Fields A, Bloom PA, Camacho NL, Choy T, Durazi A, Hadis S, Harmon C, Heleniak C, VanTieghem M, Dozier M, Milham MP, Ghetti S, Tottenham N. Probing the content of affective semantic memory following caregiving-related early adversity. Dev Sci 2024; 27:e13518. [PMID: 38664866 PMCID: PMC11489028 DOI: 10.1111/desc.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 10/19/2024]
Abstract
Cognitive science has demonstrated that we construct knowledge about the world by abstracting patterns from routinely encountered experiences and storing them as semantic memories. This preregistered study tested the hypothesis that caregiving-related early adversities (crEAs) shape affective semantic memories to reflect the content of those adverse interpersonal-affective experiences. We also tested the hypothesis that because affective semantic memories may continue to evolve in response to later-occurring positive experiences, child-perceived attachment security will inform their content. The sample comprised 160 children (ages 6-12 at Visit 1; 87F/73 M), 66% of whom experienced crEAs (n = 105). At Visit 1, crEA exposure prior to study enrollment was operationalized as parental-reports endorsing a history of crEAs (abuse/neglect, permanent/significant parent-child separation); while child-reports assessed concurrent attachment security. A false memory task was administered online ∼2.5 years later (Visit 2) to probe the content of affective semantic memories-specifically attachment schemas. Results showed that crEA exposure (vs. no exposure) was associated with a higher likelihood of falsely endorsing insecure (vs. secure) schema scenes. Attachment security moderated the association between crEA exposure and insecure schema-based false recognition. Findings suggest that interpersonal-affective semantic schemas include representations of parent-child interactions that may capture the quality of one's own attachment experiences and that these representations shape how children remember attachment-relevant narrative events. Findings are also consistent with the hypothesis that these affective semantic memories can be modified by later experiences. Moving forward, the approach taken in this study provides a means of operationalizing Bowlby's notion of internal working models within a cognitive neuroscience framework. RESEARCH HIGHLIGHTS: Affective semantic memories representing insecure schema knowledge (child needs + needs-not-met) may be more salient, elaborated, and persistent among youths exposed to early caregiving adversity. All youths, irrespective of early caregiving adversity exposure, may possess affective semantic memories that represent knowledge of secure schemas (child needs + needs-met). Establishing secure relationships with parents following early-occurring caregiving adversity may attenuate the expression of insecure semantic memories, suggesting potential malleability. Affective semantic memories include schema representations of parent-child interactions that may capture the quality of one's own attachment experiences and shape how youths remember attachment-relevant events.
Collapse
Affiliation(s)
- Anna Vannucci
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Andrea Fields
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Paul A. Bloom
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Nicolas L. Camacho
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Tricia Choy
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Amaesha Durazi
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Syntia Hadis
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Chelsea Harmon
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Charlotte Heleniak
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Michelle VanTieghem
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| | - Mary Dozier
- University of Delaware, Department of Psychological and Brain Sciences, Wolf Hall, 105 The Green, Newark, DE, USA, 19716
| | | | - Simona Ghetti
- University of California at Davis and Center for Mind and Brain, Department of Psychology, 202 Cousteau Place, Suite 250, Davis, CA, USA, 95618
| | - Nim Tottenham
- Columbia University, Department of Psychology, Schermerhorn Hall, 1190 Amsterdam Avenue, MC5501, New York, NY, USA, 10027
| |
Collapse
|
2
|
Sanguino-Gómez J, Krugers HJ. Early-life stress impairs acquisition and retrieval of fear memories: sex-effects, corticosterone modulation, and partial prevention by targeting glucocorticoid receptors at adolescent age. Neurobiol Stress 2024; 31:100636. [PMID: 38883213 PMCID: PMC11177066 DOI: 10.1016/j.ynstr.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 06/18/2024] Open
Abstract
The early postnatal period is a sensitive time window that is characterized by several neurodevelopmental processes that define neuronal architecture and function later in life. Here, we examined in young adult mice, using an auditory fear conditioning paradigm, whether stress during the early postnatal period 1) impacts fear acquisition and memory consolidation in male and female mice; 2) alters the fear responsiveness to corticosterone and 3) whether effects of early-life stress (ELS) can be prevented by treating mice with a glucocorticoid (GR) antagonist at adolescence. Male and female mice were exposed to a limited nesting and bedding model of ELS from postnatal day (PND) 2-9 and injected i.p with RU38486 (RU486) at adolescent age (PND 28-30). At two months of age, mice were trained in the fear conditioning (FC) paradigm (with and without post training administration of corticosterone - CORT) and freezing behavior during fear acquisition and contextual and auditory memory retrieval was scored. We observed that ELS impaired fear acquisition specifically in male mice and reduced both contextual and auditory memory retrieval in male and female mice. Acute post-training administration of CORT increased freezing levels during auditory memory retrieval in female mice but reduced freezing levels during the tone presentation in particular in control males. Treatment with RU486 prevented ELS-effects in acquisition in male mice and in females during auditory memory retrieval. In conclusion, this study highlights the long-lasting consequences of early-life stress on fear memory processing and further illustrates 1) the potential of a glucocorticoid antagonist intervention during adolescence to mitigate these effects and 2) the partial modulation of the auditory retrieval upon post training administration of CORT, with all these effects being sex-dependent.
Collapse
Affiliation(s)
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Wilkinson MP, Robinson ES, Mellor JR. Analysis of hippocampal synaptic function in a rodent model of early life stress. Wellcome Open Res 2024; 9:300. [PMID: 39221440 PMCID: PMC11362746 DOI: 10.12688/wellcomeopenres.22276.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Early life stress (ELS) is an important risk factor in the aetiology of depression. Developmental glucocorticoid exposure impacts multiple brain regions with the hippocampus being particularly vulnerable. Hippocampal mediated behaviours are dependent upon the ability of neurones to undergo long-term potentiation (LTP), an N-methyl-D-aspartate receptor (NMDAR) mediated process. In this study we investigated the effect of ELS upon hippocampal NMDAR function. Methods Hooded Long-Evans rat pups (n=82) were either undisturbed or maternally separated for 180 minutes per day (MS180) between post-natal day (PND) 1 and PND14. Model validation consisted of sucrose preference (n=18) and novelty supressed feeding (NSFT, n=34) tests alongside assessment of corticosterone (CORT) and paraventricular nucleus (PVN) cFos reactivity to stress and hippocampal neurogenesis (all n=18). AMPA/NMDA ratios (n=19), miniEPSC currents (n=19) and LTP (n=15) were assessed in whole-cell patch clamp experiments in CA1 pyramidal neurones. Results MS180 animals showed increased feeding latency in the NSFT alongside increased overall CORT in the restraint stress experiment and increased PVN cFos expression in males but no changes in neurogenesis or sucrose preference. MS180 was associated with a lower AMPA/NMDA ratio with no change in miniEPSC amplitude or area. There was no difference in short- or long-term potentiation between MS180 and control animals nor were there any changes during the induction protocol. Conclusions The MS180 model showed a behavioural phenotype consistent with previous work. MS180 animals showed increased NMDAR function with preliminary evidence suggesting that this was not concurrent with an increase in LTP.
Collapse
Affiliation(s)
- Matthew P. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
- Hello Bio Ltd, Bristol, BS11 0QL, UK
| | - Emma S.J. Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Jack R. Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
| |
Collapse
|
4
|
Burenkova OV, Grigorenko EL. The role of epigenetic mechanisms in the long-term effects of early-life adversity and mother-infant relationship on physiology and behavior of offspring in laboratory rats and mice. Dev Psychobiol 2024; 66:e22479. [PMID: 38470450 PMCID: PMC10959231 DOI: 10.1002/dev.22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Research Administration, Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
5
|
Kuhlman KR. Pitfalls and potential: Translating the two-hit model of early life stress from pre-clinical non-human experiments to human samples. Brain Behav Immun Health 2024; 35:100711. [PMID: 38169793 PMCID: PMC10758720 DOI: 10.1016/j.bbih.2023.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Exposure to early life stress (ELS) has been linked to at least double the risk of psychopathology as well as higher morbidity and earlier mortality across the lifespan. For this reason, the field of developmental psychopathology has spent decades identifying factors that explain which individuals are at risk for negative health outcomes. Preclinical experiments in this field commonly test the "two-hit hypothesis", which explores how ELS potentiates vulnerability to pathogenic physiological and behavioral outcomes when an individual is exposed to a stressor later in development. Yet, translation of the two-hit hypothesis to humans is conceptually and practically challenging, thus impeding progress in the field. This review summarizes the two-hit hypothesis used in preclinical experiments as it pertains to two putative pathways linking ELS to psychopathology: the innate immune and neuroendocrine systems. This review also identifies important considerations when translating this model to humans and provides several recommendations. Specifically, attention to the "biological salience" of different forms of ELA and the concordance of that salience with later probes of the system are needed. Further, the consequences of ELS may be context-specific rather than ubiquitous, at least among young people. Within this conceptualization, "second hits" may be best operationalized using standardized acute challenges to the innate immune and neuroendocrine systems (e.g., psychosocial stress). Third, more explicit reporting of sex differences in the human literature is needed. Finally, preclinical experimental designs that more accurately reflect the natural occurrence of ELS in community samples will more effectively advance the understanding of developmental mechanisms that occur as a consequence of ELS.
Collapse
Affiliation(s)
- Kate Ryan Kuhlman
- Department of Psychological Science, School of Social Ecology, University of California Irvine, USA
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| |
Collapse
|
6
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Sep MSC, Geuze E, Joëls M. Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies. Transl Psychiatry 2023; 13:376. [PMID: 38062029 PMCID: PMC10703817 DOI: 10.1038/s41398-023-02660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Current evidence-based treatments for post-traumatic stress disorder (PTSD) are efficacious in only part of PTSD patients. Therefore, novel neurobiologically informed approaches are urgently needed. Clinical and translational neuroscience point to altered learning and memory processes as key in (models of) PTSD psychopathology. We extended this notion by clarifying at a meta-level (i) the role of information valence, i.e. neutral versus emotional/fearful, and (ii) comparability, as far as applicable, between clinical and preclinical phenotypes. We hypothesized that cross-species, neutral versus emotional/fearful information processing is, respectively, impaired and enhanced in PTSD. This preregistered meta-analysis involved a literature search on PTSD+Learning/Memory+Behavior, performed in PubMed. First, the effect of information valence was estimated with a random-effects meta-regression. The sources of variation were explored with a random forest-based analysis. The analyses included 92 clinical (N = 6732 humans) and 182 preclinical (N = 6834 animals) studies. A general impairment of learning, memory and extinction processes was observed in PTSD patients, regardless of information valence. Impaired neutral learning/memory and fear extinction were also present in animal models of PTSD. Yet, PTSD models enhanced fear/trauma memory in preclinical studies and PTSD impaired emotional memory in patients. Clinical data on fear/trauma memory was limited. Mnemonic phase and valence explained most variation in rodents but not humans. Impaired neutral learning/memory and fear extinction show stable cross-species PTSD phenotypes. These could be targeted for novel PTSD treatments, using information gained from neurobiological animal studies. We argue that apparent cross-species discrepancies in emotional/fearful memory deserve further in-depth study; until then, animal models targeting this phenotype should be applied with utmost care.
