1
|
Kang J, Lee H, Yu S, Lee M, Kim HJ, Kwon R, Kim S, Fond G, Boyer L, Rahmati M, Koyanagi A, Smith L, Nehs CJ, Kim MS, Sánchez GFL, Dragioti E, Kim T, Yon DK. Effects and safety of transcranial direct current stimulation on multiple health outcomes: an umbrella review of randomized clinical trials. Mol Psychiatry 2024; 29:3789-3801. [PMID: 38816583 DOI: 10.1038/s41380-024-02624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Transcranial direct current stimulation (tDCS), which delivers a direct current to the brain, emerged as a non-invasive potential therapeutic in treating a range of neurological and neuropsychiatric disorders. However, a comprehensive quantitative evidence synthesis on the effects of tDCS on a broad range of mental illnesses is lacking. Here, we systematically assess the certainty of the effects and safety of tDCS on several health outcomes using an umbrella review of randomized controlled trials (RCTs). The methodological quality of each included original meta-analysis was assessed by the A Measurement Tool for Assessing Systematic Reviews 2 (AMSTAR2), and the certainty of the evidence for each effect was evaluated with Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). We followed an a priori protocol (PROSPERO CRD42023458700). We identified 15 meta-analyses of RCTs (AMSTAR 2; high 3, moderate 3, and low 9) that included 282 original articles, covering 22 unique health endpoints across 22 countries and six continents. From meta-analyses of RCTs supported by very low to high certainty of evidence, it was found that tDCS improved symptoms related to post-stroke, including post-stroke depression scale score (equivalent standardized mean difference [eSMD], 1.61 [95% confidence level, 0.72-2.50]; GRADE=moderate), activities of daily living independence (7.04 [3.41-10.67]; GRADE=high), motor recovery of upper and lower extremity (upper extremity: 0.15 [0.06-0.24], GRADE=high; lower extremity: 0.10 [0.03-0.16], GRADE=high), swallowing performance (GRADE=low), and spasticity (GRADE=moderate). In addition, tDCS had treatment effects on symptoms of several neurological and neuropsychiatric disorders, including obsessive-compulsive disorder (0.81 [0.44-1.18]; GRADE=high), pain in fibromyalgia (GRADE=low), disease of consciousness (GRADE=low), insight score (GRADE=moderate) and working memory (0.34 [0.01-0.67]; GRADE=high) in schizophrenia, migraine-related pain (-1.52 [-2.91 to -0.13]; GRADE=high), attention-deficit/hyperactivity disorder (reduction in overall symptom severity: 0.24 [0.04-0.45], GRADE=low; reduction in inattention: 0.56 [0.02-1.11], GRADE=low; reduction in impulsivity: 0.28 [0.04-0.51], GRADE=low), depression (GRADE=low), cerebellar ataxia (GRADE=low), and pain (GRADE=very low). Importantly, tDCS induced an increased number of reported cases of treatment-emergent mania or hypomania (0.88 [0.62-1.13]; GRADE=moderate). We found varied levels of evidence for the effects of tDCS with multiple neurological and neuropsychiatric conditions, from very low to high certainty of evidence. tDCS was effective for people with stroke, obsessive-compulsive disorder, fibromyalgia, disease of consciousness, schizophrenia, migraine, attention-deficit/hyperactivity disorder, depression, cerebellar ataxia, and pain. Therefore, these findings suggest the benefit of tDCS for several neurological and neuropsychiatric disorders; however, further studies are needed to understand the underlying mechanism and optimize its therapeutic potential.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Hyeri Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Seungyeong Yu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Rosie Kwon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Guillaume Fond
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Laurent Boyer
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Masoud Rahmati
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Min Seo Kim
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guillermo F López Sánchez
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Research Laboratory Psychology of Patients, Families, and Health Professionals, Department of Nursing, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Zhou D, Li X, Wei S, Yu C, Wang D, Li Y, Li J, Liu J, Li S, Zhuang W, Li Y, Luo R, Liu Z, Liu J, Xu Y, Fan J, Zhu G, Xu W, Tang Y, Cho RY, Kosten TR, Zhang XY. Transcranial Direct Current Stimulation Combined With Repetitive Transcranial Magnetic Stimulation for Depression: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2444306. [PMID: 39535797 PMCID: PMC11561687 DOI: 10.1001/jamanetworkopen.2024.44306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Importance Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are both recognized as effective treatments for depression when applied individually. However, it is unknown whether rTMS combined with tDCS has better efficacy in the treatment of major depressive disorder (MDD). Objective To investigate the clinical effectiveness and safety of rTMS, tDCS, tDCS + rTMS, and sham tDCS + sham rTMS after 2 weeks of treatment in patients with MDD. Design, Setting, and Participants This double-blind, sham-controlled randomized clinical trial was conducted from November 2021 to April 2023 at 3 hospitals in China (Kangning Hospital affiliated with Ningbo University, Lishui Second People's Hospital, and Taizhou Second People's Hospital). Adult patients (aged 18-65 years) who were diagnosed with major depressive disorder were recruited. Participants were randomly assigned to 1 of 4 interventions: active tDCS + active rTMS, sham tDCS + active rTMS, active tDCS + sham rTMS, and sham tDCS + sham rTMS. Data analysis followed an intention-to-treat approach. Intervention Patients received a 2-week course of treatment. The tDCS was administered using a 2-mA direct current stimulator with electrodes placed on the left and right dorsolateral prefrontal cortex (DLPFC). Each tDCS session lasted 20 minutes and was conducted 30 to 60 minutes prior to the rTMS session for a total of 10 sessions. The rTMS was delivered at a frequency of 10 Hz using a figure-8 coil placed on the left DLPFC, with each session consisting of 1600 pulses. Treatments were administered 5 times per week for 2 weeks. Sham treatments were performed with a pseudostimulation coil and emitted only sound. Main Outcomes and Measures The primary outcome was the change in total score from baseline to week 2 on the 24-item Hamilton Depression Rating Scale (HDRS-24; score range: 0-52, with the highest score indicating more severe symptoms). Results A total of 240 participants (139 females [57.9%]; mean [SD] age, 32.50 [15.18] years) were included. As a primary outcome, patients who received active tDCS + active rTMS showed a significantly greater reduction in mean (SD) HDRS-24 total scores compared with patients in the other 3 groups (active tDCS + active rTMS: 18.33 [5.39], sham tDCS + active rTMS: 14.86 [5.59], active tDCS + sham rTMS: 9.21 [4.61], and sham tDCS + sham rTMS: 10.77 [5.67]; F3,236 = 35.79; η2 = 0.31 [95% CI, 0.21-0.39]; P < .001). Conclusions and Relevance This trial found that tDCS + rTMS was a more effective and safe treatment option than either the tDCS or rTMS intervention alone for patients with MDD. Trial Registration China Clinical Trial Registry Identifier ChiCTR2100052122.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Xingxing Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuochi Wei
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Chang Yu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuchen Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Jiaxin Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junyao Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shen Li
- Psychoneuromodulation Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Wenhao Zhuang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Yanli Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Ruichenxi Luo
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Zhiwang Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Jimeng Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Yongming Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo, Zhejiang, China
| | - Jialin Fan
- Department of Psychiatry, Lishui’s Second People’s Hospital, Lishui, Zhejiang, China
| | - Guidong Zhu
- Department of Psychiatry, Lishui’s Second People’s Hospital, Lishui, Zhejiang, China
| | - Weiqian Xu
- Department of Psychiatry, Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| | - Yiping Tang
- Department of Psychiatry, Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| | - Raymond Y. Cho
- Department of Psychiatry and Behavioral Sciences and The Menninger Clinic, Baylor College of Medicine, Houston, Texas
| | - Thomas R. Kosten
- Department of Psychiatry and Behavioral Sciences and The Menninger Clinic, Baylor College of Medicine, Houston, Texas
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wang Y, Cheng J, Ruan H, Zhang J, Zheng Z, Lin L, Gao J, Yuan C, Han H, Fan Q, Wang Z. Assessing the effectiveness of high-definition transcranial direct current stimulation for treating obsessive-compulsive disorder: Results from a randomized, double-blind, controlled trial. Compr Psychiatry 2024; 135:152520. [PMID: 39126759 DOI: 10.1016/j.comppsych.2024.152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/23/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE Characterized by its disabling nature, obsessive compulsive disorder (OCD) affects individuals profoundly, with nearly 40% of patients showing resistance to initial treatment methods. Despite being safe and easily accessible, transcranial direct current stimulation (tDCS) lacks extensive substantiation supporting its efficacy in treating OCD. The objective of this study was to evaluate how cathodal high-definition transcranial direct current stimulation (HD-tDCS) applied to the right orbitofrontal cortex affected patients with OCD in terms of efficacy. METHOD 47 patients with OCD were enrolled. They were randomly allocated to active or sham stimulation groups, and underwent HD-tDCS stimulation treatment for 2 weeks. The central electrode located in the right orbitofrontal cortex region was cathodic. The severity of the patients' obsessive-compulsive symptoms, depression and anxiety were assessed before and after treatment. RESULT Out of the total, 44 patients concluded the treatment, comprising 23 participants from the active stimulation group and 21 from the sham stimulation group. Notably, substantial reductions in symptoms related to OCD, depression, and anxiety were exhibited in both groups. With a response rate of 26.1% in the active stimulation group and 23.8% in the sham stimulation group, there was no significant difference in efficacy observed. Furthermore, the reduction in depression and anxiety symptoms at the conclusion of the treatment was not notably superior in the active stimulation group. CONCLUSION This study provided evidence for the acceptability and safety of HD-tDCS. Nevertheless, the study did not reveal notable clinical effectiveness of tDCS in addressing moderate to severe OCD in comparison to the sham stimulation group.
Collapse
Affiliation(s)
- Yang Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jiayue Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Hanyang Ruan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
| | - Jiazhe Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Zifeng Zheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Liangjun Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215004, PR China
| | - Jian Gao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Chenyu Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Huiqin Han
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China.
| |
Collapse
|
4
|
Hou Y, Liu F, Su G, Tu S, Lyu Z. Systematic review and meta-analysis of transcranial direct current stimulation (tDCS) for global cognition in mild cognitive impairment and Alzheimer's disease. Geriatr Nurs 2024; 59:261-270. [PMID: 39089145 DOI: 10.1016/j.gerinurse.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 08/03/2024]
Abstract
OBJECTIVE To systematically assess the effectiveness of transcranial direct current stimulation (tDCS) on global cognition in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). DATA SOURCES Ten databases were retrieved for pertinent Chinese and English studies published up until February 2023. DATA EXTRACTION Two researchers independently selected the literature, extracted the data, evaluated using the Cochrane Collaboration's quality criteria, and then cross-checked. Meta-analysis was performed using RevMan 5.4. RESULTS 22 studies involving 1074 patients were included. Compared with the control group received the interventions such as pharmacotherapy, cognitive stimulation, et al., with/without sham-tDCS, while the experiment group received tDCS added to the interventions of the control group. The meta-analysis found that tDCS increased MMSE, MoCA, MODA scores and reduced the P300 latency scores (all P < 0.05). CONCLUSION The tDCS can ameliorate the global cognition of patients with MCI and AD, and it has a better rehabilitation effect than non-tDCS or sham-tDCS.
