1
|
Ye F, Wei C, Wu A. The potential mechanism of mitochondrial homeostasis in postoperative neurocognitive disorders: an in-depth review. Ann Med 2024; 56:2411012. [PMID: 39450938 PMCID: PMC11514427 DOI: 10.1080/07853890.2024.2411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 10/26/2024] Open
Abstract
Postoperative neurocognitive disorders (PND) are the most common neurological disorders following surgery and anaesthesia before and within 12 months after surgery, with a high prevalence in the geriatric population. PND can severely deteriorate the quality of life of patients, especially among the elderly, mainly manifested as memory loss, attention, decline and language comprehension disorders, mostly in elderly patients, with an incidence as high as 31%. Previous studies have also raised the possibility of accelerated cognitive decline and underlying neuropathological processes associated with diseases that affect cognitive performance (e.g. Alzheimer's dementia) for reasons related to anaesthesia and surgery. Currently, most research on PND has focused on various molecular pathways, especially in the geriatric population. The various hypotheses that have been proposed regarding the mechanisms imply peripheral neuroinflammation, oxidative stress, mitochondrial homeostasis, synaptic function, autophagy disorder, blood-brain barrier dysfunction, the microbiota-gut-brain axis and lack of neurotrophic support. However, the underlying pathogenesis and molecular mechanisms of PND have not yet been uncovered. Recent research has focused on mitochondrial homeostasis. In this paper, we present a review of various studies to better understand and characterize the mechanisms of associated cognitive dysfunction. As the biochemical basis of PND becomes more clearly defined, future treatments based on mitochondrial homeostasis modulation can prove to be very promising.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Azul L, Leandro A, Seiça R, Sena CM. Propagermanium as a Novel Therapeutic Approach for the Treatment of Endothelial Dysfunction in Type 2 Diabetes. Int J Mol Sci 2024; 25:8328. [PMID: 39125901 PMCID: PMC11312737 DOI: 10.3390/ijms25158328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Propagermanium (PG) has immune modulating activity and anti-inflammatory properties. This work aimed to study the therapeutic efficacy of PG on endothelial and perivascular dysfunction associated with type 2 diabetes. Non-obese type 2 diabetic Goto-Kakizaki (GK) rats were divided into four groups: (1) the control group; (2) the group treated with 50 mg/kg PG; (3) the group fed a high-fat diet (GKHFD); and (4) the group of GKHFD treated with 50 mg/kg PG. PG was given orally for 3 months. Several in vivo parameters and endothelial function were studied in aortas with perivascular adipose tissue PVAT (+) or without PVAT (-). We also determined the vascular inflammation and levels of CD36 in PVAT. In diabetic GK rats, PG did not affect the lipid profile or the results of the intraperitoneal glucose tolerance test. Instead, it improved the fasting glucose levels (18%, p < 0.01), insulin resistance (32%, p < 0.05), endothelial function (33 and 25% in aortas mounted with (+) or without PVAT (-), p < 0.05), and restored the anticontractile effect of the perivascular adipose tissue by reducing its inflammation (56%, p < 0.05) and oxidative stress profile (55%, p < 0.05). Due to its anti-inflammatory characteristics, PG likely improved endothelial dysfunction and restored the perivascular adipose tissue's anticontractile properties.
Collapse
Affiliation(s)
| | | | | | - Cristina M. Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, Polo 3, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Li X, Qiao M, Zhou Y, Peng Y, Wen G, Xie C, Zhang Y. Modulating the RPS27A/PSMD12/NF-κB pathway to control immune response in mouse brain ischemia-reperfusion injury. Mol Med 2024; 30:106. [PMID: 39039432 PMCID: PMC11265174 DOI: 10.1186/s10020-024-00870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.
Collapse
Affiliation(s)
- Xiaocheng Li
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University & College of Food and Biological Engineering, Chengdu, 610081, P. R. China
| | - Ming Qiao
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Yan Peng
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Gang Wen
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, 610082, P. R. China
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, Sichuan, 610081, P. R. China.
| |
Collapse
|
4
|
Yang Y, Fei Y, Xu X, Yao J, Wang J, Liu C, Ding H. Shikonin attenuates cerebral ischemia/reperfusion injury via inhibiting NOD2/RIP2/NF-κB-mediated microglia polarization and neuroinflammation. J Stroke Cerebrovasc Dis 2024; 33:107689. [PMID: 38527567 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVES Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-β), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.
Collapse
Affiliation(s)
- Ya Yang
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China
| | - Yuxiang Fei
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuejiao Xu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jun Yao
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi, Xinjiang 830017, PR China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100, PR China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haiyan Ding
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi, Xinjiang 830017, PR China.