Collapse
Affiliation(s)
- Milou S C Sep
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam University Medical Center location Vrije Universiteit, Amsterdam, The Netherlands.
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Pagani LS, Harandian K, Necsa B, Harbec MJ. Prospective Associations between Maternal Depressive Symptoms during Early Infancy and Growth Deficiency from Childhood to Adolescence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7117. [PMID: 38063547 PMCID: PMC10706675 DOI: 10.3390/ijerph20237117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Maternal health represents an important predictor of child development; yet it often goes unnoticed during pediatric visits. Previous work suggests that mental state affects parenting. The relationship between infant exposure to maternal depressive symptoms suggests conflicting findings on physical growth. Body mass index (BMI) has not been rigorously examined across development. Using a prospective-longitudinal birth cohort of 2120 infants (50.7% boys), we estimated the prospective relationship between symptoms of maternal depressive symptoms at 5 months postpartum and later BMI in typically developing children. We hypothesized that maternal depressive symptom severity would predict later BMI through to adolescence. Mothers self-reported depressive symptoms at 5 months. Child BMI was measured by a trained research assistant at ages 6, 8, 10, 13, and 15 years. We estimated a series of sex-stratified regressions in which BMI was linearly regressed on maternal symptoms, while controlling for potential pre-existing/concurrent individual and family confounding factors. Boys born to mothers with more severe depressive symptoms at age 5 months had a significantly lower BMI than other boys at subsequent ages. There were no such associations observed for girls. Maternal depressive symptoms were prospectively associated with later BMI for sons and not daughters, predicting risk of faltering in growth through to adolescence. Health practitioners should routinely assess maternal psychological functioning during pediatric visits to optimize parent and child flourishment.
Collapse
Affiliation(s)
- Linda S Pagani
- School of Psycho-Education, University of Montreal, Montreal, QC H3C 3J7, Canada
- School Environment Research Group, University of Montreal, Montreal, QC H3C 3J7, Canada
- Sainte-Justine's Pediatric Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Kianoush Harandian
- School of Psycho-Education, University of Montreal, Montreal, QC H3C 3J7, Canada
- School Environment Research Group, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Beatrice Necsa
- School of Psycho-Education, University of Montreal, Montreal, QC H3C 3J7, Canada
- School Environment Research Group, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Marie-Josée Harbec
- Institut National de Santé Publique du Québec, Montreal, QC H2P 1E2, Canada
| |
Collapse
|
9
|
Lonstein JS, Vitale EM, Olekanma D, McLocklin A, Pence N, Bredewold R, Veenema AH, Johnson AW, Burt SA. Anxiety, aggression, reward sensitivity, and forebrain dopamine receptor expression in a laboratory rat model of early-life disadvantage. Dev Psychobiol 2023; 65:e22421. [PMID: 37860907 DOI: 10.1002/dev.22421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
Despite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring. Dams and litters were chronically exposed to restricted (1-cm deep) or ample (4-cm deep) home cage bedding postpartum, with or without lead acetate (0.1%) in their drinking water from insemination through 1-week postweaning. Restricted-bedding mothers showed more pup-directed behaviors and behavioral fragmentation, while lead-exposed mothers showed more nestbuilding. Restricted bedding-raised male offspring showed higher anxiety and aggression. Either restricted bedding or lead exposure impaired goal-directed performance in a reinforcer devaluation task in females, whereas restricted bedding alone disrupted it in males. Lead exposure, but not limited bedding, also reduced sucrose reward sensitivity in a progressive ratio task in females. D1 and D2 receptor mRNA in the medial prefrontal cortex and nucleus accumbens (NAc) were each affected by the early-life treatments and differently between the sexes. Most notably, adult males (but not females) exposed to both early-life treatments had greatly increased D1 receptor mRNA in the NAc core. These results illuminate neural mechanisms through which ELD threatens neurobehavioral development and highlight forebrain dopamine as a factor.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Erika M Vitale
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Doris Olekanma
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Andrew McLocklin
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Nathan Pence
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Rombaut C, Roura-Martinez D, Lepolard C, Gascon E. Brief and long maternal separation in C57Bl6J mice: behavioral consequences for the dam and the offspring. Front Behav Neurosci 2023; 17:1269866. [PMID: 37936649 PMCID: PMC10626007 DOI: 10.3389/fnbeh.2023.1269866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Animal models, especially rodents, have become instrumental to experimentally investigate the effects of an adverse post-natal environment on the developing brain. For this purpose, maternal separation (MS) paradigms have been widely used in the last decades. Nonetheless, how MS affects maternal behavior and, ultimately, the offspring depend on multiple variables. Methods To gain further insights into the consequences of MS, we decided to thoroughly measure and compare the effects of short (15 min, 3 times/day) vs. long (3 h, 1 time/day) separation on multiple maternally-associated behaviors and across the entire post-natal period. Results Compared to unhandled control litters, our results confirmed previous studies and indicated that SMS enhanced the time and variety of maternal care whereas LMS resulted in poor caregiving. We also showed that SMS-accrued caregiving persisted during the whole post-natal period. In contrast, LMS effects on maternal behavior were restricted to the early life (P2-P10). Finally, we also analyzed the behavioral consequences of these different rearing social environments on the offspring. We found that MS has profound effects in social tasks. We showed that affiliative touch, a type of prosocial behavior that provides comfort to others, is particularly sensitive to the modification of maternal caregiving. Discussion Our results provide further support to the contention that interactions during the early post-natal period critically contribute to emotional processing and brain co-construction.
Collapse
Affiliation(s)
| | | | | | - Eduardo Gascon
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| |
Collapse
|
11
|
Hayer SS, Hwang S, Clayton JB. Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: a systematic review and meta-analysis. Front Neurosci 2023; 17:1237177. [PMID: 37719161 PMCID: PMC10504664 DOI: 10.3389/fnins.2023.1237177] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
There are previous epidemiological studies reporting associations between antibiotic use and psychiatric symptoms. Antibiotic-induced gut dysbiosis and alteration of microbiota-gut-brain axis communication has been proposed to play a role in this association. In this systematic review and meta-analysis, we reviewed published articles that have presented results on changes in cognition, emotion, and behavior in rodents (rats and mice) after antibiotic-induced gut dysbiosis. We searched three databases-PubMed, Web of Science, and SCOPUS to identify such articles using dedicated search strings and extracted data from 48 articles. Increase in anxiety and depression-like behavior was reported in 32.7 and 40.7 percent of the study-populations, respectively. Decrease in sociability, social novelty preference, recognition memory and spatial cognition was found in 18.1, 35.3, 26.1, and 62.5 percent of the study-populations, respectively. Only one bacterial taxon (increase in gut Proteobacteria) showed statistically significant association with behavioral changes (increase in anxiety). There were no consistent findings with statistical significance for the potential biomarkers [Brain-derived neurotrophic factor (BDNF) expression in the hippocampus, serum corticosterone and circulating IL-6 and IL-1β levels]. Results of the meta-analysis revealed a significant association between symptoms of negative valence system (including anxiety and depression) and cognitive system (decreased spatial cognition) with antibiotic intake (p < 0.05). However, between-study heterogeneity and publication bias were statistically significant (p < 0.05). Risk of bias was evaluated to be high in the majority of the studies. We identified and discussed several reasons that could contribute to the heterogeneity between the results of the studies examined. The results of the meta-analysis provide promising evidence that there is indeed an association between antibiotic-induced gut dysbiosis and psychopathologies. However, inconsistencies in the implemented methodologies make generalizing these results difficult. Gut microbiota depletion using antibiotics may be a useful strategy to evaluate if and how gut microbes influence cognition, emotion, and behavior, but the heterogeneity in methodologies used precludes any definitive interpretations for a translational impact on clinical practice.
Collapse
Affiliation(s)
- Shivdeep S. Hayer
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
13
|
Karst H, Droogers WJ, van der Weerd N, Damsteegt R, van Kroonenburg N, Sarabdjitsingh RA, Joëls M. Acceleration of GABA-switch after early life stress changes mouse prefrontal glutamatergic transmission. Neuropharmacology 2023; 234:109543. [PMID: 37061088 DOI: 10.1016/j.neuropharm.2023.109543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Early life stress (ELS) alters the excitation-inhibition-balance (EI-balance) in various rodent brain areas and may be responsible for behavioral impairment later in life. The EI-balance is (amongst others) influenced by the switch of GABAergic transmission from excitatory to inhibitory, the so-called "GABA-switch". Here, we investigated how ELS affects the GABA-switch in mouse infralimbic Prefrontal Cortex layer 2/3 neurons, using the limited-nesting-and-bedding model. In ELS mice, the GABA-switch occurred already between postnatal day (P) 6 and P9, as opposed to P15-P21 in controls. This was associated with increased expression of the inward chloride transporter NKCC1, compared to the outward chloride transporter KCC2, both of which are important for the intracellular chloride concentration and, hence, the GABA reversal potential (Erev). Chloride transporters are not only important for regulating chloride concentration postsynaptically, but also presynaptically. Depending on the Erev of GABA, presynaptic GABAA receptor stimulation causes a depolarization or hyperpolarization, and thereby enhanced or reduced fusion of glutamate vesicles respectively, in turn changing the frequency of miniature postsynaptic currents (mEPSCs). In accordance, bumetanide, a blocker of NKCC1, shifted the Erev GABA towards more hyperpolarized levels in P9 control mice and reduced the mEPSC frequency. Other modulators of chloride transporters, e.g. VU0463271 (a KCC2 antagonist) and aldosterone -which increases NKCC1 expression-did not affect postsynaptic Erev in ELS P9 mice, but did increase the mEPSC frequency. We conclude that the mouse GABA-switch is accelerated after ELS, affecting both the pre- and postsynaptic chloride homeostasis, the former altering glutamatergic transmission. This may considerably affect brain development.