Collapse
Affiliation(s)
- Yufei Hou
- Nursing College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Fang Liu
- Nursing College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China.
| | - Guiting Su
- Nursing College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Shuzhen Tu
- Nursing College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Zecai Lyu
- Nursing College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| |
Collapse
|
5
|
Coelho DRA, Gersten M, Jimenez AS, Fregni F, Cassano P, Vieira WF. Treating neuropathic pain and comorbid affective disorders: Preclinical and clinical evidence. Pain Pract 2024; 24:937-955. [PMID: 38572653 DOI: 10.1111/papr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Neuropathic pain (NP) significantly impacts quality of life and often coexists with affective disorders such as anxiety and depression. Addressing both NP and its psychiatric manifestations requires a comprehensive understanding of therapeutic options. This study aimed to review the main pharmacological and non-pharmacological treatments for NP and comorbid affective disorders to describe their mechanisms of action and how they are commonly used in clinical practice. METHODS A review was conducted across five electronic databases, focusing on pharmacological and non-pharmacological treatments for NP and its associated affective disorders. The following combination of MeSH and title/abstract keywords were used: "neuropathic pain," "affective disorders," "depression," "anxiety," "treatment," and "therapy." Both animal and human studies were included to discuss the underlying therapeutic mechanisms of these interventions. RESULTS Pharmacological interventions, including antidepressants, anticonvulsants, and opioids, modulate neural synaptic transmission to alleviate NP. Topical agents, such as capsaicin, lidocaine patches, and botulinum toxin A, offer localized relief by desensitizing pain pathways. Some of these drugs, especially antidepressants, also treat comorbid affective disorders. Non-pharmacological techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and photobiomodulation therapy, modulate cortical activity and have shown promise for NP and mood disorders. CONCLUSIONS The interconnection between NP and comorbid affective disorders necessitates holistic therapeutic strategies. Some pharmacological treatments can be used for both conditions, and non-pharmacological interventions have emerged as promising complementary approaches. Future research should explore novel molecular pathways to enhance treatment options for these interrelated conditions.
Collapse
Affiliation(s)
- David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maia Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Felipe Fregni
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
O'Sullivan SJ, Buchanan DM, Batail JMV, Williams NR. Should rTMS be considered a first-line treatment for major depressive episodes in adults? Clin Neurophysiol 2024; 165:76-87. [PMID: 38968909 DOI: 10.1016/j.clinph.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Treatment-resistant depression (TRD) is an epidemic with rising social, economic, and political costs. In a patient whose major depressive episode (MDE) persists through an adequate antidepressant trial, insurance companies often cover alternative treatments which may include repetitive transcranial magnetic stimulation (rTMS). RTMS is an FDA-cleared neuromodulation technique for TRD which is safe, efficacious, noninvasive, and well-tolerated. Recent developments in the optimization of rTMS algorithms and targeting have increased the efficacy of rTMS in treating depression, improved the clinical convenience of these treatments, and decreased the cost of a course of rTMS. In this opinion paper, we make a case for why conventional FDA-cleared rTMS should be considered as a first-line treatment for all adult MDEs. RTMS is compared to other first-line treatments including psychotherapy and SSRIs. These observations suggest that rTMS has similar efficacy, fewer side-effects, lower risk of serious adverse events, comparable compliance, the potential for more rapid relief, and cost-effectiveness. This suggestion, however, would be strengthened by further research with an emphasis on treatment-naive subjects in their first depressive episode, and trials directly contrasting rTMS with SSRIs or psychotherapy.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Department of Psychiatry and Behavioral Sciences, Dell School of Medicine, Austin, TX, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA.
| | - Derrick M Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA
| | - Jean-Marie V Batail
- Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, Rennes, France; Université de Rennes, Rennes, France
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA
| |
Collapse
|
7
|
Kim J, Park S, Kim H, Roh D, Kim DH. Home-based, Remotely Supervised, 6-Week tDCS in Patients With Both MCI and Depression: A Randomized Double-Blind Placebo-Controlled Trial. Clin EEG Neurosci 2024; 55:531-542. [PMID: 38105601 DOI: 10.1177/15500594231215847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As depressive symptom is considered a prodrome, a risk factor for progression from mild cognitive impairment (MCI) to dementia, improving depressive symptoms should be considered a clinical priority in patients with MCI undergoing transcranial direct current stimulation (tDCS) intervention. We aimed to comprehensively evaluate the efficacy of the home-based and remotely monitored tDCS in patients with both MCI and depression, by integrating cognitive, psychological, and electrophysiological indicators. In a 6-week, randomized, double blind, and sham-controlled study, 37 community-dwelling patients were randomly assigned to either an active or a sham stimulation group, and received 30 home-based sessions of 2 mA tDCS for 30 min with the anode located over the left and cathode over the right dorsolateral prefrontal cortex. We measured depressive symptoms, neurocognitive function, and resting-state electroencephalography. In terms of effects of both depressive symptoms and cognitive functions, active tDCS was not significantly different from sham tDCS. However, compared to sham stimulation, active tDCS decreased and increased the activation of delta and beta frequencies, respectively. Moreover, the increase in beta activity was correlated with the cognitive enhancement only in the active group. It was not possible to reach a definitive conclusion regarding the efficacy of tDCS on depression and cognition in patients with both MCI and depression. Nevertheless, the relationship between the changes of electrophysiology and cognitive performance suggests potential neuroplasticity enhancement implicated in cognitive processes by tDCS.
Collapse
Affiliation(s)
- Jiheon Kim
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- *These first authors contributed equally to this work
| | - Seungchan Park
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- *These first authors contributed equally to this work
| | - Hansol Kim
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Daeyoung Roh
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Do Hoon Kim
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
8
|
Martin DM, Nikolin S. "Closing the Loop" With Transcranial Electrical Stimulation for Depression. Am J Psychiatry 2024; 181:793-794. [PMID: 39217439 DOI: 10.1176/appi.ajp.20240603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Donel M Martin
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Xie L, Hu P, Guo Z, Chen M, Wang X, Du X, Li Y, Chen B, Zhang J, Zhao W, Liu S. Immediate and long-term efficacy of transcranial direct current stimulation (tCDS) in obsessive-compulsive disorder, posttraumatic stress disorder and anxiety disorders: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:343. [PMID: 39183315 PMCID: PMC11345433 DOI: 10.1038/s41398-024-03053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Currently, there is still debate over the effectiveness of transcranial direct current stimulation (tDCS) in treating obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD) and anxiety disorders (ADs). To investigate the immediate and long-term effectiveness of tDCS in these diseases, we conducted a systematic review and quantitative analysis of existing literature on the treatment of OCD, PTSD, and ADs with tDCS. Following the PRISMA guidelines, we searched seven electronic databases and systematically retrieved articles published from May 2012 to June 2024 that compared the effects of active tDCS with sham stimulation in the treatment of these disorders. We included primary outcome measures such as the change scores in disorder-specific and general anxiety symptoms before and after treatment, as well as secondary outcomes such as changes in disorder-specific and general anxiety symptoms at follow-up. We also assessed the impact of tDCS on depressive symptoms. Fifteen papers met the eligibility criteria. Overall, the results of meta-analysis indicated that tDCS had a high effect in improving specific symptoms (SMD = -0.73, 95% CI: -1.09 to -0.37) and general anxiety symptoms (SMD = -0.75; 95% CI: -1.23 to -0.26) in OCD, PTSD and ADs, with effects lasting up to 1 month and showing a moderate effect size. Furthermore, tDCS demonstrated immediate and significant alleviation of depressive symptoms in these diseases. This study concludes that tDCS can serve as a non-invasive brain stimulation technology for treating these disorders, and the therapeutic effects can be maintained for a period of time.
Collapse
Affiliation(s)
- Luxin Xie
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- School of Humanities and Social Sciences, Shanxi Medical University, Jinzhong, China
| | - Peina Hu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- School of Humanities and Social Sciences, Shanxi Medical University, Jinzhong, China
| | - Zhenglong Guo
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Miao Chen
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao Wang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Li
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Chen
- Department of Mental Health, Sinopharm North Hospital, Baotou, China
| | - Jihui Zhang
- Department of Mental Health, Sinopharm North Hospital, Baotou, China
| | - Wentao Zhao
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Sha Liu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
10
|
Ruffini G, Salvador R, Castaldo F, Baleeiro T, Camprodon JA, Chopra M, Cappon D, Pascual-Leone A. Multichannel tDCS with advanced targeting for major depressive disorder: a tele-supervised at-home pilot study. Front Psychiatry 2024; 15:1427365. [PMID: 39211540 PMCID: PMC11358063 DOI: 10.3389/fpsyt.2024.1427365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Proof-of-principle human studies suggest that transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) may improve depression severity. This open-label multicenter study tested remotely supervised multichannel tDCS delivered at home in patients (N=35) with major depressive disorder (MDD). The primary aim was to assess the feasibility and safety of our protocol. As an exploratory aim, we evaluated therapeutic efficacy: the primary efficacy measure was the median percent change from baseline to the end of the 4-week post-treatment follow-up period in the observer-rated Montgomery-Asberg Depression Mood Rating Scale (MADRS). Methods Participants received 37 at-home stimulation sessions (30 minutes each) of specifically designed multichannel tDCS targeting the left DLPFC administered over eight weeks (4 weeks of daily treatments plus 4 weeks of taper), with a follow-up period of 4 weeks following the final stimulation session. The stimulation montage (electrode positions and currents) was optimized by employing computational models of the electric field generated by multichannel tDCS using available structural data from a similar population (group optimization). Conducted entirely remotely, the study employed the MADRS for assessment at baseline, at weeks 4 and 8 during treatment, and at 4-week follow-up visits. Results 34 patients (85.3% women) with a mean age of 59 years, a diagnosis of MDD according to DSM-5 criteria, and a MADRS score ≥20 at the time of study enrolment completed all study visits. At baseline, the mean time since MDD diagnosis was 24.0 (SD 19.1) months. Concerning compliance, 85% of the participants (n=29) completed the complete course of 37 stimulation sessions at home, while 97% completed at least 36 sessions. No detrimental effects were observed, including suicidal ideation and/or behavior. The study observed a median MADRS score reduction of 64.5% (48.6, 72.4) 4 weeks post-treatment (Hedge's g = -3.1). We observed a response rate (≥ 50% improvement in MADRS scores) of 72.7% (n=24) from baseline to the last visit 4 weeks post-treatment. Secondary measures reflected similar improvements. Conclusions These results suggest that remotely supervised and supported multichannel home-based tDCS is safe and feasible, and antidepressant efficacy motivates further appropriately controlled clinical studies. Clinical Trial Registration https://clinicaltrials.gov/study/NCT05205915?tab=results, identifier NCT05205915.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Ricardo Salvador
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | | | - Thais Baleeiro
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Joan A. Camprodon
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mohit Chopra
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
| | - Davide Cappon
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Qiao MX, Yu H, Li T. Non-invasive neurostimulation to improve sleep quality and depressive symptoms in patients with major depressive disorder: A meta-analysis of randomized controlled trials. J Psychiatr Res 2024; 176:282-292. [PMID: 38905761 DOI: 10.1016/j.jpsychires.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Non-invasive neurostimulation, including bright light therapy (BLT), repetitive transcranial magnetic (rTMS) and transcranial direct current stimulation (tDCS), has been shown to alleviate depressive symptoms in major depressive disorder (MDD). However, the efficacy of these interventions in addressing sleep disturbances in MDD patients remains a subject of debate. OBJECTIVE We aimed to conduct a meta-analysis of available randomized controlled trials (RCTs) to assess the effectiveness of non-invasive neurostimulation in improving sleep disturbances and depressive symptoms in MDD patients. METHODS Systematic searches for relevant RCTs were conducted in the databases PubMed, Cochrane Library, Web of Science, EMBASE, Wanfang and China National Knowledge Infrastructure up to January 2024. Data on outcomes comparable across the studies were meta-analyzed using Review Manager 5.3 and Stata 14. The pooled results were reported as standardized mean differences (SMD) with their respective 95% confidence intervals (CI). RESULTS Our analysis encompassed 15 RCTs involving 1348 patients. Compared to sham or no stimulation, non-invasive neurostimulation significantly improved sleep quality (SMD -0.74, 95%CI -1.15 to -0.33, p = 0.0004) and sleep efficiency (SMD 0.35, 95%CI 0.10 to 0.60, p = 0.006). It also significantly reduced severity of depressive symptoms (SMD -0.62, 95%CI -0.90 to -0.35, p < 0.00001). Subgroup analysis further demonstrated that patients experiencing sleep improvements due to neurostimulation showed a marked decrease in depressive symptoms compared to the control group (SMD = -0.90, 95% CI [-1.26, -0.54], p < 0.0001). CONCLUSION Current evidence from RCTs suggests that neurostimulation can enhance sleep quality and efficiency in individuals with MDD, which in turn may be associated with mitigation of depressive symptoms. PROSPERO REGISTRATION CRD42023423844.