| |
Collapse
|
5
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Fattakhov N, Ngo A, Torices S, Joseph JA, Okoro A, Moore C, Naranjo O, Becker S, Toborek M. Cenicriviroc prevents dysregulation of astrocyte/endothelial cross talk induced by ischemia and HIV-1 via inhibiting the NLRP3 inflammasome and pyroptosis. Am J Physiol Cell Physiol 2024; 326:C487-C504. [PMID: 38145295 PMCID: PMC11192487 DOI: 10.1152/ajpcell.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Blood-brain barrier (BBB) breakdown is one of the pathophysiological characteristics of ischemic stroke, which may contribute to the progression of brain tissue damage and subsequent neurological impairment. Human immunodeficiency virus (HIV)-infected individuals are at greater risk for ischemic stroke due to diminished immune function and HIV-associated vasculopathy. Studies have shown that astrocytes are involved in maintaining BBB integrity and facilitating HIV-1 infection in the brain. The present study investigated whether targeting astrocyte-endothelial cell signaling with cenicriviroc (CVC), a dual chemokine receptor (CCR)2 and CCR5 antagonist, may protect against dysregulation of cross talk between these cells after oxygen-glucose deprivation/reoxygenation (OGD/R) combined with HIV-1 infection. Permeability assay with 10 kDa fluorescein isothiocyanate (FITC)-dextran demonstrated that CVC alleviated endothelial barrier disruption in noncontact coculture of human brain microvascular endothelial cells (HBMECs) with HIV-1-infected human astrocytes, and reversed downregulation of tight junction protein claudin-5 induced by OGD/R- and HIV-1. Moreover, CVC attenuated OGD/R- and HIV-1-triggered upregulation of the NOD-like receptor protein-3 (NLRP3) inflammasome and IL-1β secretion. Treatment with CVC also suppressed astrocyte pyroptosis by attenuating cleaved caspase-1 levels and the formation of cleaved N-terminal GSDMD (N-GSDMD). Secretome profiling revealed that CVC ameliorated secretion levels of chemokine CC chemokine ligand 17 (CCL17), adhesion molecule intercellular adhesion molecule-1 (ICAM-1), and T cell activation modulator T cell immunoglobulin and mucin domain 3 (TIM-3) by astrocytes synergistically induced by OGD/R and HIV-1. Overall, these results suggest that CVC contributes to restoring astrocyte-endothelial cross interactions in an astrocyte-dependent manner via protection against NLRP3 activation and pyroptosis.NEW & NOTEWORTHY The present study reveals the role of astrocytic NOD-like receptor protein-3 (NLRP3) inflammasome in dysfunctional astrocyte-endothelial cross interactions triggered in response to oxygen/glucose deprivation injury associated with human immunodeficiency virus type 1 (HIV-1) infection. Our results suggest that blocking NLRP3 inflammasome activation and pyroptosis-mediated inflammation with cenicriviroc (CVC) may constitute a potentially effective therapeutic strategy for blood-brain barrier (BBB) protection during HIV-1-associated ischemic stroke.
Collapse
Affiliation(s)
- Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alex Ngo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Joelle-Ann Joseph
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Adesuwa Okoro
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Cameron Moore
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sarah Becker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
7
|
Chen Y, Fei X, Liu G, Li X, Huang L, Yang LZ, Li Y, Xu B, Fang W. P-Glycoprotein Exacerbates Brain Injury Following Experimental Cerebral Ischemia by Promoting Proinflammatory Microglia Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6916819. [PMID: 38144707 PMCID: PMC10748718 DOI: 10.1155/2023/6916819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/02/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Microglia are activated following cerebral ischemic insult. P-glycoprotein (P-gp) is an efflux transporter on microvascular endothelial cells and upregulated after cerebral ischemia. This study evaluated the effects and possible mechanisms of P-gp on microglial polarization/activation in mice after ischemic stroke. P-gp-specific siRNA and adeno-associated virus (p-AAV) were used to silence and overexpress P-gp, respectively. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) were performed in mice and cerebral microvascular endothelial cells (bEnd.3) in vitro, respectively. OGD/R-injured bEnd.3 cells were cocultured with mouse microglial cells (BV2) in Transwell. Influences on acute ischemic stroke outcome, the expression of inflammatory cytokines, and chemokines and chemokines receptors, microglial polarization, glucocorticoid receptor (GR) nuclear translocation, and GR-mediated mRNA decay (GMD) activation were evaluated via reverse transcription real-time polymerase chain reaction, western blot, or immunofluorescence. Silencing P-gp markedly alleviated experimental ischemia injury as indicated by reduced cerebral infarct size, improved neurological deficits, and reduced the expression of interleukin-6 (IL-6) and IL-12 expression. Silencing P-gp also mitigated proinflammatory microglial polarization and the expression of C-C motif chemokine ligand 2 (CCL2) and its receptor CCR2 expression, whereas promoted anti-inflammatory microglia polarization. Additionally, P-gp silencing promoted GR nuclear translocation and the expression of GMD relative proteins in endothelial cells. Conversely, overexpressing P-gp via p-AAV transfection offset all these effects. Furthermore, silencing endothelial GR counteracted all effects mediated by silencing or overexpressing P-gp. Elevated P-gp expression aggravated inflammatory response and brain damage after ischemic stroke by augmenting proinflammatory microglial polarization in association with increased endothelial CCL2 release due to GMD inhibition by P-gp.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xuan Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Lele Zixin Yang
- Penn State University, University Park, State College, PA 16802, USA
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
8
|
Dou X, Ji W, Dai M, Sun S, Chen R, Yang J, Long J, Ge Y, Lin Y. Spatial and temporal mapping of neuron-microglia interaction modes in acute ischemic stroke. Biochem Pharmacol 2023; 216:115772. [PMID: 37659736 DOI: 10.1016/j.bcp.2023.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke (IS) is a major cause of morbidity and mortality worldwide, accounting for 75-80% of all strokes. Under conditions of ischemia and hypoxia, neurons suffer damage or death, leading to a series of secondary immune reactions. Microglia, the earliest activated immune cells, can exert neurotoxic or neuroprotective effects on neurons through secretion of factors. There exists a complex interaction between neurons and microglia during this process. Moreover, the interaction between them becomes even more complex due to differences in the infarct area and reperfusion time. This review first elaborates on the differences in neuronal death modes between the ischemic core and penumbra, and then introduces the differences in microglial markers across different infarct areas with varying reperfusion time, indicating distinct functions. Finally, we focus on exploring the interaction modes between neurons and microglia in order to precisely target beneficial interactions and inhibit harmful ones, thus providing new therapeutic strategies for the treatment of IS.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Wei Ji
