1
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Liu SH, Weber ES, Manz KE, McCarthy KJ, Chen Y, Schüffler PJ, Zhu CW, Tracy M. Assessing the Impact and Cost-Effectiveness of Exposome Interventions on Alzheimer's Disease: A Review of Agent-Based Modeling and Other Data Science Methods for Causal Inference. Genes (Basel) 2024; 15:1457. [PMID: 39596657 PMCID: PMC11593565 DOI: 10.3390/genes15111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The exposome (e.g., totality of environmental exposures) and its role in Alzheimer's Disease and Alzheimer's Disease and Related Dementias (AD/ADRD) are increasingly critical areas of study. However, little is known about how interventions on the exposome, including personal behavioral modification or policy-level interventions, may impact AD/ADRD disease burden at the population level in real-world settings and the cost-effectiveness of interventions. Methods: We performed a critical review to discuss the challenges in modeling exposome interventions on population-level AD/ADRD burden and the potential of using agent-based modeling (ABM) and other advanced data science methods for causal inference to achieve this. Results: We describe how ABM can be used for empirical causal inference modeling and provide a virtual laboratory for simulating the impacts of personal and policy-level interventions. These hypothetical experiments can provide insight into the optimal timing, targeting, and duration of interventions, identifying optimal combinations of interventions, and can be augmented with economic analyses to evaluate the cost-effectiveness of interventions. We also discuss other data science methods, including structural equation modeling and Mendelian randomization. Lastly, we discuss challenges in modeling the complex exposome, including high dimensional and sparse data, the need to account for dynamic changes over time and over the life course, and the role of exposome burden scores developed using item response theory models and artificial intelligence to address these challenges. Conclusions: This critical review highlights opportunities and challenges in modeling exposome interventions on population-level AD/ADRD disease burden while considering the cost-effectiveness of different interventions, which can be used to aid data-driven policy decisions.
Collapse
Affiliation(s)
- Shelley H. Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ellerie S. Weber
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katherine E. Manz
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Katharine J. McCarthy
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yitong Chen
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J. Schüffler
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany
- Munich Data Science Institute, 85748 Garching, Germany
| | - Carolyn W. Zhu
- Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa Tracy
- Department of Epidemiology and Biostatistics, State University of New York at Albany, Albany, NY 12222, USA;
| |
Collapse
|
3
|
Holota R, Dečmanová V, Alexovič Matiašová A, Košuth J, Slovinská L, Pačut L, Tomori Z, Daxnerová Z, Ševc J. Cleaved caspase-3 is present in the majority of glial cells in the intact rat spinal cord during postnatal life. Histochem Cell Biol 2024; 161:269-286. [PMID: 37938347 PMCID: PMC10912154 DOI: 10.1007/s00418-023-02249-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Cell death is an essential process that occurs during the development of the central nervous system. Despite the availability of a wide range of commercially produced antibodies against various apoptotic markers, data regarding apoptosis in intact spinal cord during postnatal development and adulthood are mostly missing. We investigated apoptosis in rat spinal cord at different stages of ontogenesis (postnatal days 8, 29, and 90). For this purpose, we applied immunofluorescent detection of two widely used apoptotic markers, cleaved caspase-3 (cC3) and cleaved poly(ADP-ribose) polymerase (cPARP). Surprisingly, we found significant discrepancy between the number of cC3+ cells and PARP+ cells, with a ratio between 500:1 and 5000:1 in rat spinal cord at all postnatal time points. The majority of cC3+ cells were glial cells and did not exhibit an apoptotic phenotype. In contrast with in vivo results, in vitro analysis of primary cell cultures derived from neonatal rat spinal cord and treated with the apoptotic inductor staurosporine revealed a similar onset of occurrence of both cC3 and cPARP in cells subjected to apoptosis. Gene expression analysis of spinal cord revealed elevated expression of the Birc4 (XIAP), Birc2, and Birc5 (Survivin) genes, which are known potent inhibitors of apoptosis. Our data indicate that cC3 is not an exclusive marker of apoptosis, especially in glial cells, owing its possible presence in inhibited forms and/or its participation in other non-apoptotic roles. Therefore, cPARP appears to be a more appropriate marker to detect apoptosis.