Collapse
Affiliation(s)
- Meng-Xuan Qiao
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China; Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| | - Tao Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China; Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Zheng EZ, Wong NML, Yang ASY, Lee TMC. Evaluating the effects of tDCS on depressive and anxiety symptoms from a transdiagnostic perspective: a systematic review and meta-analysis of randomized controlled trials. Transl Psychiatry 2024; 14:295. [PMID: 39025832 PMCID: PMC11258305 DOI: 10.1038/s41398-024-03003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Depressive and anxiety symptoms are prevalent among patients with various clinical conditions, resulting in diminished emotional well-being and impaired daily functioning. The neural mechanisms underlying these symptoms, particularly across different disorders, remain unclear, limiting the effectiveness of conventional treatments. Therefore, it is crucial to elucidate the neural underpinnings of depressive and anxiety symptoms and investigate novel, effective treatments across clinical conditions. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that can help understand the neural underpinnings of symptoms and facilitate the development of interventions, addressing the two research gaps at both neural and clinical levels. Thus, this systematic review and meta-analysis aims to evaluate the existing evidence regarding the therapeutic efficacy of tDCS in reducing depressive and anxiety symptoms among individuals with diverse clinical diagnoses. This review evaluated evidence from fifty-six randomized, sham-controlled trials that administered repeated tDCS sessions with a parallel design, applying a three-level meta-analytic model. tDCS targeting the left dorsolateral prefrontal cortex (DLPFC) at 2-mA intensity demonstrates moderate efficacy in alleviating depressive symptoms, identifying the left DLPFC as a transdiagnostic neural mechanism of depressive symptoms across clinical conditions. In comparison, the findings on anxiety symptoms demonstrate greater heterogeneity. tDCS over the left DLPFC is effective in reducing depressive symptoms and shows promising effects in alleviating anxiety symptoms among individuals with diverse diagnoses. These findings enhance our understanding of the neuropsychological basis of depressive and anxiety symptoms, laying the groundwork for the development of more effective tDCS interventions applicable across clinical conditions.
Collapse
Affiliation(s)
- Esther Zhiwei Zheng
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nichol M L Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong.
| | - Angela S Y Yang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
13
|
Muccio M, Pilloni G, Walton Masters L, He P, Krupp L, Datta A, Bikson M, Charvet L, Ge Y. Simultaneous and cumulative effects of tDCS on cerebral metabolic rate of oxygen in multiple sclerosis. Front Hum Neurosci 2024; 18:1418647. [PMID: 39081842 PMCID: PMC11286420 DOI: 10.3389/fnhum.2024.1418647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique with simultaneous (during stimulation) and cumulative effects (after repeated sessions) on blood flow and neuronal metabolism. These effects remain mostly unclear especially in multiple sclerosis (MS). This work aims to elucidate brain metabolic and hemodynamic underpinnings of tDCS and its potential therapeutic impact in MS patients using quantitative tDCS-MRI. Methods MS participants (n = 20; age = 45.4 ± 12.3 years, 7 males) underwent 3 T MRI scans before and after 20 daily sessions of dorsolateral prefrontal cortex (DLFPC) tDCS (2.0 mA, left anodal) paired with adaptive cognitive training (aCT). During both visits, imaging measurements of cerebral blood flow (CBF), cerebral venous blood oxygenation (Yv) and calculated cerebral metabolic rate of oxygen (CMRO2) were obtained at pre-tDCS, during-tDCS and post-tDCS. Results At baseline, significant increase from pre- to during-tDCS was observed in CMRO2 (7.6%; p = 0.002), CBF (11.0%; p < 0.0001) and Yv (1.9%; p = 0.006). At follow up, we observed an increase in pre-tDCS CMRO2 (140.59 ± 13.83 μmol/100 g/min) compared to baseline pre-tDCS levels (128.30 ± 14.00 μmol/100 g/min; p = 0.006). Sustained elevations in CMRO2 and CBF into post-tDCS were also observed (tDCS lingering effects). Cumulative tDCS effects were observed in the form of sustained elevations in CMRO2 and CBF in pre-tDCS follow up, reaching the magnitudes measured at baseline during-tDCS. Discussion TDCS induces an acute surge in metabolic activity persisting immediately after the stimulation is removed. Moreover, treatment composed of repeated tDCS-aCT paired sessions contributes to establishing long-lasting increases in neuronal activity.
Collapse
Affiliation(s)
- Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Giuseppina Pilloni
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | | | - Peidong He
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Lauren Krupp
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge, NJ, United States
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Xia Z, Yang PY, Chen SL, Zhou HY, Yan C. Uncovering the power of neurofeedback: a meta-analysis of its effectiveness in treating major depressive disorders. Cereb Cortex 2024; 34:bhae252. [PMID: 38889442 DOI: 10.1093/cercor/bhae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Neurofeedback, a non-invasive intervention, has been increasingly used as a potential treatment for major depressive disorders. However, the effectiveness of neurofeedback in alleviating depressive symptoms remains uncertain. To address this gap, we conducted a comprehensive meta-analysis to evaluate the efficacy of neurofeedback as a treatment for major depressive disorders. We conducted a comprehensive meta-analysis of 22 studies investigating the effects of neurofeedback interventions on depression symptoms, neurophysiological outcomes, and neuropsychological function. Our analysis included the calculation of Hedges' g effect sizes and explored various moderators like intervention settings, study designs, and demographics. Our findings revealed that neurofeedback intervention had a significant impact on depression symptoms (Hedges' g = -0.600) and neurophysiological outcomes (Hedges' g = -0.726). We also observed a moderate effect size for neurofeedback intervention on neuropsychological function (Hedges' g = -0.418). As expected, we observed that longer intervention length was associated with better outcomes for depressive symptoms (β = -4.36, P < 0.001) and neuropsychological function (β = -2.89, P = 0.003). Surprisingly, we found that shorter neurofeedback sessions were associated with improvements in neurophysiological outcomes (β = 3.34, P < 0.001). Our meta-analysis provides compelling evidence that neurofeedback holds promising potential as a non-pharmacological intervention option for effectively improving depressive symptoms, neurophysiological outcomes, and neuropsychological function in individuals with major depressive disorders.
Collapse
Affiliation(s)
- Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
| | - Peng-Yuan Yang
- Department of Methodology and Statistics, Faculty of Behavioral and Social Sciences, Tilburg University, Warandelaan 2, 5037 AB, Tilburg, The Netherlands
| | - Si-Lu Chen
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
| | - Han-Yu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, 1688 Lianhua Road, Hefei 230601, China
| |
Collapse
|
15
|
Chmiel J, Kurpas D, Rybakowski F, Leszek J. The Effects of Transcranial Direct Current Stimulation (tDCS) in HIV Patients-A Review. J Clin Med 2024; 13:3288. [PMID: 38892999 PMCID: PMC11173062 DOI: 10.3390/jcm13113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction: HIV is a severe and incurable disease that has a devastating impact worldwide. It affects the immune system and negatively affects the nervous system, leading to various cognitive and behavioral problems. Scientists are actively exploring different therapeutic approaches to combat these issues. One promising method is transcranial direct current stimulation (tDCS), a non-invasive technique that stimulates the brain. Methods: This review aims to examine how tDCS can help HIV patients. Searches were conducted in the Pubmed/Medline, Research Gate, and Cochrane databases. Results: The literature search resulted in six articles focusing on the effects of tDCS on cognitive and behavioral measures in people with HIV. In some cases, tDCS showed positive improvements in the measures assessed, improving executive functions, depression, attention, reaction time, psychomotor speed, speed of processing, verbal learning and memory, and cognitive functioning. Furthermore, the stimulation was safe with no severe side effects. However, the included studies were of low quality, had small sample sizes, and did not use any relevant biomarkers that would help to understand the mechanisms of action of tDCS in HIV. Conclusions: tDCS may help patients with HIV; however, due to the limited number of studies and the diversity of protocols used, caution should be exercised when recommending this treatment option in clinical settings. More high-quality research, preferably involving neurophysiological and neuroimaging measurements, is necessary to better understand how tDCS works in individuals with HIV.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
16
|
Verma R, Ganesh R, Narnoli S, Nandakumar D, Sharma P, Sharma K, Dhyani I, Karna S. Effectiveness and tolerability of adjunctive transcranial direct current stimulation (tDCS) in management of treatment-resistant depression: A retrospective chart review. Indian J Psychiatry 2024; 66:538-544. [PMID: 39100375 PMCID: PMC11293779 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_243_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 08/06/2024] Open
Abstract
Background There is a limited number of studies from India investigating the role of transcranial direct current stimulation (tDCS) in treatment-resistant depression (TRD). This clinic-based study reports on the effectiveness of tDCS as an add-on treatment in individuals suffering from TRD. Materials and Methods Twenty-six right-handed individuals suffering from major depressive disorder who failed to respond to adequate trials of at least two antidepressant drugs in the current episode received tDCS as an augmenting treatment. Twice daily sessions of conventional tDCS were given providing anodal stimulation at the left dorsolateral prefrontal cortex (DLPFC) and cathodal placement at the right DLPFC. A total of 20 sessions were given over 2 weeks. The outcome was assessed based on changes in scores of the Hamilton Rating Scale for Depression (HAMD) and Montgomery-Asberg Depression Rating Scale (MADRS). Results There was a significant reduction in outcome assessment after tDCS intervention as compared to baseline, with more than 50% of the participants showing response in both scales, which increased further to approximately 77% by the end of 1 month of the follow-up period. Conclusion Twice daily tDCS sessions with anodal stimulation of left DLPFC and cathodal stimulation of right DLPFC is an effective add-on treatment strategy in individuals with TRD.
Collapse
Affiliation(s)
- Rohit Verma
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Ragul Ganesh
- Department of Psychiatry, JIPMER, Puducherry, India
| | - Shubham Narnoli
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Panna Sharma
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Kuldeep Sharma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ishita Dhyani
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Stuti Karna
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
17
|
Zhang D, Zhao B, Sun X, Ding K, Sun J, Tao S. High-definition transcranial direct current stimulation (HD-tDCS) in major depressive disorder with anxious distress-a study protocol for a double-blinded randomized sham-controlled trial. Trials 2024; 25:320. [PMID: 38750599 PMCID: PMC11094846 DOI: 10.1186/s13063-024-08157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Comorbid anxiety disorders and anxious distress are highly prevalent among individuals with major depressive disorder (MDD). The presence of the DSM-5 anxious distress specifier (ADS) has been associated with worse treatment outcomes and chronic disease course. Few studies have evaluated the therapeutic effects of High-definition transcranial direct current stimulation (HD-tDCS) on depressive and anxiety symptoms among MDD patients with ADS. The current randomized controlled trial aims to assess the efficacy of HD-tDCS as an augmentation therapy with antidepressants compared to sham-control in subjects of MDD with ADS. METHODS MDD patients with ADS will be recruited and randomly assigned to the active HD-tDCS or sham HD-tDCS group. In both groups, patients will receive the active or sham intervention in addition to their pre-existing antidepressant therapy, for 2 weeks with 5 sessions per week, each lasting 30 min. The primary outcome measures will be the change of depressive symptoms, clinical response, and the remission rate as measured with the 17-item Hamilton Depression Rating Scale (HDRS-17) before and after the intervention and at the 2nd and 6th week after the completed intervention. Secondary outcome measures include anxiety symptoms, cognitive symptoms, disability assessment, and adverse effects. DISCUSSION The HD-tDCS applied in this trial may have treatment effects on MDD with ADS and have minimal side effects. TRIAL REGISTRATION The trial protocol is registered with www.chictr.org.cn under protocol registration number ChiCTR2300071726. Registered 23 May 2023.
