1
|
Lee SW, Kim S, Chang Y, Cha H, Noeske R, Choi C, Lee SJ. Quantification of Glutathione and Its Associated Spontaneous Neuronal Activity in Major Depressive Disorder and Obsessive-Compulsive Disorder. Biol Psychiatry 2025; 97:279-289. [PMID: 39218137 DOI: 10.1016/j.biopsych.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Glutathione (GSH) is a crucial antioxidant in the human brain. Although proton magnetic resonance spectroscopy using the Mescher-Garwood point-resolved spectroscopy sequence is highly recommended, limited literature has measured cortical GSH using this method in major psychiatric disorders. METHODS By combining magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging, we quantified brain GSH and glutamate in the medial prefrontal cortex and precuneus and explored relationships between GSH levels and intrinsic neuronal activity as well as clinical symptoms among healthy control (HC) participants (n = 30), people with major depressive disorder (MDD) (n = 28), and people with obsessive-compulsive disorder (OCD) (n = 28). RESULTS GSH concentrations were lower in the medial prefrontal cortex and precuneus in both the MDD and OCD groups than in the HC group. In the HC group, positive correlations were noted between GSH and glutamate levels and between GSH and fractional amplitude of low-frequency fluctuations in both regions. However, while these correlations were absent in both patient groups, there was a weak positive correlation between glutamate and fractional amplitude of low-frequency fluctuations. Moreover, GSH levels were negatively correlated with depressive and compulsive symptoms in MDD and OCD, respectively. CONCLUSIONS These findings suggest that reduced GSH levels and an imbalance between GSH and glutamate could increase oxidative stress and alter neurotransmitter signaling, thereby leading to disruptions in GSH-related neurochemical-neuronal coupling and psychopathologies across MDD and OCD. Understanding these mechanisms could provide valuable insights into the processes that underlie these disorders and potentially become a springboard for future directions and advancing our knowledge of their neurobiological foundations.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Psychiatry, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Seungho Kim
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Radiology, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunsil Cha
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Ralph Noeske
- Applied Science Laboratory Europe, GE HealthCare, Munich, Germany
| | - Changho Choi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Seung Jae Lee
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
2
|
Fu Q, Qiu R, Liang J, Wu S, Huang D, Qin Y, Li Q, Shi X, Xiong X, Jiang Z, Chen Y, Cheng Y. Sugemule-7 alleviates oxidative stress, neuroinflammation, and cell death, promoting synaptic plasticity recovery in mice with postpartum depression. Sci Rep 2025; 15:1426. [PMID: 39789071 PMCID: PMC11718020 DOI: 10.1038/s41598-025-85276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Postpartum depression (PPD) profoundly impacts the mental and physical health of women globally and is an incurable psychological disorder. Traditional pharmacological treatments often have strong side effects and may adversely affect infant health through breastfeeding, underscoring the critical need for natural and gentle treatment strategies. Sugemule-7, a traditional Chinese medicine comprising multiple natural plant ingredients, represents a potentially safer and more effective alternative. To investigate its preventive effects on PPD, we established an animal model and administered the drug Sugemule-7. Our study demonstrated that varying doses of Sugemule-7 effectively alleviated depressive and anxiety-like behaviors in PPD mice, as assessed through a battery of tests, including the open field test, tail suspension test, sucrose preference test, forced swim test, novelty-suppressed feeding test, and elevated plus maze test. Furthermore, Sugemule-7 significantly improved oxidative stress levels in the serum, prefrontal cortex, and hippocampus of PPD-induced mice while also suppressing inflammatory responses and abnormal neuronal death in these brain regions. Transcriptomic sequencing of hippocampal and prefrontal cortex tissues supported our findings, revealing that differential gene expression is primarily involved in regulating synaptic plasticity. Overall, our study confirms the efficacy of Sugemule-7 in treating PPD at different concentrations, potentially alleviating depressive behaviors by enhancing synaptic plasticity, mitigating oxidative stress, reducing inflammation, and protecting neurons.
Collapse
Affiliation(s)
- Qiang Fu
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Rui Qiu
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Jiaquan Liang
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China
| | - Shuai Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Dezhi Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuxiang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiaosheng Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiaojie Shi
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiyue Xiong
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhongyong Jiang
- Department of Medical Laboratory, Affiliated Cancer Hospital of Chengdu Medical College, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Yuewen Chen
- Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Chinese Academy of Sciences, Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, 518057, Guangdong, China.
- Xili Shenzhen University Town, No.1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, China.
| | - Yong Cheng
- Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- , 27th South Zhongguancun Avenue, Beijing, 100081, China.
| |
Collapse
|
3
|
Bell CJM, Mehta M, Mirza L, Young AH, Beck K. Glutathione alterations in depression: a meta-analysis and systematic review of proton magnetic resonance spectroscopy studies. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06735-1. [PMID: 39708105 DOI: 10.1007/s00213-024-06735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common and serious psychiatric disorder associated with significant morbidity. There is mounting evidence for the role of oxidative stress in the pathophysiology of depression. OBJECTIVE To investigate alterations in the brain antioxidant glutathione in depression by undertaking a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS). METHODS MEDLINE, EMBASE and Psych Info databases were searched for case-control studies that reported brain glutathione levels in patients with depression and healthy controls. Means and variances (SDS) were extracted for each measure to calculate effect sizes. Hedges g was used to quantify mean differences. The Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. RESULTS 8 studies that reported measurements for 230 patients with depression and 216 controls were included. Three studies included data for the occipital cortex and five studies for the medial frontal cortex. In the occipital cortex, GSH was lower in the patient group as compared to controls (g = -0.98, 95% [CI, -1.45--0.50], P = < 0.001). In both the medial frontal cortex and in the combined all areas analysis there was no significant difference in GSH levels between cases and controls. CONCLUSIONS This study found reduced levels of GSH specifically in the occipital region of patients with MDD. This provides some support for the role of oxidative stress in depression and suggests that targeting this system may provide future therapeutic opportunities. However, the meta-analysis was limited by the small number and quality of the included studies. More studies using high quality MRS methods in a variety of brain regions are needed in the future to test this putative hypothesis.
Collapse
Affiliation(s)
- Charles J M Bell
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, King's College, Psychology & Neuroscience, London, UK.
- South West London and St George's NHS Foundation Trust, London, UK.
- Girton College, Cambridge, UK.
| | - Mitul Mehta
- Department of Neuroimaging, Institute of Psychiatry, King's College, Psychology & Neuroscience, London, UK
| | - Luwaiza Mirza
- Department of Psychosis Studies, Institute of Psychiatry, King's College, Psychology & Neuroscience, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, King's College, Psychology & Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, King's College, Psychology & Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Subramaniam P, Prescot A, Yancey J, McGlade E, Renshaw P, Yurgelun-Todd D. Lower distress intolerance is associated with higher glutathione levels in adolescent cannabis users. Pharmacol Biochem Behav 2024; 245:173861. [PMID: 39168376 PMCID: PMC11634053 DOI: 10.1016/j.pbb.2024.173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Cannabis (CB) use and psychological stressors increase oxidative stress in the brain. Glutathione (GSH), the most abundant antioxidant in the brain, protects against oxidative stress. Furthermore, distress intolerance, the inability to tolerate psychological or physiological stress is a risk factor for CB use. The relationship between CB use, brain GSH levels and distress intolerance remains unknown. Therefore, we examined GSH levels in the anterior cingulate cortex (ACC), as a measure of oxidative stress, and its relationship with distress intolerance in adolescent CB users and healthy controls (HC). Sixteen HC and 17 CB-using adolescents were included in the analysis. GSH levels were measured in the ACC using a metabolite-edited proton magnetic resonance spectroscopy sequence on a 3T scanner. Distress intolerance was assessed using the Distress Intolerance Index (DII) and CB use was evaluated using a structured clinical interview. In the CB group, lower CSF-corrected GSH levels in the ACC were correlated with higher DII scores. However, no significant between group differences were observed for ACC CSF-corrected GSH levels or on DII scores. No significant correlations were observed in the HC group between GSH levels and DII. Our findings suggests that the association between lower GSH levels and greater distress intolerance in CB users might reflect alterations in the balance between protective and oxidative stress conditions linked to the ability to tolerate distress. Further examination into this relationship can provide important insights into neurobiological correlates and risk factors associated with CB use to help inform preventive and treatment targets in the future.