Collapse
Affiliation(s)
- R Holota
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - V Dečmanová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - A Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic.
| | - J Košuth
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - L Slovinská
- Associated Tissue Bank, Faculty of Medicine, P. J. Šafárik University in Košice and L. Pasteur University Hospital, Tr. SNP 1, 04011, Košice, Slovak Republic
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 04001, Košice, Slovak Republic
| | - L Pačut
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - Z Tomori
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Košice, Slovak Republic
| | - Z Daxnerová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - J Ševc
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| |
Collapse
|
4
|
Single and repeated bisphenol A treatment induces ROS, Aβ and hyperphosphorylated-tau accumulation, and insulin pathways disruption, through HDAC2 and PTP1B overexpression, leading to SN56 cholinergic apoptotic cell death. Food Chem Toxicol 2022; 170:113500. [DOI: 10.1016/j.fct.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
5
|
Xu H, Jia Y, Sun Z, Su J, Liu QS, Zhou Q, Jiang G. Environmental pollution, a hidden culprit for health issues. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:31-45. [PMID: 38078200 PMCID: PMC10702928 DOI: 10.1016/j.eehl.2022.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/26/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2023]
Abstract
The environmental and health impacts from the massive discharge of chemicals and subsequent pollution have been gaining increasing public concern. The unintended exposure to different pollutants, such as heavy metals, air pollutants and organic chemicals, may cause diverse deleterious effects on human bodies, resulting in the incidence and progression of different diseases. The article reviewed the outbreak of environmental pollution-related public health emergencies, the epidemiological evidence on certain pollution-correlated health effects, and the pathological studies on specific pollutant exposure. By recalling the notable historical life-threatening disasters incurred by local chemical pollution, the damning evidence was presented to criminate certain pollutants as the main culprit for the given health issues. The epidemiological data on the prevalence of some common diseases revealed a variety of environmental pollutants to blame, such as endocrine-disrupting chemicals (EDCs), fine particulate matters (PMs) and heavy metals. The retrospection of toxicological studies provided illustrative clues for evaluating ambient pollutant-induced health risks. Overall, environmental pollution, as the hidden culprit, should answer for the increasing public health burden, and more efforts are highly encouraged to strive to explore the cause-and-effect relationships through extensive epidemiological and pathological studies.
Collapse
Affiliation(s)
- Hanqing Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian S. Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
6
|
Moyano P, Flores A, García J, García JM, Anadon MJ, Frejo MT, Sola E, Pelayo A, Del Pino J. Bisphenol A single and repeated treatment increases HDAC2, leading to cholinergic neurotransmission dysfunction and SN56 cholinergic apoptotic cell death through AChE variants overexpression and NGF/TrkA/P75 NTR signaling disruption. Food Chem Toxicol 2021; 157:112614. [PMID: 34655688 DOI: 10.1016/j.fct.2021.112614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Bisphenol-A (BPA), a widely used plasticizer, induces cognitive dysfunctions following single and repeated exposure. Several studies, developed in hippocampus and cortex, tried to find the mechanisms that trigger and mediate these dysfunctions, but those are still not well known. Basal forebrain cholinergic neurons (BFCN) innervate hippocampus and cortex, regulating cognitive function, and their loss or the induction of cholinergic neurotransmission dysfunction leads to cognitive disabilities. However, no studies were performed in BFCN. We treated wild type or histone deacetylase (HDAC2), P75NTR or acetylcholinesterase (AChE) silenced SN56 cholinergic cells from BF with BPA (0.001 μM-100 μM) with or without recombinant nerve growth factor (NGF) and with or without acetylcholine (ACh) for one- and fourteen days in order to elucidate the mechanisms underlying these effects. BPA induced cholinergic neurotransmission disruption through reduction of ChAT activity, and produced apoptotic cell death, mediated partially through AChE-S overexpression and NGF/TrkA/P75NTR signaling dysfunction, independently of cholinergic neurotransmission disruption, following one- and fourteen days of treatment. BPA mediates these alterations, in part, through HDAC2 overexpression. These data are relevant since they may help to elucidate the neurotoxic mechanisms that trigger the cognitive disabilities induced by BPA exposure, providing a new therapeutic approach.