Collapse
Affiliation(s)
- Danwei Zhang
- Department of Psychology, Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu, 212001, China
| | - Bei Zhao
- Department of Psychology, Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu, 212001, China
| | - Xue Sun
- Department of Psychiatry, Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu, 212001, China
| | - Kaimo Ding
- Department of Psychology, Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu, 212001, China
| | - Jingjing Sun
- Department of Psychology, Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu, 212001, China.
| | - Sheng Tao
- Department of Psychiatry, Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu, 212001, China
| |
Collapse
|
18
|
Hausman HK, Alexander GE, Cohen R, Marsiske M, DeKosky ST, Hishaw GA, O'Shea A, Kraft JN, Dai Y, Wu S, Woods AJ. tDCS reduces depression and state anxiety symptoms in older adults from the augmenting cognitive training in older adults study (ACT). Brain Stimul 2024; 17:283-311. [PMID: 38438012 PMCID: PMC11110843 DOI: 10.1016/j.brs.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Pharmacological interventions for depression and anxiety in older adults often have significant side effects, presenting the need for more tolerable alternatives. Transcranial direct current stimulation (tDCS) is a promising non-pharmacological intervention for depression in clinical populations. However, its effects on depression and anxiety symptoms, particularly in older adults from the general public, are understudied. OBJECTIVE We conducted a secondary analysis of the Augmenting Cognitive Training in Older Adults (ACT) trial to assess tDCS efficacy in reducing psychological symptoms in older adults. We hypothesized that active stimulation would yield greater reductions in depression and state anxiety compared to sham post-intervention and at the one-year follow-up. We also explored tDCS effects in subgroups characterized by baseline symptom severity. METHODS A sample of 378 older adults recruited from the community completed a 12-week tDCS intervention with cognitive or education training. Electrodes were placed at F3/F4, and participants received active or sham tDCS during training sessions. We assessed the association between tDCS group and changes in depression, state anxiety, and trait anxiety from baseline to post-intervention and one-year controlling for covariates. RESULTS The active tDCS group demonstrated greater reductions in depression and state anxiety compared to sham post-intervention, particularly in individuals with mild depression and moderate/severe state anxiety at baseline. Furthermore, the active tDCS group with moderate/severe state anxiety maintained greater symptom reductions at one-year. CONCLUSIONS tDCS effectively reduced depression and state anxiety symptoms in a large sample of older adults. These findings highlight the importance of considering symptom severity when identifying those who may benefit most from this intervention.
Collapse
Affiliation(s)
- Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA; Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Lee SH, Kim YK. Application of Transcranial Direct and Alternating Current Stimulation (tDCS and tACS) on Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:129-143. [PMID: 39261427 DOI: 10.1007/978-981-97-4402-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The exploration of brain stimulation methods offers a promising avenue to overcome the shortcomings of traditional drug therapies and psychological treatments for major depressive disorder (MDD). Over the past years, there has been an increasing focus on transcranial electrical stimulation (tES), notably for its ease of use and potentially fewer side effects. This chapter delves into the use of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), which are key components of tES, in managing depression. It begins by introducing tDCS and tACS, summarizing their action mechanisms. Following this introduction, the chapter provides an in-depth analysis of existing meta-analyses, systematic reviews, clinical studies, and case reports that have applied tES in MDD treatment. It also considers the role of tES in personalized medicine by looking at specific patient groups and evaluating research on possible biomarkers that could predict how patients with MDD respond to tES therapy.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Hu Y, Hu L, Wang Y, Luo X, Zhao X, He L. The effects of non-invasive brain stimulation on disorder of consciousness in patients with brain injury: A systematic review and meta-analysis of randomized controlled trial. Brain Res 2024; 1822:148633. [PMID: 37839670 DOI: 10.1016/j.brainres.2023.148633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Disorders of consciousness (DOC) result from neural system injury and manifest as changes in arousal or awareness. This systematic review and meta-analysis aimed to investigate the therapeutic effects of non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), on consciousness dysfunction in patients with brain disorders. METHODS Literature was systematically searched in Medline, Embase, Cochrane database, Web of Science, EBSCO from inception to May 2023. Only randomized controlled trial with NIBS as an intervention and participants with DOC were included. RESULTS A total of 7 studies with 313 participants were included for meta-analysis. Compared with sham- or placebo-stimulation, NIBS can improve the Coma Recovery Scale-Revised scores significantly (mean difference [MD] = 1.96, 95 % confidence interval [CI] = [1.49; 2.43], P <.0001). CONCLUSION NIBS has a significant positive effect in enhancing the symptoms of DOC. Nevertheless, it is imperative for further investigations comprising high-quality research designs and larger sample sizes in order to comprehensively elucidate the effects of NIBS techniques on diverse targets of stimulation within the population of individuals suffering from DOC.
Collapse
Affiliation(s)
- Yu Hu
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Linzhe Hu
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Yuchan Wang
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Xiaozhou Luo
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Xin Zhao
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Lin He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, GuoXueXiang 37, Chengdu 610041, China.
| |
Collapse
|
21
|
Alipour A, Mohammadi R. Evaluation of the separate and combined effects of anodal tDCS over the M1 and F3 regions on pain relief in patients with type-2 diabetes suffering from neuropathic pain. Neurosci Lett 2024; 818:137554. [PMID: 37951301 DOI: 10.1016/j.neulet.2023.137554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Neuropathic pain (NP) is a common complication of chronic diabetes that negatively affects the routine functioning and sleep of patients. The present study aimed to investigate the separate and combined effects of anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) and left dorsolateral prefrontal cortex (F3) regions on pain relief in patients with type-2 diabetes suffering from NP. METHODS The statistical population of this double-blind randomized clinical trial consisted of all the members of the Bonab Diabetes Association in 2022 aged 45 to 65 years who were diagnosed with NP by a specialist. A total of 48 patients who met the inclusion criteria were selected as the sample through purposive sampling. The participants were then randomly assigned into 4 groups, each attending 12 sessions of a special intervention (three times a week). The Short Form-McGill Pain Questionnaire-2 (SF-MPQ-2) was used for data collection. Data were statistically analyzed using SPANOVA, analysis of covariance, and the Bonferroni test. RESULTS The results showed that tDCS had the potential to induce pain relief in patients with type-2 diabetes suffering from NP (F = 11.48, P < 0.001). The mean perceived pain intensity in the posttest was lower in the M1 stimulation group than in the F3 stimulation group. Nevertheless, there was no significant difference between the two groups in terms of perceived pain intensity in the one-month and two-month follow-up stages. CONCLUSIONS The tDCS approach (over both M1 and F3) showed promising effects for pain management in patients with type-2 diabetes suffering from NP and may be an effective add-on treatment. However, more trials with larger sample sizes are necessary to define clinically relevant effects.
Collapse
Affiliation(s)
- Ahmad Alipour
- Department of Psychology, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
22
|
Vöckel J, Spitznagel N, Markser A, Sigrist C, Koenig J. A paucity of evidence in youth: The curious case of transcranial direct current stimulation for depression. Asian J Psychiatr 2024; 91:103838. [PMID: 38000172 DOI: 10.1016/j.ajp.2023.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
A significant proportion of youth with depression do not respond to available treatment. Transcranial direct current stimulation (tDCS) is a promising third-line treatment in depressed adults, but evidence in youth seems scarce. Following the PRISMA guidelines, we conducted a systematic literature review on tDCS treatment for depression in children and adolescents. No published studies were found on the use of tDCS in youth with depression. Given the null-findings, no conclusion can be drawn about the effectiveness of tDCS treatment for adolescent depression. The reasons for this paucity of evidence in light of existing regulatory frameworks and technical challenges are discussed.
Collapse
Affiliation(s)
- Jasper Vöckel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany.
| | - Nele Spitznagel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Anna Markser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Christine Sigrist
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| |
Collapse
|
23
|
Koutsomitros T, Schwarz SA, van der Zee KT, Schuhmann T, Sack AT. Home-administered transcranial direct current stimulation with asynchronous remote supervision in the treatment of depression: feasibility, tolerability, and clinical effectiveness. Front Psychiatry 2023; 14:1206805. [PMID: 38025428 PMCID: PMC10652875 DOI: 10.3389/fpsyt.2023.1206805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Background Depression is an often chronic condition, characterized by wide-ranging physical, cognitive and psychosocial symptoms that can lead to disability, premature mortality or suicide. It affects 350 million people globally, yet up to 30% do not respond to traditional treatment, creating an urgent need for novel non-pharmacological treatments. This open-label naturalistic study assesses the practical feasibility, tolerability, and clinical effectiveness of home-administered transcranial direct current stimulation (tDCS) with asynchronous remote supervision, in the treatment of depression. Method Over the course of 3 weeks, 40 patients with depression received psychotherapy and half of this group also received daily bi-frontal tDCS stimulation of the dorsolateral prefrontal cortex. These patients received tDCS for 30 min per session with the anode placed over F3 and the cathode over F4, at an intensity of 2 mA for 21 consecutive days. We measured patients' level of depression symptoms at four time points using the Beck Depression Inventory, before treatment and at 1-week intervals throughout the treatment period. We monitored practical feasibility such as daily protocol compliance and tolerability including side effects, with the PlatoScience cloud-based remote supervision platform. Results Of the 20 patients in the tDCS group, 90% were able to comply with the protocol by not missing more than three of their assigned sessions, and none dropped out of the study. No serious adverse events were reported, with only 14 instances of mild to moderate side effects and two instances of scalp pain rated as severe, out of a total of 420 stimulation sessions. Patients in the tDCS group showed a significantly greater reduction in depression symptoms after 3 weeks of treatment, compared to the treatment as usual (TAU) group [t(57.2) = 2.268, p = 0.027]. The tDCS group also showed greater treatment response (50%) and depression remission rates (75%) compared to the TAU group (5 and 30%, respectively). Discussion Conclusion These findings provide a possible indication of the clinical effectiveness of home-administered tDCS for the treatment of depression, and its feasibility and tolerability in combination with asynchronous supervision.
Collapse
Affiliation(s)
- Theodoros Koutsomitros
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Greek rTMS Clinic, Medical Psychotherapeutic Centre (I.Ψ.K.), Thessaloniki, Greece
- Institute of Psychotherapy, Medical Psychotherapeutic Centre (I.Ψ.K.), Thessaloniki, Greece
| | - Sandra A. Schwarz
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kenneth T. van der Zee
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Brain and Nerve Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
24
|
Rezaei M, Shariat Bagheri MM, Khazaei S, Garavand H. tDCS efficacy and utility of anhedonia and rumination as clinical predictors of response to tDCS in major depressive disorder (MDD). J Affect Disord 2023; 339:756-762. [PMID: 37481126 DOI: 10.1016/j.jad.2023.07.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Anhedonia and rumination are mental disorders' transdiagnostic features but remain difficult to treat. Transcranial direct current stimulation (tDCS) is a proven treatment for depression, but its effects on anhedonia and rumination and whether anhedonia and rumination can be used as a predictive biomarker of treatment response is not well known. This study aimed to investigate the tDCS efficacy and identify the predictive role of anhedonia and rumination in response to tDCS in patients with MDD. METHODS 182 patients received 10 tDCS sessions delivered at 2 mA to left (anode) dorsolateral prefrontal cortex (DLPFC). Hamilton Rating Scale for Depression (HRSD-17), Snaith-Hamilton Pleasure Scale (SHAPS), and the 10-item Ruminative Response Scale (RRS-10) was administered to patients with MDD before treatment, following it, and after two weeks of tDCS. RESULTS There was an overall significant improvement in anhedonia from pre- to post-treatment. Regression analyses revealed that responders had higher baseline anhedonia and rumination (reflective pondering) scores. We found that the reduction in HRSD scores after tDCS was significantly associated with anhedonia's baseline values while no relation was found between baseline rumination and tDCS treatment response. CONCLUSION These results provide new evidence that pronounced anhedonia may be a significant clinical predictor of response to tDCS. Patients with severe or low baseline rumination had an equal chance of achieving clinical response. Prospective tDCS studies are necessary to validate the predictive value of the derived model.
