1
|
Xu W, Li X, Parviainen T, Nokia M. Neural correlates of retrospective memory confidence during face-name associative learning. Cereb Cortex 2024; 34:bhae194. [PMID: 38801420 PMCID: PMC11411154 DOI: 10.1093/cercor/bhae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
The ability to accurately assess one's own memory performance during learning is essential for adaptive behavior, but the brain mechanisms underlying this metamemory function are not well understood. We investigated the neural correlates of memory accuracy and retrospective memory confidence in a face-name associative learning task using magnetoencephalography in healthy young adults (n = 32). We found that high retrospective confidence was associated with stronger occipital event-related fields during encoding and widespread event-related fields during retrieval compared to low confidence. On the other hand, memory accuracy was linked to medial temporal activities during both encoding and retrieval, but only in low-confidence trials. A decrease in oscillatory power at alpha/beta bands in the parietal regions during retrieval was associated with higher memory confidence. In addition, representational similarity analysis at the single-trial level revealed distributed but differentiable neural activities associated with memory accuracy and confidence during both encoding and retrieval. In summary, our study unveiled distinct neural activity patterns related to memory confidence and accuracy during associative learning and underscored the crucial role of parietal regions in metamemory.
Collapse
Affiliation(s)
- Weiyong Xu
- Department of Psychology, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
- Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
| | - Xueqiao Li
- Department of Psychology, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
- Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
- Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
| | - Miriam Nokia
- Department of Psychology, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
- Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, 40014, Jyväskylä, Finland
| |
Collapse
|
2
|
Higashi T, Maeda K, Ogawa T, Haseyama M. Brain Decoding of Multiple Subjects for Estimating Visual Information Based on a Probabilistic Generative Model. SENSORS (BASEL, SWITZERLAND) 2022; 22:6148. [PMID: 36015909 PMCID: PMC9416613 DOI: 10.3390/s22166148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Brain decoding is a process of decoding human cognitive contents from brain activities. However, improving the accuracy of brain decoding remains difficult due to the unique characteristics of the brain, such as the small sample size and high dimensionality of brain activities. Therefore, this paper proposes a method that effectively uses multi-subject brain activities to improve brain decoding accuracy. Specifically, we distinguish between the shared information common to multi-subject brain activities and the individual information based on each subject's brain activities, and both types of information are used to decode human visual cognition. Both types of information are extracted as features belonging to a latent space using a probabilistic generative model. In the experiment, an publicly available dataset and five subjects were used, and the estimation accuracy was validated on the basis of a confidence score ranging from 0 to 1, and a large value indicates superiority. The proposed method achieved a confidence score of 0.867 for the best subject and an average of 0.813 for the five subjects, which was the best compared to other methods. The experimental results show that the proposed method can accurately decode visual cognition compared with other existing methods in which the shared information is not distinguished from the individual information.
Collapse
Affiliation(s)
- Takaaki Higashi
- Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan
| | - Keisuke Maeda
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan
| | - Takahiro Ogawa
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan
| | - Miki Haseyama
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan
| |
Collapse
|
3
|
Sato J, Vandewouw MM, Safar K, Ng DVY, Bando N, O’Connor DL, Unger SL, Pang E, Taylor MJ. Social-Cognitive Network Connectivity in Preterm Children and Relations With Early Nutrition and Developmental Outcomes. Front Syst Neurosci 2022; 16:812111. [PMID: 35465192 PMCID: PMC9022474 DOI: 10.3389/fnsys.2022.812111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Infants born very low birth weight (VLBW, < 1,500 g) are at a heightened risk for structural brain abnormalities and social-cognitive deficits, which can impair behavioural functioning. Resting-state fMRI, reflecting a baseline level of brain activity and underlying social-cognitive processes, has also been reported to be altered in children born VLBW. Yet very little is known about the functional networks underlying social cognition using magnetoencephalography (MEG) and how it relates to neonatal factors and developmental outcomes. Thus, we investigated functional connectivity at rest in VLBW children and the associations with early nutrition and IQ and behavioural problems. We collected resting-state MEG recordings and measures of IQ and social-cognitive behaviour, as well as macronutrient/energy intakes during initial hospitalisation in 5-year-old children born VLBW (n = 37) compared to full-term (FT; n = 27) controls. We examined resting-state network differences controlling for sex and age at scan. Functional connectivity was estimated using the weighted phase lag index. Associations between functional connectivity with outcome measures and postnatal nutrition were also assessed using regression analyses. We found increased resting-state functional connectivity in VLBW compared to FT children in the gamma frequency band (65–80 Hz). This hyper-connected network was primarily anchored in frontal regions known to underlie social-cognitive functions such as emotional processing. In VLBW children, increased functional connectivity was related to higher IQ scores, while reduced connectivity was related to increased behavioural problems at 5 years of age. These within-group associations were found in the slower frequency bands of theta (4–7 Hz) and alpha (8–12 Hz), frequently linked to higher-order cognitive functions. We also found significant associations between macronutrient (protein and lipid) and energy intakes during the first postnatal month with functional connectivity at preschool-age, highlighting the long-term impacts of postnatal nutrition on preterm brain development. Our findings demonstrate that at preschool-age, VLBW children show altered resting-state connectivity despite IQ and behaviour being in the average range, possibly reflecting functional reorganisation of networks to support social-cognitive and behavioural functioning. Further, our results highlight an important role of early postnatal nutrition in the development of resting-state networks, which in turn may improve neurodevelopmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Julie Sato
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Julie Sato,
| | - Marlee M. Vandewouw
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kristina Safar
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Dawn V. Y. Ng
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Nicole Bando
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deborah L. O’Connor
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, Sinai Health, Toronto, ON, Canada
| | - Sharon L. Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, Sinai Health, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Pang
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Margot J. Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Division of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Cheng X, Li Y, Cui X, Cheng H, Li C, Fu L, Jiang J, Hu Z, Ke X. Atypical Neural Responses of Cognitive Flexibility in Parents of Children With Autism Spectrum Disorder. Front Neurosci 2022; 15:747273. [PMID: 34975368 PMCID: PMC8719598 DOI: 10.3389/fnins.2021.747273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Impaired cognitive flexibility has been repeatedly demonstrated in autism spectrum disorder (ASD). There is strong evidence for genetic involvement in ASD. First-degree relatives of individuals with ASD may show mild deficits in cognitive inflexibility. The present study investigated cognitive flexibility and its neuroelectrophysiological mechanisms in first-degree relatives of individuals with ASD to assess its potential familiality. Forty-five biological parents of individuals/children with ASD (pASD) and thirty-one biological parents of typically developing individuals/children (pTD), matched by gender, age, and IQ, were enrolled. The broad autism phenotype questionnaire (BAPQ) and cognitive flexibility inventory (CFI) were used to quantitatively assess autistic traits and cognitive flexibility in daily life, respectively. The task-switching paradigm was used to evaluate the behavioral flexibility in a structured assessment situation. Event-related potentials (ERPs) induced by this paradigm were also collected. Results showed that compared with the pTD group, the pASD group had lower CFI scores (t = −2.756, p < 0.01), while both groups showed an equivalent “switch cost” in the task-switching task (p > 0.05). Compared with the pTD group, the pASD group induced greater N2 amplitude at F3, F4, Fz, and C4 (F = 3.223, p < 0.05), while P3 amplitude and latency did not differ between the two groups. In addition, there was a significant negative correlation between the CFI total scores and BAPQ total scores in the pASD group (r = −0.734, p < 0.01). After controlling for age and IQ, the N2 amplitude in the frontal lobe of pASD was negatively correlated with the CFI total scores under the repetition sequence (r = −0.304, p = 0.053). These results indicated that pASD had deficit in cognitive flexibility at the self-reported and neurological levels. The cognitive flexibility difficulties of parents of children with ASD were related to autistic traits. These findings support that cognitive flexibility is most likely a neurocognitive endophenotype of ASD, which is worthy of further investigation.