- Department of Anesthesiology, Yantai Affiliated Hospital of BinZhou Medical College, Yantai 264000, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
9
|
Jiang H, Sun Z, Zhu X, Li F, Chen Q. Essential genes Ptgs2, Tlr4, and Ccr2 regulate neuro-inflammation during the acute phase of cerebral ischemic in mice. Sci Rep 2023; 13:13021. [PMID: 37563282 PMCID: PMC10415315 DOI: 10.1038/s41598-023-40255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Ischemic stroke (IS) is associated with changes in gene expression patterns in the ischemic penumbra and extensive neurovascular inflammation. However, the key molecules related to the inflammatory response in the acute phase of IS remain unclear. To address this knowledge gap, conducted a study using Gene Set Enrichment Analysis (GSEA) on two gene expression profiles, GSE58720 and GSE202659, downloaded from the GEO database. We screened differentially expressed genes (DEGs) using GEO2R and analyzed 170 differentially expressed intersection genes for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. We also used Metascape, DAVID, STRING, Cytoscape, and TargetScan to identify candidate miRNAs and genes. The targeted genes and miRNA molecule were clarified using the mice middle cerebral artery occlusion-reperfusion (MCAO/R) model. Our findings revealed that 170 genes were correlated with cytokine production and inflammatory cell activation, as determined by GO and KEGG analyses. Cluster analysis identified 11 hub genes highly associated with neuroinflammation: Ccl7, Tnf, Ccl4, Timp1, Ccl3, Ccr1, Sele, Ccr2, Tlr4, Ptgs2, and Il6. TargetScan results suggested that Ptgs2, Tlr4, and Ccr2 might be regulated by miR-202-3p. In the MCAO/R model, the level of miR-202-3p decreased, while the levels of Ptgs2, Tlr4, and Ccr2 increased compared to the sham group. Knockdown of miR-202-3p exacerbated ischemic reperfusion injury (IRI) through neuroinflammation both in vivo and in vitro. Our study also demonstrated that mRNA and protein levels of Ptgs2, Tlr4, and Ccr2 increased in the MCAO/R model with miR-202-3p knockdown. These findings suggest that differentially expressed genes, including Ptgs2, Tlr4, and Ccr2 may play crucial roles in the neuroinflammation of IS, and their expression may be negatively regulated by miR-202-3p. Our study provides new insights into the regulation of neuroinflammation in IS.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xiwei Zhu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
10
|
Han W, Pu H, Li S, Liu Y, Zhao Y, Xu M, Chen C, Wu Y, Yang T, Ye Q, Wang H, Stetler RA, Chen J, Shi Y. Targeted ablation of signal transducer and activator of transduction 1 alleviates inflammation by microglia/macrophages and promotes long-term recovery after ischemic stroke. J Neuroinflammation 2023; 20:178. [PMID: 37516843 PMCID: PMC10385956 DOI: 10.1186/s12974-023-02860-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Brain microglia and macrophages (Mi/MΦ) can shift to a harmful or advantageous phenotype following an ischemic stroke. Identification of key molecules that regulate the transformation of resting Mi/MΦ could aid in the development of innovative therapies for ischemic stroke. The transcription factor signal transducer and activator of transduction 1 (STAT1) has been found to contribute to acute neuronal death (in the first 24 h) following ischemic stroke, but its effects on Mi/MΦ and influence on long-term stroke outcomes have yet to be determined. METHODS We generated mice with tamoxifen-induced, Mi/MΦ-specific knockout (mKO) of STAT1 driven by Cx3cr1CreER. Expression of STAT1 was examined in the brain by flow cytometry and RNA sequencing after ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). The impact of STAT1 mKO on neuronal cell death, Mi/MΦ phenotype, and brain inflammation profiles were examined 3-5 days after MCAO. Neurological deficits and the integrity of gray and white matter were assessed for 5 weeks after MCAO by various neurobehavioral tests and immunohistochemistry. RESULTS STAT1 was activated in Mi/MΦ at the subacute stage (3 days) after MCAO. Selective deletion of STAT1 in Mi/MΦ did not alter neuronal cell death or infarct size at 24 h after MCAO, but attenuated Mi/MΦ release of high mobility group box 1 and increased arginase 1-producing Mi/MΦ 3d after MCAO, suggesting boosted inflammation-resolving responses of Mi/MΦ. As a result, STAT1 mKO mice had mitigated brain inflammation at the subacute stage after MCAO and less white matter injury in the long term. Importantly, STAT1 mKO was sufficient to improve functional recovery for at least 5 weeks after MCAO in both male and female mice. CONCLUSIONS Mi/MΦ-targeted STAT1 KO does not provide immediate neuroprotection but augments inflammation-resolving actions of Mi/MΦ, thereby facilitating long-term functional recovery after stroke. STAT1 is, therefore, a promising therapeutic target to harness beneficial Mi/MΦ responses and improve long-term outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Wenxuan Han
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yaan Liu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Mingyue Xu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Caixia Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yun Wu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
11
|
Menchikov LG, Popov AV. Physiological Activity of Trace Element Germanium including Anticancer Properties. Biomedicines 2023; 11:1535. [PMID: 37371629 PMCID: PMC10295216 DOI: 10.3390/biomedicines11061535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Germanium is an essential microelement, and its deficiency can result in numerous diseases, particularly oncogenic conditions. Consequently, water-soluble germanium compounds, including inorganic and coordination compounds, have attracted significant attention due to their biological activity. The review analyzes the primary research from the last decade related to the anticancer activity of germanium compounds. Furthermore, the review clarifies their actual toxicity, identifies errors and misconceptions that have contributed to the discrediting of their biological activity, and briefly suggests a putative mechanism of germanium-mediated protection from oxidative stress. Finally, the review provides clarifications on the discovery history of water-soluble organic germanium compounds, which was distorted and suppressed for a long time.