Collapse
Affiliation(s)
- Punitha Subramaniam
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Andrew Prescot
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA
| | - James Yancey
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Erin McGlade
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Perry Renshaw
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Deborah Yurgelun-Todd
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| |
Collapse
|
5
|
Chioino A, Sandi C. The Emerging Role of Brain Mitochondria in Fear and Anxiety. Curr Top Behav Neurosci 2024. [PMID: 39505817 DOI: 10.1007/7854_2024_537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The functional complexity of brain circuits underlies the broad spectrum of behaviors, cognitive functions, and their associated disorders. Mitochondria, traditionally known for their role in cellular energy metabolism, are increasingly recognized as central to brain function and behavior. This review examines how mitochondria are pivotal in linking cellular energy processes with the functioning of neural circuits that govern fear and anxiety. Following an introductory section in which we summarize current knowledge about fear and anxiety neural circuits, we provide a brief summary of mitochondria fundamental roles (e.g., from energy production and calcium buffering to their involvement in reactive oxygen species (ROS) generation, mitochondrial dynamics, and signaling), particularly emphasizing their contribution to synaptic plasticity, neurodevelopment, and stress response mechanisms. The review's core focuses on the current state of knowledge regarding how mitochondrial function and dysfunction impact the neural substrates of fear and anxiety. Furthermore, we explore the implications of mitochondrial alterations in the context of posttraumatic stress disorder (PTSD) and anxiety disorders, underscoring the potential of mitochondrial pathways as new therapeutic targets. Integrating insights from genetic, biochemical, neurobiological, behavioral, and clinical studies, we propose a model in which mitochondrial function is critical for regulating the neural circuits that underpin fear and anxiety behaviors, highlighting how mitochondrial dysfunction can lead to their pathological manifestations. This integration emphasizes the potential for developing novel treatments targeting the biological roots of fear, anxiety, and related disorders. By merging mitochondrial biology with behavioral and circuit neuroscience, we enrich our neurobiological understanding of fear and anxiety, uncovering promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Lai M, Su D, Ai Z, Yang M, Zhang Z, Zhang Q, Shao W, Luo T, Zhu G, Song Y. Inhalation of Curcumae Rhizoma volatile oil attenuates depression-like behaviours via activating the Nrf2 pathway to alleviate oxidative stress and improve mitochondrial dysfunction. J Pharm Pharmacol 2024; 76:1449-1462. [PMID: 39018042 DOI: 10.1093/jpp/rgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/15/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Curcumae Rhizoma (CR) is a traditional Chinese medicine used frequently in clinics, which contains volatile components that exhibit various active effects. This study explores the effect of Curcumae Rhizoma volatile oil (CRVO) on depressive mice and its possible mechanism of action. METHODS Chemical composition of CRVO was analysed by GC-MS. DPPH and ABTS free radical scavenging assays were used to evaluate the in vitro antioxidant capacity of CRVO. A chronic unpredictable mild stress (CUMS) model was used to evaluate the antidepressant effect of CRVO. The effects of CRVO on oxidative stress in vivo were investigated using Nissl staining, ELISA and transmission electron microscopy. The Nrf2/HO-1/NQO1 signalling pathway was detected by western blotting and immunofluorescence. ML385, a Nrf2 inhibitor was used to validate the effect of Nrf2 on CUMS mice with CRVO treatment. KEY FINDINGS Phytochemical analysis showed that CRVO is rich in its characteristic components, including curzerene (31.1%), curdione (30.56%), and germacrone (12.44%). In vivo, the administration of CRVO significantly ameliorated CUMS-induced depressive-like behaviours. In addition, inhalation of CRVO significantly alleviated the oxidative stress caused by CUMS and improved neuronal damage and mitochondrial dysfunction. The results of mechanistic studies showed that the mechanism of action is related to the Nrf2/HO-1/NQO1 pathway and the antioxidant and antidepressant effects of CRVO were weakened when ML385 was used. CONCLUSIONS In summary, by regulating the Nrf2 pathway, inhalation of CRVO can reduce oxidative stress in depressed mice, thereby reducing neuronal damage and mitochondrial dysfunction to alleviate depression-like behaviours. Our study offers a prospective research foundation to meet the diversity of clinical medication.
Collapse
Affiliation(s)
- Meixizi Lai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang 330029, China
| | - Zhentao Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Qi Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Wenxiang Shao
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Tao Luo
- The First Affiliated Hospital of Nanchang University, Blood Purification Center, Nanchang 330006, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China
| |
Collapse
|
7
|
Liu RX, Song DK, Zhang YY, Gong HX, Jin YC, Wang XS, Jiang YL, Yan YX, Lu BN, Wu YM, Wang M, Li XB, Zhang K, Liu SB. L-Cysteine: A promising nutritional supplement for alleviating anxiety disorders. Neuroscience 2024; 555:213-221. [PMID: 39089569 DOI: 10.1016/j.neuroscience.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.
Collapse
Affiliation(s)
- Rui-Xia Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ying-Ying Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Heng-Xin Gong
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Chen Jin
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Shaanxi, Xi'an 710038, China
| | - Yu-Xuan Yan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bei-Ning Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
McAtee D, Abdelmoneim A. Effects of developmental exposure to arsenic species on behavioral stress responses in larval zebrafish and implications for stress-related disorders. Toxicol Sci 2024; 201:61-72. [PMID: 38833692 DOI: 10.1093/toxsci/kfae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Arsenic (As) is globally detected in drinking water and food products at levels repeatedly surpassing regulatory thresholds. Several neurological and mental health risks linked to arsenic exposure are proposed; however, the nature of these effects and their association with the chemical forms of arsenic are not fully understood. Gaining a clear understanding of the etiologies and characteristics of these effects is crucial, particularly in association with developmental exposures where the nervous system is most vulnerable. In this study, we investigated the effects of early developmental exposure (6- to 120-h postfertilization [hpf]) of larval zebrafish to environmentally relevant concentrations of arsenic species-trivalent/pentavalent, inorganic/organic forms-on developmental, behavioral, and molecular endpoints to determine their effect on stress response and their potential association with stress-related disorders. At 120 hpf, the developing larvae were assessed for a battery of endpoints including survival, developmental malformities, background activity, and behavioral responses to acute visual and acoustic stimuli. Pooled larval samples were analyzed for alterations in the transcript levels of genes associated with developmental neurotoxicity and stress-related disorders. Developmental exposures at target concentrations did not significantly alter survival, overall development, or background activity, and had minor effects on developmental morphology. Sodium arsenate and monomethylarsonic acid exaggerated the behavioral responses of larval zebrafish, whereas sodium arsenite depressed them. Sodium arsenate induced significant effects on molecular biomarkers. This study highlights the effects of developmental exposure to arsenicals on the behavioral stress response, the role chemical formulation plays in exerting toxicological effects, and the possible association with stress-related disorders.