Collapse
Affiliation(s)
- Xin Cheng
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Yu Li
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiwen Cui
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hong Cheng
- Physical Diagnostic Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chunyan Li
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Linyan Fu
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jiying Jiang
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhenyu Hu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Xiaoyan Ke
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Peristeri E, Vogelzang M, Tsimpli IM. Bilingualism Effects on the Cognitive Flexibility of Autistic Children: Evidence From Verbal Dual-Task Paradigms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:558-585. [PMID: 37214625 PMCID: PMC10198706 DOI: 10.1162/nol_a_00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/03/2021] [Indexed: 05/24/2023]
Abstract
The deficit in cognitive flexibility (i.e., the ability to adapt cognitive behavior to changing contexts) is one of the most prominent characteristics of autistic individuals. Inflexibility may manifest in restricted interests and increased susceptibility to the effects of misinformation either through inefficient inhibition of non-target information or deficient recall of correct information. Bilingualism has been shown to enhance executive functions in both typically developing children and autistic children; yet, the effect of bilingualism on cognitive flexibility in autism remains underexplored. In this study, we used verbal dual-tasks to compare cognitive flexibility across 50 monolingual autistic and 50 bilingual autistic children, and 50 monolingual and 50 bilingual typically developing children. The children were also administered language ability tests and a nonverbal global-local cognitive flexibility task, in order to investigate whether performance in the dual-tasks would be modulated by the children's language and executive function skills. The bilingual autistic children outperformed their monolingual autistic peers in the dual-tasks. The strength of the bilingualism effect, however, was modulated by the type of language processing that interfered with the target information in each dual-task, which suggests that the bilingual autistic children calibrated their processing resources and efficiently adapted them to the changing demands of the dual-task only to the extent that the task did not exceed their language abilities. Bilingual autistic children relied on their executive functions rather than on their language abilities while performing in the dual-tasks. The overall results show that bilingualism compensates for the reduced cognitive flexibility in autism.
Collapse
Affiliation(s)
- Eleni Peristeri
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Margreet Vogelzang
- Faculty of Modern and Medieval Languages and Linguistics, University of Cambridge, Cambridge, UK
| | - Ianthi Maria Tsimpli
- Faculty of Modern and Medieval Languages and Linguistics, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 2021; 41:689-706. [PMID: 33099576 DOI: 10.1038/s41372-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.
Collapse
|
7
|
Ayub R, Sun KL, Flores RE, Lam VT, Jo B, Saggar M, Fung LK. Thalamocortical connectivity is associated with autism symptoms in high-functioning adults with autism and typically developing adults. Transl Psychiatry 2021; 11:93. [PMID: 33536431 PMCID: PMC7859407 DOI: 10.1038/s41398-021-01221-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Alterations in sensorimotor functions are common in individuals with autism spectrum disorder (ASD). Such aberrations suggest the involvement of the thalamus due to its key role in modulating sensorimotor signaling in the cortex. Although previous research has linked atypical thalamocortical connectivity with ASD, investigations of this association in high-functioning adults with autism spectrum disorder (HFASD) are lacking. Here, for the first time, we investigated the resting-state functional connectivity of the thalamus, medial prefrontal, posterior cingulate, and left dorsolateral prefrontal cortices and its association with symptom severity in two matched cohorts of HFASD. The principal cohort consisted of 23 HFASD (mean[SD] 27.1[8.9] years, 39.1% female) and 20 age- and sex-matched typically developing controls (25.1[7.2] years, 30.0% female). The secondary cohort was a subset of the ABIDE database consisting of 58 HFASD (25.4[7.8] years, 37.9% female) and 51 typically developing controls (24.4[6.7] years, 39.2% female). Using seed-based connectivity analysis, between-group differences were revealed as hyperconnectivity in HFASD in the principal cohort between the right thalamus and bilateral precentral/postcentral gyri and between the right thalamus and the right superior parietal lobule. The former was associated with autism-spectrum quotient in a sex-specific manner, and was further validated in the secondary ABIDE cohort. Altogether, we present converging evidence for thalamocortical hyperconnectivity in HFASD that is associated with symptom severity. Our results fill an important knowledge gap regarding atypical thalamocortical connectivity in HFASD, previously only reported in younger cohorts.
Collapse
Affiliation(s)
- Rafi Ayub
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Kevin L Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Ryan E Flores
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vicky T Lam
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lawrence K Fung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Uddin LQ. Brain Mechanisms Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder. Biol Psychiatry 2021; 89:172-183. [PMID: 32709415 PMCID: PMC7677208 DOI: 10.1016/j.biopsych.2020.05.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
Cognitive flexibility enables appropriate responses to a changing environment and is associated with positive life outcomes. Adolescence, with its increased focus on transitioning to independent living, presents particular challenges for youths with autism spectrum disorder (ASD) who often struggle to behave in a flexible way when faced with challenges. This review focuses on brain mechanisms underlying the development of flexible cognition during adolescence and how these neural systems are affected in ASD. Neuroimaging studies of task switching and set-shifting provide evidence for atypical lateral frontoparietal and midcingulo-insular network activation during cognitive flexibility task performance in individuals with ASD. Recent work also examines how intrinsic brain network dynamics support flexible cognition. These dynamic functional connectivity studies provide evidence for alterations in the number of transitions between brain states, as well as hypervariability of functional connections in adolescents with ASD. Future directions for the field include addressing issues related to measurement of cognitive flexibility using a combination of metrics with ecological and construct validity. Heterogeneity of executive function ability in ASD must also be parsed to determine which individuals will benefit most from targeted training to improve flexibility. The influence of pubertal hormones on brain network development and cognitive maturation in adolescents with ASD is another area requiring further exploration. Finally, the intriguing possibility that bilingualism might be associated with preserved cognitive flexibility in ASD should be further examined. Addressing these open questions will be critical for future translational neuroscience investigations of cognitive and behavioral flexibility in adolescents with ASD.
Collapse
Affiliation(s)
- Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, and the Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
9
|
Barnes-Davis ME, Merhar SL, Holland SK, Parikh NA, Kadis DS. Extremely Preterm Children Demonstrate Interhemispheric Hyperconnectivity During Verb Generation: a Multimodal Approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.30.20222448. [PMID: 33173877 PMCID: PMC7654860 DOI: 10.1101/2020.10.30.20222448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Children born extremely preterm (EPT, <28 weeks gestation) are at risk for delays in development, including language. We use fMRI-constrained magnetoencephalography (MEG) during a verb generation task to assess the extent and functional connectivity (phase locking value, or PLV) of language networks in a large cohort of EPT children and their term comparisons (TC). 73 participants, aged 4 to 6 years, were enrolled (42 TC, 31 EPT). There were no significant group differences in age, sex, race, ethnicity, parental education, or family income. There were significant group differences in expressive language scores (p<0.05). Language representation was not significantly different between groups on fMRI, with task-specific activation involving bilateral temporal and left inferior frontal cortex. There were group differences in functional connectivity seen in MEG. To identify a possible subnetwork contributing to focal spectral differences in connectivity, we ran Network Based Statistics analyses. For both beta (20-25 Hz) and gamma (61-70 Hz) bands, we observed a subnetwork showing hyperconnectivity in the EPT group (p<0.05). Network strength was computed for the beta and gamma subnetworks and assessed for correlation with language performance. For the EPT group, exclusively, strength of the subnetwork identified in the gamma frequency band was positively correlated with expressive language scores (r=0.318, p<0.05). Thus, interhemispheric hyperconnectivity is positively related to language for EPT children and might represent a marker for resiliency in this population.