Collapse
Affiliation(s)
- Mehdi Rezaei
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Birjand, Birjand, Iran.
| | | | - Samaneh Khazaei
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Birjand, Birjand, Iran
| | - Houshang Garavand
- Psychology Department, Faculty of Literature and Humanities, Lorestan University, Khorramabad, Iran
| |
Collapse
|
25
|
Klees-Themens G, Théoret H. The effects of transcranial direct current stimulation on corticospinal excitability: A systematic review of nonsignificant findings. Eur J Neurosci 2023; 58:3074-3097. [PMID: 37407275 DOI: 10.1111/ejn.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate brain activity through the application of low-intensity electrical currents. Based on its reported effects on corticospinal excitability (CSE), tDCS has been used to study cognition in healthy individuals and reduce symptoms in a variety of clinical conditions. Despite its increasing popularity as a research and clinical tool, high interindividual variability has been reported in the response to protocols using transcranial magnetic stimulation (TMS) to assess tDCS-induced changes in CSE leading to several nonsignificant findings. In this systematic review, studies that reported no significant modulation of CSE following tDCS were identified from PubMed and Embase (Ovid) databases. Forty-three articles were identified where demographic, TMS and tDCS parameters were extracted. Overall, stimulation parameters, CSE measurements and participant characteristics were similar to those described in studies reporting positive results and were likewise heterogeneous between studies. Small sample sizes and inadequate blinding were notable features of the reviewed studies. This systematic review suggests that studies reporting nonsignificant findings do not markedly differ from those reporting significant modulation of CSE.
Collapse
Affiliation(s)
| | - Hugo Théoret
- Department of Psychology, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
26
|
Langenbach BP, Koelkebeck K, Knoch D. Mentalising and depression: a mini-review on behavior, neural substrates, and treatment options. Front Psychiatry 2023; 14:1116306. [PMID: 37398589 PMCID: PMC10308027 DOI: 10.3389/fpsyt.2023.1116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Major depression is one of the most common mental disorders, affecting millions of people around the globe. In recent years, researchers increasingly investigated social cognition in depression and discovered pronounced alterations. A special focus has been put on mentalising or Theory of Mind, the ability to recognize and understand another person's thoughts and feelings. While there is behavioral evidence for deficits in this ability in patients with depression as well as specialized therapeutic interventions, the neuroscientific substrates are only beginning to be understood. In this mini-review, we take a social neuroscience perspective to analyse the importance of altered mentalising in depression and whether it can help to understand the origins and perpetuation of the disorder. We will put a special focus on treatment options and corresponding neural changes to identify relevant paths for future (neuroscientific) research.
Collapse
Affiliation(s)
- Benedikt P. Langenbach
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Essen, Germany
| | - Katja Koelkebeck
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Essen, Germany
| | - Daria Knoch
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Boscutti A, Murphy N, Cho R, Selvaraj S. Noninvasive Brain Stimulation Techniques for Treatment-Resistant Depression: Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation. Psychiatr Clin North Am 2023; 46:307-329. [PMID: 37149347 DOI: 10.1016/j.psc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transcranial magnetic stimulation is a safe, effective, and well-tolerated intervention for depression; it is currently approved for treatment-resistant depression. This article summarizes the mechanism of action, evidence of clinical efficacy, and the clinical aspects of this intervention, including patient evaluation, stimulation parameters selection, and safety considerations. Transcranial direct current stimulation is another neuromodulation treatment for depression; although promising, the technique is not currently approved for clinical use in the United States. The final section outlines the open challenges and future directions of the field.
Collapse
Affiliation(s)
- Andrea Boscutti
- Louis. A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicholas Murphy
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Raymond Cho
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Sudhakar Selvaraj
- Louis. A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
28
|
Zhang R, Peng X, Song X, Long J, Wang C, Zhang C, Huang R, Lee TMC. The prevalence and risk of developing major depression among individuals with subthreshold depression in the general population. Psychol Med 2023; 53:3611-3620. [PMID: 35156595 PMCID: PMC10277767 DOI: 10.1017/s0033291722000241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Subthreshold depression could be a significant precursor to and a risk factor for major depression. However, reliable estimates of the prevalence and its contribution to developing major depression under different terminologies depicting subthreshold depression have to be established. METHODS By searching PubMed and Web of Science using predefined inclusion criteria, we included 1 129 969 individuals from 113 studies conducted. The prevalence estimates were calculated using the random effect model. The incidence risk ratio (IRR) was estimated by measuring the ratio of individuals with subthreshold depression who developed major depression compared to that of non-depressed individuals from 19 studies (88, 882 individuals). RESULTS No significant difference in the prevalence among the different terminologies depicting subthreshold depression (Q = 1.96, p = 0.5801) was found. By pooling the prevalence estimates of subthreshold depression in 113 studies, we obtained a summary prevalence of 11.02% [95% confidence interval (CI) 9.78-12.33%]. The youth group had the highest prevalence (14.17%, 95% CI 8.82-20.55%), followed by the elderly group (12.95%, 95% CI 11.41-14.58%) and the adult group (8.92%, 95% CI 7.51-10.45%). Further analysis of 19 studies' incidence rates showed individuals with subthreshold depression had an increased risk of developing major depression (IRR = 2.95, 95% CI 2.33-3.73), and the term minor depression showed the highest IRR compared with other terms (IRR = 3.97, 95% CI 3.17-4.96). CONCLUSIONS Depression could be a spectrum disorder, with subthreshold depression being a significant precursor to and a risk factor for major depression. Proactive management of subthreshold depression could be effective for managing the increasing prevalence of major depression.
Collapse
Affiliation(s)
- Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Xiaoqi Song
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jixin Long
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chanyu Wang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chichen Zhang
- School of Management, Southern Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, SAR China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| |
Collapse
|
29
|
Kumari B, Singh A, Kar SK, Tripathi A, Agarwal V. Bifrontal-transcranial direct current stimulation as an early augmentation strategy in major depressive disorder: A single-blind randomised controlled trial. Asian J Psychiatr 2023; 86:103637. [PMID: 37270874 DOI: 10.1016/j.ajp.2023.103637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Patients with major depressive disorder who have a poor or inconsistent response to antidepressants have been treated using transcranial direct current stimulation (tDCS). Early tDCS augmentation may help with the early amelioration of symptoms. In this study, the efficacy and safety of tDCS as early augmentation therapy in major depressive disorder were evaluated. METHODS Fifty adults were randomized into two groups and were administered either active tDCS or sham tDCS, along with escitalopram 10 mg/day. A total of 10 tDCS sessions with anodal stimulation at the left dorsolateral prefrontal cortex (DLPFC) and cathode at the right DLPFC were given over two weeks. Assessments were done using Hamilton Depression Rating Scale (HAM-D), Beck's Depression Inventory (BDI), and Hamilton Anxiety Rating Scale (HAM-A) at baseline, two weeks, and four weeks. A tDCS side effect checklist was administered during therapy. RESULTS A significant reduction in HAM-D, BDI, and HAM-A scores were observed in both groups from baseline to week-4. At week-2, the active group had a significantly greater reduction in HAM-D and BDI scores than the sham group. However, at the end of therapy, both groups were comparable. The active group was 1.12 times more likely to experience any side effect than the sham group, but the intensity ranged from mild to moderate. CONCLUSION tDCS is an effective and safe strategy for managing depression as an early augmentation strategy, and it produces an early reduction of depressive symptoms and is well tolerated in moderate to severe depressive episodes.
Collapse
Affiliation(s)
- Babli Kumari
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| | - Amit Singh
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| | - Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| | - Adarsh Tripathi
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| | - Vivek Agarwal
- Department of Psychiatry, King George's Medical University, Lucknow, UP, India.
| |
Collapse
|
30
|
Charvet L, Harrison AT, Mangold K, Moore RD, Guo S, Zhang J, Datta A, Androulakis XM. Remotely supervised at-home tDCS for veterans with persistent post-traumatic headache: a double-blind, sham-controlled randomized pilot clinical trial. Front Neurol 2023; 14:1184056. [PMID: 37213913 PMCID: PMC10196360 DOI: 10.3389/fneur.2023.1184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/23/2023] Open
Abstract
Background Currently, there are no FDA approved therapies for persistent post-traumatic headache (PPTH) secondary to traumatic brain injury (TBI). As such neither headache nor TBI specialists have an effective means to manage PPTH. Thus, the objective of the present pilot trial was to evaluate the feasibility and preliminary efficacy of a four-week at-home remotely supervised transcranial direct current stimulation (RS-tDCS) intervention for veterans with PPTH. Methods Twenty-five (m = 46.6 ± 8.7 years) veterans with PPTH were randomized into two groups and received either active (n = 12) or sham (n = 13) RS-tDCS, with anodal stimulation over left dlPFC and cathodal over occipital pole. Following a four-week baseline, participants completed 20-sessions of active or sham RS-tDCS with real-time video monitoring over a period of four-weeks. Participants were assessed again at the end of the intervention and at four-weeks post-intervention. Primary outcomes were overall adherence rate (feasibility) and change in moderate-to-severe headache days per month (efficacy). Secondary outcomes were changes in total number of headache days, and PPTH-related functional outcomes. Results Adherence rate was high with 88% of participants (active = 10/12; sham = 12/13) fully completing tDCS interventions. Importantly, there was no significant difference in adherence between active and sham groups (p = 0.59). Moderate-to-severe headache days were significantly reduced within the active RS-tDCS group (p = 0.004), compared to sham during treatment (-2.5 ± 3.5 vs. 2.3 ± 3.4), and 4-week follow-up (-3.9 ± 6.4 vs. 1.2 ± 6.5). Total number of headache days was significantly reduced within the active RS-tDCS (p = 0.03), compared to sham during-treatment (-4.0 ± 5.2 vs. 1.5 ± 3.8), and 4-week follow-up (-2.1 ± 7.2 vs. -0.2 ± 4.4). Conclusion The current results indicate our RS-tDCS paradigm provides a safe and effective means for reducing the severity and number of headache days in veterans with PPTH. High treatment adherence rate and the remote nature of our paradigm indicate RS-tDCS may be a feasible means to reduce PPTH, especially for veterans with limited access to medical facilities.Clinical Trial Registration: ClinicalTrials.gov, identifier [NCT04012853].