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacolgy, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Kawato S, Ogiue-Ikeda M, Soma M, Yoshino H, Kominami T, Saito M, Aou S, Hojo Y. Perinatal Exposure of Bisphenol A Differently Affects Dendritic Spines of Male and Female Grown-Up Adult Hippocampal Neurons. Front Neurosci 2021; 15:712261. [PMID: 34616273 PMCID: PMC8488347 DOI: 10.3389/fnins.2021.712261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Perinatal exposure to Bisphenol A (BPA) at a very low dose may modulate the development of synapses of the hippocampus during growth to adulthood. Here, we demonstrate that perinatal exposure to 30 μg BPA/kg per mother’s body weight/day significantly altered the dendritic spines of the grownup rat hippocampus. The density of the spine was analyzed by imaging of Lucifer Yellow-injected CA1 glutamatergic neurons in adult hippocampal slices. In offspring 3-month male hippocampus, the total spine density was significantly decreased by BPA exposure from 2.26 spines/μm (control, no BPA exposure) to 1.96 spines/μm (BPA exposure). BPA exposure considerably changed the normal 4-day estrous cycle of offspring 3-month females, resulting in a 4∼5 day estrous cycle with 2-day estrus stages in most of the subjects. In the offspring 3-month female hippocampus, the total spine density was significantly increased by BPA exposure at estrus stage from 2.04 spines/μm (control) to 2.25 spines/μm (BPA exposure). On the other hand, the total spine density at the proestrus stage was moderately decreased from 2.33 spines/μm (control) to 2.19 spines/μm (BPA exposure). Thus, after the perinatal exposure to BPA, the total spine density in males became lower than that in females. Concerning the BPA effect on the morphology of spines, the large-head spine was significantly changed with its significant decrease in males and moderate change in females.
Collapse
Affiliation(s)
- Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Bioinformatics Project, Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Mari Ogiue-Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Mika Soma
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Hinako Yoshino
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Kominami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Saito
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Shuji Aou
- Department of Biological Functions and Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Bioinformatics Project, Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
8
|
Lu D, Yu L, Li M, Zhai Q, Tian F, Chen W. Behavioral disorders caused by nonylphenol and strategies for protection. CHEMOSPHERE 2021; 275:129973. [PMID: 33639553 DOI: 10.1016/j.chemosphere.2021.129973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is widely used in daily production and life due to its good emulsification. In this review, we discuss toxicology studies that examined behavioral disorders caused by NP, the corresponding toxicological mechanisms in the central nervous system (CNS), and strategies for protection. Available in vitro and in vivo evidence suggests that exposure to NP during adulthood or early childhood is associated with cognitive dysfunction, including depression-like behaviors, anxiety-like behaviors, and impaired learning and memory. The main mechanisms underlying NP-related cognitive disorders include inflammation, destruction of synaptic plasticity, and destruction of important signaling pathways that affect the synthesis and secretion of neurotransmitters. The effects and mechanisms of NP exposure on CNS-mediated reproductive function, including interference with the expression of hormones, proteins, and enzymes, are discussed. Other abnormal behaviors such as locomotor activity and swimming behavior are also described. Several measures to prevent NP neurotoxicity are summarized. These measures are based on the toxicological mechanisms underlying NP exposure and include external protection and internal self-regulation of the nervous system. Finally, a new treatment idea is proposed based on the gut-brain axis. Characterizing the behavioral changes and underlying toxicity mechanisms associated with NP exposure and investigating the possible methods of treatment will help to expand the understanding of these mechanisms and could lead to more effective treatments.
Collapse
Affiliation(s)
- Dezhi Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China.
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu, 214122 China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048, China
| |
Collapse
|
9
|
Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM, Ahmed Z, Masoodi MH. Role of environmental pollutants in Alzheimer's disease: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44724-44742. [PMID: 32715424 DOI: 10.1007/s11356-020-09964-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer's disease (AD). The exact etiology of Alzheimer's disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology. Graphical abstract .