Collapse
Affiliation(s)
- Maria E. Barnes-Davis
- Cincinnati Children’s Hospital Medical Center, Perinatal Institute
- University of Cincinnati, Department of Pediatrics
- University of Cincinnati, Department of Neuroscience
| | - Stephanie L. Merhar
- Cincinnati Children’s Hospital Medical Center, Perinatal Institute
- University of Cincinnati, Department of Pediatrics
| | - Scott K. Holland
- Medpace Imaging Core Laboratory, Medpace Inc
- University of Cincinnati, Department of Physics
| | - Nehal A. Parikh
- Cincinnati Children’s Hospital Medical Center, Perinatal Institute
- University of Cincinnati, Department of Pediatrics
| | - Darren S. Kadis
- Hospital for Sick Children, Neurosciences and Mental Health
- University of Toronto, Department of Physiology
| |
Collapse
|
10
|
Dirks B, Romero C, Voorhies W, Kupis L, Nomi JS, Dajani DR, Odriozola P, Burrows CA, Beaumont AL, Cardona SM, Parlade MV, Alessandri M, Britton JC, Uddin LQ. Neural Responses to a Putative Set-shifting Task in Children with Autism Spectrum Disorder. Autism Res 2020; 13:1501-1515. [PMID: 32840961 DOI: 10.1002/aur.2347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
While much progress has been made toward understanding the neurobiology of social and communication deficits associated with autism spectrum disorder (ASD), less is known regarding the neurobiological basis of restricted and repetitive behaviors (RRBs) central to the ASD diagnosis. Symptom severity for RRBs in ASD is associated with cognitive inflexibility. Thus, understanding the neural mechanisms underlying cognitive inflexibility in ASD is critical for tailoring therapies to treat this understudied yet pervasive symptom. Here we used a set-shifting paradigm adopted from the developmental cognitive neuroscience literature involving flexible switching between stimulus categories to examine task performance and neural responses in children with ASD. Behaviorally, we found little evidence for group differences in performance on the set-shifting task. Compared with typically developing children, children with ASD exhibited greater activation of the parahippocampal gyrus during performance on trials requiring switching. These findings suggest that children with ASD may need to recruit memory-based neural systems to a greater degree when learning to flexibly associate stimuli with responses. LAY SUMMARY: Children with autism often struggle to behave in a flexible way when faced with unexpected challenges. We examined brain responses during a task thought to involve flexible thinking and found that compared with typically developing children, those with autism relied more on brain areas involved in learning and memory to complete the task. This study helps us to understand what types of cognitive tasks are best suited for exploring the neural basis of cognitive flexibility in children with autism. Autism Res 2020, 13: 1501-1515. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryce Dirks
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Celia Romero
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Willa Voorhies
- Department of Psychology, University of California Berkeley, Berkeley, California, USA
| | - Lauren Kupis
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Dina R Dajani
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Catherine A Burrows
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amy L Beaumont
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Sandra M Cardona
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Meaghan V Parlade
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Michael Alessandri
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Jennifer C Britton
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, Florida, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Xu W, Kolozsvari OB, Oostenveld R, Hämäläinen JA. Rapid changes in brain activity during learning of grapheme-phoneme associations in adults. Neuroimage 2020; 220:117058. [PMID: 32561476 DOI: 10.1016/j.neuroimage.2020.117058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Learning to associate written letters with speech sounds is crucial for the initial phase of acquiring reading skills. However, little is known about the cortical reorganization for supporting letter-speech sound learning, particularly the brain dynamics during the learning of grapheme-phoneme associations. In the present study, we trained 30 Finnish participants (mean age: 24.33 years, SD: 3.50 years) to associate novel foreign letters with familiar Finnish speech sounds on two consecutive days (first day ~ 50 min; second day ~ 25 min), while neural activity was measured using magnetoencephalography (MEG). Two sets of audiovisual stimuli were used for the training in which the grapheme-phoneme association in one set (Learnable) could be learned based on the different learning cues provided, but not in the other set (Control). The learning progress was tracked at a trial-by-trial basis and used to segment different learning stages for the MEG source analysis. The learning-related changes were examined by comparing the brain responses to Learnable and Control uni/multi-sensory stimuli, as well as the brain responses to learning cues at different learning stages over the two days. We found dynamic changes in brain responses related to multi-sensory processing when grapheme-phoneme associations were learned. Further, changes were observed in the brain responses to the novel letters during the learning process. We also found that some of these learning effects were observed only after memory consolidation the following day. Overall, the learning process modulated the activity in a large network of brain regions, including the superior temporal cortex and the dorsal (parietal) pathway. Most interestingly, middle- and inferior-temporal regions were engaged during multi-sensory memory encoding after the cross-modal relationship was extracted from the learning cues. Our findings highlight the brain dynamics and plasticity related to the learning of letter-speech sound associations and provide a more refined model of grapheme-phoneme learning in reading acquisition.
Collapse
Affiliation(s)
- Weiyong Xu
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Orsolya Beatrix Kolozsvari
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Jarmo Arvid Hämäläinen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
12
|
Abstract
Magnetoencephalography (MEG) is a noninvasive neuroimaging technique that measures the electromagnetic fields generated by the human brain. This article highlights the benefits that pediatric MEG has to offer to clinical practice and pediatric research, particularly for infants and young children; reviews the existing literature on adult MEG systems for pediatric use; briefly describes the few pediatric MEG systems currently extant; and draws attention to future directions of research, with focus on the clinical use of MEG for patients with drug-resistant epilepsy.
Collapse
|
13
|
Sato J, Mossad SI, Wong SM, Hunt BAE, Dunkley BT, Urbain C, Taylor MJ. Spectral slowing is associated with working memory performance in children born very preterm. Sci Rep 2019; 9:15757. [PMID: 31673006 PMCID: PMC6823447 DOI: 10.1038/s41598-019-52219-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/13/2019] [Indexed: 11/20/2022] Open
Abstract
Children born very preterm (VPT) often demonstrate selective difficulties in working memory (WM), which may underlie academic difficulties observed in this population. Despite this, few studies have investigated the functional networks underlying WM in young children born VPT, a period when cognitive deficits become apparent. Using magnetoencephalography, we examined the networks underlying the maintenance of visual information in 6-year-old VPT (n = 15) and full-term (FT; n = 20) children. Although task performance was similar, VPT children engaged different oscillatory mechanisms during WM maintenance. Within the FT group, we observed higher mean whole-brain connectivity in the alpha-band during the retention (i.e. maintenance) interval associated with correct compared to incorrect responses. VPT children showed reduced whole-brain alpha synchrony, and a different network organization with fewer connections. In the theta-band, VPT children demonstrated a slight increase in whole-brain connectivity during WM maintenance, and engaged similar network hubs as FT children in the alpha-band, including the left dorsolateral prefrontal cortex and superior temporal gyrus. These findings suggest that VPT children rely on the theta-band to support similar task performance. Altered oscillatory mechanisms may reflect a less mature pattern of functional recruitment underlying WM in VPT children, which may affect the processing in complex ecological situations.
Collapse
Affiliation(s)
- Julie Sato
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
| | - Sarah I Mossad
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Benjamin A E Hunt
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Charline Urbain
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Tokariev M, Vuontela V, Lönnberg P, Lano A, Perkola J, Wolford E, Andersson S, Metsäranta M, Carlson S. Altered working memory-related brain responses and white matter microstructure in extremely preterm-born children at school age. Brain Cogn 2019; 136:103615. [PMID: 31563082 DOI: 10.1016/j.bandc.2019.103615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/28/2022]
Abstract
Preterm birth poses a risk for neurocognitive and behavioral development. Preterm children, who have not been diagnosed with neurological or cognitive deficits, enter normal schools and are expected to succeed as their term-born peers. Here we tested the hypotheses that despite an uneventful development after preterm birth, these children might exhibit subtle abnormalities in brain function and white-matter microstructure at school-age. We recruited 7.5-year-old children born extremely prematurely (<28 weeks' gestation), and age- and gender-matched term-born controls (≥37 weeks' gestation). We applied fMRI during working-memory (WM) tasks, and investigated white-matter microstructure with diffusion tensor imaging. Compared with controls, preterm-born children performed WM tasks less accurately, had reduced activation in several right prefrontal areas, and weaker deactivation of right temporal lobe areas. The weaker prefrontal activation correlated with poorer WM performance. Preterm-born children had higher fractional anisotropy (FA) and lower diffusivity than controls in several white-matter areas, and in the posterior cerebellum, the higher FA associated with poorer visuospatial test scores. In controls, higher FA and lower diffusivity correlated with faster WM performance. Together these findings demonstrate weaker WM-related brain activations and altered white matter microstructure in children born extremely preterm, who had normal global cognitive ability.
Collapse
Affiliation(s)
- Maksym Tokariev
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Virve Vuontela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Piia Lönnberg
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Perkola
- Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland.
| |
Collapse
|
15
|
Mogadam A, Keller AE, Arnold PD, Schachar R, Lerch JP, Anagnostou E, Pang EW. Magnetoencephalographic (MEG) brain activity during a mental flexibility task suggests some shared neurobiology in children with neurodevelopmental disorders. J Neurodev Disord 2019; 11:19. [PMID: 31426750 PMCID: PMC6701152 DOI: 10.1186/s11689-019-9280-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children with neurodevelopmental disorders (NDDs) exhibit a shared phenotype that involves executive dysfunctions including impairments in mental flexibility (MF). It is of interest to understand if this phenotype stems from some shared neurobiology. METHODS To investigate this possibility, we used magnetoencephalography (MEG) neuroimaging to compare brain activity in children (n = 88; 8-15 years) with autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD), as they completed a set-shifting/mental flexibility task. RESULTS Neuroimaging results revealed a similar parietal activation profile across the NDD, groups suggesting a link to their shared phenotype. Differences in frontal activity differentiated the three clinical groups. Brain-behaviour analyses showed a link with repetitive behaviours suggesting shared dysfunction in the associative loop of the corticostriatal system. CONCLUSION Our study supports the notion that NDDs may exist along a complex phenotypic/biological continuum. All NDD groups showed a sustained parietal activity profile suggesting that they share a strong reliance on the posterior parietal cortices to complete the mental flexibility task; future studies could elucidate whether this is due to delayed brain development or compensatory functioning. The differences in frontal activity may play a role in differentiating the NDDs. The OCD group showed sustained prefrontal activity that may be reflective of hyperfrontality. The ASD group showed reduced frontal activation suggestive of frontal dysfunction and the ADHD group showed an extensive hypoactivity that included frontal and parietal regions. Brain-behaviour analyses showed a significant correlation with repetitive behaviours which may reflect dysfunction in the associative loop of the corticostriatal system, linked to inflexible behaviours.