Collapse
Affiliation(s)
- Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
9
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
10
|
Nisar R, Inamullah A, Ghalib AUF, Nisar H, Sarkaki A, Afzal A, Tariq M, Batool Z, Haider S. Geraniol mitigates anxiety-like behaviors in rats by reducing oxidative stress, repairing impaired hippocampal neurotransmission, and normalizing brain cortical-EEG wave patterns after a single electric foot-shock exposure. Biomed Pharmacother 2024; 176:116771. [PMID: 38795639 DOI: 10.1016/j.biopha.2024.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Anxiety-like conditions can interfere with daily activities as the adaptive mechanism fails to cope with stress. These conditions are often linked with increased oxidative stress, and abrupt neurotransmission and electroencephalography (EEG) wave pattern. Geraniol, a monoterpenoid, has antioxidant and anti-inflammatory activities, as well as brain-calming effects. Therefore, in this study, geraniol was tested for the potential anxiolytic effects in a rat model of anxiety. The rats were exposed to an electric foot shock (1 mA for 1 s) to develop anxiety-like symptoms. Treatment was carried out using geraniol (10 and 30 mg/kg) and the standard diazepam drug. The behavior of the rats was analyzed using the open field test, light-dark test, and social interaction test. Afterward, the rats were decapitated to collect samples for neurochemical and biochemical analyses. The cortical-EEG wave pattern was also obtained. The study revealed that the electric foot shock induced anxiety-like symptoms, increased oxidative stress, and altered hippocampal neurotransmitter levels. The power of low-beta and high-beta was amplified with the increased coupling of delta-beta waves in anxiety group. However, the treatment with geraniol and diazepam normalized cortical-EEG wave pattern and hippocampal serotonin and catecholamines profile which was also reflected by reduced anxious behavior and normalized antioxidant levels. The study reports an anxiolytic potential of geraniol, which can be further explored in future.
Collapse
Affiliation(s)
- Rida Nisar
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aimen Inamullah
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asad Ullah Faiz Ghalib
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hareem Nisar
- Institute of Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asia Afzal
- Department of Biochemistry, Federal Urdu University of Arts, Sciences & Technology, Karachi, Pakistan
| | - Maryam Tariq
- Dual General Adult and Old Age Trainee, Humber Teaching NHS Foundation Trust, Hull, UK
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
11
|
Evans VJ, Wu X, Tran KK, Tabofunda SK, Ding L, Yin L, Edwards P, Zhang QY, Ding X, Van Winkle LS. Impact of aging and ergothioneine pre-treatment on naphthalene toxicity in lung. Toxicol Lett 2024; 397:89-102. [PMID: 38768835 PMCID: PMC11531314 DOI: 10.1016/j.toxlet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Aging increases susceptibility to lung disease, but the topic is understudied, especially in relation to environmental exposures with the bulk of rodent studies using young adults. This study aims to define the pulmonary toxicity of naphthalene (NA) and the impacts of a dietary antioxidant, ergothioneine (ET), in the liver and lungs of middle-aged mice. NA causes a well-characterized pattern of conducting airway epithelial injury in the lung in young adult mice, but NA's toxicity has not been characterized in middle-aged mice, aged 1-1.5 years. ET is a dietary antioxidant that is synthesized by bacteria and fungi. The ET transporter (ETT), SLC22A4, is upregulated in tissues that experience high levels of oxidative stress. In this study, middle-aged male and female C57BL/6 J mice, maintained on an ET-free synthetic diet from conception, were gavaged with 70 mg/kg of ET for five consecutive days. On day 8, the mice were exposed to a single intraperitoneal NA dose of 50, 100, 150, or 200 mg/kg. At 24 hours post NA injection samples were collected and analyzed for ET concentration and reduced (GSH) and oxidized glutathione (GSSG) concentrations. Histopathology, morphometry, and gene expression were examined. Histopathology of mice exposed to 100 mg/kg of NA suggests reduction in toxicity in the terminal airways of both male (p ≤ 0.001) and female (p ≤ 0.05) middle-aged mice by the ET pretreatment. Our findings in this study are the first to document the toxicity of NA in middle-aged mice and show some efficacy of ET in reducing NA toxicity.
Collapse
Affiliation(s)
- Veneese Jb Evans
- Center for Health and the Environment, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Xiangmeng Wu
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Kyle K Tran
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Shanlea K Tabofunda
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Liang Ding
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Lei Yin
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Patricia Edwards
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Qing-Yu Zhang
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Xinxin Ding
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207.
| | - Laura S Van Winkle
- Center for Health and the Environment, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA.
| |
Collapse
|
12
|
Erdos T, Masuda M, Venketaraman V. Glutathione in HIV-Associated Neurocognitive Disorders. Curr Issues Mol Biol 2024; 46:5530-5549. [PMID: 38921002 PMCID: PMC11202908 DOI: 10.3390/cimb46060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
A large portion of patients with Human Immunodeficiency Virus (HIV) have neurologic sequelae. Those with better-controlled HIV via antiretroviral therapies generally have less severe neurologic symptoms. However, for many patients, antiretrovirals do not adequately resolve symptoms. Since much of the pathogenesis of HIV/AIDS (Autoimmune Deficiency Syndrome) involves oxidative stress either directly, through viral interaction, or indirectly, through inflammatory mechanisms, we have reviewed relevant trials of glutathione supplementation in each of the HIV-associated neurocognitive diseases and have found disease-specific results. For diseases for which trials have not been completed, predicted responses to glutathione supplementation are made based on relevant mechanisms seen in the literature. It is not sufficient to conclude that all HIV-associated neurocognitive disorders (HAND) will benefit from the antioxidant effects of glutathione supplementation. The potential effects of glutathione supplementation in patients with HAND are likely to differ based on the specific HIV-associated neurocognitive disease.
Collapse
Affiliation(s)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (T.E.); (M.M.)
| |
Collapse
|
13
|
Santos-Silva T, Lopes CFB, Hazar Ülgen D, Guimarães DA, Guimarães FS, Alberici LC, Sandi C, Gomes FV. Adolescent Stress-Induced Ventral Hippocampus Redox Dysregulation Underlies Behavioral Deficits and Excitatory/Inhibitory Imbalance Related to Schizophrenia. Schizophr Bull 2024:sbae033. [PMID: 38525594 DOI: 10.1093/schbul/sbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during adolescence is the ventral hippocampus (vHip). However, the impact of severe stress on vHip redox states and their functional consequences, including behavioral and electrophysiological changes related to SCZ, are not entirely understood. STUDY DESIGN After exposing adolescent animals to physical stress (postnatal day, PND31-40), we explored social and cognitive behaviors (PND47-49), the basal activity of pyramidal glutamate neurons, the number of parvalbumin (PV) interneurons, and the transcriptomic signature of the vHip (PND51). We also evaluated the impact of stress on the redox system, including mitochondrial respiratory function, reactive oxygen species (ROS) production, and glutathione (GSH) levels in the vHip and serum. STUDY RESULTS Adolescent-stressed animals exhibited loss of sociability, cognitive impairment, and vHip excitatory/inhibitory (E/I) imbalance. Genome-wide transcriptional profiling unveiled the impact of stress on redox system- and synaptic-related genes. Stress impacted mitochondrial respiratory function and changes in ROS levels in the vHip. GSH and glutathione disulfide (GSSG) levels were elevated in the serum of stressed animals, while GSSG was also increased in the vHip and negatively correlated with sociability. Additionally, PV interneuron deficits in the vHip caused by adolescent stress were associated with oxidative stress. CONCLUSIONS Our results highlight the negative impact of adolescent stress on vHip redox regulation and mitochondrial function, which are partially associated with E/I imbalance and behavioral abnormalities related to SCZ.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Caio Fábio Baeta Lopes
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Doğukan Hazar Ülgen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Danielle A Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Liu X, Zhang B, Tian J, Han Y. Plasma metabolomics reveals the intervention mechanism of different types of exercise on chronic unpredictable mild stress-induced depression rat model. Metab Brain Dis 2024; 39:1-13. [PMID: 37999885 DOI: 10.1007/s11011-023-01310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To study the effects of different types of exercise on the plasma metabolomics of chronic unpredictable mild stress (CUMS)-induced depressed rats based on 1H-NMR metabolomics techniques, and to explore the potential mechanisms of exercise for the treatment of depression. Rats were randomly divided into blank control group (C), CUMS control group (D), pre-exercise with CUMS group (P), CUMS with aerobic exercise group, CUMS with resistance exercise group (R), and CUMS with aerobic + resistance exercise group (E). The corresponding protocol intervention was applied to each group of rats. Body weight, sucrose preference and open field tests were performed weekly during the experiment to evaluate the extent of depression in rats. Plasma samples from each group of rats were collected at the end of the experiment, and then the plasma was analyzed by 1H-NMR metabolomics combined with multivariate statistical analysis methods to identify differential metabolites and perform metabolic pathway analysis. (1) Compared with the group D, the body weight, sucrose preference rate, and the number of crossings and standings in the different types of exercise groups were significantly improved (p < 0.05 or p < 0.01). (2) Compared to group C, a total of 15 differential metabolites associated with depression were screened in the plasma of rats in group D, involving 6 metabolic pathways. Group P can regulate the levels of 6 metabolites: valine, lactate, inositol, glucose, phosphocreatine, acetoacetic acid. Group A can regulate the levels of 6 metabolites: N-acetylglycoprotein, leucine, lactate, low density lipoprotein, glucose and acetoacetic acid. Group R can regulate the levels of 6 metabolites: choline, lactate, inositol, glucose, phosphocreatine and acetoacetic acid. Group E can regulate the levels of 5 metabolites: choline, citric acid, glucose, acetone and acetoacetic acid. The different types of exercise groups can improve the depressive symptoms in CUMS rats, and there are common metabolites and metabolic pathways for their mechanism of effects. This study provides a powerful analytical tool to study the mechanism of the antidepressant effect of exercise, and provides an important method and basis for the early diagnosis, prevention and treatment of depression.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Physical Education, Huainan Normal University, Huainan, China.