Collapse
Affiliation(s)
- Leonid G. Menchikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russia;
| | - Anatoliy V. Popov
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Anatomy Chemistry Building, Rm 317, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Wang Y, Qiu L, Deng S, Liu F, He Z, Li M, Wang Y. Ursolic Acid Promotes Microglial Polarization Toward the M2 Phenotype Via PPARγ Regulation of MMP2 Transcription. Neurotoxicology 2023; 96:81-91. [PMID: 37019307 DOI: 10.1016/j.neuro.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/19/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Microglia, which are the primary inflammatory cells of the brain, can undergo phenotypic switching between M1 and M2 polarization, which have opposing effects on inflammation. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear receptor family of ligand-inducible transcription factors, and PPARγ is known to regulate M2 macrophage polarization. Previous studies have shown that the natural pentacyclic triterpenoid ursolic acid (3β-hydroxy-urs-12-en-28-oic acid; UA) influences microglial activation. Additionally, UA increases tissue inhibitor matrix metalloproteinase 1 (TIMP1), while greatly reducing the release of matrix metalloproteinase 2 (MMP2) and MMP9 in a PPARγ-dependent manner. Here, we examined the anti-inflammatory properties of UA by observing how well it promotes the phenotypic transition of lipopolysaccharide (LPS) and interferon gamma (IFNγ)-activated BV2 microglia from M1 to M2 polarization. To determine if PPARγ is involved in the underlying molecular pathway, we treated rats with UA and the PPARγ inhibitor BADGE. We also investigated the mechanisms by which PPARγ controls transcription from the MMP2 promoter. The in-vitro experiments showed that UA shifted LPS/IFNγ-activated BV2 microglia from the M1 to the M2 phenotype, which was associated with a reduction in the neurotoxic factors MMP2 and MMP9, and an increase in the anti-inflammatory factor TIMP1. Co-treatment with increased MMP2 and MMP9 synthesis while decreasing TIMP1 release, indicating that UA has anti-inflammatory effects on LPS/IFNγ-activated BV2 cells via activation of PPARγ. Next, we found that PPARγ directly influences MMP2 transcriptional activity by identifying the crucial peroxisome proliferator response element (PPRE) among five potential PPREs in the MMP2 promoter. These results suggest that UA has a protective anti-inflammatory effect against neuroinflammatory toxicity, which is exerted by direct activation of PPARγ and selectively modulates microglial polarization and suppresses MMP2 formation.
Collapse
|
13
|
Germano DB, Oliveira SB, Bachi ALL, Juliano Y, Novo NF, Bussador do Amaral J, França CN. Monocyte chemokine receptors as therapeutic targets in cardiovascular diseases. Immunol Lett 2023; 256-257:1-8. [PMID: 36893859 DOI: 10.1016/j.imlet.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Chemokine receptors are fundamental in many processes related to cardiovascular diseases, such as monocyte migration to vessel walls, cell adhesion, and angiogenesis, among others. Even though many experimental studies have shown the utility of blocking these receptors or their ligands in the treatment of atherosclerosis, the findings in clinical research are still poor. Thus, in the current review we aimed to describe some promising results concerning the blockade of chemokine receptors as therapeutic targets in the treatment of cardiovascular diseases and also to discuss some challenges that need to be overcome before using these strategies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology -Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil.
| |
Collapse
|
14
|
The Role of CCL2/CCR2 Axis in Cerebral Ischemia-Reperfusion Injury and Treatment: From Animal Experiments to Clinical Trials. Int J Mol Sci 2022; 23:ijms23073485. [PMID: 35408846 PMCID: PMC8998625 DOI: 10.3390/ijms23073485] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
C-C motif chemokine ligand 2 (CCL2) is a member of the monocyte chemokine protein family, which binds to its receptor CCR2 to induce monocyte infiltration and mediate inflammation. The CCL2/CCR2 signaling pathway participates in the transduction of neuroinflammatory information between all types of cells in the central nervous system. Animal studies and clinical trials have shown that CCL2/CCR2 mediate the pathological process of ischemic stroke, and a higher CCL2 level in serum is associated with a higher risk of any form of stroke. In the acute phase of cerebral ischemia-reperfusion, the expression of CCL2/CCR2 is increased in the ischemic penumbra, which promotes neuroinflammation and enhances brain injury. In the later phase, it participates in the migration of neuroblasts to the ischemic area and promotes the recovery of neurological function. CCL2/CCR2 gene knockout or activity inhibition can reduce the nerve inflammation and brain injury induced by cerebral ischemia-reperfusion, suggesting that the development of drugs regulating the activity of the CCL2/CCR2 signaling pathway could be used to prevent and treat the cell injury in the acute phase and promote the recovery of neurological function in the chronic phase in ischemic stroke patients.
Collapse
|
15
|
Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging Dis 2021; 12:466-479. [PMID: 33815877 PMCID: PMC7990355 DOI: 10.14336/ad.2020.0701] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, which is the second highest cause of death and the leading cause of disability, represents ~71% of all strokes globally. Some studies have found that the key elements of the pathobiology of stroke is immunity and inflammation. Microglia are the first line of defense in the nervous system. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 types and neuroprotective M2 types. Therefore, ways to promote microglial polarization toward M2 phenotype after stroke have become the focus of attention in recent years. In this review, we discuss the process of microglial polarization, summarize the alternation of signaling pathways and epigenetic regulation that control microglial polarization in ischemic stroke, aiming to find the potential mechanisms by which microglia can be transformed into the M2 polarized phenotype.
Collapse
Affiliation(s)
- Yimeng Xue
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Nie
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin-Jian Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Cheng Qiu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Long Ma
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Xin Dong
- 3Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wen-Jun Tu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,3Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,4China National Clinical Research Center for Neurological Diseases, Beijing, China.,5Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,6Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
16
|
Davis C, Savitz SI, Satani N. Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells 2021; 10:cells10040767. [PMID: 33807314 PMCID: PMC8065444 DOI: 10.3390/cells10040767] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.