Collapse
Affiliation(s)
- Alexandra Mogadam
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada
| | - Anne E Keller
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada.,Division of Neurology, Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Paul D Arnold
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada.,Genetics and Genome Biology, SickKids Research Institute, Toronto, Canada
| | - Russell Schachar
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada.,Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada.,Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Elizabeth W Pang
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada. .,Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada. .,Division of Neurology, Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada.
| |
Collapse
|
16
|
Prefrontal neural dynamics in consciousness. Neuropsychologia 2019; 131:25-41. [DOI: 10.1016/j.neuropsychologia.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
17
|
Baram TZ, Donato F, Holmes GL. Construction and disruption of spatial memory networks during development. Learn Mem 2019; 26:206-218. [PMID: 31209115 PMCID: PMC6581006 DOI: 10.1101/lm.049239.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/02/2019] [Indexed: 01/18/2023]
Abstract
Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development in both humans and rodents. In children, nonhippocampal dependent egocentric (self-to-object) memory develops before hippocampal-dependent allocentric (object-to-object) memory. The onset of allocentric spatial memory abilities in children around 22 mo of age occurs at an age-equivalent time in rodents when spatially tuned grid and place cells arise from patterned activity propagating through the entorhinal-hippocampal circuit. Neuronal activity, often driven by specific sensory signals, is critical for the normal maturation of brain circuits This patterned activity fine-tunes synaptic connectivity of the network and drives the emergence of specific firing necessary for spatial memory. Whereas normal activity patterns are required for circuit maturation, aberrant neuronal activity during development can have major adverse consequences, disrupting the development of spatial memory. Seizures during infancy, involving massive bursts of synchronized network activity, result in impaired spatial memory when animals are tested as adolescents or adults. This impaired spatial memory is accompanied by alterations in spatial and temporal coding of place cells. The molecular mechanisms by which early-life seizures lead to disruptions at the cellular and network levels are now becoming better understood, and provide a target for intervention, potentially leading to improved cognitive outcome in individuals experiencing early-life seizures.
Collapse
Affiliation(s)
- Tallie Z Baram
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, California 92697, USA
- Department of Pediatrics, University of California-Irvine, Irvine, California 92697, USA
- Department of Neurology, University of California-Irvine, Irvine, California 92697, USA
| | - Flavio Donato
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Biozentrum, Department of Cell Biology, University of Basel 4056, Switzerland
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05401, USA
| |
Collapse
|
18
|
Ruzich E, Crespo‐García M, Dalal SS, Schneiderman JF. Characterizing hippocampal dynamics with MEG: A systematic review and evidence-based guidelines. Hum Brain Mapp 2019; 40:1353-1375. [PMID: 30378210 PMCID: PMC6456020 DOI: 10.1002/hbm.24445] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
The hippocampus, a hub of activity for a variety of important cognitive processes, is a target of increasing interest for researchers and clinicians. Magnetoencephalography (MEG) is an attractive technique for imaging spectro-temporal aspects of function, for example, neural oscillations and network timing, especially in shallow cortical structures. However, the decrease in MEG signal-to-noise ratio as a function of source depth implies that the utility of MEG for investigations of deeper brain structures, including the hippocampus, is less clear. To determine whether MEG can be used to detect and localize activity from the hippocampus, we executed a systematic review of the existing literature and found successful detection of oscillatory neural activity originating in the hippocampus with MEG. Prerequisites are the use of established experimental paradigms, adequate coregistration, forward modeling, analysis methods, optimization of signal-to-noise ratios, and protocol trial designs that maximize contrast for hippocampal activity while minimizing those from other brain regions. While localizing activity to specific sub-structures within the hippocampus has not been achieved, we provide recommendations for improving the reliability of such endeavors.
Collapse
Affiliation(s)
- Emily Ruzich
- Department of Clinical Neurophysiology and MedTech West, Institute of Neuroscience and PhysiologySahlgrenska Academy & the University of GothenburgGothenburgSweden
| | | | - Sarang S. Dalal
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhus CDenmark
| | - Justin F. Schneiderman
- Department of Clinical Neurophysiology and MedTech West, Institute of Neuroscience and PhysiologySahlgrenska Academy & the University of GothenburgGothenburgSweden
| |
Collapse
|
19
|
Chen YH, Saby J, Kuschner E, Gaetz W, Edgar JC, Roberts TPL. Magnetoencephalography and the infant brain. Neuroimage 2019; 189:445-458. [PMID: 30685329 DOI: 10.1016/j.neuroimage.2019.01.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that provides whole-head measures of neural activity with millisecond temporal resolution. Over the last three decades, MEG has been used for assessing brain activity, most commonly in adults. MEG has been used less often to examine neural function during early development, in large part due to the fact that infant whole-head MEG systems have only recently been developed. In this review, an overview of infant MEG studies is provided, focusing on the period from birth to three years. The advantages of MEG for measuring neural activity in infants are highlighted (See Box 1), including the ability to assess activity in brain (source) space rather than sensor space, thus allowing direct assessment of neural generator activity. Recent advances in MEG hardware and source analysis are also discussed. As the review indicates, efforts in this area demonstrate that MEG is a promising technology for studying the infant brain. As a noninvasive technology, with emerging hardware providing the necessary sensitivity, an expected deliverable is the capability for longitudinal infant MEG studies evaluating the developmental trajectory (maturation) of neural activity. It is expected that departures from neuro-typical trajectories will offer early detection and prognosis insights in infants and toddlers at-risk for neurodevelopmental disorders, thus paving the way for early targeted interventions.
Collapse
Affiliation(s)
- Yu-Han Chen
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joni Saby
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily Kuschner
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - William Gaetz
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Jan JE, Heaven RKB, Matsuba C, Langley MB, Roman-Lantzy C, Anthony TL. Windows into the Visual Brain: New Discoveries about the Visual System, Its Functions, and Implications for Practitioners. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2019. [DOI: 10.1177/0145482x1310700402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction In recent years, major progress has been made in understanding the human visual system because of new investigative techniques. These developments often contradict older concepts about visual function. Methods A detailed literature search and interprofessional discussions. Results Recent innovative neurological tests are described that are able to show much more accurately the visual pathways, the process of vision, and the close relationships among sensory modalities. These tests also reveal the remarkable neuroplasticity of the human brain and disorders of connectivity that frequently involve visual function. Discussion How these recent neurological advances may benefit service providers is discussed. Implications for practitioners It is important that from time to time new neurological and ophthalmic developments are summarized for professionals who are involved in the clinical management of individuals with visual disorders and how the newly acquired knowledge affects the diagnosis and intervention strategies. Visual rehabilitation must be based on up-to-date science, which continually changes and grows with research.