| | - Bo Zhang
- Changji Vocational and Technical College, Xinjiang, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, China
| |
Collapse
|
15
|
Liu R, Gong Y, Xia C, Cao Y, Zhao C, Zhou M. Itaconate: A promising precursor for treatment of neuroinflammation associated depression. Biomed Pharmacother 2023; 167:115521. [PMID: 37717531 DOI: 10.1016/j.biopha.2023.115521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
Neuroinflammation triggers the production of inflammatory factors, influences neuron generation and synaptic plasticity, thus playing an important role in the pathogenesis of depression and becoming an important direction of depression prevention and treatment. Itaconate is a metabolite secreted by macrophages in immunomodulatory responses, that has potent immunomodulatory effects and has been proven to exert anti-inflammatory effects in a variety of diseases. Microglia are mononuclear macrophages that reside in the central nervous system (CNS), and may be the source of endogenous itaconate in the brain. Itaconate can directly inhibit succinate dehydrogenase (SDH), reduce the production of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), activate nuclear factor erythroid-2 related factor 2 (Nrf2), and block glycolysis, and thereby improving the depressive symptoms associated with the above mechanisms. Notably, itaconate also indirectly ameliorates the depressive symptoms associated with some inflammatory diseases. With the optimization of the structure and the development of new delivery systems, the application value and therapeutic potential of itaconate have been significantly improved. Dimethyl itaconate (DI) and 4-octyl itaconate (4-OI), cell-permeable derivatives of itaconate, are more suitable for crossing the blood-brain barrier (BBB), exhibiting therapeutic effects in the research of multiple diseases. This article provides an overview of the immunomodulatory effects of itaconate and its potential therapeutic efficacy in inflammatory depression, focusing on the promising application of itaconate as a precursor of antidepressants.
Collapse
Affiliation(s)
- Ruisi Liu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueling Gong
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
16
|
Tuura RO, Buchmann A, Ritter C, Hase A, Haynes M, Noeske R, Hasler G. Prefrontal Glutathione Levels in Major Depressive Disorder Are Linked to a Lack of Positive Affect. Brain Sci 2023; 13:1475. [PMID: 37891842 PMCID: PMC10605149 DOI: 10.3390/brainsci13101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders, with symptoms including persistent sadness and loss of interest. MDD is associated with neurochemical alterations in GABA, glutamate, and glutamine levels but, to date, few studies have examined changes in glutathione (GSH) in MDD. This study investigated changes in GSH in an unmedicated group of young adults, including 46 participants with current (n = 12) or past MDD (n = 34) and 20 healthy controls. Glutathione levels were assessed from GSH-edited magnetic resonance (MR) spectra, acquired from a voxel in the left prefrontal cortex, and depressive symptoms were evaluated with validated questionnaires and clinical assessments. Cortisol levels were also assessed as a marker for acute stress. Participants with current MDD demonstrated elevated GSH in comparison to participants with past MDD and controls, although the results could be influenced by differences in tissue composition within the MRS voxel. In addition, participants with both current and past MDD showed elevated cortisol levels in comparison to controls. No significant association was observed between GSH and cortisol levels, but elevated GSH levels were associated with a decrease in positive affect. These results demonstrate for the first time that elevated GSH in current but not past depression may reflect a state rather than a trait neurobiological change, related to a loss of positive affect.
Collapse
Affiliation(s)
- Ruth O’Gorman Tuura
- Center for MR Research, University Children’s Hospital, 8032 Zürich, Switzerland
| | - Andreas Buchmann
- Center for MR Research, University Children’s Hospital, 8032 Zürich, Switzerland
- Psychiatry Research Unit, University of Fribourg, 1752 Villars-sur-Glâne, Switzerland
| | - Christopher Ritter
- Center for MR Research, University Children’s Hospital, 8032 Zürich, Switzerland
- Psychiatry Research Unit, University of Fribourg, 1752 Villars-sur-Glâne, Switzerland
| | - Adrian Hase
- Center for MR Research, University Children’s Hospital, 8032 Zürich, Switzerland
- Psychiatry Research Unit, University of Fribourg, 1752 Villars-sur-Glâne, Switzerland
| | - Melanie Haynes
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy Bern, 3012 Bern, Switzerland
| | | | - Gregor Hasler
- Psychiatry Research Unit, University of Fribourg, 1752 Villars-sur-Glâne, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy Bern, 3012 Bern, Switzerland
| |
Collapse
|
17
|
Giustarini D, Milzani A, Dalle-Donne I, Rossi R. How to Increase Cellular Glutathione. Antioxidants (Basel) 2023; 12:antiox12051094. [PMID: 37237960 DOI: 10.3390/antiox12051094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) has special antioxidant properties due to its high intracellular concentration, ubiquity, and high reactivity towards electrophiles of the sulfhydryl group of its cysteine moiety. In most diseases where oxidative stress is thought to play a pathogenic role, GSH concentration is significantly reduced, making cells more susceptible to oxidative damage. Therefore, there is a growing interest in determining the best method(s) to increase cellular glutathione for both disease prevention and treatment. This review summarizes the major strategies for successfully increasing cellular GSH stores. These include GSH itself, its derivatives, NRf-2 activators, cysteine prodrugs, foods, and special diets. The possible mechanisms by which these molecules can act as GSH boosters, their related pharmacokinetic issues, and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
18
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
19
|
Sánchez-Carro Y, de la Torre-Luque A, Leal-Leturia I, Salvat-Pujol N, Massaneda C, de Arriba-Arnau A, Urretavizcaya M, Pérez-Solà V, Toll A, Martínez-Ruiz A, Ferreirós-Martínez R, Pérez S, Sastre J, Álvarez P, Soria V, López-García P. Importance of immunometabolic markers for the classification of patients with major depressive disorder using machine learning. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110674. [PMID: 36332700 DOI: 10.1016/j.pnpbp.2022.110674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although there is scientific evidence of the presence of immunometabolic alterations in major depression, not all patients present them. Recent studies point to the association between an inflammatory phenotype and certain clinical symptoms in patients with depression. The objective of our study was to classify major depression disorder patients using supervised learning algorithms or machine learning, based on immunometabolic and oxidative stress biomarkers and lifestyle habits. METHODS Taking into account a series of inflammatory and oxidative stress biomarkers (C-reactive protein (CRP), tumor necrosis factor (TNF), 4-hydroxynonenal (HNE) and glutathione), metabolic risk markers (blood pressure, waist circumference and glucose, triglyceride and cholesterol levels) and lifestyle habits of the participants (physical activity, smoking and alcohol consumption), a study was carried out using machine learning in a sample of 171 participants, 91 patients with depression (71.42% women, mean age = 50.64) and 80 healthy subjects (67.50% women, mean age = 49.12). The algorithm used was the support vector machine, performing cross validation, by which the subdivision of the sample in training (70%) and test (30%) was carried out in order to estimate the precision of the model. The prediction of belonging to the patient group (MDD patients versus control subjects), melancholic type (melancholic versus non-melancholic patients) or resistant depression group (treatment-resistant versus non-treatment-resistant) was based on the importance of each of the immunometabolic and lifestyle variables. RESULTS With the application of the algorithm, controls versus patients, such as patients with melancholic symptoms versus non-melancholic symptoms, and resistant versus non-resistant symptoms in the test phase were optimally classified. The variables that showed greater importance, according to the results of the area under the ROC curve, for the discrimination between healthy subjects and patients with depression were current alcohol consumption (AUC = 0.62), TNF-α levels (AUC = 0.61), glutathione redox status (AUC = 0.60) and the performance of both moderate (AUC = 0.59) and vigorous physical exercise (AUC = 0.58). On the other hand, the most important variables for classifying melancholic patients in relation to lifestyle habits were past (AUC = 0.65) and current (AUC = 0.60) tobacco habit, as well as walking routinely (AUC = 0.59) and in relation to immunometabolic markers were the levels of CRP (AUC = 0.62) and glucose (AUC = 0.58). In the analysis of the importance of the variables for the classification of treatment-resistant patients versus non-resistant patients, the systolic blood pressure (SBP) variable was shown to be the most relevant (AUC = 0.67). Other immunometabolic variables were also among the most important such as TNF-α (AUC = 0.65) and waist circumference (AUC = 0.64). In this case, sex (AUC = 0.59) was also relevant along with alcohol (AUC = 0.58) and tobacco (AUC = 0.56) consumption. CONCLUSIONS The results obtained in our study show that it is possible to predict the diagnosis of depression and its clinical typology from immunometabolic markers and lifestyle habits, using machine learning techniques. The use of this type of methodology could facilitate the identification of patients at risk of presenting depression and could be very useful for managing clinical heterogeneity.