Collapse
Affiliation(s)
- Henk Karst
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Wouter J Droogers
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Nelleke van der Weerd
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Ruth Damsteegt
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Nicky van Kroonenburg
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - R Angela Sarabdjitsingh
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marian Joëls
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands; University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
14
|
Van Lissa CJ, van Erp S, Clapper EB. Selecting relevant moderators with Bayesian regularized meta-regression. Res Synth Methods 2023; 14:301-322. [PMID: 36797984 DOI: 10.1002/jrsm.1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To overcome these challenges, we introduce Bayesian Regularized Meta-Analysis (BRMA), which selects relevant moderators from a larger set of candidates by shrinking small regression coefficients towards zero with regularizing (LASSO or horseshoe) priors. This method is suitable when there are many potential moderators, but it is not known beforehand which of them are relevant. A simulation study compared BRMA against state-of-the-art random effects meta-regression using restricted maximum likelihood (RMA). Results indicated that BRMA outperformed RMA on three metrics: BRMA had superior predictive performance, which means that the results generalized better; BRMA was better at rejecting irrelevant moderators, and worse at detecting true effects of relevant moderators, while the overall proportion of Type I and Type II errors was equivalent to RMA. BRMA regression coefficients were slightly biased towards zero (by design), but its residual heterogeneity estimates were less biased than those of RMA. BRMA performed well with as few as 20 studies, suggesting its suitability as a small sample solution. We present free open source software implementations in the R-package pema (for penalized meta-analysis) and in the stand-alone statistical program JASP. An applied example demonstrates the use of the R-package.
Collapse
Affiliation(s)
| | - Sara van Erp
- Dept. Methodology & Statistics, Utrecht University, The Netherlands
| | - Eli-Boaz Clapper
- Dept. Methodology & Statistics, Utrecht University, The Netherlands
| |
Collapse
|
15
|
Hashimoto JG, Singer ML, Goeke CM, Zhang F, Song Y, Xia K, Linhardt RJ, Guizzetti M. Sex differences in hippocampal structural plasticity and glycosaminoglycan disaccharide levels after neonatal handling. Exp Neurol 2023; 361:114313. [PMID: 36572372 PMCID: PMC10097408 DOI: 10.1016/j.expneurol.2022.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
In this study we investigated the effects of a neonatal handling protocol that mimics the handling of sham control pups in protocols of neonatal exposure to brain insults on dendritic arborization and glycosaminoglycan (GAG) levels in the developing brain. GAGs are long, unbranched polysaccharides, consisting of repeating disaccharide units that can be modified by sulfation at specific sites and are involved in modulating neuronal plasticity during brain development. In this study, male and female Sprague-Dawley rats underwent neonatal handling daily between post-natal day (PD)4 and PD9, with brains analyzed on PD9. Neuronal morphology and morphometric analysis of the apical and basal dendritic trees of CA1 hippocampal pyramidal neurons were carried out by Golgi-Cox staining followed by neuron tracing and analysis with the software Neurolucida. Chondroitin sulfate (CS)-, Hyaluronic Acid (HA)-, and Heparan Sulfate (HS)-GAG disaccharide levels were quantified in the hippocampus by Liquid Chromatography/Mass Spectrometry analyses. We found sex by neonatal handling interactions on several parameters of CA1 pyramidal neuron morphology and in the levels of HS-GAGs, with females, but not males, showing an increase in both dendritic arborization and HS-GAG levels. We also observed increased expression of glucocorticoid receptor gene Nr3c1 in the hippocampus of both males and females following neonatal handling suggesting that both sexes experienced a similar stress during the handling procedure. This is the first study to show sex differences in two parameters of brain plasticity, CA1 neuron morphology and HS-GAG levels, following handling stress in neonatal rats.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Mo L Singer
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Calla M Goeke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuefan Song
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
16
|
Reemst K, Kracht L, Kotah JM, Rahimian R, van Irsen AAS, Congrains Sotomayor G, Verboon LN, Brouwer N, Simard S, Turecki G, Mechawar N, Kooistra SM, Eggen BJL, Korosi A. Early-life stress lastingly impacts microglial transcriptome and function under basal and immune-challenged conditions. Transl Psychiatry 2022; 12:507. [PMID: 36481769 PMCID: PMC9731997 DOI: 10.1038/s41398-022-02265-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Early-life stress (ELS) leads to increased vulnerability to psychiatric disorders including depression later in life. Neuroinflammatory processes have been implicated in ELS-induced negative health outcomes, but how ELS impacts microglia, the main tissue-resident macrophages of the central nervous system, is unknown. Here, we determined the effects of ELS-induced by limited bedding and nesting material during the first week of life (postnatal days [P]2-9) on microglial (i) morphology; (ii) hippocampal gene expression; and (iii) synaptosome phagocytic capacity in male pups (P9) and adult (P200) mice. The hippocampus of ELS-exposed adult mice displayed altered proportions of morphological subtypes of microglia, as well as microglial transcriptomic changes related to the tumor necrosis factor response and protein ubiquitination. ELS exposure leads to distinct gene expression profiles during microglial development from P9 to P200 and in response to an LPS challenge at P200. Functionally, synaptosomes from ELS-exposed mice were phagocytosed less by age-matched microglia. At P200, but not P9, ELS microglia showed reduced synaptosome phagocytic capacity when compared to control microglia. Lastly, we confirmed the ELS-induced increased expression of the phagocytosis-related gene GAS6 that we observed in mice, in the dentate gyrus of individuals with a history of child abuse using in situ hybridization. These findings reveal persistent effects of ELS on microglial function and suggest that altered microglial phagocytic capacity is a key contributor to ELS-induced phenotypes.
Collapse
Affiliation(s)
- Kitty Reemst
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Laura Kracht
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Janssen M. Kotah
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Reza Rahimian
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Astrid A. S. van Irsen
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Gonzalo Congrains Sotomayor
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Laura N. Verboon
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Nieske Brouwer
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sophie Simard
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Gustavo Turecki
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Naguib Mechawar
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Susanne M. Kooistra
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bart J. L. Eggen
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands.
| |
Collapse
|
17
|
Sex-specific effects of neonatal paternal deprivation on microglial cell density in adult California mouse (Peromyscus californicus) dentate gyrus. Brain Behav Immun 2022; 106:1-10. [PMID: 35908654 DOI: 10.1016/j.bbi.2022.07.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Adverse early-life experiences are risk factors for psychiatric disease development, resulting in stress-related neuronal modeling and neurobehavioral changes. Stressful experiences modulate the immune system, contributing to neuronal damage in higher cortical regions, like the hippocampus. Moreover, early-life stressors dysregulate the function of microglia, the resident immune cells of the brain, in the developing hippocampus. Paternal deprivation, an early-life stressor in many biparental species, facilitates sex-dependent inhibitions in hippocampal plasticity, but parental contributors to these sex-specific outcomes are unknown. Also, neurobiological mechanisms contributing to impairments in hippocampal neuroplasticity are less known. Thus, our goals were to 1) determine whether parental behavior is altered in maternal females following removal of the paternal male, 2) assess the effects of paternal deprivation on dentate gyrus (DG) volume and microglia proliferation, and 3) determine if early-life experimental handling mitigates sex-specific reductions in DG cell survival. California mice were born to multiparous breeders and reared by both parents (biparental care) or by their mother alone (i.e., father removed on postnatal day 1; paternal deprivation). One cohort of offspring underwent offspring retrieval tests for eight days beginning on postnatal day 2. On PND 68, these offspring (and a second cohort of mice without behavioral testing) were euthanized and brains visualized for bromodeoxyuridine (BrdU) and neuron-specific class III beta-tubulin (TuJ-1) or ionized calcium binding adaptor molecule 1 (Iba1). While mate absence did not impair maternal retrieval, paternal deprivation reduced DG volume, but Iba1+ cell density was only higher in paternally-deprived females. Neither sex or paternal deprivation significantly altered the number of BrdU+ or Tuj1+ cells in the DG - an absence of a reduction in cell survival may be related to daily handing during early offspring retrieval tests. Together, these data suggest that paternal deprivation impairs hippocampal plasticity; however, sex and early environment may influence the magnitude of these outcomes.
Collapse
|
18
|
Duque-Quintero M, Hooijmans CR, Hurowitz A, Ahmed A, Barris B, Homberg JR, Hen R, Harris AZ, Balsam P, Atsak P. Enduring effects of early-life adversity on reward processes: A systematic review and meta-analysis of animal studies. Neurosci Biobehav Rev 2022; 142:104849. [PMID: 36116576 PMCID: PMC10729999 DOI: 10.1016/j.neubiorev.2022.104849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/06/2023]
Abstract
Two-thirds of individuals experience adversity during childhood such as neglect, abuse or highly-stressful events. Early-life adversity (ELA) increases the life-long risk of developing mood and substance use disorders. Reward-related deficits has emerged as a key endophenotype of such psychiatric disorders. Animal models are invaluable for studying how ELA leads to reward deficits. However, the existing literature is heterogenous with difficult to reconcile findings. To create an overview, we conducted a systematic review containing multiple meta-analyses regarding the effects of ELA on reward processes overall and on specific aspects of reward processing in animal models. A comprehensive search identified 120 studies. Most studies omitted key details resulting in unclear risk of bias. Overall meta-analysis showed that ELA significantly reduced reward behaviors (SMD: -0.42 [-0.60; -0.24]). The magnitude of ELA effects significantly increased with longer exposure. When reward domains were analyzed separately, ELA only significantly dampened reward responsiveness (SMD: -0.525[-0.786; -0.264]) and social reward processing (SMD: -0.374 [-0.663; -0.084]), suggesting that ELA might lead to deficits in specific reward domains.