Collapse
Affiliation(s)
- James E. Jan
- Pediatric Neurology, Department of Neurophysiology, University of British Columbia, BC Children Hospital, 4480 Oak Street, Vancouver, BC, V6H3V4, Canada
| | - Roberta K. B. Heaven
- Department of Psychiatry, University of British Columbia, and team leader, Visual Impairment Program, BC Children's Hospital and Sunny Hill Hospital for Children, 3644 Slocan Street, Vancouver, BC, V5M, 3E8, Canada
| | - Carey Matsuba
- Visual Impairment Program, Department of Pediatrics, University of British Columbia, and pediatric consultant, Visual Impairment Program, BC Children's Hospital, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada
| | - M. Beth Langley
- Pre-kindergarten Assessment Team, Pinellas County Schools, 301 Fourth Street SW, Largo, FL 33770
| | - Christine Roman-Lantzy
- Western Pennsylvania Hospital, 4800 Friendship Avenue, Pittsburgh, PA 15224; CVI project leader, American Printing House for the Blind; and special assistant to the superintendent, Western Pennsylvania School for the Blind
| | - Tanni L. Anthony
- Exceptional Student Services Unit, Colorado Department of Education, 1560 Broadway, Suite 1175, Denver, CO 80202
| |
Collapse
|
21
|
Demetriou EA, DeMayo MM, Guastella AJ. Executive Function in Autism Spectrum Disorder: History, Theoretical Models, Empirical Findings, and Potential as an Endophenotype. Front Psychiatry 2019; 10:753. [PMID: 31780959 PMCID: PMC6859507 DOI: 10.3389/fpsyt.2019.00753] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
This review presents an outline of executive function (EF) and its application to autism spectrum disorder (ASD). The development of the EF construct, theoretical models of EF, and limitations in the study of EF are outlined. The potential of EF as a cognitive endophenotype for ASD is reviewed, and the Research Domain Criteria (RDoC) framework is discussed for researching EF in ASD given the multifaceted factors that influence EF performance. A number of executive-focused cognitive models have been proposed to explain the symptom clusters observed in ASD. Empirical studies suggest a broad impairment in EF, although there is significant inter-individual variability in EF performance. The observed heterogeneity of EF performance is considered a limiting factor in establishing EF as a cognitive endophenotype in ASD. We propose, however, that this variability in EF performance presents an opportunity for subtyping within the spectrum that can contribute to targeted diagnostic and intervention strategies. Enhanced understanding of the neurobiological basis that underpins EF performance, such as the excitation/inhibition hypothesis, will likely be important. Application of the RDoC framework could provide clarity on the nature of EF impairment in ASD with potential for greater understanding of, and improved interventions for, this disorder.
Collapse
Affiliation(s)
- Eleni A Demetriou
- Autism Clinic for Translational Research, Brain and Mind Centre, Faculty of Medicine and Health, Children's Hospital Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Marilena M DeMayo
- Autism Clinic for Translational Research, Brain and Mind Centre, Faculty of Medicine and Health, Children's Hospital Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Adam J Guastella
- Autism Clinic for Translational Research, Brain and Mind Centre, Faculty of Medicine and Health, Children's Hospital Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Sato J, Mossad SI, Wong SM, Hunt BAE, Dunkley BT, Smith ML, Urbain C, Taylor MJ. Alpha keeps it together: Alpha oscillatory synchrony underlies working memory maintenance in young children. Dev Cogn Neurosci 2018; 34:114-123. [PMID: 30336447 PMCID: PMC6969306 DOI: 10.1016/j.dcn.2018.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/15/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022] Open
Abstract
We investigated brain networks underlying working memory maintenance in children. Higher alpha phase synchrony was found for correct compared to incorrect responses. Working memory maintenance was associated with dominant fronto-temporal connections. Maintenance-related network included the left dorsolateral prefrontal cortex. Our results implicate sustained alpha phase synchrony with successful performance.
Working Memory (WM) supports a wide range of cognitive functions, and is positively associated with academic achievement. Although fMRI studies have revealed WM networks in adults, little is known about how these networks develop to support successful WM performance in children. Using magnetoencephalography, we examined the networks underlying the maintenance of visual information in 6-year-old children. We observed an increase in mean whole-brain connectivity that was specific to the alpha frequency band during the retention interval associated with correct compared to incorrect responses. Additionally, our network analysis revealed elevated alpha synchronization during WM maintenance in a distributed network of frontal, parietal and temporal regions. Central hubs in the network were lateralized to the left hemisphere with dominant fronto-temporal connections, including the dorsolateral prefrontal cortex, middle temporal and superior temporal gyri, as well as other canonical language areas. Local changes in power were also analysed for seeds of interest, including the left inferior parietal lobe, which revealed an increase in alpha power after stimulus onset that was sustained throughout the retention period of WM. Our results therefore implicate sustained fronto-temporal alpha synchrony during the retention interval with subsequent successful WM responses in children, which may be aided by subvocal rehearsal strategies.
Collapse
Affiliation(s)
- Julie Sato
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
| | - Sarah I Mossad
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Benjamin A E Hunt
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Psychology, Hospital for Sick Children, Toronto, Canada
| | - Charline Urbain
- UR2NF-Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Pu Y, Cheyne DO, Cornwell BR, Johnson BW. Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review. Front Neurosci 2018; 12:273. [PMID: 29755314 PMCID: PMC5932174 DOI: 10.3389/fnins.2018.00273] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG “deep source imaging” of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations.
Collapse
Affiliation(s)
- Yi Pu
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Douglas O Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Brian R Cornwell
- Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Blake W Johnson
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
24
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
25
|
Machine learning shows association between genetic variability in PPARG and cerebral connectivity in preterm infants. Proc Natl Acad Sci U S A 2017; 114:13744-13749. [PMID: 29229843 PMCID: PMC5748164 DOI: 10.1073/pnas.1704907114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Preterm birth affects 11% of births globally; 35% of infants develop long-term neurocognitive problems, and prematurity leads to the loss of 75 million disability adjusted life years per annum worldwide. Imaging studies have shown that these infants have extensive alterations in brain development, but little is known about the molecular or cellular mechanisms involved. This imaging genetics study found a strong association between abnormal cerebral connectivity and variability in the PPARG gene, implicating PPARG signaling in abnormal white-matter development in preterm infants and suggesting a tractable new target for therapeutic research. Preterm infants show abnormal structural and functional brain development, and have a high risk of long-term neurocognitive problems. The molecular and cellular mechanisms involved are poorly understood, but novel methods now make it possible to address them by examining the relationship between common genetic variability and brain endophenotype. We addressed the hypothesis that variability in the Peroxisome Proliferator Activated Receptor (PPAR) pathway would be related to brain development. We employed machine learning in an unsupervised, unbiased, combined analysis of whole-brain diffusion tractography together with genomewide, single-nucleotide polymorphism (SNP)-based genotypes from a cohort of 272 preterm infants, using Sparse Reduced Rank Regression (sRRR) and correcting for ethnicity and age at birth and imaging. Empirical selection frequencies for SNPs associated with cerebral connectivity ranged from 0.663 to zero, with multiple highly selected SNPs mapping to genes for PPARG (six SNPs), ITGA6 (four SNPs), and FXR1 (two SNPs). SNPs in PPARG were significantly overrepresented (ranked 7–11 and 67 of 556,000 SNPs; P < 2.2 × 10−7), and were mostly in introns or regulatory regions with predicted effects including protein coding and nonsense-mediated decay. Edge-centric graph-theoretic analysis showed that highly selected white-matter tracts were consistent across the group and important for information transfer (P < 2.2 × 10−17); they most often connected to the insula (P < 6 × 10−17). These results suggest that the inhibited brain development seen in humans exposed to the stress of a premature extrauterine environment is modulated by genetic factors, and that PPARG signaling has a previously unrecognized role in cerebral development.
Collapse
|
26
|
Mogadam A, Keller AE, Taylor MJ, Lerch JP, Anagnostou E, Pang EW. Mental flexibility: An MEG investigation in typically developing children. Brain Cogn 2017; 120:58-66. [PMID: 29065995 DOI: 10.1016/j.bandc.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/22/2017] [Accepted: 10/01/2017] [Indexed: 02/04/2023]
Abstract
Mental flexibility is a core property of cognitive executive functions, relying on an extended frontoparietal network in the brain. fMRI research comparing typically developing children and adults has found that children from an early age recruit the same "classic" brain areas associated with mental flexibility as adults; however, there is evidence that the timing of activation may be different. To investigate the temporal dynamics of brain activity associated with mental flexibility in children, we recruited 22 typically developing children (8-15 years) to complete a set-shifting task in the MEG. Our results showed that while the children relied on the same frontoparietal network of mental flexibility, there was a different emphasis on active brain regions, with children preferentially using their posterior parietal cortices. Additional areas such as the temporal pole and the premotor areas were also recruited, potentially playing a supporting role. Although children shared the same window of peak activity as adults, 75-350ms, we found a significant decrease in activation latency with increasing age, suggesting the presence of developmental differences in timing of brain activity in areas supporting mental flexibility during childhood.