Collapse
Affiliation(s)
- Yolanda Sánchez-Carro
- Department of Psychiatry, Universidad Autonoma de Madrid (UAM), Spain; Department of Psychiatry, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Center for Biomedical Research in Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| | - Alejandro de la Torre-Luque
- Center for Biomedical Research in Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Spain
| | - Itziar Leal-Leturia
- Department of Psychiatry, Universidad Autonoma de Madrid (UAM), Spain; Department of Psychiatry, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Center for Biomedical Research in Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| | - Neus Salvat-Pujol
- Bellvitge University Hospital, Department of Psychiatry, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain; Corporació Sanitària Parc Taulí, Department of Mental Health, Sabadell, Spain
| | - Clara Massaneda
- Bellvitge University Hospital, Department of Psychiatry, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain
| | - Aida de Arriba-Arnau
- Bellvitge University Hospital, Department of Psychiatry, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain
| | - Mikel Urretavizcaya
- Center for Biomedical Research in Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Bellvitge University Hospital, Department of Psychiatry, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain; Department of Clinical Sciences, School of Medicine, Universitat de Barcelona (UB), Spain
| | - Victor Pérez-Solà
- Center for Biomedical Research in Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; Psychiatry Department, Institut de Neuropsiquiatria i Addicions, Hospital del Mar, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Alba Toll
- Psychiatry Department, Institut de Neuropsiquiatria i Addicions, Hospital del Mar, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Raquel Ferreirós-Martínez
- Service of Clinical Analysis, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Pilar Álvarez
- Psychiatry Department, Institut de Neuropsiquiatria i Addicions, Centre Fòrum, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Virginia Soria
- Center for Biomedical Research in Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain; Bellvitge University Hospital, Department of Psychiatry, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain; Department of Clinical Sciences, School of Medicine, Universitat de Barcelona (UB), Spain
| | - Pilar López-García
- Department of Psychiatry, Universidad Autonoma de Madrid (UAM), Spain; Department of Psychiatry, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Center for Biomedical Research in Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
20
|
da Silva Schmidt PM, Trettim JP, Longoni A, Grings M, de Matos MB, de Avila Quevedo L, Ardais AP, Nedel F, Ghisleni G, Leipnitz G, Pinheiro RT, de Assis AM. Can glutathione be a biomarker for suicide risk in women 18 months postpartum? Front Psychiatry 2023; 14:1142608. [PMID: 36846227 PMCID: PMC9948031 DOI: 10.3389/fpsyt.2023.1142608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Suicide risk is prominent among the problems affecting populations, mainly due to the broad family, psychosocial and economic impact. Most individuals at suicidal risk have some mental disorder. There is considerable evidence that psychiatric disorders are accompanied by the activation of neuro-immune and neuro-oxidative pathways. The aim of the study is to evaluate the serum levels of oxidative stress biomarkers in women at risk of suicide after 18 months of postpartum. METHODS This is a case-control study, nested within a cohort study. From this cohort, 45 women [15 without mood disorders and 30 with mood disorders (Major depression and Bipolar disorder)] were selected at 18 months postpartum, the depression and suicide risk were assessed using the Mini-International Neuropsychiatric Interview Plus (MINI-Plus) instrument, module A and C, respectively. Blood was collected and stored for later analysis of the reactive species (DCFH), superoxide dismutase (SOD), and glutathione reduced (GSH). For data analysis, the SPSS program was used. To compare the nominal covariates with the outcome GSH levels, the Student's t-test or analysis of variance (ANOVA) was used. Spearman's correlation was performed for analysis between the quantitative covariates and the outcome. To analyze the interaction between the factors, multiple linear regression was performed. Bonferroni analysis was used as an additional/secondary result to visualize differences in glutathione levels according to risk severity. After the adjusted analysis, p-values < 0.05 were considered statistically significant. RESULTS The percentage of suicide risk observed in our sample of women at 18 months postpartum was 24.4% (n = 11). After adjusting for the independent variables, only the presence of suicide risk remained associated with the outcome (β = 0.173; p = 0.007), low levels of GSH at 18 months after postpartum. Likewise, we verified the difference in GSH levels according to the degree of suicide risk, observing a significant association between the differences in glutathione means in the group of women with moderate to high risk compared to the reference group (no suicide risk) (p = 0.009). CONCLUSION Our findings suggest that GSH may be a potential biomarker or etiologic factor in women at moderate to high risk of suicide.