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India
| | - Sreedhar Madishetti
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
10
|
Mahdavinia M, Ahangarpour A, Zeidooni L, Samimi A, Alizadeh S, Dehghani MA, Alboghobeish S. Protective Effect of Naringin on Bisphenol A-Induced Cognitive Dysfunction and Oxidative Damage in Rats. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:141-153. [PMID: 32215265 DOI: 10.22088/ijmcm.bums.8.2.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/13/2019] [Indexed: 10/31/2022]
Abstract
Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide, which is used in many plastic industries. The present study aimed to evaluate the effect of BPA on cognitive functions and oxidative stress, and determine whether the naringin (NG) co-administration can modify the effect of this compound on cognitive functions and inhibit any possible oxidative stress in the brain tissue of rats. Adult male Wistar rats were divided into six groups. Group I: control, Group II: BPA-treated rats (50 mg/kg/day), Group III, IV, V: BPA+NG (40, 80, 160 mg/kg/day), Group VI: NG (160 mg/kg/day) alone. Cognitive functions were evaluated using step-down latency (SDL) on a passive avoidance apparatus, and transfer latency (TL) in elevated plus-maze. A significant decrease in SDL, prolongation of TL, noticeable oxidative impairment and increase in acetylcholinesterase activity were observed in the BPA-treated in comparison with the control group. Also, the co-administration of NG (160 mg/kg) antagonized the effect of BPA on SDL and TL, attenuated oxidative damage by lowering malondialdehyde and nitrite concentrations and restored superoxide dismutase, catalase, and glutathione S-transferase activities. On the other hand, acetylcholinesterase activity was reduced in the groups co-administred with NG (80 or 160 mg/kg) and BPA in comparison with the BPA alone-treated group. The present study highlighted the therapeutic potential of NG against BPA-induced cognitive impairment and oxidative damage.
Collapse
Affiliation(s)
- Masoud Mahdavinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azin Samimi
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Alizadeh
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Acir IH, Guenther K. Endocrine-disrupting metabolites of alkylphenol ethoxylates - A critical review of analytical methods, environmental occurrences, toxicity, and regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1530-1546. [PMID: 29874777 DOI: 10.1016/j.scitotenv.2018.04.079] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 05/07/2023]
Abstract
Despite the fact that metabolites of alkylphenol ethoxylates (APEO) are classified as hazardous substances, they continue to be released into the environment from a variety of sources and are not usually monitored. Their wide use has led to an increase in the possible exposure pathways for humans, which is cause for alarm. Moreover, there is a lack of knowledge about the behaviour of these metabolites with respect to the environment and toxicity, and their biological effects on human health. The aim of this work is to give an overview of the APEO metabolites and their analysis, occurrences and toxicity in various environmental and human samples. APEO metabolites have adverse effects on humans, wildlife, and the environment through their release into the environment. Currently, there are some reviews available on the behaviour of alkylphenols in soil, sediments, groundwater, surface water and food. However, none of these articles consider their toxicity in humans and especially their effect on the nervous and immune system. This work summarises the environmental occurrences of metabolites of APEOs in matrices, e.g. water, food and biological matrices, their effect on the immune and nervous systems, and isomer-specific issues. With that emphasis we are able to cover most common occurrences of human exposure, whether direct or indirect.
Collapse
Affiliation(s)
- Ismail-H Acir
- University of Bonn, Institute of Nutrition and Food Sciences, Food Chemistry, Endenicher Allee 11-13, D-53115 Bonn, Germany
| | - Klaus Guenther
- University of Bonn, Institute of Nutrition and Food Sciences, Food Chemistry, Endenicher Allee 11-13, D-53115 Bonn, Germany.
| |
Collapse
|
12
|
Abstract
Endocrine-disrupting chemicals (EDCs) influence not only endocrine functions but also neuronal development and functions. In-vivo studies have suggested the relationship of EDC-induced neurobehavioral disorders with dysfunctions of neurotransmitter mechanisms including γ-aminobutyric acid (GABA)ergic mechanisms. However, whether EDCs affect GABAergic neuron differentiation remains unclear. In the present study, we show that a representative EDC, bisphenol A (BPA), affects GABAergic neuron differentiation. Cortical neurospheres prepared from embryonic mice were exposed to BPA for 7 days, and then neuronal differentiation was induced. We found that BPA exposure resulted in a decrease in the ratio of GABAergic neurons to total neurons. However, the same exposure stimulated the differentiation of neurons expressing calbindin, a calcium-binding protein observed in a subpopulation of GABAergic neurons. These findings suggested that BPA might influence the formation of an inhibitory neuronal network in developing cerebral cortex involved in the occurrence of neurobehavioral disorders.