Collapse
Affiliation(s)
- Mariana Duque-Quintero
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hurowitz
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Afsana Ahmed
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Ben Barris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Rene Hen
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Alexander Z Harris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Peter Balsam
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands; Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
19
|
Gołyszny M, Zieliński M, Paul-Samojedny M, Pałasz A, Obuchowicz E. Chronic treatment with escitalopram and venlafaxine affects the neuropeptide S pathway differently in adult Wistar rats exposed to maternal separation. AIMS Neurosci 2022; 9:395-422. [PMID: 36329901 PMCID: PMC9581731 DOI: 10.3934/neuroscience.2022022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 07/05/2024] Open
Abstract
Neuropeptide S (NPS), which is a peptide that is involved in the regulation of the stress response, seems to be relevant to the mechanism of action of antidepressants that have anxiolytic properties. However, to date, there have been no reports regarding the effect of long-term treatment with escitalopram or venlafaxine on the NPS system under stress conditions. This study aimed to investigate the effects of the above-mentioned antidepressants on the NPS system in adult male Wistar rats that were exposed to neonatal maternal separation (MS). Animals were exposed to MS for 360 min. on postnatal days (PNDs) 2-15. MS causes long-lasting behavioral, endocrine and neurochemical consequences that mimic anxiety- and depression-related features. MS and non-stressed rats were given escitalopram or venlafaxine (10mg/kg) IP from PND 69 to 89. The NPS system was analyzed in the brainstem, hypothalamus, amygdala and anterior olfactory nucleus using quantitative RT-PCR and immunohistochemical methods. The NPS system was vulnerable to MS in the brainstem and amygdala. In the brainstem, escitalopram down-regulated NPS and NPS mRNA in the MS rats and induced a tendency to reduce the number of NPS-positive cells in the peri-locus coeruleus. In the MS rats, venlafaxine insignificantly decreased the NPSR mRNA levels in the amygdala and a number of NPSR cells in the basolateral amygdala, and increased the NPS mRNA levels in the hypothalamus. Our data show that the studied antidepressants affect the NPS system differently and preliminarily suggest that the NPS system might partially mediate the pharmacological effects that are induced by these drugs.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
20
|
Ou-Yang B, Hu Y, Fei XY, Cheng ST, Hang Y, Yang C, Cheng L. A meta-analytic study of the effects of early maternal separation on cognitive flexibility in rodent offspring. Dev Cogn Neurosci 2022; 56:101126. [PMID: 35751993 PMCID: PMC9243050 DOI: 10.1016/j.dcn.2022.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/27/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022] Open
Abstract
Adverse early life experiences, such as maternal separation, are associated with an increased risk for several mental health problems. Symptoms induced by maternal separation that mirror clinically relevant aspects of mental problems, such as cognitive inflexibility, open the possibility of testing putative therapeutics prior to clinical development. Although several animal (e.g., rodent) studies have evaluated the effects of early maternal separation on cognitive flexibility, no consistent conclusions have been drawn. To clarify this issue, in this study, a meta-analysis method was used to systematically explore the relationship between early maternal separation and cognitive flexibility in rodent offspring. Results indicate that early maternal separation could significantly impair cognitive flexibility in rodent offspring. Moderator analyses further showed that the relationship between early maternal separation and cognitive flexibility was not consistent in any case, but was moderated by variations in the experimental procedures, such as the deprivation levels, task characteristics, and rodent strains. These clarify the inconsistent effects of maternal separation on cognitive flexibility in rodents and help us better understand the association between early life adversity and cognitive development. Meta-analysis method was used to discuss the inconsistent effects of maternal separation on cognitive flexibility in rodent. Maternal separation was found to necessarily impair the cognitive flexibility in rodent. Variations in the experimental procedures moderated the relationship between maternal separation and cognitive flexibility. Further studies on environment-cognition associations in rodents should take experimental procedural factors into account.
Collapse
Affiliation(s)
- Bo Ou-Yang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Yue Hu
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Xin-Yuan Fei
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Sha-Te Cheng
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Ying Hang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Chen Yang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Liang Cheng
- School of Psychology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
21
|
Mi X, Zeng GR, Liu JQ, Luo ZS, Zhang L, Dai XM, Fang WT, Zhang J, Chen XC. Ganoderma Lucidum Triterpenoids Improve Maternal Separation-Induced Anxiety- and Depression-like Behaviors in Mice by Mitigating Inflammation in the Periphery and Brain. Nutrients 2022; 14:nu14112268. [PMID: 35684068 PMCID: PMC9182879 DOI: 10.3390/nu14112268] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Although early life stress (ELS) can increase susceptibility to adulthood psychiatric disorders and produce a greater inflammatory response in a stressful event, targeted preventive and therapeutic drugs still remain scarce. Ganoderma lucidum triterpenoids (GLTs) can exert anti-inflammatory effects in the periphery and central nervous systems. This study employed a combined model of “childhood maternal separation + adulthood sub-stress” to explore whether GLTs may alleviate anxiety- and depression-like behaviors in male and female mice by mitigating inflammation. Male and female pups were separated from their mothers for four hours per day from postnatal day 1 (PND 1) to PND 21; starting from PND 56, GLTs were administered intraperitoneally once daily for three weeks and followed by three days of sub-stress. Results showed that maternal separation increased the anxiety- and depression-like behaviors in both male and female mice, which disappeared after the preemptive GLTs treatment (40 mg/kg) before adulthood sub-stress. Maternal separation up-regulated the pro-inflammatory markers in the periphery and brain, and activated microglia in the prefrontal cortex and hippocampus. All the abnormalities were reversed by GLTs administration, with no adverse effects on immune organ indices, liver, and renal function. Our findings suggest that GLTs can be a promising candidate in treating ELS-induced psychiatric disorders.
Collapse
Affiliation(s)
- Xue Mi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
| | - Gui-Rong Zeng
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (J.-Q.L.); (L.Z.)
| | - Zhou-Song Luo
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
| | - Ling Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (J.-Q.L.); (L.Z.)
| | - Xiao-Man Dai
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wen-Ting Fang
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jing Zhang
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Correspondence: (J.Z.); (X.-C.C.)
| | - Xiao-Chun Chen
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Correspondence: (J.Z.); (X.-C.C.)
| |
Collapse
|
22
|
Butkevich IP, Mikhailenko VA, Vershinina EA. Sexual Dimorphism in the Effect of Neonatal Inflammatory Pain on Stress Reactivity of Hormonal Response and Cognitive Functions in Adult Rats. J EVOL BIOCHEM PHYS+ 2022; 58:353-363. [PMID: 35599637 PMCID: PMC9109674 DOI: 10.1134/s0022093022020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
The effect of moderate neonatal stress induced by inflammatory
pain in rat pups of both sexes on the hormonal response and cognitive
processes in adult animals was studied in the Morris water maze.
No significant differences in spatial learning and memory were found
in experimental rats exposed to neonatal inflammatory pain vs. control
animals. However, experimental rats exhibited sex differences in
long-term spatial memory whose efficiency was higher in males vs.
females. After long-term memory testing, stress responsiveness of
the hypothalamic-pituitary-adrenocortical axis, as assessed by the
plasma corticosterone level in the formalin test, was higher in
experimental males vs. females. Only experimental females exhibited
differences between short-term and long-term memory, with the efficiency
being higher in the former. Thus, sexual dimorphism was found in
the effect of neonatal nociceptive stress on long-term spatial memory
in adult rats: experimental males vs. females demonstrated more
effective long-term memory combined with a higher stress reactivity
of the hormonal response.
Collapse
Affiliation(s)
- I. P. Butkevich
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| | - V. A. Mikhailenko
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| | - E. A. Vershinina
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
23
|
Effects of early life adversities upon memory processes and cognition in rodent models. Neuroscience 2022; 497:282-307. [PMID: 35525496 DOI: 10.1016/j.neuroscience.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Exposure to stressors in early postnatal life induces long-lasting modifications in brainfunction.Thisplasticity,an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on thehypothalamic-pituitary-adrenal axisresponse to stressors, and has been reported to lead toneuroinflammation,altered levelsof neurotrophic factors, modifications inneurogenesis andsynaptic plasticity,with changes in neurotransmitter systems and network functioning. In this review, we focus on early postnatal stress in animal models and their effects on learning and memory.Many studies have reported ELS-induced impairments in different types of memories, including spatial memory, fear memory, recognition (both for objects and social) memory, working memory and reversal learning. Studies are not always in agreement, however, no effects, or sometimes facilitation, being reported, depending on the nature and intensity of the early intervention, as well as the age when the outcome was evaluated and the sex of the animals. When considering processes occurring after consolidation, related with memory maintenance or modification, there are a very reduced number of reports. Future studies addressing the mechanisms underlying memory changes for ELS should shed some light on the understanding of the different effects induced by stressors of different types and intensities on cognitive functions.
Collapse
|
24
|
Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2022; 55:2170-2195. [PMID: 33825217 PMCID: PMC8494863 DOI: 10.1111/ejn.15223] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Addiction is a chronic relapsing disorder with devastating personal, societal, and economic consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource scarcity are linked with increased risk of later-life addiction, but the brain mechanisms underlying this link are still poorly understood. Here, we focus on data from rodent models of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be determined. We first summarize evidence for a link between ELA and addiction in humans, then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous disease with many individually varying behavioral aspects that may be impacted by ELA, we next discuss common rodent assays of addiction-like behaviors. We then summarize the specific addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss some of the underlying changes in brain reward and stress circuits that are likely responsible. By better understanding the behavioral and neural mechanisms by which ELA promotes addiction vulnerability, we hope to facilitate development of new approaches for preventing or treating addiction in those with a history of ELA.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Pediatrics, University of California Irvine, Irvine, CA
| | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
25
|
Schuler H, Bonapersona V, Joëls M, Sarabdjitsingh RA. Effects of early life adversity on immediate early gene expression: Systematic review and 3-level meta-analysis of rodent studies. PLoS One 2022; 17:e0253406. [PMID: 35025862 PMCID: PMC8757918 DOI: 10.1371/journal.pone.0253406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/11/2021] [Indexed: 01/30/2023] Open
Abstract
Early-life adversity (ELA) causes long-lasting structural and functional changes to the brain, rendering affected individuals vulnerable to the development of psychopathologies later in life. Immediate-early genes (IEGs) provide a potential marker for the observed alterations, bridging the gap between activity-regulated transcription and long-lasting effects on brain structure and function. Several heterogeneous studies have used IEGs to identify differences in cellular activity after ELA; systematically investigating the literature is therefore crucial for comprehensive conclusions. Here, we performed a systematic review on 39 pre-clinical studies in rodents to study the effects of ELA (alteration of maternal care) on IEG expression. Females and IEGs other than cFos were investigated in only a handful of publications. We meta-analyzed publications investigating specifically cFos expression. ELA increased cFos expression after an acute stressor only if the animals (control and ELA) had experienced additional hits. At rest, ELA increased cFos expression irrespective of other life events, suggesting that ELA creates a phenotype similar to naïve, acutely stressed animals. We present a conceptual theoretical framework to interpret the unexpected results. Overall, ELA likely alters IEG expression across the brain, especially in interaction with other negative life events. The present review highlights current knowledge gaps and provides guidance to aid the design of future studies.