Collapse
Affiliation(s)
- Paula Michele da Silva Schmidt
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Jéssica Puchalski Trettim
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Aline Longoni
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Mateus Grings
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Mariana Bonati de Matos
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Luciana de Avila Quevedo
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Ana Paula Ardais
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Fernanda Nedel
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Gabriele Ghisleni
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Guilhian Leipnitz
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Ricardo Tavares Pinheiro
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| | - Adriano Martimbianco de Assis
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, Brazil
| |
Collapse
|
21
|
The mechanisms underlying montelukast's neuropsychiatric effects - new insights from a combined metabolic and multiomics approach. Life Sci 2022; 310:121056. [DOI: 10.1016/j.lfs.2022.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
22
|
Zalachoras I, Ramos-Fernández E, Hollis F, Trovo L, Rodrigues J, Strasser A, Zanoletti O, Steiner P, Preitner N, Xin L, Astori S, Sandi C. Glutathione in the nucleus accumbens regulates motivation to exert reward-incentivized effort. eLife 2022; 11:77791. [DOI: 10.7554/elife.77791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence is implicating mitochondrial function and metabolism in the nucleus accumbens in motivated performance. However, the brain is vulnerable to excessive oxidative insults resulting from neurometabolic processes, and whether antioxidant levels in the nucleus accumbens contribute to motivated performance is not known. Here, we identify a critical role for glutathione (GSH), the most important endogenous antioxidant in the brain, in motivation. Using proton magnetic resonance spectroscopy at ultra-high field in both male humans and rodent populations, we establish that higher accumbal GSH levels are highly predictive of better, and particularly, steady performance over time in effort-related tasks. Causality was established in in vivo experiments in rats that, first, showed that downregulating GSH levels through micro-injections of the GSH synthesis inhibitor buthionine sulfoximine in the nucleus accumbens impaired effort-based reward-incentivized performance. In addition, systemic treatment with the GSH precursor N-acetyl-cysteine increased accumbal GSH levels in rats and led to improved performance, potentially mediated by a cell-type-specific shift in glutamatergic inputs to accumbal medium spiny neurons. Our data indicate a close association between accumbal GSH levels and an individual’s capacity to exert reward-incentivized effort over time. They also suggest that improvement of accumbal antioxidant function may be a feasible approach to boost motivation.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Eva Ramos-Fernández
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Fiona Hollis
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine
| | - Laura Trovo
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - João Rodrigues
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Alina Strasser
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Pascal Steiner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Nicolas Preitner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), EPFL
| | - Simone Astori
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Carmen Sandi
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| |
Collapse
|
23
|
Haridevamuthu B, Guru A, Murugan R, Sudhakaran G, Pachaiappan R, Almutairi MH, Almutairi BO, Juliet A, Arockiaraj J. Neuroprotective effect of Biochanin a against Bisphenol A-induced prenatal neurotoxicity in zebrafish by modulating oxidative stress and locomotory defects. Neurosci Lett 2022; 790:136889. [PMID: 36179902 DOI: 10.1016/j.neulet.2022.136889] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Exogenous toxicants cause oxidative stress and damage to brain cells, resulting in inflammation. Neuroinflammation is important in the pathobiology of various neurological illnesses, including Alzheimer's disease (AD). In this context, Bisphenol A (BPA), a common toxin, causes oxidative damage and has been linked to neurological problems. An O-methylated isoflavone known as Biochanin A (5,7-dihydroxy-4'-methoxy-isoflavone, BCA) is considered to be a phytoestrogen, which is abundant in some legume plants and soy which have preventive effects against cancer, osteoporosis, menopausal symptoms and oxidative stress. However, the mechanism by which BCA protected the prenatal neurological stress are not known. So that, in this study we investigated the BCA neuroprotective effect against BPA-induced neuroinflammation in zebrafish embryo models. For this study, fertilized zebrafish embryos are exposed to BPA (1 µM) with or without BCA. Our finding suggested that BCA co-exposure prevented the depletion of antioxidant defense enzymes by BPA and reduced the production of intracellular ROS production, superoxide anion (O2-), lipid peroxidation (LPO), lactate dehydrogenase (LDH) and nitric oxide (NO) levels in the head that aided in safeguarding neuronal development. Baseline locomotion was rendered and a total distance was calculated to assess the motor function. Exposure to BCA increased acetylcholinestrase (AChE) and improved motor neuron functions. It also reduced the pro-inflammatory response expression and prevented neuroinflammation. Our study suggests that BCA has a positive role in the attenuation or amelioration of neuronal oxidative damage and locomotory behaviour induced by BPA.
Collapse
Affiliation(s)
- B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, University Station A4800, Austin TX 78712, USA
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
24
|
Aniba canelilla (Kunth) Mez (Lauraceae) Essential Oil: Effects on Oxidative Stress and Vascular Permeability. Antioxidants (Basel) 2022; 11:antiox11101903. [PMID: 36290626 PMCID: PMC9598933 DOI: 10.3390/antiox11101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to investigate the antioxidant activity of Aniba canelilla (kunth) Mez (Lauraceae) essential oil (AcEO), exploring its potential for prevention and/or treatment of oxidative stress and associated inflammatory process. With this aim, Wistar rats (n = 6/group) were pre-treated intraperitoneally with saline (0.9%) or AcEO (2 or 5 mg/kg) for 5 days. One hour after the last dose, inflammation and oxidative stress were induced by carrageenan (0.3 mg/kg; ip.) administration. Total antioxidant capacity, reduced glutathione (GSH) and lipid peroxidation levels, protein concentration, and leukocyte migration were evaluated in peritoneal fluid. Lipid peroxidation was also evaluated in plasma. Carrageenan strongly reduced the peritoneal antioxidant capacity and GSH concentration, increasing peritoneal and plasma lipid peroxidation. It also promoted increased plasma leakage and leukocyte migration. Treatment with AcEO (2 and 5 mg/kg), whose major constituent was 1-nitro-2-phenylethane (77.5%), increased the peritoneal antioxidant capacity and GSH concentrations, and reduced lipid peroxidation, both peritoneal and plasma, thus inhibiting the carrageenan-induced oxidative imbalance. AcEO also reduced the carrageenan-induced plasma leakage and leukocyte migration. These data demonstrate the AcEO antioxidant activity and its ability to modulate plasma leakage and leukocyte migration, confirming its potential for treating diseases associated with inflammation and oxidative stress.
Collapse
|
25
|
Zheng W, Li X, Zhang T, Wang J. Biological mechanisms and clinical efficacy of sulforaphane for mental disorders. Gen Psychiatr 2022; 35:e100700. [PMID: 35492261 PMCID: PMC8987744 DOI: 10.1136/gpsych-2021-100700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Current clinical management of major mental disorders, such as autism spectrum disorder, depression and schizophrenia, is less than optimal. Recent scientific advances have indicated that deficits in oxidative and inflammation systems are extensively involved in the pathogenesis of these disorders. These findings have led to expanded considerations for treatment. Sulforaphane (SFN) is a dietary phytochemical extracted from cruciferous vegetables. It is an effective activator of the transcription factor nuclear erythroid-2 like factor-2, which can upregulate multiple antioxidants and protect neurons against various oxidative damages. On the other hand, it can also significantly reduce inflammatory response to pathological states and decrease the damage caused by the immune response via the nuclear factor-κB pathway and other pathways. In this review, we introduce the biological mechanisms of SFN and the pilot evidence from its clinical trials of major mental disorders, hoping to promote an increase in psychiatric clinical studies of SFN.
Collapse
Affiliation(s)
- Wensi Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Shenzhen R&D Center, Shenzhen Fushan Biotech, Shenzhen, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
27
|
Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem Biophys Res Commun 2022; 605:70-81. [DOI: 10.1016/j.bbrc.2022.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
|
28
|
Increasing Inhibition of the Rat Brain 2-Oxoglutarate Dehydrogenase Decreases Glutathione Redox State, Elevating Anxiety and Perturbing Stress Adaptation. Pharmaceuticals (Basel) 2022; 15:ph15020182. [PMID: 35215295 PMCID: PMC8875720 DOI: 10.3390/ph15020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Specific inhibitors of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) are administered to animals to model the downregulation of the enzyme as observed in neurodegenerative diseases. Comparison of the effects of succinyl phosphonate (SP, 0.02 mmol/kg) and its uncharged precursor, triethyl succinyl phosphonate (TESP, 0.02 and 0.1 mmol/kg) reveals a biphasic response of the rat brain metabolism and physiology to increasing perturbation of OGDH function. At the low (TE)SP dose, glutamate, NAD+, and the activities of dehydrogenases of 2-oxoglutarate and malate increase, followed by their decreases at the high TESP dose. The complementary changes, i.e., an initial decrease followed by growth, are demonstrated by activities of pyruvate dehydrogenase and glutamine synthetase, and levels of oxidized glutathione and citrulline. While most of these indicators return to control levels at the high TESP dose, OGDH activity decreases and oxidized glutathione increases, compared to their control values. The first phase of metabolic perturbations does not cause significant physiological changes, but in the second phase, the ECG parameters and behavior reveal decreased adaptability and increased anxiety. Thus, lower levels of OGDH inhibition are compensated by the rearranged metabolic network, while the increased levels induce a metabolic switch to a lower redox state of the brain, associated with elevated stress of the animals.