Collapse
|
17
|
Liu H, Zhang Z, Zang C, Wang L, Yang H, Sheng C, Shang J, Zhao Z, Yuan F, Yu Y, Yao X, Bao X, Zhang D. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113491. [PMID: 33091490 DOI: 10.1016/j.jep.2020.113491] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides J. Ellis (Fructus Gardenia) is a traditional Chinese medicine with diverse pharmacological functions, such as anti-inflammation, anti-depression, as well as improvement of cognition and ischemia brain injury. GJ-4 is a natural extract from Gardenia jasminoides J. Ellis (Fructus Gardenia) and has been proved to improve memory impairment in Alzheimer's disease (AD) mouse model in our previous studies. AIM OF THE STUDY This study aimed to evaluate the therapeutic effects of GJ-4 on vascular dementia (VD) and explore the potential mechanisms. MATERIAL AND METHODS In our experiment, a focal cerebral ischemia and reperfusion rat model was successfully developed by the middle cerebral artery occlusion and reperfusion (MCAO/R). GJ-4 (10 mg/kg, 25 mg/kg, 50 mg/kg) and nimodipine (10 mg/kg) were orally administered to rats once a day for consecutive 12 days. Learning and memory behavioral performance was assayed by step-down test and Morris water maze test. The neurological scoring test was performed to evaluate the neurological function of rats. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and Nissl staining were respectively employed to determine the infarct condition and neuronal injury of the brain. Iba1 immunohistochemistry was used to show the activation of microglia. Moreover, the synaptic damage and inflammatory level were detected by Western blot. RESULTS GJ-4 could significantly improve memory impairment, cerebral infraction, as well as neurological deficits of VD rats induced by MCAO/R. Further research indicated VD-induced neuronal injury was alleviated by GJ-4. In addition, GJ-4 could protect synapse of VD rats by upregulating synaptophysin (SYP) expression, post synaptic density 95 protein (PSD95) expression, and downregulating N-Methyl-D-Aspartate receptor 1 (NMDAR1) expression. Subsequent investigation of the underlying mechanisms identified that GJ-4 could suppress neuroinflammatory responses, supported by inhibited activation of microglia and reduced expression of inflammatory proteins, which ultimately exerted neuroprotective effects on VD. Further mechanistic study indicated that janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1) pathway was inhibited by GJ-4 treatment. CONCLUSION These results suggested that GJ-4 might serve as a potential drug to improve VD. In addition, our study indicated that inhibition of neuroinflammation might be a promising target to treat VD.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Dementia, Vascular/enzymology
- Dementia, Vascular/etiology
- Dementia, Vascular/prevention & control
- Dementia, Vascular/psychology
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Gardenia
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/physiopathology
- Inflammation Mediators/metabolism
- Janus Kinase 2/metabolism
- Male
- Memory/drug effects
- Memory Disorders/enzymology
- Memory Disorders/etiology
- Memory Disorders/prevention & control
- Memory Disorders/psychology
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Neuroprotective Agents/pharmacology
- Nootropic Agents/pharmacology
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
- Reperfusion Injury/enzymology
- Reperfusion Injury/etiology
- Reperfusion Injury/physiopathology
- Reperfusion Injury/prevention & control
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- Synapses/drug effects
- Synapses/metabolism
- Synapses/pathology
- Rats
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Chanjuan Sheng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yang Yu
- Institute of TCM, Natural Products College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- Institute of TCM, Natural Products College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
18
|
Remote Limb Ischemic Postconditioning Protects against Ischemic Stroke via Modulating Microglia/Macrophage Polarization in Mice. J Immunol Res 2021; 2021:6688053. [PMID: 33688509 PMCID: PMC7910075 DOI: 10.1155/2021/6688053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aim The protection against ischemia/reperfusion injury mediated by remote limb ischemic postconditioning (RIPC) shows great clinical value in ischemic stroke therapy, but the particular mechanism of RIPC remains unclear. Methods We carried out middle cerebral artery occlusion/reperfusion (MCAO/R) surgery on C57BL/6 male mice. RIPC was generated by 10-minute occlusion followed by the same period of reperfusion of the bilateral hind limb femoral artery and repeated for 3 cycles. Infarct size and neurological score were performed to assess stroke outcomes. Ly6Chi monocytes were quantified in the blood and brain by flow cytometry. Real-time PCR, ELISA, and immunofluorescence were utilized to detect phenotype of proinflammatory M1 and anti-inflammatory M2 microglia/macrophage. Nuclear factor κB (NF-κB) and peroxisome proliferator-activated receptor γ (PPARγ) levels were detected using Western blot. Results At 24 and 72 h after MCAO, RIPC drastically attenuated infarct size and ameliorated the neurological deficits of mice and facilitated transmigration of Ly6Chi monocytes to the brain postischemia reperfusion. Furthermore, RIPC contributed to increased M2 and reduced M1 microglia/macrophage through inhibiting NF-κB and promoting PPARγ activation. Conclusion Our results reveal pharmacological effect of RIPC in promoting microglia/macrophage transferring from M1 to M2 phenotype after MCAO/R in mice, which provides theoretical support for the therapeutic effect of RIPC in ischemic stroke.