Collapse
Affiliation(s)
- Heike Schuler
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Valeria Bonapersona
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Marian Joëls
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R. Angela Sarabdjitsingh
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Kalamari A, Kentrop J, Hinna Danesi C, Graat EAM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in an Operant Rat Task. Front Behav Neurosci 2021; 15:698501. [PMID: 34512284 PMCID: PMC8427758 DOI: 10.3389/fnbeh.2021.698501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Early life environment influences the development of various aspects of social behavior, particularly during sensitive developmental periods. We studied how challenges in the early postnatal period or (early) adolescence affect pro-social behavior. To this end, we designed a lever-operated liberation task, to be able to measure motivation to liberate a trapped conspecific (by progressively increasing required lever pressing for door-opening). Liberation of the trapped rat resulted either in social contact or in liberation into a separate compartment. Additionally, a condition was tested in which both rats could freely move in two separate compartments and lever pressing resulted in social contact. When partners were not trapped, rats were more motivated to press the lever for opening the door than in either of the trapped configurations. Contrary to our expectations, the trapped configuration resulted in a reduced motivation to act. Early postnatal stress (24 h maternal deprivation on postnatal day 3) did not affect behavior in the liberation task. However, rearing rats from early adolescence onwards in complex housing conditions (Marlau cages) reduced the motivation to door opening, both in the trapped and freely moving conditions, while the motivation for a sucrose reward was not affected.
Collapse
Affiliation(s)
- Aikaterini Kalamari
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chiara Hinna Danesi
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien A M Graat
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Rixt van der Veen
- Brain Plasticity group, SILS Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Kotah JM, Hoeijmakers L, Nutma E, Lucassen PJ, Korosi A. Early-life stress does not alter spatial memory performance, hippocampal neurogenesis, neuroinflammation, or telomere length in 20-month-old male mice. Neurobiol Stress 2021; 15:100379. [PMID: 34430678 PMCID: PMC8369064 DOI: 10.1016/j.ynstr.2021.100379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Early-life stress (ES) increases the risk for psychopathology and cognitive decline later in life. Because the neurobiological substrates affected by ES (i.e., cognition, neuroplasticity, and neuroinflammation) are also altered in aging, we set out to investigate if and how ES in the first week of life affects these domains at an advanced age, and how ES modulates the aging trajectory per se. We subjected C57BL/6j mice to an established ES mouse model from postnatal days 2–9. Mice underwent behavioral testing at 19 months of age and were sacrificed at 20 months to investigate their physiology, hippocampal neuroplasticity, neuroinflammation, and telomere length. ES mice, as a group, did not perform differently from controls in the open field or Morris water maze (MWM). Hippocampal neurogenesis and synaptic marker gene expression were not different in ES mice at this age. While we find aging-associated alterations to neuroinflammatory gene expression and telomere length, these were unaffected by ES. When integrating the current data with those from our previously reported 4- and 10-month-old cohorts, we conclude that ES leads to a ‘premature’ shift in the aging trajectory, consisting of early changes that do not further worsen at the advanced age of 20 months. This could be explained e.g. by a ‘floor’ effect in ES-induced impairments, and/or age-induced impairments in control mice. Future studies should help understand how exactly ES affects the overall aging trajectory. Early-life stress (ES) exposure does not worsen water maze learning in aged male mice. ES does not affect brain plasticity markers at 20 months of age. Hippocampal telomere length is reduced by aging but unaffected by ES. ES leads to a premature aging trajectory that does not worsen with aging.
Collapse
Affiliation(s)
- Janssen M Kotah
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Lianne Hoeijmakers
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Erik Nutma
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Castells X, Saez M, Barcheni M, Cunill R, Serrano D, López B, van Lissa CJ. Placebo Response and Its Predictors in Attention Deficit Hyperactivity Disorder: A Meta-Analysis and Comparison of Meta-Regression and MetaForest. Int J Neuropsychopharmacol 2021; 25:26-35. [PMID: 34355753 PMCID: PMC8756096 DOI: 10.1093/ijnp/pyab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND High placebo response in attention deficit hyperactivity disorder (ADHD) can reduce medication-placebo differences, jeopardizing the development of new medicines. This research aims to (1) determine placebo response in ADHD, (2) compare the accuracy of meta-regression and MetaForest in predicting placebo response, and (3) determine the covariates associated with placebo response. METHODS A systematic review with meta-analysis of randomized, placebo-controlled clinical trial investigating pharmacological interventions for ADHD was performed. Placebo response was defined as the change from baseline in ADHD symptom severity assessed according to the 18-item, clinician-rated, DSM-based rating scale. The effect of study design-, intervention-, and patient-related covariates in predicting placebo response was studied by means of meta-regression and MetaForest. RESULTS Ninety-four studies including 6614 patients randomized to placebo were analyzed. Overall, placebo response was -8.9 points, representing a 23.1% reduction in the severity of ADHD symptoms. Cross-validated accuracy metrics for meta-regression were R2 = 0.0012 and root mean squared error = 3.3219 for meta-regression and 0.0382 and 3.2599 for MetaForest. Placebo response among ADHD patients increased by 63% between 2001 and 2020 and was larger in the United States than in other regions of the world. CONCLUSIONS Strong placebo response was found in ADHD patients. Both meta-regression and MetaForest showed poor performance in predicting placebo response. ADHD symptom improvement with placebo has markedly increased over the last 2 decades and is greater in the United States than the rest of the world.
Collapse
Affiliation(s)
- Xavier Castells
- TransLab Research Group, Universitat de Girona, Girona, Spain,Department of Medical Sciences, Universitat de Girona, Girona, Spain,Economy Department; Research Group on Statistics, Econometrics and Health (GRECS), Universitat de Girona, Girona, Spain,Correspondence: Xavier Castells, MD, PhD, Department of Medical Sciences, Universitat de Girona, C/ Emili Grahit, 77, esc. B, 2n. Campus Centre. 17003 Girona, Spain ()
| | - Marc Saez
- Centre for Biomedical Research Network in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maghie Barcheni
- Pharmacology, Toxicology and Therapeutics Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruth Cunill
- Parc Sanitari Sant Joan de Déu-Numància, Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Domènec Serrano
- Department of Medical Sciences, Universitat de Girona, Girona, Spain,Economy Department; Research Group on Statistics, Econometrics and Health (GRECS), Universitat de Girona, Girona, Spain,Institut d’Assistència Sanitària, Girona, Spain
| | - Beatriz López
- Control and Intelligent Systems Engineering Research Group, Electrical; Electronic and Automatic Engineering Department, Universitat de Girona, Girona, Spain (Dr López)
| | - Caspar J van Lissa
- Department of Methodology and Statistics, Universiteit Utrecht, Utrecht, The Netherlands (Dr van Lissa)
| |
Collapse
|
29
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Barr GA. The Long-Term Effects of Neonatal Inflammatory Pain on Cognitive Function and Stress Hormones Depend on the Heterogeneity of the Adolescent Period of Development in Male and Female Rats. Front Behav Neurosci 2021; 15:691578. [PMID: 34366805 PMCID: PMC8334561 DOI: 10.3389/fnbeh.2021.691578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure to stress at an early age programs the HPA axis which can lead to cognitive deficits in adults. However, it is not known whether these deficits emerge in adulthood or are expressed earlier in life. The aims of the study were to investigate (1) the immediate effects of early injury-induced stress in one-day-old (P1) and repeated stress on at P1 and P2 rat pups on plasma corticosterone levels; and (2) examine the subsequent long-term effects of this early stress on spatial learning and memory, and stress reactivity in early P26-34 and late P45-53 adolescent male and female rats. Intra-plantar injection of formalin induced prolonged and elevated levels of corticosterone in pups and impaired spatial learning and short- and long-term memory in late adolescent males and long-term memory in early adolescent females. There were sex differences in late adolescence in both learning and short-term memory. Performance on the long-term memory task was better than that on the short-term memory task for all early adolescent male and female control and stressed animals. Short-term memory was better in the late age control rats of both sexes and for formalin treated females as compared with the early age rats. These results are consistent with an impaired function of structures involved in memory (the hippocampus, amygdala, prefrontal cortex) after newborn pain. However, activation of the HPA axis by neonatal pain did not directly correlate with spatial learning and memory outcomes and the consequences of neonatal pain remain are likely multi-determined.
Collapse
Affiliation(s)
- Irina P. Butkevich
- Laboratory of Ontogenesis of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Viktor A. Mikhailenko
- Laboratory of Ontogenesis of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena A. Vershinina
- Department of Information Technologies and Mathematical Modeling, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, United States
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Sep MSC, Vellinga M, Sarabdjitsingh RA, Joëls M. The rodent object-in-context task: A systematic review and meta-analysis of important variables. PLoS One 2021; 16:e0249102. [PMID: 34270575 PMCID: PMC8284613 DOI: 10.1371/journal.pone.0249102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Environmental information plays an important role in remembering events. Information about stable aspects of the environment (here referred to as 'context') and the event are combined by the hippocampal system and stored as context-dependent memory. In rodents (such as rats and mice), context-dependent memory is often investigated with the object-in-context task. However, the implementation and interpretation of this task varies considerably across studies. This variation hampers the comparison between studies and-for those who design a new experiment or carry out pilot experiments-the estimation of whether observed behavior is within the expected range. Also, it is currently unclear which of the variables critically influence the outcome of the task. To address these issues, we carried out a preregistered systematic review (PROSPERO CRD42020191340) and provide an up-to-date overview of the animal-, task-, and protocol-related variations in the object-in-context task for rodents. Using a data-driven explorative meta-analysis we next identified critical factors influencing the outcome of this task, such as sex, testbox size and the delay between the learning trials. Based on these observations we provide recommendations on sex, strain, prior arousal, context (size, walls, shape, etc.) and timing (habituation, learning, and memory phase) to create more consensus in the set-up, procedure, and interpretation of the object-in-context task for rodents. This could contribute to a more robust and evidence-based design in future animal experiments.