Collapse
Affiliation(s)
- Alexandra Mogadam
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada
| | - Anne E Keller
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Division of Neurology, Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Division of Neurology, Hospital for Sick Children, Toronto, Canada; Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Departments of Psychology & Medical Imaging, University of Toronto, Canada
| | - Jason P Lerch
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Canada
| | - Evdokia Anagnostou
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Division of Neurology, Hospital for Sick Children, Toronto, Canada; Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Elizabeth W Pang
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Division of Neurology, Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
27
|
Arthursson PMSH, Thompson DK, Spencer-Smith M, Chen J, Silk T, Doyle LW, Anderson PJ. Atypical neuronal activation during a spatial working memory task in 13-year-old very preterm children. Hum Brain Mapp 2017; 38:6172-6184. [PMID: 28940977 DOI: 10.1002/hbm.23820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 11/07/2022] Open
Abstract
Children born very preterm (VP; <32 weeks' gestational age) are at risk for unfavorable outcomes in several cognitive domains, including spatial working memory (WM). The underlying neural basis of these cognitive impairments is poorly understood. We investigated differences in neuronal activation during spatial WM using a backward span (BS) task relative to a control (C) task in 45 VP children and 19 term-born controls aged 13 years. VP children showed significantly more activation in the bilateral superior frontal gyrus and significantly less activation in the left parahippocampal gyrus compared with controls. We further explored the distinct contributions of maintenance and manipulation processes of WM using forward span (FS)>C and BS > FS, respectively. There were no significant group differences in neuronal activation for FS > C. However, BS > FS revealed that VP children had significantly greater activation in the left middle frontal gyrus, in the left superior parietal gyrus and right cerebellar tonsil, and significantly less activation in the right precentral and postcentral gyrus and left insula compared with controls. Taken together these results suggest that VP children at 13 years of age show an atypical neuronal activation during spatial WM, specifically related to manipulation of spatial information in WM. It is unclear whether these findings reflect delayed maturation and/or recruitment of alternative neuronal networks as a result of neuroplasticity. Hum Brain Mapp 38:6172-6184, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pia-Maria S H Arthursson
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Deanne K Thompson
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3052, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Megan Spencer-Smith
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jian Chen
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Tim Silk
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3052, Australia.,Department of Obstetrics and Gynaecology, The Royal Women's Hospital, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3052, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
28
|
Mossad SI, Smith ML, Pang EW, Taylor MJ. Neural correlates of "Theory of Mind" in very preterm born children. Hum Brain Mapp 2017; 38:5577-5589. [PMID: 28766907 DOI: 10.1002/hbm.23750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 11/11/2022] Open
Abstract
Very preterm (VPT) birth (<32 weeks' gestational age) has been implicated in social-cognitive deficits including Theory of Mind (ToM); the ability to attribute mental states to others and understand that those beliefs can differ from one's own or reality. The neural bases for ToM deficits in VPT born children have not been examined. We used magnetoencephalography (MEG) for its excellent spatial and temporal resolution to determine the neural underpinnings of ToM in 24 VPT and 24 full-term born (FT) children (7-13 years). VPT children performed more poorly on neuropsychological measures of ToM but not inhibition. In the MEG task, both FT children and VPT children recruited regions involved in false belief processing such as the rIFG (VPT: 275-350 ms, FT: 250-375 ms) and left inferior temporal gyrus (VPT: 375-450 ms, FT: 325-375 ms) and right fusiform gyrus (VPT: 150-200 ms, FT: 175-250 ms). The rIPL (included in the temporal-parietal junction) was recruited in FT children (475-575 ms) and the lTPJ in VPT children (500-575 ms). However, activations in all regions were reduced in the VPT compared to the FT group. We suggest that with increasing social-cognitive demands such as varying the type of scenarios in the standardized measure of ToM, reduced activations in the rIFG and TPJ in the VPT group may reflect the decreased performance. With access to both spatial and temporal information, we discuss the role of domain general and specific regions of the ToM network in both groups. Hum Brain Mapp 38:5577-5589, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah I Mossad
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Neuroscience & Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Department of Neuroscience & Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Department of Psychology, Hospital for Sick Children, Toronto, Canada
| | - Elizabeth W Pang
- Department of Neuroscience & Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Neuroscience & Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Boto E, Bowtell R, Krüger P, Fromhold TM, Morris PG, Meyer SS, Barnes GR, Brookes MJ. On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study. PLoS One 2016; 11:e0157655. [PMID: 27564416 PMCID: PMC5001648 DOI: 10.1371/journal.pone.0157655] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The latter is limited in current systems due to a requirement for pickup coils to be cryogenically cooled. Recent work suggests that optically-pumped magnetometers (OPMs) might be a viable alternative to superconducting detectors for MEG measurement. They have the advantage that sensors can be brought to within ~4 mm of the scalp, thus offering increased sensitivity. Here, using simulations, we quantify the advantages of hypothetical OPM systems in terms of sensitivity, reconstruction accuracy and spatial resolution. Our results show that a multi-channel whole-head OPM system offers (on average) a fivefold improvement in sensitivity for an adult brain, as well as clear improvements in reconstruction accuracy and spatial resolution. However, we also show that such improvements depend critically on accurate forward models; indeed, the reconstruction accuracy of our simulated OPM system only outperformed that of a simulated superconducting system in cases where forward field error was less than 5%. Overall, our results imply that the realisation of a viable whole-head multi-channel OPM system could generate a step change in the utility of MEG as a means to assess brain electrophysiological activity in health and disease. However in practice, this will require both improved hardware and modelling algorithms.
Collapse
Affiliation(s)
- Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Peter Krüger
- Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - T. Mark Fromhold
- Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Peter G. Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Sofie S. Meyer
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, WC1N 3BG, London, United Kingdom
| | - Gareth R. Barnes
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, WC1N 3BG, London, United Kingdom
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends Neurosci 2016; 38:571-8. [PMID: 26343956 DOI: 10.1016/j.tins.2015.07.003] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/01/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023]
Abstract
Cognitive flexibility, the readiness with which one can selectively switch between mental processes to generate appropriate behavioral responses, develops in a protracted manner and is compromised in several prevalent neurodevelopmental disorders. It is unclear whether cognitive flexibility arises from neural substrates distinct from the executive control network (ECN) or from the interplay of nodes within this and other networks. Here we review neuroimaging studies of cognitive flexibility, focusing on set shifting and task switching. We propose that more consistent operationalization and study of cognitive flexibility is required in clinical and developmental neuroscience. We suggest that an important avenue for future research is the characterization of the relationship between neural flexibility and cognitive flexibility in typical and atypical development.
Collapse
|
31
|
Nosarti C, Froudist‐Walsh S. Alterations in development of hippocampal and cortical memory mechanisms following very preterm birth. Dev Med Child Neurol 2016; 58 Suppl 4:35-45. [PMID: 27027606 PMCID: PMC4819886 DOI: 10.1111/dmcn.13042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 11/30/2022]
Abstract
Deficits in memory function have been described in children and adolescents who were born very preterm (VPT), which can have profound effects on their school achievement and everyday life. However, to date, little is known about the development of the neuroanatomical substrates of memory following VPT birth. Here we focus on episodic and working memory and highlight key recent functional and structural magnetic resonance imaging (MRI) studies that have advanced our understanding of the relationship between alterations seen in the VPT brain and typical neurodevelopment of networks supporting these memory functions. We contrast evidence from the episodic and working memory literatures and suggest that knowledge gained from these functional and neuroanatomical studies may point to specific time windows in which working memory interventions may be most effective.
Collapse
Affiliation(s)
- Chiara Nosarti
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and NeuroscienceKing's CollegeLondonUK
| | - Seán Froudist‐Walsh
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and NeuroscienceKing's CollegeLondonUK
| |
Collapse
|
32
|
Jensen CD, Duraccio KM, Carbine KM, Kirwan CB. Topical Review: Unique Contributions of Magnetic Resonance Imaging to Pediatric Psychology Research. J Pediatr Psychol 2015; 41:204-9. [PMID: 26141118 DOI: 10.1093/jpepsy/jsv065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This review aims to provide a brief introduction of the utility of magnetic resonance imaging (MRI) methods in pediatric psychology research, describe several exemplar studies that highlight the unique benefits of MRI techniques for pediatric psychology research, and detail methods for addressing several challenges inherent to pediatric MRI research. METHODS Literature review. RESULTS Numerous useful applications of MRI research in pediatric psychology have been illustrated in published research. MRI methods yield information that cannot be obtained using neuropsychological or behavioral measures. CONCLUSIONS Using MRI in pediatric psychology research may facilitate examination of neural structures and processes that underlie health behaviors. Challenges inherent to conducting MRI research with pediatric research participants (e.g., head movement) may be addressed using evidence-based strategies. We encourage pediatric psychology researchers to consider adopting MRI techniques to answer research questions relevant to pediatric health and illness.