Collapse
|
13
|
Rochester JR, Bolden AL, Kwiatkowski CF. Prenatal exposure to bisphenol A and hyperactivity in children: a systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2018; 114:343-356. [PMID: 29525285 DOI: 10.1016/j.envint.2017.12.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Attention-deficit hyperactivity disorder (ADHD) has increased in prevalence in the past decade. Studies attempting to identify a specific genetic component have not been able to account for much of the heritability of ADHD, indicating there may be gene-environment interactions underlying the disorder, including early exposure to environmental chemicals. Based on several relevant studies, we chose to examine bisphenol A (BPA) as a possible contributor to ADHD in humans. BPA is a widespread environmental chemical that has been shown to disrupt neurodevelopment in rodents and humans. OBJECTIVES Using the Office of Health Assessment and Translation (OHAT) framework, a systematic review and meta-analysis was designed to determine the relationship between early life exposure to BPA and hyperactivity, a key diagnostic criterion of ADHD. DATA SOURCES Searches of PubMed, Web of Science, and Toxline were completed for all literature to January 1, 2017. STUDY ELIGIBILITY CRITERIA For inclusion, the studies had to publish original data, be in the English language, include a measure of BPA exposure, and assess if BPA exposure affected hyperactive behaviors in mice, rats or humans. Exposure to BPA had to occur at <3 months of age for humans, up to postnatal day 35 for rats and up to postnatal day 40 for mice. Exposure could occur either gestationally (via maternal exposure) or directly to the offspring. STUDY APPRAISAL AND SYNTHESIS METHODS Studies were evaluated using the OHAT risk of bias tool. The effects in humans were assessed qualitatively. For rodents exposed to 20 μg/kg/day BPA, we evaluated the study findings in a random effects meta-analytical model. RESULTS A review of the literature identified 29 rodent and 3 human studies. A random effects meta-analysis showed significantly increased hyperactivity in male rodents. In humans, early BPA exposure was associated with hyperactivity in boys and girls. LIMITATIONS, CONCLUSIONS, AND IMPLICATIONS OF KEY FINDINGS We concluded that early life BPA exposure is a presumed human hazard for the development of hyperactivity. Possible limitations of this systematic review include deficiencies in author reporting, exclusion of some literature based on language, and insufficient similarity between human studies. SRs that result in hazard-based conclusions are the first step in assessing and mitigating risks. Given the widespread exposure of BPA and increasing diagnoses of ADHD, we recommend immediate actions to complete such risk analyses and take next steps for the protection of human health. In the meantime, precautionary measures should be taken to reduce exposure in pregnant women, infants and children. The present analysis also discusses potential mechanisms by which BPA affects hyperactivity, and the most effective avenues for future research. SYSTEMATIC REVIEW REGISTRATION NUMBER Not available.
Collapse
Affiliation(s)
| | - Ashley L Bolden
- The Endocrine Disruption Exchange, TEDX, Paonia, CO, United States
| | - Carol F Kwiatkowski
- The Endocrine Disruption Exchange, TEDX, Paonia, CO, United States; Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
14
|
Cui H, Deng M, Zhang Y, Yin F, Liu J. Geniposide Increases Unfolded Protein Response-Mediating HRD1 Expression to Accelerate APP Degradation in Primary Cortical Neurons. Neurochem Res 2018; 43:669-680. [DOI: 10.1007/s11064-018-2469-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 02/20/2023]
|
15
|
Liu Z, Zhang Y, Liu J, Yin F. Geniposide attenuates the level of Aβ 1-42 via enhancing leptin signaling in cellular and APP/PS1 transgenic mice. Arch Pharm Res 2017; 40:571-578. [PMID: 28160136 DOI: 10.1007/s12272-016-0875-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/17/2016] [Indexed: 01/29/2023]
Abstract
An large body of evidence indicates that leptin has protective role against Alzheimer's disease, where it reduces β-amyloid (Aβ) production in both cell culture and animal models. Our previous studies revealed that geniposide could attenuate the production of Aβ1-42 and antagonize the neurotoxicity of Aβ1-42 in neurons. However, the mechanism that underlies these effects remains to be clarified. To investigate whether leptin signaling is involved in regulating the production of Aβ1-42 by geniposide, we treated primary neurons with leptin antagonist (LA), and determined the influence of LA on the activities of leptin signaling molecules and the expressions of secretases associated with the production of Aβ1-42. The finding showed that, accompanied with the inhibition on the level of Aβ1-42 in primary neurons and APP/PS1 transgenic mice, geniposide induced the phosphorylation of JAK2 and STAT3, regulated the expression level of α- and β-secretase, and all of these could be prevented by the pre-incubation with LA. The results of this study suggest that geniposide may regulate the production of Aβ1-42 via leptin signaling.