Collapse
Affiliation(s)
- Leigh Charvet
- Department of Neurology, New York University Langone Health, New York, NY, United States
| | - Adam T. Harrison
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Neurology, Columbia VA Healthcare System, Columbia, SC, United States
| | - Kiersten Mangold
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Neurology, Columbia VA Healthcare System, Columbia, SC, United States
| | - Robert Davis Moore
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Siyuan Guo
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Jiajia Zhang
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - X. Michelle Androulakis
- Department of Neurology, Columbia VA Healthcare System, Columbia, SC, United States
- Headache Centers of Excellence Program, US Department of Veterans Affairs, Columbia, SC, United States
| |
Collapse
|
31
|
Treating fibromyalgia with electrical neuromodulation: A systematic review and meta-analysis. Clin Neurophysiol 2023; 148:17-28. [PMID: 36774784 DOI: 10.1016/j.clinph.2023.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Several types of electrical neuromodulation (such as transcranial direct current stimulation, tDCS; transcutaneous electrical nerve stimulation) have been applied in the treatment of fibromyalgia. These trials had different outcome measurements, such as subjective pain, pain threshold, depression, anxiety, and functioning. We intended to integrate data from different trials into a meta-analysis to clearly present the clinical value of electrical neuromodulation in fibromyalgia. METHODS A systematic review and meta-analysis of randomized controlled trials comparing the effect of all types of electrical neuromodulation in patients with fibromyalgia was conducted. The main outcome was subjective pain; the secondary outcomes included depression, anxiety, and functioning. RESULTS Twenty-five studies and 1061 fibromyalgia patients were included in the quantitative analysis. Active electrical neuromodulation and active tDCS both showed significant effects on subjective pain, depression, and functioning. For different anode tDCS electrode positions, only F3-F4 revealed a significant effect on depression. Meta-regression tDCS effects on depression were significantly associated with age. CONCLUSIONS Electrical neuromodulation is significantly effective in treating pain, depression, and functioning in patients with fibromyalgia. SIGNIFICANCE The results may help clinicians to arrange effective treatment plans for patients with fibromyalgia, especially in those patients who reveal limited response to pharmacotherapy and psychotherapy.
Collapse
|
32
|
Nikolin S, Moffa A, Razza L, Martin D, Brunoni A, Palm U, Padberg F, Bennabi D, Haffen E, Blumberger DM, Salehinejad MA, Loo CK. Time-course of the tDCS antidepressant effect: An individual participant data meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110752. [PMID: 36931456 DOI: 10.1016/j.pnpbp.2023.110752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
INTRODUCTION Prefrontal transcranial direct current stimulation (tDCS) shows promise as an effective treatment for depression. However, factors influencing treatment and the time-course of symptom improvements remain to be elucidated. METHODS Individual participant data was collected from ten randomised controlled trials of tDCS in depression. Depressive symptom scores were converted to a common scale, and a linear mixed effects individual growth curve model was fit to the data using k-fold cross-validation to prevent overfitting. RESULTS Data from 576 participants were analysed (tDCS: n = 311; sham: n = 265), of which 468 were unipolar and 108 had bipolar disorder. tDCS effect sizes reached a peak at approximately 6 weeks, and continued to diverge from sham up to 10 weeks. Significant predictors associated with worse response included higher baseline depression severity, treatment resistance, and those associated with better response included bipolar disorder and anxiety disorder. CONCLUSIONS Our findings suggest that longer treatment courses, lasting at least 6 weeks in duration, may be indicated. Further, our results show that tDCS is effective for depressive symptoms in bipolar disorder. Compared to unipolar depression, participants with bipolar disorder may require additional maintenance sessions to prevent rapid relapse.
Collapse
Affiliation(s)
- Stevan Nikolin
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia.
| | - Adriano Moffa
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Lais Razza
- Serviço Interdisciplinar de Neuromodulação (SIN), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Donel Martin
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Andre Brunoni
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Brazil
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Medical Park Chiemseeblick, Bernau-Felden, Germany
| | - Djamila Bennabi
- Centre d'Investigation Clinique, CIC-INSERM-1431, Centre Hospitalier Universitaire de Besançon CHU, Besançon, France
| | - Emmanuel Haffen
- Centre d'Investigation Clinique, CIC-INSERM-1431, Centre Hospitalier Universitaire de Besançon CHU, Besançon, France
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| |
Collapse
|
33
|
Allen CH, Shold J, Michael Maurer J, Reynolds BL, Anderson NE, Harenski CL, Harenski KA, Calhoun VD, Kiehl KA. Aberrant resting-state functional connectivity associated with childhood trauma among juvenile offenders. Neuroimage Clin 2023; 37:103343. [PMID: 36764058 PMCID: PMC9929859 DOI: 10.1016/j.nicl.2023.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Individuals with history of childhood trauma are characterized by aberrant resting-state limbic and paralimbic functional network connectivity. However, it is unclear whether specific subtypes of trauma (i.e., experienced vs observed or community) showcase differential effects. This study examined whether subtypes of childhood trauma (assessed via the Trauma Checklist [TCL] 2.0) were associated with aberrant intra-network amplitude of fluctuations and connectivity (i.e., functional coherence within a network), and inter-network connectivity across resting-state networks among incarcerated juvenile males (n = 179). Subtypes of trauma were established via principal component analysis of the TCL 2.0 and resting-state networks were identified by applying group independent component analysis to resting-state fMRI scans. We tested the association of subtypes of childhood trauma (i.e., TCL Factor 1 measuring experienced trauma and TCL Factor 2 assessing community trauma), and TCL Total scores to the aforementioned functional connectivity measures. TCL Factor 2 scores were associated with increased high-frequency fluctuations and increased intra-network connectivity in cognitive control, auditory, and sensorimotor networks, occurring primarily in paralimbic regions. TCL Total scores exhibited similar neurobiological patterns to TCL Factor 2 scores (with the addition of aberrant intra-network connectivity in visual networks), and no significant associations were found for TCL Factor 1. Consistent with previous analyses of community samples, our results suggest that childhood trauma among incarcerated juvenile males is associated with aberrant intra-network amplitude of fluctuations and connectivity across multiple networks including predominately paralimbic regions. Our results highlight the importance of accounting for traumatic loss, observed trauma, and community trauma in assessing neurobiological aberrances associated with adverse experiences in childhood, as well as the value of trained-rater trauma assessments compared to self-report.
Collapse
Affiliation(s)
- Corey H Allen
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA.
| | - Jenna Shold
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - J Michael Maurer
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Brooke L Reynolds
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA; School of Graduate Psychology, Pacific University, Hillsboro, OR, USA
| | | | - Carla L Harenski
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Keith A Harenski
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA 30303, USA; Department of Computer Science, Georgia State University, Atlanta, USA
| | - Kent A Kiehl
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
34
|
Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 2023; 13:5. [PMID: 36624089 PMCID: PMC9829236 DOI: 10.1038/s41398-022-02297-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Mood disorders are associated with elevated inflammation, and the reduction of symptoms after multiple treatments is often accompanied by pro-inflammation restoration. A variety of neuromodulation techniques that regulate regional brain activities have been used to treat refractory mood disorders. However, their efficacy varies from person to person and lack reliable indicator. This review summarizes clinical and animal studies on inflammation in neural circuits related to anxiety and depression and the evidence that neuromodulation therapies regulate neuroinflammation in the treatment of neurological diseases. Neuromodulation therapies, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES), electroconvulsive therapy (ECT), photobiomodulation (PBM), transcranial ultrasound stimulation (TUS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS), all have been reported to attenuate neuroinflammation and reduce the release of pro-inflammatory factors, which may be one of the reasons for mood improvement. This review provides a better understanding of the effective mechanism of neuromodulation therapies and indicates that inflammatory biomarkers may serve as a reference for the assessment of pathological conditions and treatment options in anxiety and depression.
Collapse
Affiliation(s)
- Bingqi Guo
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Mengyao Zhang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Wensi Hao
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Yuping Wang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XInstitute of sleep and consciousness disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Tingting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| |
Collapse
|
35
|
Rast C, Woronko S, Jessup SC, Olatunji BO. Treatment of disgust in specific emotional disorders. Bull Menninger Clin 2023; 87:5-30. [PMID: 37871191 DOI: 10.1521/bumc.2023.87.suppa.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Although conditioning approaches have highlighted potential characteristics of disgust in anxiety disorders, obsessive-compulsive disorder (OCD), and posttraumatic stress disorder (PTSD), these findings have yet to be translated into evidence-based treatments. Examination of the literature suggests various indicators of disgust that predict treatment outcome in these disorders. However, mechanisms remain unclear because studies examining disgust during the course of treatment are limited. Increasingly, the field has moved toward experimental investigation of strategies that reduce disgust. While cognitive reappraisal and imagery techniques appear promising, such techniques have yet to be examined as anxiety disorder treatments in large-scale randomized clinical trials. The literature also points to novel approaches to treating disgust, ranging from an inhibitory-informed approach to exposure therapy to transcranial direct current stimulation. However, the development of novel treatment approaches will require more rigorous experimental psychopathology approaches that can further elucidate processes that contribute to the etiology and/or maintenance of disorders of disgust.
Collapse
Affiliation(s)
- Catherine Rast
- Department of Psychology at Vanderbilt University. Catherine Rast and Sarah Woronko are research assistants, Sarah Jessup is a graduate assistant, and Bunmi Olatunji is a professor
| | - Sarah Woronko
- Department of Psychology at Vanderbilt University. Catherine Rast and Sarah Woronko are research assistants, Sarah Jessup is a graduate assistant, and Bunmi Olatunji is a professor
| | - Sarah C Jessup
- Department of Psychology at Vanderbilt University. Catherine Rast and Sarah Woronko are research assistants, Sarah Jessup is a graduate assistant, and Bunmi Olatunji is a professor
| | - Bunmi O Olatunji
- Department of Psychology at Vanderbilt University. Catherine Rast and Sarah Woronko are research assistants, Sarah Jessup is a graduate assistant, and Bunmi Olatunji is a professor
| |
Collapse
|
36
|
Sun W, Kang X, Dong X, Zeng Z, Zou Q, Su M, Zhang K, Liu G, Yu G. Effect of transcranial direct current stimulation on postpartum depression: A study protocol for a randomized controlled trial. Front Psychol 2023; 14:990162. [PMID: 36874857 PMCID: PMC9976935 DOI: 10.3389/fpsyg.2023.990162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
Postpartum depression (PPD) is a complex combination of physiological, emotional, and behavioral alterations associated with postpartum chemical, social, and psychological variations. It does harm to the relationship between family members that could potentially last for years. However, standard depression treatments are not ideal for PPD, and the outcomes of these treatments are debatable. Transcranial direct current stimulation (tDCS) is an emerging technology that could provide patients with PPD with a safe and non-pharmacological treatment. tDCS can relieve depression by directly stimulating the prefrontal cortex through the excitatory effect of the anode. It may also ease depression indirectly by promoting the production and release of the neurotransmitter GABA. The mechanism of tDCS makes it an ideal therapeutic approach to treat PPD, although it has not been widely used, and its effect has not been evaluated systematically and effectively. A double-blind, randomized controlled trial will be conducted involving 240 tDCS-naive patients with PPD, who will be randomly divided into two groups. One group will receive routine clinical treatment and care with active tDCS, and the other group will receive routine clinical treatment and care with sham tDCS. Each group of patients will receive a 3-week intervention during which they will receive 20 min of active or sham tDCS 6 days per week. The Montgomery-Åsberg Depression Rating Scale will be administered before the intervention as a baseline and on each weekend throughout the intervention phase. Before and after the intervention, the Perceived Stress Scale and the Positive and Negative Affect Schedule will be evaluated. Side effects and abnormal reactions will be recorded during each treatment. As antidepressants are banned in the study, the results will not be affected by drugs and will therefore be more accurate. Nonetheless, this experiment will be conducted in a single center as a small sample experiment. Therefore, future studies are required to confirm the effectiveness of tDCS in treating PPD.