Collapse
|
29
|
Ramírez Ortega D, Ugalde Muñiz PE, Blanco Ayala T, Vázquez Cervantes GI, Lugo Huitrón R, Pineda B, González Esquivel DF, Pérez de la Cruz G, Pedraza Chaverrí J, Sánchez Chapul L, Gómez-Manzo S, Pérez de la Cruz V. On the Antioxidant Properties of L-Kynurenine: An Efficient ROS Scavenger and Enhancer of Rat Brain Antioxidant Defense. Antioxidants (Basel) 2021; 11:antiox11010031. [PMID: 35052535 PMCID: PMC8773258 DOI: 10.3390/antiox11010031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
L-kynurenine (L-KYN) is an endogenous metabolite, that has been used as a neuroprotective strategy in experimental models. The protective effects of L-KYN have been attributed mainly to kynurenic acid (KYNA). However, considering that L-KYN is prone to oxidation, this redox property may play a substantial role in its protective effects. The aim of this work was to characterize the potential impact of the redox properties of L-KYN, in both synthetic and biological systems. First, we determined whether L-KYN scavenges reactive oxygen species (ROS) and prevents DNA and protein oxidative degradation in synthetic systems. The effect of L-KYN and KYNA (0.1–100 µM) on redox markers (ROS production, lipoperoxidation and cellular function) was compared in rat brain homogenates when exposed to FeSO4 (10 µM). Then, the effect of L-KYN administration (75 mg/kg/day for 5 days) on the GSH content and the enzymatic activity of glutathione reductase (GR) and glutathione peroxidase (GPx) was determined in rat brain tissue. Finally, brain homogenates from rats pretreated with L-KYN were exposed to pro-oxidants and oxidative markers were evaluated. The results show that L-KYN is an efficient scavenger of ●OH and ONOO−, but not O2●– or H2O2 and that it prevents DNA and protein oxidative degradation in synthetic systems. L-KYN diminishes the oxidative effect induced by FeSO4 on brain homogenates at lower concentrations (1 µM) when compared to KYNA (100 µM). Furthermore, the sub-chronic administration of L-KYN increased the GSH content and the activity of both GR and GPx, and also prevented the oxidative damage induced by the ex vivo exposure to pro-oxidants. Altogether, these findings strongly suggest that L-KYN can be considered as a potential endogenous antioxidant.
Collapse
Affiliation(s)
- Daniela Ramírez Ortega
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (T.B.A.); (G.I.V.C.); (D.F.G.E.)
| | - Perla Eugenia Ugalde Muñiz
- Laboratorio de Neuroendocrinología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Tonali Blanco Ayala
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (T.B.A.); (G.I.V.C.); (D.F.G.E.)
| | - Gustavo Ignacio Vázquez Cervantes
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (T.B.A.); (G.I.V.C.); (D.F.G.E.)
| | - Rafael Lugo Huitrón
- Laboratorio de Neurobiología Conductual, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Dinora Fabiola González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (T.B.A.); (G.I.V.C.); (D.F.G.E.)
| | - Gonzalo Pérez de la Cruz
- Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - José Pedraza Chaverrí
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Laura Sánchez Chapul
- Neuromuscular Diseases Laboratory, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (T.B.A.); (G.I.V.C.); (D.F.G.E.)
- Correspondence: ; Tel.: +52-55-56063822 (ext. 2006)
| |
Collapse
|
30
|
Wang X, Hao JC, Shang B, Yang KL, He XZ, Wang ZL, Jing HL, Cao YJ. Paeoniflorin ameliorates oxidase stress in Glutamate-stimulated SY5Y and prenatally stressed female offspring through Nrf2/HO-1 signaling pathway. J Affect Disord 2021; 294:189-199. [PMID: 34298225 DOI: 10.1016/j.jad.2021.07.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/17/2021] [Accepted: 07/10/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prenatal stress (PS) can cause brain retardation, reduce the learning and memory ability of the offspring and significantly increase the incidence of depression in offspring. Paeoniflorin (PF), a kind of monoterpenoid glycoside, is one of the main active ingredients of Chinese Medicine Paeonia lactiflora Pall, has anti-inflammation and potential neuroprotective effects. However, few reports have shown that the neuroprotective effects of PF are exerted through ameliorating Glutamate toxicity in vivo and in vitro. METHODS Here, we used a prenatal restraint stress model and Glu-induced excitotoxic neurotoxicity in SH-SY5Y cells to study the effects of PF. RESULTS Our results showed that PF can ameliorate learning and memory impairments and increases the density of hippocampal neurons, typical Golgi-positive pyramidal cells, and neuronal Neurogranin (Ng) expression in PS rat offspring. Furthermore, PF can significantly up-regulate the decrease of Glu-induced SH-SY5Y cell viability. At the same time, PF can significantly reduce apoptosis, ROS, NO levels, and intracellular Ca2+ concentration, and significantly inhibit the increase of mitochondrial membrane potential. Besides, PF significantly increased the expression of Nrf2 and iNOS, decreased p-JNK/JNK, p-P38/P38, Bax/Bcl-2, active-caspase-3, and active-caspase-9. CONCLUSIONS Our results demonstrate that PF may be an effective treatment in preventing the development of PS-induced learning and memory impairment and have therapeutic potential in Glu-related neurological diseases.
Collapse
Affiliation(s)
- Xing Wang
- Biomedicine Key Laboratory of Shaanxi Province, school of pharmacy, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Jin Cheng Hao
- Biomedicine Key Laboratory of Shaanxi Province, school of pharmacy, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Bo Shang
- Biomedicine Key Laboratory of Shaanxi Province, school of pharmacy, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Kai Lin Yang
- Biomedicine Key Laboratory of Shaanxi Province, school of pharmacy, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Xiao Zhou He
- Biomedicine Key Laboratory of Shaanxi Province, school of pharmacy, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Zhao Liang Wang
- Biomedicine Key Laboratory of Shaanxi Province, school of pharmacy, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Hui Ling Jing
- Department of Dermatology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Yan Jun Cao
- Biomedicine Key Laboratory of Shaanxi Province, school of pharmacy, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China.
| |
Collapse
|
31
|
Bader S, Wilmers J, Ontikatze T, Ritter V, Jendrossek V, Rudner J. Loss of pro-apoptotic Bax and Bak increases resistance to dihydroartemisinin-mediated cytotoxicity in normoxia but not in hypoxia in HCT116 colorectal cancer cells. Free Radic Biol Med 2021; 174:157-170. [PMID: 34403740 DOI: 10.1016/j.freeradbiomed.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Tumor hypoxia is a major biological factor that drives resistance to chemotherapy and radiotherapy. We previously demonstrated that the pro-oxidative drug dihydroartemisinin (DHA) efficiently targeted normoxic and hypoxic cancer cells. Although well studied in normoxia, the mechanism behind DHA-mediated cytotoxicity in hypoxia is insufficiently explored. Here, we analyzed the effect of DHA in HCT116 wild type (wt) cells and in HCT116 Bax-/-Baksh cells with a defective intrinsic apoptosis pathway. Normoxic HCT116 wt cells underwent apoptosis shortly after treatment with DHA. Autophagy-associated cell death contributes to short-term cytotoxicity of DHA in normoxia. These cells switched to an apoptosis- and autophagy-independent cell death after treatment with DHA in hypoxia and displayed similar long-term survival in response to DHA in normoxia and hypoxia. In HCT116 Bax-/-Baksh cells, DHA induced cell cycle arrest shortly after treatment irrespective of oxygen levels. Later, HCT116 Bax-/-Baksh cells induced a delayed cell death after treatment with DHA in hypoxia followed by return to normoxia, while treatment with DHA in normoxia was hardly toxic. We identified lower glutathione levels in hypoxic HCT116 cells which correlated with higher lipid peroxidation after treatment with DHA. Moreover, insufficient expression of Bax/Bak counteracted hypoxia-mediated downregulation of mitochondrial function, thereby adding to DHA-induced ROS production and lipid peroxidation in hypoxia. In summary, DHA-mediated cytotoxicity in normoxia depended on Bax/Bak expression, while cytotoxicity after treatment with DHA in hypoxia was regulated independently of Bax/Bak in HCT116 colorectal cancer cells.