Collapse
|
33
|
Réveillon M, Borradori Tolsa C, Monnier M, Hüppi PS, Barisnikov K. Response inhibition difficulties in preterm children aged 9–12 years: Relations with emotion and behavior. Child Neuropsychol 2015; 22:420-42. [DOI: 10.1080/09297049.2014.994486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Pang EW. Different Neural Mechanisms Underlie Deficits in Mental Flexibility in Post-Traumatic Stress Disorder Compared to Mild Traumatic Brain Injury. Front Psychiatry 2015; 6:170. [PMID: 26696907 PMCID: PMC4668286 DOI: 10.3389/fpsyt.2015.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/20/2015] [Indexed: 01/07/2023] Open
Abstract
Mental flexibility is a core executive function that underlies the ability to adapt to changing situations and respond to new information. Individuals with post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) complain of a number of executive function difficulties, one of which is mental inflexibility or an inability to switch between concepts. While the behavioral presentation of mental inflexibility is similar in those with PTSD or mTBI, we hypothesized that the differences in their etiology would manifest as differences in their underlying brain processing. The neural substrates of mental flexibility have been examined with a number of neuroimaging modalities. Functional magnetic resonance imaging has elucidated the brain regions involved, whereas electroencephalography has been applied to understand the timing of the brain activations. Magnetoencephalography, with its high temporal and spatial resolution, has more recently been used to delineate the spatiotemporal progression of brain processes involved in mental flexibility and has been applied to the study of clinical populations. In a number of separate studies, our group has compared the source localization and brain connectivity during a mental flexibility set-shifting task in a group of soldiers with PTSD and civilians with an acute mTBI. In this article, we review the results from these studies and integrate the data between groups to compare and contrast differences in behavioral, neural, and connectivity findings. We show that the different etiologies of PTSD and mTBI are expressed as distinct neural profiles for mental flexibility that differentiate the groups despite their similar clinical presentations.
Collapse
Affiliation(s)
- Elizabeth W Pang
- Division of Neurology, Hospital for Sick Children , Toronto, ON , Canada ; Neurosciences and Mental Health, Sick Kids Research Institute , Toronto, ON , Canada ; Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
35
|
Jiang P, Tokariev M, Aronen ET, Salonen O, Ma Y, Vuontela V, Carlson S. Responsiveness and functional connectivity of the scene-sensitive retrosplenial complex in 7–11-year-old children. Brain Cogn 2014; 92C:61-72. [DOI: 10.1016/j.bandc.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/01/2022]
|
36
|
Daamen M, Bäuml JG, Scheef L, Sorg C, Busch B, Baumann N, Bartmann P, Wolke D, Wohlschläger A, Boecker H. Working memory in preterm-born adults: load-dependent compensatory activity of the posterior default mode network. Hum Brain Mapp 2014; 36:1121-37. [PMID: 25413496 DOI: 10.1002/hbm.22691] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/16/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022] Open
Abstract
Premature birth is associated with an increased risk of cognitive performance deficits that are dependent on working memory (WM) load in childhood. Less clear is whether preterm-born adults show similar WM impairments, or develop compensatory brain mechanisms that help to overcome prematurity-related functional deficits, for example, by a workload-dependent over-recruitment of WM-typical areas, and/or engagement of alternative brain networks. In this functional magnetic resonance imaging study, 73 adults born very preterm and/or with very low birth weight (VP/VLBW) and 73 term-born controls (CON, mean age: 26.5 years) performed a verbal N-Back paradigm with varying workload (0-back, 1-back, 2-back). Generally, both groups showed similar performance accuracy and task-typical patterns of brain activations (especially in fronto-cingulo-parietal, thalamic, and cerebellar areas) and deactivations (especially in mesial frontal and parietal aspects of the default mode network [DMN]). However, VP/VLBW adults showed significantly stronger deactivations (P < 0.05, cluster-level corrected) than CON in posterior DMN regions, including right ventral precuneus, and right parahippocampal areas (with adjacent cerebellar areas), which were specific for the most demanding 2-back condition. Consistent with a workload-dependent effect, VP/VLBW adults with stronger deactivations (1-back > 2-back) in the parahippocampal/cerebellar cluster also presented a greater slowing of response latencies with increasing WM load (2-back > 1-back), indicative of higher effort. In conclusion, VP/VLBW adults recruited similar anatomical networks as controls during N-back performance, but showed an enhanced suppression of posterior DMN regions during higher workload, which may reflect a temporary suppression of stimulus-independent thoughts that helps to maintain adequate task performance with increasing attentional demands.
Collapse
Affiliation(s)
- Marcel Daamen
- Department of Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cimadevilla JM, Roldán L, París M, Arnedo M, Roldán S. Spatial learning in a virtual reality-based task is altered in very preterm children. J Clin Exp Neuropsychol 2014; 36:1002-8. [DOI: 10.1080/13803395.2014.963520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Taylor MJ, Doesburg SM, Pang EW. Neuromagnetic vistas into typical and atypical development of frontal lobe functions. Front Hum Neurosci 2014; 8:453. [PMID: 24994980 PMCID: PMC4061489 DOI: 10.3389/fnhum.2014.00453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/03/2014] [Indexed: 11/24/2022] Open
Abstract
The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG) is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups – children with autism spectrum disorder and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.
Collapse
Affiliation(s)
- Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children , Toronto, ON , Canada ; Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute , Toronto, ON , Canada ; Department of Medical Imaging, University of Toronto , Toronto, ON , Canada ; Department of Psychology, University of Toronto , Toronto, ON , Canada ; Department of Paediatrics, University of Toronto , Toronto, ON , Canada
| | - Sam M Doesburg
- Department of Diagnostic Imaging, Hospital for Sick Children , Toronto, ON , Canada ; Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute , Toronto, ON , Canada ; Department of Medical Imaging, University of Toronto , Toronto, ON , Canada ; Department of Psychology, University of Toronto , Toronto, ON , Canada
| | - Elizabeth W Pang
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute , Toronto, ON , Canada ; Department of Paediatrics, University of Toronto , Toronto, ON , Canada ; Division of Neurology, Hospital for Sick Children , Toronto, ON , Canada
| |
Collapse
|
39
|
Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, Yuce T, Kemper T, Bauman M. Regional alterations in purkinje cell density in patients with autism. PLoS One 2014; 9:e81255. [PMID: 24586223 PMCID: PMC3933333 DOI: 10.1371/journal.pone.0081255] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
Neuropathological studies, using a variety of techniques, have reported a decrease in Purkinje cell (PC) density in the cerebellum in autism. We have used a systematic sampling technique that significantly reduces experimenter bias and variance to estimate PC densities in the postmortem brains of eight clinically well-documented individuals with autism, and eight age- and gender-matched controls. Four cerebellar regions were analyzed: a sensorimotor area comprised of hemispheric lobules IV-VI, crus I & II of the posterior lobe, and lobule X of the flocculonodular lobe. Overall PC density was thus estimated using data from all three cerebellar lobes and was found to be lower in the cases with autism as compared to controls, an effect that was most prominent in crus I and II (p<0.05). Lobule X demonstrated a trend towards lower PC density in only the males with autism (p = 0.05). Brain weight, a correlate of tissue volume, was found to significantly contribute to the lower lobule X PC density observed in males with autism, but not to the finding of lower PC density in crus I & II. Therefore, lower crus I & II PC density in autism is more likely due to a lower number of PCs. The PC density in lobule X was found to correlate with the ADI-R measure of the patient's use of social eye contact (R² = -0.75, p = 0.012). These findings support the hypothesis that abnormal PC density may contribute to selected clinical features of the autism phenotype.
Collapse
Affiliation(s)
- Jerry Skefos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Christopher Cummings
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Katelyn Enzer
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jarrod Holiday
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Katrina Weed
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ezra Levy
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tarik Yuce
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas Kemper
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Margaret Bauman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Visuospatial working memory in very preterm and term born children--impact of age and performance. Dev Cogn Neurosci 2014; 9:106-16. [PMID: 24631800 PMCID: PMC6989762 DOI: 10.1016/j.dcn.2014.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/20/2022] Open
Abstract
41 preterms performed equally to 36 controls on a visuospatial working memory task. Preterms showed different involvement of frontal areas compared to controls. Young and low-performing preterms recruited an atypical working memory network. Older and high-performing preterms recruited a typical network similar to controls. Findings point toward the use of compensational mechanisms in preterms.