Collapse
Affiliation(s)
- Zixuan Liu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yonglan Zhang
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jianhui Liu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Fei Yin
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
16
|
Chamard-Jovenin C, Thiebaut C, Chesnel A, Bresso E, Morel C, Smail-Tabbone M, Devignes MD, Boukhobza T, Dumond H. Low-Dose Alkylphenol Exposure Promotes Mammary Epithelium Alterations and Transgenerational Developmental Defects, But Does Not Enhance Tumorigenic Behavior of Breast Cancer Cells. Front Endocrinol (Lausanne) 2017; 8:272. [PMID: 29109696 PMCID: PMC5660105 DOI: 10.3389/fendo.2017.00272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022] Open
Abstract
Fetal and neonatal exposure to long-chain alkylphenols has been suspected to promote breast developmental disorders and consequently to increase breast cancer risk. However, disease predisposition from developmental exposures remains unclear. In this work, human MCF-10A mammary epithelial cells were exposed in vitro to a low dose of a realistic (4-nonylphenol + 4-tert-octylphenol) mixture. Transcriptome and cell-phenotype analyses combined to functional and signaling network modeling indicated that long-chain alkylphenols triggered enhanced proliferation, migration ability, and apoptosis resistance and shed light on the underlying molecular mechanisms which involved the human estrogen receptor alpha 36 (ERα36) variant. A male mouse-inherited transgenerational model of exposure to three environmentally relevant doses of the alkylphenol mix was set up in order to determine whether and how it would impact on mammary gland architecture. Mammary glands from F3 progeny obtained after intrabuccal chronic exposure of C57BL/6J P0 pregnant mice followed by F1-F3 male inheritance displayed an altered histology which correlated with the phenotypes observed in vitro in human mammary epithelial cells. Since cellular phenotypes are similar in vivo and in vitro and involve the unique ERα36 human variant, such consequences of alkylphenol exposure could be extrapolated from mouse model to human. However, transient alkylphenol treatments combined to ERα36 overexpression in mammary epithelial cells were not sufficient to trigger tumorigenesis in xenografted Nude mice. Therefore, it remains to be determined if low-dose alkylphenol transgenerational exposure and subsequent abnormal mammary gland development could account for an increased breast cancer susceptibility.
Collapse
Affiliation(s)
- Clémence Chamard-Jovenin
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Charlène Thiebaut
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Amand Chesnel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Emmanuel Bresso
- Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
- Inria, Villers-lès-Nancy, France
- CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
| | - Chloé Morel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Malika Smail-Tabbone
- Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
- Inria, Villers-lès-Nancy, France
- CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
| | - Marie-Dominique Devignes
- Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
- Inria, Villers-lès-Nancy, France
- CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
| | - Taha Boukhobza
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Hélène Dumond
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
- *Correspondence: Hélène Dumond,
| |
Collapse
|
17
|
Liu J, Liu Z, Zhang Y, Yin F. Leptin signaling plays a critical role in the geniposide-induced decrease of tau phosphorylation. Acta Biochim Biophys Sin (Shanghai) 2015; 47:1018-22. [PMID: 26496899 DOI: 10.1093/abbs/gmv106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/22/2015] [Indexed: 01/03/2023] Open
Abstract
We have previously demonstrated that geniposide attenuates the production of Aβ1-42 both in vitro and in vivo via enhancing leptin receptor signaling. But the role played by geniposide in the phosphorylation of tau and its underlying molecular mechanisms remain unclear. In this study, we investigated the effect of geniposide on the phosphorylation of tau and the role of leptin signaling in this process. Our data suggested that, accompanied by the up-regulation of leptin receptor expression, geniposide significantly decreased the phosphorylation of tau in rat primary cultured cortical neurons and in APP/PS1 transgenic mice, and this geniposide-induced decrease of tau phosphorylation could be prevented by leptin antagonist (LA). Furthermore, LA also prevented the phosphorylation of Akt at Ser-473 site and GSK-3β at Ser-9 site induced by geniposide. All these results indicate that geniposide may regulate tau phosphorylation through leptin signaling, and geniposide may be a promising therapeutic compound for the treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zixuan Liu