Collapse
Affiliation(s)
- Sina Bader
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Wilmers
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Teona Ontikatze
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Violetta Ritter
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
32
|
Nutrition, Exercise, and Stress Management for Treatment and Prevention of Psychiatric Disorders. A Narrative Review Psychoneuroendocrineimmunology-Based. ENDOCRINES 2021. [DOI: 10.3390/endocrines2030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Psychoneuroendocrineimmunology (PNEI) brings together knowledge acquired since the 1930s from endocrinology, immunology, neuroscience, and psychology. With PNEI, a model of research and interpretation of health and disease is emerging, which sees the human body as a structured and interconnected unit, where the psychological and biological systems are mutually coordinated. In the PNEI view, many factors could influence mental health, with the endocrine system involved in mediating the effects of environmental stress on mental health and inflammation in the onset and course of psychiatric disorders as a result of individual and collective conditions and behaviors. Among these, nutrition is one way by which the environment impacts physiology: indeed, many pieces of research showed that several elements (e.g., probiotics, fish oil, zinc) have a positive effect on mental disorders thus being potentially augmentation agents in treatment. Still, physical activity can moderate depressive symptoms, while prolonged stress increases the risk of psychopathology. Taken together, the PNEI-based approach may inform prevention and treatment strategies, also in the field of mental health care.
Collapse
|
33
|
Jeon P, Limongi R, Ford SD, Branco C, Mackinley M, Gupta M, Powe L, Théberge J, Palaniyappan L. Glutathione as a Molecular Marker of Functional Impairment in Patients with At-Risk Mental State: 7-Tesla 1H-MRS Study. Brain Sci 2021; 11:941. [PMID: 34356175 PMCID: PMC8307096 DOI: 10.3390/brainsci11070941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
A substantial number of individuals with clinical high-risk (CHR) mental state do not transition to psychosis. However, regardless of future diagnostic trajectories, many of these individuals develop poor social and occupational functional outcomes. The levels of glutathione, a crucial cortical antioxidant, may track variations in functional outcomes in early psychosis and prodromal states. Thirteen clinical high-risk and 30 healthy control volunteers were recruited for a 7-Tesla magnetic resonance spectroscopy scan with a voxel positioned within the dorsal anterior cingulate cortex (ACC). Clinical assessment scores were collected to determine if any association was observable with glutathione levels. The Bayesian Spearman's test revealed a positive association between the Social and Occupational Functioning Assessment Scale (SOFAS) and the glutathione concentration in the clinical high-risk group but not in the healthy control group. After accounting for variations in the SOFAS scores, the CHR group had higher GSH levels than the healthy subjects. This study is the first to use 7-Tesla magnetic resonance spectroscopy to test whether ACC glutathione levels relate to social and occupational functioning in a clinically high-risk group and offers preliminary support for glutathione levels as a clinically actionable marker of prognosis in emerging adults presenting with risk features for various severe mental illnesses.
Collapse
Affiliation(s)
- Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
| | - Sabrina D. Ford
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Cassandra Branco
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Michael Mackinley
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Maya Gupta
- Department of Psychology, Western University, London, ON N6A 3K7, Canada;
| | - Laura Powe
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
- St. Joseph’s Health Care, Diagnostic Imaging, London, ON N6A 4V2, Canada
- Department of Medical Imaging, Western University, London, ON N6A 3K7, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| |
Collapse
|
34
|
Santiago Santana JM, Vega-Torres JD, Ontiveros-Angel P, Bin Lee J, Arroyo Torres Y, Cruz Gonzalez AY, Aponte Boria E, Zabala Ortiz D, Alvarez Carmona C, Figueroa JD. Oxidative stress and neuroinflammation in a rat model of co-morbid obesity and psychogenic stress. Behav Brain Res 2021; 400:112995. [PMID: 33301815 PMCID: PMC8713435 DOI: 10.1016/j.bbr.2020.112995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is growing recognition for a reciprocal, bidirectional link between anxiety disorders and obesity. Although the mechanisms linking obesity and anxiety remain speculative, this bidirectionality suggests shared pathophysiological processes. Neuroinflammation and oxidative damage are implicated in both pathological anxiety and obesity. This study investigates the relative contribution of comorbid diet-induced obesity and stress-induced anxiety to neuroinflammation and oxidative stress. METHODS Thirty-six (36) male Lewis rats were divided into four groups based on diet type and stress exposure: 1) control diet unexposed (CDU) and 2) exposed (CDE), 3) Western-like high-saturated fat diet unexposed (WDU) and 4) exposed (WDE). Neurobehavioral tests were performed to assess anxiety-like behaviors. The catalytic concentrations of glutathione peroxidase and reductase were measured from plasma samples, and neuroinflammatory/oxidative stress biomarkers were measured from brain samples using Western blot. Correlations between behavioral phenotypes and biomarkers were assessed with Pearson's correlation procedures. RESULTS We found that WDE rats exhibited markedly increased levels of glial fibrillary acidic protein (185 %), catalase protein (215 %), and glutathione reductase (GSHR) enzymatic activity (418 %) relative to CDU rats. Interestingly, the brain protein levels of glutathione peroxidase (GPx) and catalase were positively associated with body weight and behavioral indices of anxiety. CONCLUSIONS Together, our results support a role for neuroinflammation and oxidative stress in heightened emotional reactivity to obesogenic environments and psychogenic stress. Uncovering adaptive responses to obesogenic environments characterized by high access to high-saturated fat/high-sugar diets and toxic stress has the potential to strongly impact how we treat psychiatric disorders in at-risk populations.
Collapse
Affiliation(s)
- Jose M Santiago Santana
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Julio D Vega-Torres
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Perla Ontiveros-Angel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jeong Bin Lee
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Yaria Arroyo Torres
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico; Universidad Metropolitana de Cupey Sciences and Technology School, Puerto Rico
| | - Alondra Y Cruz Gonzalez
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Esther Aponte Boria
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Deisha Zabala Ortiz
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Carolina Alvarez Carmona
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| |
Collapse
|
35
|
Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases. Int J Mol Sci 2021; 22:ijms22020764. [PMID: 33466614 PMCID: PMC7828708 DOI: 10.3390/ijms22020764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose is an essential nutrient for every cell but its metabolic fate depends on cellular phenotype. Normally, the product of cytosolic glycolysis, pyruvate, is transported into mitochondria and irreversibly converted to acetyl coenzyme A by pyruvate dehydrogenase complex (PDC). In some pathological cells, however, pyruvate transport into the mitochondria is blocked due to the inhibition of PDC by pyruvate dehydrogenase kinase. This altered metabolism is referred to as aerobic glycolysis (Warburg effect) and is common in solid tumors and in other pathological cells. Switching from mitochondrial oxidative phosphorylation to aerobic glycolysis provides diseased cells with advantages because of the rapid production of ATP and the activation of pentose phosphate pathway (PPP) which provides nucleotides required for elevated cellular metabolism. Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin's function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin's action in switching the metabolic phenotype of cells.
Collapse
|
36
|
Soni VK, Mehta A, Shukla D, Kumar S, Vishvakarma NK. Fight COVID-19 depression with immunity booster: Curcumin for psychoneuroimmunomodulation. Asian J Psychiatr 2020; 53:102378. [PMID: 32916441 PMCID: PMC7462590 DOI: 10.1016/j.ajp.2020.102378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Vivek Kumar Soni
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Sujeet Kumar
- Department of Education, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Naveen Kumar Vishvakarma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India.
| |
Collapse
|