Collapse
|
19
|
Lee S, Kim OJ, Lee KO, Jung H, Oh SH, Kim NK. Enhancing the Therapeutic Potential of CCL2-Overexpressing Mesenchymal Stem Cells in Acute Stroke. Int J Mol Sci 2020; 21:ijms21207795. [PMID: 33096826 PMCID: PMC7588958 DOI: 10.3390/ijms21207795] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Although intravenous administration of mesenchymal stem cells (MSCs) is effective for experimental stroke, low engraftment and the limited functional capacity of transplanted cells are critical hurdles for clinical applications. C-C motif chemokine ligand 2 (CCL2) is associated with neurological repair after stroke and delivery of various cells into the brain via CCL2/CCR2 (CCL2 receptor) interaction. In this study, after CCL2-overexpressing human umbilical cord-derived MSCs (hUC-MSCs) were intravenously transplanted with mannitol in rats with middle cerebral arterial occlusion, we compared the differences between four different treatment groups: mannitol + CCL2-overexpressing hUC-MSCs (CCL2-MSC), mannitol + naïve hUC-MSCs (M-MSC), mannitol only, and control. At four-weeks post-transplantation, the CCL2-MSC group showed significantly better functional recovery and smaller stroke volume relative to the other groups. Additionally, we observed upregulated levels of CCR2 in acute ischemic brain and the increase of migrated stem cells into these areas in the CCL2-MSC group relative to the M-MSC. Moreover, the CCL2-MSC group displayed increased angiogenesis and endogenous neurogenesis, decreased neuro-inflammation but with increased healing-process inflammatory cells relative to other groups. These findings indicated that CCL2-overexpressing hUC-MSCs showed better functional recovery relative to naïve hUC-MSCs according to the increased migration of these cells into brain areas of higher CCR2 expression, thereby promoting subsequent endogenous brain repair.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (S.L.); (K.O.L.); (H.J.); (S.-H.O.)
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (S.L.); (K.O.L.); (H.J.); (S.-H.O.)
- Correspondence: ; Tel.: +82-31-780-5481; Fax: +82-31-780-5269
| | - Kee Ook Lee
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (S.L.); (K.O.L.); (H.J.); (S.-H.O.)
| | - Hyeju Jung
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (S.L.); (K.O.L.); (H.J.); (S.-H.O.)
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (S.L.); (K.O.L.); (H.J.); (S.-H.O.)
| | - Nam Keun Kim
- Institute for Clinical Research, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea;
| |
Collapse
|
20
|
Hara A, Shimizu M, Hamaguchi E, Kakuda H, Ikeda K, Okumura T, Kitagawa K, Koshino Y, Kobayashi M, Takasawa K, Hisada Y, Toyama T, Iwata Y, Sakai N, Wada T. Propagermanium administration for patients with type 2 diabetes and nephropathy: A randomized pilot trial. Endocrinol Diabetes Metab 2020; 3:e00159. [PMID: 32704573 PMCID: PMC7375122 DOI: 10.1002/edm2.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS We assessed the potential efficacy and safety of propagermanium (PG), an organic compound that inhibits the C-C chemokine receptor type 2, administration in patients with type 2 diabetes and nephropathy. Furthermore, we assessed the feasibility of future studies. MATERIALS AND METHODS We recruited patients from nine medical institutions in Japan for this randomized, open-label, parallel two-arm pilot trial. Inclusion criteria were diagnosis of type 2 diabetes, age 30-75 years, dipstick proteinuria of ≥1+ or urinary albumin-to-creatinine ratio (UACR) of ≥30 mg/g and estimated glomerular filtration rate of ≥30 mL/min/1.73 m2. Patients were randomly assigned (1:2) using a minimization algorithm to either continuing usual care or concomitant administration of 30 mg PG per day for 12 months. The primary outcome was the change in UACR from baseline to 12 months. We also collected safety information for all patients who received at least one dose of PG. RESULTS We enrolled 29 patients, 10 were assigned to continue usual care and 19 to receive PG. Changes in UACR by PG in addition to the usual care were 25.0% (95% CI -20.4%, 96.5%, P = .33). No severe adverse events or renal events were observed during the study. CONCLUSION Although the treatment with PG was generally well tolerated, the dosage of 30 mg/d for 12 months did not reduce albuminuria when used in addition to usual care in patients with type 2 diabetes and nephropathy. Efficacy of PG should be verified in future definitive trials.
Collapse
Affiliation(s)
- Akinori Hara
- Division of NephrologyKanazawa University HospitalKanazawaJapan
- Department of Environmental and Preventive MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Miho Shimizu
- Division of NephrologyKanazawa University HospitalKanazawaJapan
- Department of Nephrology and Laboratory MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Erika Hamaguchi
- Department of Internal MedicineJapanese Red Cross Kanazawa HospitalKanazawaJapan
| | | | | | - Toshiya Okumura
- Department of Internal MedicineTonami General HospitalTonamiJapan
| | - Kiyoki Kitagawa
- Division of Internal MedicineNational Hospital Organization Kanazawa Medical CenterKanazawaJapan
| | | | - Motoo Kobayashi
- Department of Internal MedicineMunicipal Tsuruga HospitalTsurugaJapan
| | - Kazuya Takasawa
- Department of NephrologyPublic Central Hospital of Matto IshikawaHakusanJapan
| | - Yukimasa Hisada
- Department of Internal MedicineJapanese Red Cross Kanazawa HospitalKanazawaJapan
| | - Tadashi Toyama
- Division of NephrologyKanazawa University HospitalKanazawaJapan
- Department of Nephrology and Laboratory MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Yasunori Iwata
- Division of NephrologyKanazawa University HospitalKanazawaJapan
- Department of Nephrology and Laboratory MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Norihiko Sakai
- Division of NephrologyKanazawa University HospitalKanazawaJapan
- Department of Nephrology and Laboratory MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Takashi Wada
- Division of NephrologyKanazawa University HospitalKanazawaJapan
- Department of Nephrology and Laboratory MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| |
Collapse
|
21
|
Inhibition of IL-32 Expression Ameliorates Cerebral Ischemia-Reperfusion Injury via the NOD/MAPK/NF-κB Signaling Pathway. J Mol Neurosci 2020; 70:1713-1727. [PMID: 32474900 DOI: 10.1007/s12031-020-01557-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Cerebral ischemia represents a major cause of disability, yet its precise mechanism remains unknown. In addition, ischemia-reperfusion injury which occurs during the blood recovery process increases the risk of mortality, and is not adequately addressed with current treatment. To improve therapeutic options, it is important to explore the vital substances that play a pivotal role in ischemia-reperfusion injury. This study is the first to investigate the role of IL-32, a vital pro-inflammatory factor, in models of cerebral ischemia-reperfusion injury. The results showed that IL-32 was highly expressed in both in vivo and in vitro models. The proteins of the NOD/MAPK/NF-κB pathway were also up-regulated, indicating a potential signaling pathway mechanism. Inhibition of IL-32 and blocking of the NOD/MAPK/NF-κB pathway increased cell survival, decreased the level of inflammatory factors and inflammasomes, and attenuated nitrosative stress. Taken together, the results show that inhibition of IL-32 expression ameliorates cerebral ischemia-reperfusion injury via the NOD/MAPK/NF-κB signaling pathway. The findings in this study reveal that IL-32 is a vital target of ischemia-reperfusion injury, providing a new avenue for treatment development.