Collapse
Affiliation(s)
- Milou S. C. Sep
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Marijn Vellinga
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R. Angela Sarabdjitsingh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Fitzgerald E, Sinton MC, Wernig-Zorc S, Morton NM, Holmes MC, Boardman JP, Drake AJ. Altered hypothalamic DNA methylation and stress-induced hyperactivity following early life stress. Epigenetics Chromatin 2021; 14:31. [PMID: 34193254 PMCID: PMC8247254 DOI: 10.1186/s13072-021-00405-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
Exposure to early life stress (ELS) during childhood or prenatally increases the risk of future psychiatric disorders. The effect of stress exposure during the neonatal period is less well understood. In preterm infants, exposure to invasive procedures is associated with altered brain development and future stress responses suggesting that the neonatal period could be a key time for the programming of mental health. Previous studies suggest that ELS affects the hypothalamic epigenome, making it a good candidate to mediate these effects. In this study, we used a mouse model of early life stress (modified maternal separation; MMS). We hypothesised MMS would affect the hypothalamic transcriptome and DNA methylome, and impact on adult behaviour. MMS involved repeated stimulation of pups for 1.5 h/day, whilst separated from their mother, from postnatal day (P) 4-6. 3'mRNA sequencing and DNA methylation immunoprecipitation (meDIP) sequencing were performed on hypothalamic tissue at P6. Behaviour was assessed with the elevated plus, open field mazes and in-cage monitoring at 3-4 months of age. MMS was only associated with subtle changes in gene expression, but there were widespread alterations in DNA methylation. Notably, differentially methylated regions were enriched for synapse-associated loci. MMS resulted in hyperactivity in the elevated plus and open field mazes, but in-cage monitoring revealed that this was not representative of habitual hyperactivity. ELS has marked effects on DNA methylation in the hypothalamus in early life and results in stress-specific hyperactivity in young adulthood. These results have implications for the understanding of ELS-mediated effects on brain development.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
- The Douglas Research Center, 6875 Boulevard LaSalle, Montréal, QC, H4H 1R3, Canada.
| | - Matthew C Sinton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Sara Wernig-Zorc
- Department of Biochemistry III, University of Regensburg, 93040, Regensburg, Germany
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Megan C Holmes
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, The Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
32
|
Ellis BJ, Horn AJ, Carter CS, van IJzendoorn MH, Bakermans-Kranenburg MJ. Developmental programming of oxytocin through variation in early-life stress: Four meta-analyses and a theoretical reinterpretation. Clin Psychol Rev 2021; 86:101985. [DOI: 10.1016/j.cpr.2021.101985] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
|
33
|
Van IJzendoorn MH, Bakermans-Kranenburg MJ. Replication crisis lost in translation? On translational caution and premature applications of attachment theory. Attach Hum Dev 2021; 23:422-437. [PMID: 33952087 DOI: 10.1080/14616734.2021.1918453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the biomedical, behavioral and neurobiological sciences reproducibility and replicability of research results have become a major issue. The question is whether attachment research is also plagued by lack of replicability, and if so whether one can speak of a crisis? Furthermore, discussions about the applicability of attachment research findings to policy and (clinical) practice have recently been intensified. The subsequent question arises whether one could even speak of a "translational crisis". In this paper assumptions and conditions of replicability and applicability will be outlined. Some examples of attachment findings lost or found in translation to policy and practice (e.g. on infant crying and parental insensitive responsiveness) will be used to illustrate the challenges and chances of bridging the gap between attachment science and practice.
Collapse
Affiliation(s)
- Marinus H Van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University, Rotterdam, The Netherlands.,School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Marian J Bakermans-Kranenburg
- Department of Clinical Child and Family Studies, and Amsterdam Public Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Leiden Consortium on Individual Development, Leiden University and VU Amsterdam, Netherlands
| |
Collapse
|
34
|
Merz MP, Turner JD. Is early life adversity a trigger towards inflammageing? Exp Gerontol 2021; 150:111377. [PMID: 33905877 DOI: 10.1016/j.exger.2021.111377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
There are many 'faces' of early life adversity (ELA), such as childhood trauma, institutionalisation, abuse or exposure to environmental toxins. These have been implicated in the onset and severity of a wide range of chronic non-communicable diseases later in life. The later-life disease risk has a well-established immunological component. This raises the question as to whether accelerated immune-ageing mechanistically links early-life adversity to the lifelong health trajectory resulting in either 'poor' or 'healthy' ageing. Here we examine observational and mechanistic studies of ELA and inflammageing, highlighting common and distinct features in these two life stages. Many biological processes appear in common including reduction in telomere length, increased immunosenescence, metabolic distortions and chronic (viral) infections. We propose that ELA shapes the developing immune, endocrine and nervous system in a non-reversible way, creating a distinct phenotype with accelerated immunosenescence and systemic inflammation. We conclude that ELA might act as an accelerator for inflammageing and age-related diseases. Furthermore, we now have the tools and cohorts to be able to dissect the interaction between ELA and later life phenotype. This should, in the near future, allow us to identify the ecological and mechanistic processes that are involved in 'healthy' or accelerated immune-ageing.
Collapse
Affiliation(s)
- Myriam P Merz
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
35
|
Increasing the statistical power of animal experiments with historical control data. Nat Neurosci 2021; 24:470-477. [PMID: 33603229 DOI: 10.1038/s41593-020-00792-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023]
Abstract
Low statistical power reduces the reliability of animal research; yet, increasing sample sizes to increase statistical power is problematic for both ethical and practical reasons. We present an alternative solution using Bayesian priors based on historical control data, which capitalizes on the observation that control groups in general are expected to be similar to each other. In a simulation study, we show that including data from control groups of previous studies could halve the minimum sample size required to reach the canonical 80% power or increase power when using the same number of animals. We validated the approach on a dataset based on seven independent rodent studies on the cognitive effects of early-life adversity. We present an open-source tool, RePAIR, that can be widely used to apply this approach and increase statistical power, thereby improving the reliability of animal experiments.
Collapse
|
36
|
Simmons JM, Winsky L, Zehr JL, Gordon JA. Priorities in stress research: a view from the U.S. National Institute of Mental Health. Stress 2021; 24:123-129. [PMID: 32608314 DOI: 10.1080/10253890.2020.1781084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mission of the National Institute of Mental Health is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery, and cure. In consultation with a broad range of experts, the NIMH has identified a set of priorities for stress biology research aimed squarely at creating the basic and clinical knowledge bases for reducing and alleviating mental health burden across the lifespan. Here, we discuss these priority areas in stress biology research, which include: understanding the heterogeneity of stressors and outcomes; refining and expanding the experimental systems used to study stress and its effects; embracing and exploiting the complexity of the stress response; and prioritizing translational studies that seek to test mechanistic hypotheses in human beings. We emphasize the challenge of establishing mechanistic links across levels of analysis to explain how and when specific and diverse stressors lead to enduring changes in neural systems and produce lasting functional deficits in mental health relevant behaviors. An improved understanding of mechanisms underlying stress responses and the functional consequences of stress can and will speed translation from basic research to predictive markers of risk and to improved, personalized interventions for mental illness.
Collapse
Affiliation(s)
| | - Lois Winsky
- National Institute of Mental Health, Bethesda, MD, USA
| | - Julia L Zehr
- National Institute of Mental Health, Bethesda, MD, USA
| | | |
Collapse
|
37
|
Levis SC, Mahler SV, Baram TZ. The Developmental Origins of Opioid Use Disorder and Its Comorbidities. Front Hum Neurosci 2021; 15:601905. [PMID: 33643011 PMCID: PMC7904686 DOI: 10.3389/fnhum.2021.601905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Opioid use disorder (OUD) rarely presents as a unitary psychiatric condition, and the comorbid symptoms likely depend upon the diverse risk factors and mechanisms by which OUD can arise. These factors are heterogeneous and include genetic predisposition, exposure to prescription opioids, and environmental risks. Crucially, one key environmental risk factor for OUD is early life adversity (ELA). OUD and other substance use disorders are widely considered to derive in part from abnormal reward circuit function, which is likely also implicated in comorbid mental illnesses such as depression, bipolar disorder, and schizophrenia. ELA may disrupt reward circuit development and function in a manner predisposing to these disorders. Here, we describe new findings addressing the effects of ELA on reward circuitry that lead to OUD and comorbid disorders, potentially via shared neural mechanisms. We discuss some of these OUD-related problems in both humans and animals. We also highlight the increasingly apparent, crucial contribution of biological sex in mediating the range of ELA-induced disruptions of reward circuitry which may confer risk for the development of OUD and comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
38
|
Molendijk ML, de Kloet ER. Forced swim stressor: Trends in usage and mechanistic consideration. Eur J Neurosci 2021; 55:2813-2831. [PMID: 33548153 PMCID: PMC9291081 DOI: 10.1111/ejn.15139] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
The acquired immobility response during the “forced swim test (FST)” is not a rodent model of depression, but the test has some validity in predicting a compound's antidepressant potential. Nevertheless, 60% of the about 600 papers that were published annually the past 2 years label the rodent's immobility response as depression‐like behaviour, but the relative contribution per country is changing. When the Editors‐in‐Chief of 5 journals publishing most FST papers were asked for their point of view on labelling immobility as depression‐like behaviour and despair, they responded that they primarily rely on the reviewers regarding scientific merit of the submission. One Editor informs authors of the recent NIMH notice (https://grants.nih.gov/grants/guide/notice‐files/NOT‐MH‐19‐053.html) which encourages investigators to use animal models “for” addressing neurobiological questions rather than as model “of” specific mental disorders. The neurobiological questions raised by use of the FST fall in two categories. First, research on the role of endocrine and metabolic factors, with roots in the 1980s, and with focus on the bottom‐up action of glucocorticoids on circuits processing salient information, executive control and memory consolidation. Second, recent findings using novel technological and computational advances that have allowed great progress in charting top‐down control in the switch from active to passive coping with the inescapable stressor executed by neuronal ensembles of the medial prefrontal cortex via the peri‐aquaductal grey. It is expected that combining neural top‐down and endocrine bottom‐up approaches will provide new insights in the role of stress‐coping and adaptation in pathogenesis of mental disorders.
Collapse
Affiliation(s)
- Marc L Molendijk
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - E Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
40
|
Gildawie KR, Ryll LM, Hexter JC, Peterzell S, Valentine AA, Brenhouse HC. A two-hit adversity model in developing rats reveals sex-specific impacts on prefrontal cortex structure and behavior. Dev Cogn Neurosci 2021; 48:100924. [PMID: 33515957 PMCID: PMC7847967 DOI: 10.1016/j.dcn.2021.100924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Adversity early in life substantially impacts prefrontal cortex (PFC) development and vulnerability to later-life psychopathology. Importantly, repeated adverse experiences throughout childhood increase the risk for PFC-mediated behavioral deficits more commonly in women. Evidence from animal models points to effects of adversity on later-life neural and behavioral dysfunction; however, few studies have investigated the neurobiological underpinnings of sex-specific, long-term consequences of multiple developmental stressors. We modeled early life adversity in rats via maternal separation (postnatal day (P)2-20) and juvenile social isolation (P21-35). In adulthood, anxiety-like behavior was assessed in the elevated zero maze and the presence and structural integrity of PFC perineuronal nets (PNNs) enwrapping parvalbumin (PV)-expressing interneurons was quantified. PNNs are extracellular matrix structures formed during critical periods in postnatal development that play a key role in the plasticity of PV cells. We observed a female-specific effect of adversity on hyperactivity and risk-assessment behavior. Moreover, females – but not males – exposed to multiple hits of adversity demonstrated a reduction in PFC PV cells in adulthood. We also observed a sex-specific, potentiated reduction in PV + PNN structural integrity. These findings suggest a sex-specific impact of repeated adversity on neurostructural development and implicate PNNs as a contributor to associated behavioral dysfunction.