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yonglan Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fei Yin
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
18
|
Zhang Y, Yin F, Liu J, Liu Z. Geniposide Attenuates the Phosphorylation of Tau Protein in Cellular and Insulin-deficient APP/PS1 Transgenic Mouse Model of Alzheimer's Disease. Chem Biol Drug Des 2015; 87:409-18. [PMID: 26475430 DOI: 10.1111/cbdd.12673] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/23/2015] [Accepted: 09/21/2015] [Indexed: 12/24/2022]
Abstract
Our previous studies have shown that geniposide plays an essential role in glucose-stimulated insulin secretion from pancreatic β cells and also regulates the metabolism of Aβ and its deposition in neurons. In this study, we reported that insulin deficiency induced significant increase of tau phosphorylation. Administration of geniposide for 4 weeks significantly decreased the phosphorylated level of tau and the acceleration of GSK-3β phosphorylation in the brain of APP/PS1 transgenic mice induced by insulin deficiency. We also observed that geniposide decreased the phosphorylation of tau protein directly and increased the phosphorylation of Akt in primary cultured cortical neurons. Furthermore, geniposide enhanced the role of insulin on the phosphorylation of Akt, GSK-3β, and tau in primary cultured cortical neurons. And these effects of geniposide in cortical neurons could be prevented by preincubation with LY294002, an inhibitor of PI3K. Taken together, our findings provide a mechanistic and perhaps a foundational link between diabetes and Alzheimer's disease and are consistent with the notion that geniposide might play an essential role on the phosphorylation of tau protein via enhancing insulin signaling and may convey a therapeutic benefit in Alzheimer's disease.
Collapse
Affiliation(s)
- Yonglan Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fei Yin
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.,Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.,Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zixuan Liu
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| |
Collapse
|
19
|
Zhang Y, Yin F, Liu J, Liu Z, Guo L, Xia Z, Zidichouski J. Geniposide attenuates insulin-deficiency-induced acceleration of β-amyloidosis in an APP/PS1 transgenic model of Alzheimer's disease. Neurochem Int 2015; 89:7-16. [PMID: 25882165 DOI: 10.1016/j.neuint.2015.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 01/26/2023]
Abstract
Our previous studies have shown that geniposide plays an essential role in glucose-stimulated insulin secretion from pancreatic β cells and also antagonizesAβ1-42-induced cytotoxicity examined using a primary cortical neuron assay. However, the mechanism by which geniposide appears to regulate insulin signaling in the brain is presently not well understood. In this study, we administered streptozotocin (STZ) to induce insulin-deficiency in an AD transgenic mouse model, and investigated the effects of geniposide on the β-amyloidogenic processing of amyloid precursor protein (APP) using in vitro and in vivo models. Our results indicate that treatment with STZ (90 mg/kg, i.p., once daily for two consecutive days) induced significant reduction in peripheral and brain insulin levels in both wild-type and APP/PS1 transgenic mice. Administration of geniposide for 4 weeks significantly decreased the concentrations of cerebral β-amyloid peptides (Aβ1-40 and Aβ1-42) in STZ-treated AD mice. Further experiments showed that geniposide up-regulated the protein levels of β-site APP cleaving enzyme (BACE1) and insulin-degrading enzyme (IDE), and decreased the protein levels of ADAM10 when examined using a primary cultured cortical neuron assay and in STZ-induced AD mice. Meanwhile, geniposide also directly enhanced the effects of insulin by reducing Aβ1-42 levels in primary cultured cortical neurons. Taken together, our findings provide a mechanistic link between diabetes and AD, and is consistent with the notion that geniposide might play an important role on APP processing via enhancing insulin signaling and may convey a therapeutic benefit in AD.