Collapse
|
22
|
Sun L, Zhang H, Wang W, Chen Z, Wang S, Li J, Li G, Gao C, Sun X. Astragaloside IV Exerts Cognitive Benefits and Promotes Hippocampal Neurogenesis in Stroke Mice by Downregulating Interleukin-17 Expression via Wnt Pathway. Front Pharmacol 2020; 11:421. [PMID: 32317974 PMCID: PMC7147333 DOI: 10.3389/fphar.2020.00421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Stroke remains a leading cause of adult disability and the demand for stroke rehabilitation services is growing, and Astragaloside IV (As IV), a primary bioactive compound of Radix Astragali : Astragalus mongholicus Bunge (Fabaceae), may be a promising stroke therapy. Methods To access the effect of As IV on adult mice after ischemic stroke, a photochemical ischemia model was established on C57BL/6 mice, which were intravenously administered As IV for three consecutive days later. And then the cognitive benefits and hippocampal neurogenesis were evaluated by Morris Water Maze (MWM) test, Golgi staining, and immunohistochemical staining in vivo and in vitro. Furthermore, to find out the underlying mechanism, interleukin-17 (IL-17) knockout (KO) mice were used, through RNA sequence (RNA-seq) analysis and immunohistochemistry. Then the mechanism of neurogenesis promoted by As IV was observed by western blot both in vivo and in vitro. Specifically, As IV, recombinant mouse IL-17A and IL-17F, and Wingless/integrated (Wnt)-expressing virus was administered respectively in neural stem cells (NSCs), and then their diameters and protein expression of Nestin, IL-17, and Wnt pathway relevant protein, were measured in vitro. Results Administering As IV resulted in significant amelioration of stroke-induced cognitive deficits. And more hippocampal neurons with normal morphology, significant increments in the length of the apical dendrites, and the density of their spines were observed in As IV-treated mice. Furthermore, the immunohistochemistry staining of DCX/BrdU and Sox2/Nestin showed As IV could promote hippocampal neurogenesis and NSC proliferation after ischemic stroke, as well as in vitro. For the mechanism underlying, IL-17 expression was downregulated significantly by As IV treatment and knocking out IL-17 was associated with nervous regeneration and synapse repair according to the analysis of RNA-seq. Consistent to As IV treatment, knocking out IL-17 showed some promotion on hippocampal neurogenesis and proliferation of NSCs, with activating Wnt pathway after stoke. Finally, in vitro, NSCs’ diameters and protein expression of Nestin, IL-17, and Wnt pathway were regulated by either administering As IV or inhibiting IL-17. Conclusion As IV stimulates hippocampal neurogenesis after stroke, thus potentially facilitates brain to remodel and repair by downregulating IL-17 expression via Wnt pathway.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Heming Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wen Wang
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Zhiyang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shuang Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guangyao Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
23
|
He Y, Gao Y, Zhang Q, Zhou G, Cao F, Yao S. IL-4 Switches Microglia/macrophage M1/M2 Polarization and Alleviates Neurological Damage by Modulating the JAK1/STAT6 Pathway Following ICH. Neuroscience 2020; 437:161-171. [PMID: 32224230 DOI: 10.1016/j.neuroscience.2020.03.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/02/2023]
Abstract
Inflammatory damage following ICH is often attributed to microglia/macrophage activation. In many diseases, IL-4 has been proven to switch microglia/macrophages from the pro-inflammatory to the anti-inflammatory subtype. However, the role and underlying mechanism of IL-4 in ICH, especially in neuroprotection, remain unknown. In our study, we constructed a microglia/macrophage polarization model in BV2 cells to verify that the M2 shift of microglia/macrophages was mediated by JAK1/STAT6 after IL-4 treatment and then revealed that in vitro administration of IL-4 decreased M1 markers, pro-inflammatory cytokines and neuroapoptosis markers but significantly increased M2 markers and anti-inflammatory cytokines. Using an ICH model in mice, we observed that IL-4 administration decreased neurological deficits, brain edema and infarct lesions induced by ICH. We verified that IL-4 mediates inflammation by regulating M1/M2 polarization in ICH and explored the underlying mechanism. Furthermore, we discovered that pathway components and apoptosis-related proteins showed consistent trends based on their respective roles, and inferred that the process that TNF-α activates caspase-3 may be the crosstalk that microglia phagocytosis developed into accelerate apoptosis of cells in ICH. In conclusion, our study demonstrates that IL-4 may promote M2 microglia/macrophage polarization partly through the JAK1/STAT6 pathway to alleviate neuroinflammation after ICH.