Collapse
Affiliation(s)
| | - Lilly M Ryll
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Jessica C Hexter
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Shayna Peterzell
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
41
|
Ruigrok SR, Abbink MR, Geertsema J, Kuindersma JE, Stöberl N, van der Beek EM, Lucassen PJ, Schipper L, Korosi A. Effects of Early-Life Stress, Postnatal Diet Modulation and Long-Term Western-Style Diet on Peripheral and Central Inflammatory Markers. Nutrients 2021; 13:288. [PMID: 33498469 PMCID: PMC7909521 DOI: 10.3390/nu13020288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ES) exposure increases the risk of developing obesity. Breastfeeding can markedly decrease this risk, and it is thought that the physical properties of the lipid droplets in human milk contribute to this benefit. A concept infant milk formula (IMF) has been developed that mimics these physical properties of human milk (Nuturis®, N-IMF). Previously, we have shown that N-IMF reduces, while ES increases, western-style diet (WSD)-induced fat accumulation in mice. Peripheral and central inflammation are considered to be important for obesity development. We therefore set out to test the effects of ES, Nuturis® and WSD on adipose tissue inflammatory gene expression and microglia in the arcuate nucleus of the hypothalamus. ES was induced in mice by limiting the nesting and bedding material from postnatal day (P) 2 to P9. Mice were fed a standard IMF (S-IMF) or N-IMF from P16 to P42, followed by a standard diet (STD) or WSD until P230. ES modulated adipose tissue inflammatory gene expression early in life, while N-IMF had lasting effects into adulthood. Centrally, ES led to a higher microglia density and more amoeboid microglia at P9. In adulthood, WSD increased the number of amoeboid microglia, and while ES exposure increased microglia coverage, Nuturis® reduced the numbers of amoeboid microglia upon the WSD challenge. These results highlight the impact of the early environment on central and peripheral inflammatory profiles, which may be key in the vulnerability to develop metabolic derangements later in life.
Collapse
Affiliation(s)
- Silvie R. Ruigrok
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Maralinde R. Abbink
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Jorine Geertsema
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Jesse E. Kuindersma
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Nina Stöberl
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | - Eline M. van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Paul J. Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| | | | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (S.R.R.); (M.R.A.); (J.G.); (J.E.K.); (N.S.); (P.J.L.)
| |
Collapse
|
42
|
Orso R, Creutzberg KC, Kestering-Ferreira E, Wearick-Silva LE, Tractenberg SG, Grassi-Oliveira R. Maternal Separation Combined With Limited Bedding Increases Anxiety-Like Behavior and Alters Hypothalamic-Pituitary-Adrenal Axis Function of Male BALB/cJ Mice. Front Behav Neurosci 2020; 14:600766. [PMID: 33304248 PMCID: PMC7693708 DOI: 10.3389/fnbeh.2020.600766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Early life stress (ELS) is considered a risk factor for the development of psychiatric conditions, including depression and anxiety disorder. Individuals that live in adverse environments are usually exposed to multiple stressors simultaneously, such as maternal neglect, maltreatment, and limited resources. Nevertheless, most pre-clinical ELS models are designed to explore the impact of these events separately. For this reason, this study aims to investigate the effects of a combined model of ELS on anxiety-like behavior and hypothalamic-pituitary-adrenal (HPA) axis related targets. From PND 2 to PND 15 BALB/cJ mice were exposed simultaneously to maternal separation (MS; 3 h per day) and limited bedding (LB; ELS group) or left undisturbed (CT group). Maternal behavior was recorded in intercalated days, from PND 1 to PND 9. Male offspring were tested for anxiety-like behavior from PND 53 to PND 55 in the open field test (OF), elevated plus-maze (EPM), and light/dark test (LD). After behavioral testing, animals were euthanized, and glucocorticoid receptor (Nr3c1), corticotrophin-releasing hormone (Crh), and its receptor type 1 (Crhr1) gene expression in the hypothalamus were measured. Moreover, plasma corticosterone levels were analyzed. We observed that ELS dams presented altered quality of maternal care, characterized by a decrease in arched-back nursing, and an increase in passive nursing. Stressed dams also showed an increase in the number of exits from the nest when compared to CT dams. Furthermore, ELS animals showed increased anxiety-like behavior in the OF, EPM, and LD. Regarding gene expression, we identified an increase in hypothalamus Crh levels of ELS group when compared to CT animals, while no differences in Nr3c1 and Crhr1 expression were observed. Finally, stressed animals showed decreased levels of plasma corticosterone when compared to the CT group. In conclusion, we observed an alteration in maternal behavior in ELS dams. Later in life, animals exposed to the combined model of ELS showed increased levels of anxiety-like behavior. Moreover, the central and peripheral HPA measures observed could indicate a dysregulation in HPA function provoked by ELS exposure.
Collapse
Affiliation(s)
- Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Erika Kestering-Ferreira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
43
|
Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev 2020; 122:92-119. [PMID: 33309818 DOI: 10.1016/j.neubiorev.2020.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major health risk, with junk food consumption playing a central role in weight gain, because of its high palatability and high-energy nutrients. The Cafeteria (CAF) diet model for animal experiments consists of the same tasty but unhealthy food products that people eat (e.g. hot dogs and muffins), and considers variety, novelty and secondary food features, such as smell and texture. This model, therefore, mimics human eating patterns better than other models. In this paper, we systematically review studies that have used a CAF diet in behavioral experiments and propose a standardized CAF diet protocol. The proposed diet is ad libitum and voluntary; combines different textures, nutrients and tastes, including salty and sweet products; and it is rotated and varied. Our summary of the behavioral effects of CAF diet show that it alters meal patterns, reduces the hedonic value of other rewards, and tends to reduce stress and spatial memory. So far, no clear effects of CAF diet were found on locomotor activity, impulsivity, coping and social behavior.
Collapse
Affiliation(s)
- Jaume F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway; Regional Health Authority of North Norway, Norway.
| |
Collapse
|
44
|
Age-dependent shift in spontaneous excitation-inhibition balance of infralimbic prefrontal layer II/III neurons is accelerated by early life stress, independent of forebrain mineralocorticoid receptor expression. Neuropharmacology 2020; 180:108294. [PMID: 32882227 DOI: 10.1016/j.neuropharm.2020.108294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 02/05/2023]
Abstract
In this study we tested the hypothesis i) that age-dependent shifts in the excitation-inhibition balance of prefrontal neurons are accelerated by early life stress, a risk factor for the etiology of many psychiatric disorders; and if so, ii) that this process is exacerbated by genetic forebrain-specific downregulation of the mineralocorticoid receptor, a receptor that was earlier found to be a protective factor for negative effects of early life stress in both rodents and humans. In agreement with the literature, an age-dependent downregulation of the excitation-inhibition balance was found both with regard to spontaneous and evoked synaptic currents. The age-dependent shift in spontaneous excitatory relative to inhibitory currents was significantly accelerated by early life stress, but this was not exacerbated by reduction in mineralocorticoid receptor expression. The age-dependent changes in the excitation-inhibition balance were mirrored by similar changes in receptor subunit expression and morphological alterations, particularly in spine density, which could thus potentially contribute to the functional changes. However, none of these parameters displayed acceleration by early life stress, nor depended on mineralocorticoid receptor expression. We conclude that, in agreement with the hypothesis, early life stress accelerates the developmental shift of the excitation-inhibition balance but, contrary to expectation, there is no evidence for a putative protective role of the mineralocorticoid receptor in this system. In view of the modest effect of early life stress on the excitation-inhibition balance, alternative mechanisms potentially underlying the development of psychiatric disorders should be further explored.
Collapse
|
45
|
Tzanoulinou S, Gantelet E, Sandi C, Márquez C. Programming effects of peripubertal stress on spatial learning. Neurobiol Stress 2020; 13:100282. [PMID: 33344733 PMCID: PMC7739188 DOI: 10.1016/j.ynstr.2020.100282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 01/30/2023] Open
Abstract
Exposure to adversity during early life can have profound influences on brain function and behavior later in life. The peripubertal period is emerging as an important time-window of susceptibility to stress, with substantial evidence documenting long-term consequences in the emotional and social domains. However, little is known about how stress during this period impacts subsequent cognitive functioning. Here, we assessed potential long-term effects of peripubertal stress on spatial learning and memory using the water maze task. In addition, we interrogated whether individual differences in stress-induced behavioral and endocrine changes are related to the degree of adaptation of the corticosterone response to repeated stressor exposure during the peripubertal period. We found that, when tested at adulthood, peripubertally stressed animals displayed a slower learning rate. Strikingly, the level of spatial orientation in the water maze completed on the last training day was predicted by the degree of adaptation of the recovery -and not the peak-of the corticosterone response to stressor exposure (i.e., plasma levels at 60 min post-stressor) across the peripubertal stress period. In addition, peripubertal stress led to changes in emotional and glucocorticoid reactivity to novelty exposure, as well as in the expression levels of the plasticity molecule PSA-NCAM in the hippocampus. Importantly, by assessing the same endpoints in another peripubertally stressed cohort tested during adolescence, we show that the observed effects at adulthood are the result of a delayed programming manifested at adulthood and not protracted effects of stress. Altogether, our results support the view that the degree of stress-induced adaptation of the hypothalamus-pituitary-adrenal axis responsiveness at the important transitional period of puberty relates to the long-term programming of cognition, behavior and endocrine reactivity.