Collapse
Affiliation(s)
- Weiming Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Xizhen Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Xiangli Dong
- Department of Psychosomatic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zijian Zeng
- The First Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China.,Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Zou
- The First Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China.,Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meixiang Su
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Ke Zhang
- Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, Jiangxi, China
| | - Guanxiu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Guohua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Wen YR, Shi J, Hu ZY, Lin YY, Lin YT, Jiang X, Wang R, Wang XQ, Wang YL. Is transcranial direct current stimulation beneficial for treating pain, depression, and anxiety symptoms in patients with chronic pain? A systematic review and meta-analysis. Front Mol Neurosci 2022; 15:1056966. [PMID: 36533133 PMCID: PMC9752114 DOI: 10.3389/fnmol.2022.1056966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 08/30/2023] Open
Abstract
Background Chronic pain is often accompanied by emotional dysfunction. Transcranial direct current stimulation (tDCS) has been used for reducing pain, depressive and anxiety symptoms in chronic pain patients, but its therapeutic effect remains unknown. Objectives To ascertain the treatment effect of tDCS on pain, depression, and anxiety symptoms of patients suffering from chronic pain, and potential factors that modulate the effectiveness of tDCS. Methods Literature search was performed on PubMed, Embase, Web of Science, and Cochrane Library from inception to July 2022. Randomized controlled trials that reported the effects of tDCS on pain and depression and anxiety symptoms in patients with chronic pain were included. Results Twenty-two studies were included in this review. Overall pooled results indicated that the use of tDCS can effectively alleviate short-term pain intensity [standard mean difference (SMD): -0.43, 95% confidence interval (CI): -0.75 to -0.12, P = 0.007] and depressive symptoms (SMD: -0.31, 95% CI, -0.47 to -0.14, P < 0.001), middle-term depressive symptoms (SMD: -0.35, 95% CI: -0.58 to -0.11, P = 0.004), long-term depressive symptoms (ES: -0.38, 95% CI: -0.64 to -0.13, P = 0.003) and anxiety symptoms (SMD: -0.26, 95% CI: -0.51 to -0.02, P = 0.03) compared with the control group. Conclusion tDCS may be an effective short-term treatment for the improvement of pain intensity and concomitant depression and anxiety symptoms in chronic pain patients. Stimulation site, stimulation frequency, and type of chronic pain were significant influence factors for the therapeutic effect of tDCS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=297693, identifier: CRD42022297693.
Collapse
Affiliation(s)
- Yu-Rong Wen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Shi
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheng-Yu Hu
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang-Yang Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - You-Tian Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Yu-Ling Wang
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Rimmer RM, Costafreda SG, Mutz J, Joseph K, Brunoni AR, Loo CK, Padberg F, Palm U, Fu CH. Transcranial direct current stimulation effects in late life depression: A meta-analysis of individual participant data. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
39
|
Uenishi S, Tamaki A, Yamada S, Yasuda K, Ikeda N, Mizutani-Tiebel Y, Keeser D, Padberg F, Tsuji T, Kimoto S, Takahashi S. Computational modeling of electric fields for prefrontal tDCS across patients with schizophrenia and mood disorders. Psychiatry Res Neuroimaging 2022; 326:111547. [PMID: 36240572 DOI: 10.1016/j.pscychresns.2022.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/30/2022] [Accepted: 10/01/2022] [Indexed: 02/25/2023]
Abstract
This cross-diagnostic study aims to computationally model electric field (efield) for prefrontal transcranial direct current stimulation in mood disorders and schizophrenia. Enrolled were patients with major depressive disorder (n = 23), bipolar disorder (n = 24), schizophrenia (n = 23), and healthy controls (n = 23). The efield was simulated using SimNIBS software (ver.2.1.1). Electrodes were placed at the left and right prefrontal areas and the current intensity was set to 2 mA intensity. Schizophrenia and major depressive disorder groups showed significantly lower 99.5th percentile efield strength than healthy controls. In voxel-wise analysis, patients with schizophrenia showed a significant reduction of simulated efield strength in the bilateral frontal lobe, cerebellum and brain stem compared with healthy controls. Among the patients with schizophrenia, reduction of simulated efield strength was not significantly correlated with psychiatric symptoms or global functioning. The patients with bipolar disorder showed no significant difference in simulated efield strength compared with healthy controls, and there was no significant difference between the clinical groups. Our results suggest attenuated electrophysiological response to transcranial direct current stimulation to the prefrontal cortex in patients with schizophrenia, and to some extent in patients with major depressive disorder.
Collapse
Affiliation(s)
- Shinya Uenishi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Hidaka Hospital, Gobo, Japan.
| | - Atsushi Tamaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Hidaka Hospital, Gobo, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Natsuko Ikeda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Wakayama Prefectural Mental Health Care Center, Aridagawa, Japan
| | - Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany; Department of Radiology, University Hospital LMU Munich, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan
| |
Collapse
|
40
|
Rosson S, de Filippis R, Croatto G, Collantoni E, Pallottino S, Guinart D, Brunoni AR, Dell'Osso B, Pigato G, Hyde J, Brandt V, Cortese S, Fiedorowicz JG, Petrides G, Correll CU, Solmi M. Brain stimulation and other biological non-pharmacological interventions in mental disorders: An umbrella review. Neurosci Biobehav Rev 2022; 139:104743. [PMID: 35714757 DOI: 10.1016/j.neubiorev.2022.104743] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The degree of efficacy, safety, quality, and certainty of meta-analytic evidence of biological non-pharmacological treatments in mental disorders is unclear. METHODS We conducted an umbrella review (PubMed/Cochrane Library/PsycINFO-04-Jul-2021, PROSPERO/CRD42020158827) for meta-analyses of randomized controlled trials (RCTs) on deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electro-convulsive therapy (ECT), and others. Co-primary outcomes were standardized mean differences (SMD) of disease-specific symptoms, and acceptability (for all-cause discontinuation). Evidence was assessed with AMSTAR/AMSTAR-Content/GRADE. RESULTS We selected 102 meta-analyses. Effective interventions compared to sham were in depressive disorders: ECT (SMD=0.91/GRADE=moderate), TMS (SMD=0.51/GRADE=moderate), tDCS (SMD=0.46/GRADE=low), DBS (SMD=0.42/GRADE=very low), light therapy (SMD=0.41/GRADE=low); schizophrenia: ECT (SMD=0.88/GRADE=moderate), tDCS (SMD=0.45/GRADE=very low), TMS (prefrontal theta-burst, SMD=0.58/GRADE=low; left-temporoparietal, SMD=0.42/GRADE=low); substance use disorder: TMS (high frequency-dorsolateral-prefrontal-deep (SMD=1.16/GRADE=moderate), high frequency-left dorsolateral-prefrontal (SMD=0.77/GRADE=very low); OCD: DBS (SMD=0.89/GRADE=moderate), TMS (SMD=0.64/GRADE=very low); PTSD: TMS (SMD=0.46/GRADE=moderate); generalized anxiety disorder: TMS (SMD=0.68/GRADE=low); ADHD: tDCS (SMD=0.23/GRADE=moderate); autism: tDCS (SMD=0.97/GRADE=very low). No significant differences for acceptability emerged. Median AMSTAR/AMSTAR-Content was 8/2 (suggesting high-quality meta-analyses/low-quality RCTs), GRADE low. DISCUSSION Despite limited certainty, biological non-pharmacological interventions are effective and safe for numerous mental conditions. Results inform future research, and guidelines. FUNDING None.
Collapse
Affiliation(s)
- Stella Rosson
- Department of Mental Health, Azienda ULSS 3 Serenissima, Venice, Italy; Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Neurosciences, University of Padua, Padua, Italy
| | - Renato de Filippis
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giovanni Croatto
- Department of Mental Health, Azienda ULSS 3 Serenissima, Venice, Italy; Department of Neurosciences, University of Padua, Padua, Italy
| | | | | | - Daniel Guinart
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Institut Hospital del Mard'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation (SIN), Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, Brazil; Departamentos de Clínica Médica e Psiquiatria, Faculdade de Medicina da USP, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, Brazil
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, Stanford, CA, USA; Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Giorgio Pigato
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Joshua Hyde
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
| | - Jess G Fiedorowicz
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada
| | - Georgios Petrides
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Division of ECT, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA
| | - Christoph U Correll
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Germany
| | - Marco Solmi
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK; Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Germany; Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
41
|
Gordon MS, Seeto JXW, Dux PE, Filmer HL. Intervention is a better predictor of tDCS mind-wandering effects than subjective beliefs about experimental results. Sci Rep 2022; 12:13110. [PMID: 35908042 PMCID: PMC9338927 DOI: 10.1038/s41598-022-16545-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Blinding in non-invasive brain stimulation research is a topic of intense debate, especially regarding the efficacy of sham-controlled methods for transcranial direct current stimulation (tDCS). A common approach to assess blinding success is the inclusion of correct guess rate. However, this method cannot provide insight into the effect of unblinding on observed stimulation outcomes. Thus, the implementation of measures to systematically evaluate subjective expectation regarding stimulation is needed. Previous work evaluated subjective effects in an earlier study which reported a mind-wandering and tDCS data set and concluded that subjective belief drove the pattern of results observed. Here we consider the subjective and objective intervention effects in a key contrast from that data set-2 mA vs. sham-which was not examined in the reanalysis. In addition, we examine another key contrast from a different tDCS mind-wandering study that employed similar methodology. Our findings support objective intervention as the strongest predictor of the observed effects of mind-wandering in both re-analyses, over and above that of subjective intervention. However, it is important to control for and understand the possible inadequacies of sham-controlled methods.
Collapse
Affiliation(s)
- Matilda S Gordon
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia.
| | - Jennifer X W Seeto
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| |
Collapse
|
42
|
Rawls E, Kummerfeld E, Mueller BA, Ma S, Zilverstand A. The resting-state causal human connectome is characterized by hub connectivity of executive and attentional networks. Neuroimage 2022; 255:119211. [PMID: 35430360 PMCID: PMC9177236 DOI: 10.1016/j.neuroimage.2022.119211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/17/2023] Open
Abstract
We demonstrate a data-driven approach for calculating a "causal connectome" of directed connectivity from resting-state fMRI data using a greedy adjacency search and pairwise non-Gaussian edge orientations. We used this approach to construct n = 442 causal connectomes. These connectomes were very sparse in comparison to typical Pearson correlation-based graphs (roughly 2.25% edge density) yet were fully connected in nearly all cases. Prominent highly connected hubs of the causal connectome were situated in attentional (dorsal attention) and executive (frontoparietal and cingulo-opercular) networks. These hub networks had distinctly different connectivity profiles: attentional networks shared incoming connections with sensory regions and outgoing connections with higher cognitive networks, while executive networks primarily connected to other higher cognitive networks and had a high degree of bidirected connectivity. Virtual lesion analyses accentuated these findings, demonstrating that attentional and executive hub networks are points of critical vulnerability in the human causal connectome. These data highlight the central role of attention and executive control networks in the human cortical connectome and set the stage for future applications of data-driven causal connectivity analysis in psychiatry.