Working memory is crucial for meeting the challenges of daily life and performing academic tasks, such as reading or arithmetic. Very preterm born children are at risk of low working memory capacity. The aim of this study was to examine the visuospatial working memory network of school-aged preterm children and to determine the effect of age and performance on the neural working memory network. Working memory was assessed in 41 very preterm born children and 36 term born controls (aged 7–12 years) using functional magnetic resonance imaging (fMRI) and neuropsychological assessment. While preterm children and controls showed equal working memory performance, preterm children showed less involvement of the right middle frontal gyrus, but higher fMRI activation in superior frontal regions than controls. The younger and low-performing preterm children presented an atypical working memory network whereas the older high-performing preterm children recruited a working memory network similar to the controls. Results suggest that younger and low-performing preterm children show signs of less neural efficiency in frontal brain areas. With increasing age and performance, compensational mechanisms seem to occur, so that in preterm children, the typical visuospatial working memory network is established by the age of 12 years.
Collapse
|
41
|
Gómez C, Lizier JT, Schaum M, Wollstadt P, Grützner C, Uhlhaas P, Freitag CM, Schlitt S, Bölte S, Hornero R, Wibral M. Reduced predictable information in brain signals in autism spectrum disorder. Front Neuroinform 2014; 8:9. [PMID: 24592235 PMCID: PMC3924322 DOI: 10.3389/fninf.2014.00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/23/2014] [Indexed: 01/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common developmental disorder characterized by communication difficulties and impaired social interaction. Recent results suggest altered brain dynamics as a potential cause of symptoms in ASD. Here, we aim to describe potential information-processing consequences of these alterations by measuring active information storage (AIS)-a key quantity in the theory of distributed computation in biological networks. AIS is defined as the mutual information between the past state of a process and its next measurement. It measures the amount of stored information that is used for computation of the next time step of a process. AIS is high for rich but predictable dynamics. We recorded magnetoencephalography (MEG) signals in 10 ASD patients and 14 matched control subjects in a visual task. After a beamformer source analysis, 12 task-relevant sources were obtained. For these sources, stationary baseline activity was analyzed using AIS. Our results showed a decrease of AIS values in the hippocampus of ASD patients in comparison with controls, meaning that brain signals in ASD were either less predictable, reduced in their dynamic richness or both. Our study suggests the usefulness of AIS to detect an abnormal type of dynamics in ASD. The observed changes in AIS are compatible with Bayesian theories of reduced use or precision of priors in ASD.
Collapse
Affiliation(s)
- Carlos Gómez
- Biomedical Engineering Group, E. T. S. Ingenieros de Telecomunicación, University of ValladolidValladolid, Spain
| | - Joseph T. Lizier
- Commonwealth Scientific and Industrial Research Organisation, Computational InformaticsMarsfield, NSW, Australia
| | - Michael Schaum
- MEG Unit, Brain Imaging Center, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| | - Patricia Wollstadt
- MEG Unit, Brain Imaging Center, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| | - Christine Grützner
- Department of Neurophysiology, Max-Planck Institute for Brain ResearchFrankfurt am Main, Germany
| | - Peter Uhlhaas
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, UK
| | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| | - Sabine Schlitt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| | - Sven Bölte
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| | - Roberto Hornero
- Biomedical Engineering Group, E. T. S. Ingenieros de Telecomunicación, University of ValladolidValladolid, Spain
| | - Michael Wibral
- MEG Unit, Brain Imaging Center, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| |
Collapse
|
42
|
Réveillon M, Urben S, Barisnikov K, Borradori Tolsa C, Hüppi PS, Lazeyras F. Functional neuroimaging study of performances on a Go/No-go task in 6- to 7-year-old preterm children: Impact of intrauterine growth restriction. NEUROIMAGE-CLINICAL 2013; 3:429-37. [PMID: 24273725 PMCID: PMC3830070 DOI: 10.1016/j.nicl.2013.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/20/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022]
Abstract
Children born preterm, and more specifically those with intrauterine growth restriction (IUGR), are prone to exhibit scholastic difficulties and behavioral problems later in development. Neuropsychological studies showed that their deficits in response inhibition and attention could be at the heart of these difficulties. Functional magnetic resonance imaging (fMRI) studies using a Go/No-go task in preterm adolescents and adults suggest their use of an alternative neuronal pathway to compensate for a possible delayed development. However, little is known about the impact of IUGR at a functional neural network level. This study used fMRI to explore brain regions activated during a Go/No-go task in 20 preterm children aged 6–7 years, 10 of which were born with IUGR. Results showed that preterm children without IUGR preferentially activated fronto-temporal regions including the inferior frontal cortex, region known to be involved in successful response inhibition. In contrast, IUGR preterm children exhibited greater activation in the putamen, in the medial frontal cortex and parietal regions, specifically involved in attention demanding tasks, some being part of the default-mode network. These findings suggest that IUGR preterm children use different brain regions and a more diffuse network to perform the task, which interfere with goal-directed activity and may reflect inefficient attentional control. The differences observed in IUGR preterm children might relate to their higher risk for neurodevelopmental and behavioral disorders. We investigate inhibition abilities with fMRI in 6- to 7-year-old preterm children. IUGR children showed different patterns of brain activation compared with controls. IUGR preterm children seem to rely on more posterior, parietal regions and SMA. Control preterm children seem to preferentially activate fronto-temporal regions. Results suggest more attentional control difficulties in IUGR children.
Collapse
Affiliation(s)
- Morgane Réveillon
- Child Clinical Neuropsychology Unit, University of Geneva, Bld. Du Pont-d'Arve 40, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Wilke M. Gehirnentwicklung. Monatsschr Kinderheilkd 2013. [DOI: 10.1007/s00112-012-2753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Taylor MJ. Structure and function: how to connect? Neuroradiology 2013; 55 Suppl 2:55-64. [PMID: 23929311 DOI: 10.1007/s00234-013-1246-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The majority, but not all, of very preterm-born infants have difficulties with a variety of cognitive functions as children. It is critical to be able to predict as early as possible those who will have difficulties, to be able to direct appropriate interventions. METHODS We are conducting multimodal structural and functional MRI studies in very preterm-born infants and following them with behavioural and neuroimaging assessments until 4 years of age. We are also completing structural and more complex functional imaging in school-aged very preterm-born children. RESULTS A number of MRI measures between preterm and term age correlate with outcome at 2 years of age. Functional and structural differences are also seen at school age; examples from these various studies are presented. CONCLUSION Structural and functional studies in preterm-born versus term-born infants and children, particularly if completed longitudinally, provide important information on the evolution of brain-behaviour correlates and can help predict outcome in this high-risk population.
Collapse
Affiliation(s)
- Margot J Taylor
- Diagnostic Imaging, Neurosciences and Mental Health Programme, Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Rossi S, Lubin A, Simon G, Lanoë C, Poirel N, Cachia A, Pineau A, Houdé O. Structural brain correlates of executive engagement in working memory: Children's inter-individual differences are reflected in the anterior insular cortex. Neuropsychologia 2013; 51:1145-50. [DOI: 10.1016/j.neuropsychologia.2013.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 01/20/2023]
|
46
|
CID: a valid incentive delay paradigm for children. J Neural Transm (Vienna) 2013; 120:1259-70. [PMID: 23338669 DOI: 10.1007/s00702-012-0962-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
Despite several modifications and the wide use of the monetary incentive delay paradigm (MID; Knutson et al. in J Neurosci 21(16):RC159, 2001a) for assessing reward processing, evidence concerning its application in children is scarce. A first child-friendly MID modification has been introduced by Gotlib et al. (Arch Gen Psychiatry 67(4): 380-387, 2010); however, comparability in the results of different tasks and validity across different age groups remains unclear. We investigated the validity of a newly modified MID task for children (CID) using functional magnetic resonance imaging. The CID comprises the integration of a more age appropriate feedback phase. We focused on reward anticipation and their neural correlates. Twenty healthy young adults completed the MID and the CID. Additionally, 10 healthy children completed the CID. As expected, both paradigms elicited significant ventral and dorsal striatal activity in young adults during reward anticipation. No differential effects of the tasks on reaction times, accuracy rates or on the total amount of gain were observed. Furthermore, the CID elicited significant ventral striatal activity in healthy children. In conclusion, these findings demonstrate evidence for the validity of the CID paradigm. The CID can be recommended for the application in future studies on reward processing in children, adolescents, and in adults.
Collapse
|