Collapse
Affiliation(s)
- S Tzanoulinou
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - E Gantelet
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C Márquez
- Laboratory of Neural Circuits of Social Behavior, Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), San Juan de Alicante, Spain
| |
Collapse
|
46
|
Hu P, Maita I, Phan ML, Gu E, Kwok C, Dieterich A, Gergues MM, Yohn CN, Wang Y, Zhou JN, Qi XR, Swaab DF, Pang ZP, Lucassen PJ, Roepke TA, Samuels BA. Early-life stress alters affective behaviors in adult mice through persistent activation of CRH-BDNF signaling in the oval bed nucleus of the stria terminalis. Transl Psychiatry 2020; 10:396. [PMID: 33177511 PMCID: PMC7658214 DOI: 10.1038/s41398-020-01070-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ELS) leads to stress-related psychopathology in adulthood. Although dysfunction of corticotropin-releasing hormone (CRH) signaling in the bed nucleus of the stria terminalis (BNST) mediates chronic stress-induced maladaptive affective behaviors that are historically associated with mood disorders such as anxiety and depression, it remains unknown whether ELS affects CRH function in the adult BNST. Here we applied a well-established ELS paradigm (24 h maternal separation (MS) at postnatal day 3) and assessed the effects on CRH signaling and electrophysiology in the oval nucleus of BNST (ovBNST) of adult male mouse offspring. ELS increased maladaptive affective behaviors, and amplified mEPSCs and decreased M-currents (a voltage-gated K+ current critical for stabilizing membrane potential) in ovBNST CRH neurons, suggesting enhanced cellular excitability. Furthermore, ELS increased the numbers of CRH+ and PACAP+ (the pituitary adenylate cyclase-activating polypeptide, an upstream CRH regulator) cells and decreased STEP+ (striatal-enriched protein tyrosine phosphatase, a CRH inhibitor) cells in BNST. Interestingly, ELS also increased BNST brain-derived neurotrophic factor (BDNF) expression, indicating enhanced neuronal plasticity. These electrophysiological and behavioral effects of ELS were reversed by chronic application of the CRHR1-selective antagonist R121919 into ovBNST, but not when BDNF was co-administered. In addition, the neurophysiological effects of BDNF on M-currents and mEPSCs in BNST CRH neurons mimic effects and were abolished by PKC antagonism. Together, our findings indicate that ELS results in a long-lasting activation of CRH signaling in the mouse ovBNST. These data highlight a regulatory role of CRHR1 in the BNST and for BDNF signaling in mediating ELS-induced long-term behavioral changes.
Collapse
Affiliation(s)
- Pu Hu
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Isabella Maita
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Mimi L. Phan
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Edward Gu
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Christopher Kwok
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Andrew Dieterich
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Mark M. Gergues
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA ,grid.266102.10000 0001 2297 6811Present Address: Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Christine N. Yohn
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yu Wang
- grid.59053.3a0000000121679639CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, Hefei, 230027 China
| | - Jiang-Ning Zhou
- grid.59053.3a0000000121679639CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, Hefei, 230027 China
| | - Xin-Rui Qi
- grid.412538.90000 0004 0527 0050Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Dick F. Swaab
- grid.418101.d0000 0001 2153 6865Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef, Amsterdam 1105 BA The Netherlands
| | - Zhiping P. Pang
- grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901 USA
| | - Paul J. Lucassen
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Troy A. Roepke
- grid.430387.b0000 0004 1936 8796Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Benjamin A. Samuels
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
47
|
Guadagno A, Verlezza S, Long H, Wong TP, Walker CD. It Is All in the Right Amygdala: Increased Synaptic Plasticity and Perineuronal Nets in Male, But Not Female, Juvenile Rat Pups after Exposure to Early-Life Stress. J Neurosci 2020; 40:8276-8291. [PMID: 32978287 PMCID: PMC7577595 DOI: 10.1523/jneurosci.1029-20.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
Early-life stress (ELS) is associated with increased vulnerability to mental disorders. The basolateral amygdala (BLA) plays a critical role in fear conditioning and is extremely sensitive to ELS. Using a naturalistic rodent model of ELS, the limited bedding paradigm (LB) between postnatal days 1-10, we previously documented that LB male, but not female preweaning rat pups display increased BLA neuron spine density paralleled with enhanced evoked synaptic responses and altered BLA functional connectivity. Since ELS effects are often sexually dimorphic and amygdala processes exhibit hemispheric asymmetry, we investigated changes in synaptic plasticity and neuronal excitability of BLA neurons in vitro in the left and right amygdala of postnatal days 22-28 male and female offspring from normal bedding or LB mothers. We report that LB conditions enhanced synaptic plasticity in the right, but not the left BLA of males exclusively. LB males also showed increased perineuronal net density, particularly around parvalbumin (PV) cells, and impaired fear-induced activity of PV interneurons only in the right BLA. Action potentials fired from right BLA neurons of LB females displayed slower maximal depolarization rates and decreased amplitudes compared with normal bedding females, concomitant with reduced NMDAR GluN1 subunit expression in the right BLA. In LB males, reduced GluA2 expression in the right BLA might contribute to the enhanced LTP. These findings suggest that LB differentially programs synaptic plasticity and PV/perineuronal net development in the left and right BLA. Furthermore, our study demonstrates that the effects of ELS exposure on BLA synaptic function are sexually dimorphic and possibly recruiting different mechanisms.SIGNIFICANCE STATEMENT Early-life stress (ELS) induces long-lasting consequences on stress responses and emotional regulation in humans, increasing vulnerability to the development of psychopathologies. The effects of ELS in a number of brain regions, including the amygdala, are often sexually dimorphic, and have been reproduced using the rodent limited bedding paradigm of early adversity. The present study examines sex differences in synaptic plasticity and cellular activation occurring in the developing left and right amygdala after limited bedding exposure, a phenomenon that could shape long-term emotional behavioral outcomes. Studying how ELS selectively produces effects in one amygdala hemisphere during a critical period of brain development could guide further investigation into sex-dependent mechanisms and allow for more targeted and improved treatment of stress-and emotionality-related disorders.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A 0G4, Canada
| | - Silvanna Verlezza
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Hong Long
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 0G4, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 0G4, Canada
| |
Collapse
|
48
|
Spyrka J, Gugula A, Rak A, Tylko G, Hess G, Blasiak A. Early life stress-induced alterations in the activity and morphology of ventral tegmental area neurons in female rats. Neurobiol Stress 2020; 13:100250. [PMID: 33344705 PMCID: PMC7739067 DOI: 10.1016/j.ynstr.2020.100250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 01/02/2023] Open
Abstract
Childhood maltreatment, which can take the form of physical or psychological abuse, is experienced by more than a quarter of all children. Early life stress has substantial and long-term consequences, including an increased risk of drug abuse and psychiatric disorders in adolescence and adulthood, and this risk is higher in women than in men. The neuronal mechanisms underlying the influence of early life adversities on brain functioning remain poorly understood; therefore, in the current study, we used maternal separation (MS), a rodent model of early-life neglect, to verify its influence on the properties of neurons in the ventral tegmental area (VTA), a brain area critically involved in reward and motivation processing. Using whole-cell patch-clamp recordings in brain slices from adolescent female Sprague-Dawley rats, we found an MS-induced increase in the excitability of putative dopaminergic (DAergic) neurons selectively in the medial part of the VTA. We also showed an enhancement of excitatory synaptic transmission in VTA putative DAergic neurons. MS-induced alterations in electrophysiology were accompanied by an increase in the diameter of dendritic spine heads on lateral VTA DAergic neurons, although the overall dendritic spine density remained unchanged. Finally, we reported MS-related increases in basal plasma ACTH and corticosterone levels. These results show the long-term consequences of early life stress and indicate the possible neuronal mechanisms of behavioral disturbances in individuals who experience early life neglect. Adversity in early life is a predisposing factor for psychiatric disorders. Maternal separation (MS) increases excitability of dopaminergic VTA neurons. Early life stress enhances excitatory synaptic transmission in the VTA. MS changes morphology of dendritic spine heads on VTA dopaminergic neurons. Early life stress increases basal ACTH and corticosterone levels in adulthood.
Collapse
Affiliation(s)
- Jadwiga Spyrka
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
49
|
van der Veen R, Bonapersona V, Joëls M. The relevance of a rodent cohort in the Consortium on Individual Development. Dev Cogn Neurosci 2020; 45:100846. [PMID: 32957026 PMCID: PMC7509002 DOI: 10.1016/j.dcn.2020.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
One of the features of the Consortium on Individual Development is the existence of a rodent cohort, in parallel with the human cohorts. Here we give an overview of the current status. We first elaborate on the choice of rat and mouse models mimicking early life adverse or beneficial conditions during development. We performed a systematic literature search on early life adversity and adult social behavior to address the status quo. Next, we describe the behavioral tasks we used and designed to examine behavioral control and social competence in rodents. The results so far indicate that manipulation of the environment in the first postnatal week only subtly affects social behavior. Stronger effects were seen in the model that targeted early adolescence; once adult, these rats are characterized by increased attention, a higher degree of impulsiveness and reduced social interest in peers. Many experiments in our rodent models with tightly controlled conditions were inspired by findings in human cohorts, and now allow in-depth mechanistic investigations. Vice versa, some of the findings in rodents are currently followed up by dedicated investigations in the human cohorts. This exemplifies the added value of animal investigations in a consortium encompassing primarily human developmental cohorts.
Collapse
Affiliation(s)
- Rixt van der Veen
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioral Sciences, Leiden University, Leiden, the Netherlands.
| | - Valeria Bonapersona
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marian Joëls
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
50
|
Knop J, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Maternal care of heterozygous dopamine receptor D4 knockout mice: Differential susceptibility to early-life rearing conditions. GENES BRAIN AND BEHAVIOR 2020; 19:e12655. [PMID: 32306548 PMCID: PMC7540036 DOI: 10.1111/gbb.12655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022]
Abstract
The differential susceptibility hypothesis proposes that individuals who are more susceptible to the negative effects of adverse rearing conditions may also benefit more from enriched environments. Evidence derived from human experiments suggests the lower efficacy dopamine receptor D4 (DRD4) 7‐repeat as a main factor in exhibiting these for better and for worse characteristics. However, human studies lack the genetic and environmental control offered by animal experiments, complicating assessment of causal relations. To study differential susceptibility in an animal model, we exposed Drd4+/− mice and control litter mates to a limited nesting/bedding (LN), standard nesting (SN) or communal nesting (CN) rearing environment from postnatal day (P) 2‐14. Puberty onset was examined from P24 to P36 and adult females were assessed on maternal care towards their own offspring. In both males and females, LN reared mice showed a delay in puberty onset that was partly mediated by a reduction in body weight at weaning, irrespective of Drd4 genotype. During adulthood, LN reared females exhibited characteristics of poor maternal care, whereas dams reared in CN environments showed lower rates of unpredictability towards their own offspring. Differential susceptibility was observed only for licking/grooming levels of female offspring towards their litter; LN reared Drd4+/− mice exhibited the lowest and CN reared Drd4+/− mice the highest levels of licking/grooming. These results indicate that both genetic and early‐environmental factors play an important role in shaping maternal care of the offspring for better and for worse.
Collapse
Affiliation(s)
- Jelle Knop
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rixt van der Veen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|