Collapse
Affiliation(s)
- Yang He
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Yang Gao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Qiang Zhang
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Guiyin Zhou
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Fang Cao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Shengtao Yao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China.
| |
Collapse
|
24
|
Yang HC, Zhang M, Wu R, Zheng HQ, Zhang LY, Luo J, Li LL, Hu XQ. C-C chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke cognitive impairment by enhancing microglia/macrophage M2 polarization. World J Stem Cells 2020; 12:152-167. [PMID: 32184939 PMCID: PMC7062036 DOI: 10.4252/wjsc.v12.i2.152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human-derived mesenchymal stromal cells have been shown to improve cognitive function following experimental stroke. The activity of exosomes has been verified to be comparable to the therapeutic effects of mesenchymal stromal cells. However, the effects of exosomes derived from human umbilical cord mesenchymal stem cells (HUC-MSCs) (ExoCtrl) on post-stroke cognitive impairment (PSCI) have rarely been reported. Moreover, whether exosomes derived from C-C chemokine receptor type 2 (CCR2)-overexpressing HUC-MSCs (ExoCCR2) can enhance the therapeutic effects on PSCI and the possible underlying mechanisms have not been studied.
AIM To investigate the effects of ExoCtrl on PSCI and whether ExoCCR2 can enhance therapeutic effects on PSCI.
METHODS Transmission electron microscopy, qNano® particles analyzer, and Western blotting were employed to determine the morphology and CCR2 expression of ExoCtrl or ExoCCR2. ELISA was used to study the binding capacity of exosomes to CC chemokine ligand 2 (CCL2) in vivo. After the intravenous injection of ExoCtrl or ExoCCR2 into experimental rats, the effect of ExoCtrl and ExoCCR2 on PSCI was assessed by Morris water maze. Remyelination and oligodendrogenesis were analyzed by Western blotting and immunofluorescence microscopy. QRT-PCR and immunofluorescence microscopy were conducted to compare the microglia/macrophage polarization. The infiltration and activation of hematogenous macrophages were analyzed by Western blotting and transwell migration analysis.
RESULTS CCR2-overexpressing HUC-MSCs loaded the CCR2 receptor into their exosomes. The morphology and diameter distribution between ExoCtrl and ExoCCR2 showed no significant difference. ExoCCR2 bound significantly to CCL2 but ExoCtrl showed little CCL2 binding. Although both ExoCCR2 and ExoCtrl showed beneficial effects on PSCI, oligodendrogenesis, remyelination, and microglia/macrophage polarization, ExoCCR2 exhibited a significantly superior beneficial effect. We also found that ExoCCR2 could suppress the CCL2-induced macrophage migration and activation in vivo and in vitro, compared with ExoCtrl treated group.
CONCLUSION CCR2 over-expression enhanced the therapeutic effects of exosomes on the experimental PSCI by promoting M2 microglia/macrophage polarization, enhancing oligodendrogenesis and remyelination. These therapeutic effects are likely through suppressing the CCL2-induced hematogenous macrophage migration and activation.
Collapse
Affiliation(s)
- Huai-Chun Yang
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Min Zhang
- Department of Andrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Rui Wu
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Hai-Qing Zheng
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Li-Ying Zhang
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Jing Luo
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Li-Li Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
25
|
Guo F, Xu D, Lin Y, Wang G, Wang F, Gao Q, Wei Q, Lei S. Chemokine CCL2 contributes to BBB disruption via the p38 MAPK signaling pathway following acute intracerebral hemorrhage. FASEB J 2019; 34:1872-1884. [PMID: 31914700 DOI: 10.1096/fj.201902203rr] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Fuyou Guo
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Dingkang Xu
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Yazhou Lin
- Department of Human Anatomy, School of Basic Medical Sciences Zhengzhou University Zhengzhou PR China
| | - Guoqing Wang
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Fang Wang
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Qiang Gao
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Qingjie Wei
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| | - Shixiong Lei
- Department of Neurosurgery the First Affiliated Hospital of Zhengzhou University Zhengzhou PR China
| |
Collapse
|
26
|
Lin X, Chen Y, Zhang P, Chen G, Zhou Y, Yu X. The potential mechanism of postoperative cognitive dysfunction in older people. Exp Gerontol 2019; 130:110791. [PMID: 31765741 DOI: 10.1016/j.exger.2019.110791] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/18/2019] [Accepted: 11/21/2019] [Indexed: 02/08/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common disorder following surgery, which seriously threatens the quality of patients' life, especially the older people. Accumulating attention has been paid to POCD worldwide in pace with the popularization of anesthesia/surgery. The development of medical humanities and rehabilitation medicine sets higher demands on accurate diagnosis and safe treatment system of POCD. Although the research on POCD is in full swing, underlying pathogenesis is still inconclusive due to these conflicting results and controversial evidence. Generally, POCD is closely related to neuropsychiatric diseases such as dementia, depression and Alzheimer's disease in molecular pathways. Researchers have come up with various hypotheses to reveal the mechanisms of POCD, including neuroinflammation, oxidative stress, autophagy disorder, impaired synaptic function, lacking neurotrophic support, etc. Recent work focused on molecular mechanism of POCD in older people has been thoroughly reviewed and summed up here, concerning the changes of peripheral circulation, pathological pathways of central nervous system (CNS), the microbiota-gut-brain axis and the related brain regions. Accordingly, this article provides a better perspective to understand the development situation of POCD in older people, which is conductive to uncover the pathological mechanism and exploit reasonable treatment strategy of POCD.
Collapse
Affiliation(s)
- Xianyi Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
27
|
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Front Neurosci 2019; 13:864. [PMID: 31543756 PMCID: PMC6732937 DOI: 10.3389/fnins.2019.00864] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cessation of blood flow leads to a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface which evolves over time and space, and results in damage to neural cells and edema formation. Cerebral ischemic injury evokes a profound and deleterious upregulation in inflammation and triggers multiple cell death pathways, but it also induces a series of the events associated with regenerative responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging evidence suggests that epigenetic reprograming could play a pivotal role in ongoing post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes current knowledge about post-stroke recovery processes at the NVU, as well as epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses novel drug targets and therapeutic strategies for enhancing post-stroke recovery.
Collapse
Affiliation(s)
- Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|