Collapse
Affiliation(s)
- Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA.
| | | | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA; Medical Discovery Team on Addiction, University of Minnesota, USA
| |
Collapse
|
43
|
Ruggiero RN, Peixoto-Santos JE, Bueno-Junior LS, Valente KD, Leite JP. Editorial: Psychiatric Comorbidities in the Epilepsies: Extensive Mechanisms and Broad Questions. Front Integr Neurosci 2022; 16:951170. [PMID: 35784497 PMCID: PMC9249385 DOI: 10.3389/fnint.2022.951170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, Brazil
- *Correspondence: Rafael Naime Ruggiero
| | - Jose Eduardo Peixoto-Santos
- Neuroscience Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Kette D. Valente
- Institute and Department of Psychiatry, Faculty of Medicine of the University of São Paulo (HCFMUSP), São Paulo, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, Brazil
| |
Collapse
|
44
|
Hyde J, Carr H, Kelley N, Seneviratne R, Reed C, Parlatini V, Garner M, Solmi M, Rosson S, Cortese S, Brandt V. Efficacy of neurostimulation across mental disorders: systematic review and meta-analysis of 208 randomized controlled trials. Mol Psychiatry 2022; 27:2709-2719. [PMID: 35365806 PMCID: PMC8973679 DOI: 10.1038/s41380-022-01524-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/29/2023]
Abstract
Non-invasive brain stimulation (NIBS), including transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS), is a potentially effective treatment strategy for a number of mental conditions. However, no quantitative evidence synthesis of randomized controlled trials (RCTs) of TMS or tDCS using the same criteria including several mental conditions is available. Based on 208 RCTs identified in a systematic review, we conducted a series of random effects meta-analyses to assess the efficacy of NIBS, compared to sham, for core symptoms and cognitive functioning within a broad range of mental conditions. Outcomes included changes in core symptom severity and cognitive functioning from pre- to post-treatment. We found significant positive effects for several outcomes without significant heterogeneity including TMS for symptoms of generalized anxiety disorder (SMD = -1.8 (95% CI: -2.6 to -1), and tDCS for symptoms of substance use disorder (-0.73, -1.00 to -0.46). There was also significant effects for TMS in obsessive-compulsive disorder (-0.66, -0.91 to -0.41) and unipolar depression symptoms (-0.60, -0.78 to -0.42) but with significant heterogeneity. However, subgroup analyses based on stimulation site and number of treatment sessions revealed evidence of positive effects, without significant heterogeneity, for specific TMS stimulation protocols. For neurocognitive outcomes, there was only significant evidence, without significant heterogeneity, for tDCS for improving attention (-0.3, -0.55 to -0.05) and working memory (-0.38, -0.74 to -0.03) in individuals with schizophrenia. We concluded that TMS and tDCS can benefit individuals with a variety of mental conditions, significantly improving clinical dimensions, including cognitive deficits in schizophrenia which are poorly responsive to pharmacotherapy.
Collapse
Affiliation(s)
- Joshua Hyde
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK.
| | - Hannah Carr
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Nicholas Kelley
- Centre for Research on Self and Identity, School of Psychology, University of Southampton, Southampton, UK
| | - Rose Seneviratne
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Claire Reed
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Valeria Parlatini
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthew Garner
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
| | - Stella Rosson
- Department of Mental Health, Azienda AULSS 3 Serenissima, Venice, Italy
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| |
Collapse
|
45
|
Gao T, Du J, Tian S, Liu W. A meta-analysis of the effects of non-invasive brain stimulation on obsessive-compulsive disorder. Psychiatry Res 2022; 312:114530. [PMID: 35378452 DOI: 10.1016/j.psychres.2022.114530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Tangyu Gao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Du
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiqi Tian
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
46
|
He J, Tang Y, Lin J, Faulkner G, Tsang HWH, Chan SHW. Non-invasive brain stimulation combined with psychosocial intervention for depression: a systematic review and meta-analysis. BMC Psychiatry 2022; 22:273. [PMID: 35439977 PMCID: PMC9016381 DOI: 10.1186/s12888-022-03843-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES This review investigates the efficacy and safety of non-invasive brain stimulation (NIBS) combined with psychosocial intervention on depressive symptoms. MATERIALS AND METHODS We systematically searched five electronic databases from their inception to June 2021: PubMed, Embase, PsycINFO, Web of Science, and Medline. Randomized or non-randomized clinical trials in which NIBS plus psychosocial intervention was compared to control conditions in people with depressive symptoms were included. RESULTS A total of 17 eligible studies with 660 participants were included. The meta-analysis results showed that NIBS combined with psychosocial therapy had a positive effect on moderate to severe depression ([SMD = - 0.46, 95%CI (- 0.90, - 0.02), I2 = 73%, p < .01]), but did not significantly improve minimal to mild depression ([SMD = - 0.12, 95%CI (- 0.42, 0.18), I2 = 0%, p = .63]). Compared with NIBS alone, the combination treatment had a significantly greater effect in alleviating depressive symptoms ([SMD = - 0.84, 95%CI (- 1.25, - 0.42), I2 = 0%, p = .93]). However, our results suggested that the pooled effect size of ameliorating depression of NIBS plus psychosocial intervention had no significant difference compared with the combination of sham NIBS [SMD = - 0.12, 95%CI (- 0.31, 0.07), I2 = 0%, p = .60] and psychosocial intervention alone [SMD = - 0.97, 95%CI (- 2.32, 0.38), I2 = 72%, p = .01]. CONCLUSION NIBS when combined with psychosocial intervention has a significant positive effect in alleviating moderately to severely depressive symptoms. Further well-designed studies of NIBS combined with psychosocial intervention on depression should be carried out to consolidate the conclusions and explore the in-depth underlying mechanism.
Collapse
Affiliation(s)
- Jiali He
- grid.16890.360000 0004 1764 6123Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yiling Tang
- grid.17091.3e0000 0001 2288 9830School of Kinesiology, University of British Columbia, Vancouver, British Columbia Canada
| | - Jingxia Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. .,Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Guy Faulkner
- grid.17091.3e0000 0001 2288 9830School of Kinesiology, University of British Columbia, Vancouver, British Columbia Canada
| | - Hector W. H. Tsang
- grid.16890.360000 0004 1764 6123Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong ,grid.16890.360000 0004 1764 6123Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, SAR China
| | - Sunny H. W. Chan
- grid.6518.a0000 0001 2034 5266School of Health and Social Wellbeing, University of the West of England, England, UK
| |
Collapse
|
47
|
Cheng YC, Kuo PH, Su MI, Huang WL. The efficacy of non-invasive, non-convulsive electrical neuromodulation on depression, anxiety and sleep disturbance: a systematic review and meta-analysis. Psychol Med 2022; 52:801-812. [PMID: 35105413 DOI: 10.1017/s0033291721005560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effects of non-invasive, non-convulsive electrical neuromodulation (NINCEN) on depression, anxiety and sleep disturbance are inconsistent in different studies. Previous meta-analyses on transcranial direct current stimulation (tDCS) and cerebral electrotherapy stimulation (CES) suggested that these methods are effective on depression. However, not all types of NINECN were included; results on anxiety and sleep disturbance were lacking and the influence of different populations and treatment parameters was not completely analyzed. We searched PubMed, Embase, PsycInfo, PsycArticles and CINAHL before March 2021 and included published randomized clinical trials of all types of NINCEN for symptoms of depression, anxiety and sleep in clinical and non-clinical populations. Data were pooled using a random-effects model. The main outcome was change in the severity of depressive symptoms after NINCEN treatment. A total of 58 studies on NINCEN were included in the meta-analysis. Active tDCS showed a significant effect on depressive symptoms (Hedges' g = 0.544), anxiety (Hedges' g = 0.667) and response rate (odds ratio = 1.9594) compared to sham control. CES also had a significant effect on depression (Hedges' g = 0.654) and anxiety (Hedges' g = 0.711). For all types of NINCEN, active stimulation was significantly effective on depression, anxiety, sleep efficiency, sleep latency, total sleep time, etc. Our results showed that tDCS has significant effects on both depression and anxiety and that these effects are robust for different populations and treatment parameters. The rational expectation of the tDCS effect is 'response' rather than 'remission'. CES also is effective for depression and anxiety, especially in patients with disorders of low severity.
Collapse
Affiliation(s)
- Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Min-I Su
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| |
Collapse
|
48
|
Ten Sessions of 30 Min tDCS over 5 Days to Achieve Remission in Depression: A Randomized Pilot Study. J Clin Med 2022; 11:jcm11030782. [PMID: 35160235 PMCID: PMC8836436 DOI: 10.3390/jcm11030782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
Although transcranial Direct Current stimulation (tDCS) shows promise in the treatment of major depressive episodes, the optimal parameters and population to target remain unclear. We investigated the clinical interest of a 10 session tDCS regimen in patients with mild to severe treatment-resistant depression, in a pilot double-blind, randomized sham-controlled trial. tDCS was delivered over 5 consecutive days (two 30 min sessions per day separated by at least 2 h, 2 mA). The anode and cathode were placed over the left and the right dorsolateral prefrontal cortex, respectively. One month after tDCS, we observed significantly fewer patients who achieved remission (MADRS10 < 10) in the sham group (0 out of 18 patients) than in the active group (5 out of 21 patients; p = 0.05). However, no significant difference was observed between the groups regarding the mean scores of severity changes throughout the study period. Bifrontal add-on tDCS delivered twice per day over 5 days, in combination with antidepressant medication, can be a safe and suitable approach to achieve remission in patients with mild to severe treatment-resistant major depressive disorder. However, in regards to the pilot nature and limitations of the present study, further studies are needed before any frank conclusions can be made regarding the use of tDCS with the proposed parameters in clinical settings.
Collapse
|
49
|
Khoodoruth MAS, Estudillo-Guerra MA, Pacheco-Barrios K, Nyundo A, Chapa-Koloffon G, Ouanes S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front Psychiatry 2022; 13:886918. [PMID: 35492692 PMCID: PMC9047946 DOI: 10.3389/fpsyt.2022.886918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders are among the most common psychiatric conditions and contribute to significant morbidity. Even though the use of antidepressants revolutionized the management of depression and had a tremendous positive impact on the patient's outcome, a significant proportion of patients with major depressive disorder (MDD) show no or partial or response even with adequate treatment. Given the limitations of the prevailing monoamine hypothesis-based pharmacotherapy, glutamate and glutamatergic related pathways may offer an alternative and a complementary option for designing novel intervention strategies. Over the past few decades, there has been a growing interest in understanding the neurobiological underpinnings of glutamatergic dysfunctions in the pathogenesis of depressive disorders and the development of new pharmacological and non-pharmacological treatment options. There is a growing body of evidence for the efficacy of neuromodulation techniques, including transcranial magnetic stimulation, transcutaneous direct current stimulation, transcranial alternating current stimulation, and photo-biomodulation on improving connectivity and neuroplasticity associated with depression. This review attempts to revisit the role of glutamatergic neurotransmission in the etiopathogenesis of depressive disorders and review the current neuroimaging, neurophysiological and clinical evidence of these neuromodulation techniques in the pathophysiology and treatment of depression.
Collapse
Affiliation(s)
| | - Maria Anayali Estudillo-Guerra
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States.,Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Azan Nyundo
- Department of Psychiatry and Mental Health, School of Medicine and Dental Health, The University of Dodoma, Dodoma, Tanzania
| | | | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
50
|
Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs 2022; 36:681-702. [PMID: 35727534 PMCID: PMC9210800 DOI: 10.1007/s40263-022-00931-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is still spreading worldwide over 2 years since its outbreak. The psychopathological implications in COVID-19 survivors such as depression, anxiety, and cognitive impairments are now recognized as primary symptoms of the "post-acute COVID-19 syndrome." Depressive psychopathology was reported in around 35% of patients at short, medium, and long-term follow-up after the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. Post-COVID-19 depressive symptoms are known to increase fatigue and affect neurocognitive functioning, sleep, quality of life, and global functioning in COVID-19 survivors. The psychopathological mechanisms underlying post-COVID-19 depressive symptoms are mainly related to the inflammation triggered by the peripheral immune-inflammatory response to the viral infection and to the persistent psychological burden during and after infection. The large number of SARS-CoV-2-infected patients and the high prevalence of post-COVID-19 depressive symptoms may significantly increase the pool of people suffering from depressive disorders. Therefore, it is essential to screen, diagnose, treat, and monitor COVID-19 survivors' psychopathology to counteract the depression disease burden and related years of life lived with disability. This paper reviews the current literature in order to synthesize the available evidence regarding epidemiology, clinical features, neurobiological underpinning, and pharmacological treatment of post-COVID-19 depressive symptoms.
Collapse
Affiliation(s)
- Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.
| | - Mariagrazia Palladini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.15496.3f0000 0001 0439 0892PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|