Collapse
Affiliation(s)
- Yonglan Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fei Yin
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zixuan Liu
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Lixia Guo
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zhining Xia
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Jeffrey Zidichouski
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
21
|
El-Missiry MA, Othman AI, Al-Abdan MA, El-Sayed AA. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis. J Neurol Sci 2014; 347:251-6. [DOI: 10.1016/j.jns.2014.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/28/2023]
|
22
|
Koriem KMM, Arbid MS, Emam KR. Therapeutic effect of pectin on octylphenol induced kidney dysfunction, oxidative stress and apoptosis in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:14-23. [PMID: 24860957 DOI: 10.1016/j.etap.2014.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Octylphenol (OP) is one of ubiquitous pollutants in the environment. It belongs to endocrine-disrupting chemicals (EDC). It is used in many industrial and agricultural products. Pectin is a family of complex polysaccharides that function as a hydrating agent and cementing material for the cellulose network. The aim of this study was to evaluate the therapeutic effect of pectin in kidney dysfunction, oxidative stress and apoptosis induced by OP exposure. Thirty-two male albino rats were divided into four equal groups; group 1 control was injected intraperitoneally (i.p) with saline [1 ml/kg body weight (bwt)], groups 2, 3 & 4 were injected i.p with OP (50 mg/kg bwt) three days/week over two weeks period where groups 3 & 4 were injected i.p with pectin (25 or 50 mg/kg bwt) three days/week over three weeks period. The results of the present study revealed that OP significantly decreased glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) levels while increased significantly lipid peroxidation (MDA), nitric oxide (NO) and protein carbonyls (PC) levels in the kidney tissues. On the other hand, OP increased serum urea and creatinine. Furthermore, OP increased significantly serum uric acid but decreased significantly the kidney weight. Moreover, OP decreased p53 expression while increased bcl-2 expression in the kidney tissue. The treatment with either dose of pectin to OP-exposed rats restores all the above parameters to approach the normal values where pectin at higher dose was more effective than lower one. These results were supported by histopathological investigations. In conclusion, pectin has antioxidant and anti-apoptotic activities in kidney toxicity induced by OP and the effect was dose-dependent.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Medical Physiology Department, National Research Centre, Dokki, Giza, Egypt; Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia (USM), Malaysia.
| | - Mahmoud S Arbid
- Department of Pharmacology, National Research Centre, Dokki, Giza, Egypt
| | | |
Collapse
|
23
|
Nishimura Y, Nagao T, Fukushima N. Long-term pre-exposure of pheochromocytoma PC12 cells to endocrine-disrupting chemicals influences neuronal differentiation. Neurosci Lett 2014; 570:1-4. [DOI: 10.1016/j.neulet.2014.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022]
|
24
|
A systematic review of Bisphenol A "low dose" studies in the context of human exposure: a case for establishing standards for reporting "low-dose" effects of chemicals. Food Chem Toxicol 2013; 62:935-48. [PMID: 23867546 DOI: 10.1016/j.fct.2013.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022]
Abstract
Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding.
Collapse
|
25
|
Perrotta I, Tripepi S. Ultrastructural alterations in the ventricular myocardium of the adult italian newt (Lissotriton italicus) following exposure to nonylphenol ethoxylate. Micron 2012; 43:183-91. [DOI: 10.1016/j.micron.2011.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/06/2023]
|
26
|
Habauzit D, Flouriot G, Pakdel F, Saligaut C. Effects of estrogens and endocrine-disrupting chemicals on cell differentiation-survival-proliferation in brain: contributions of neuronal cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:300-327. [PMID: 21790314 DOI: 10.1080/10937404.2011.578554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Estrogens and estrogen receptors (ER) are key actors in the control of differentiation and survival and act on extrareproductive tissues such as brain. Thus, estrogens may display neuritogenic effects during development and neuroprotective effects in the pathophysiological context of brain ischemia and neurodegenerative pathologies like Alzheimer's disease or Parkinson's disease. Some of these effects require classical transcriptional "genomic" mechanisms through ER, whereas other effects appear to rely clearly on "membrane-initiated mechanisms" through cytoplasmic signal transduction pathways. Disturbances of these mechanisms by endocrine-disrupting chemicals (EDC) may exert adverse effects on brain. Some EDC may act via ER-independent mechanisms but might cross-react with endogenous estrogen. Other EDC may act through ER-dependent mechanisms and display agonistic/antagonistic estrogenic properties. Because of these potential effects of EDC, it is necessary to establish sensitive cell-based assays to determine EDC effects on brain. In the present review, some effects of estrogens and EDC are described with focus on ER-mediated effects in neuronal cells. Particular attention is given to PC12 cells, an interesting model to study the mechanisms underlying ER-mediated differentiating and neuroprotective effects of estrogens.
Collapse
Affiliation(s)
- Denis Habauzit
- UMR CNRS 6026 (Interactions Cellulaires et Moléculaires, Equipe RED), Université de Rennes 1, Rennes, France
| | | | | | | |
Collapse
|
27
|
Brown JS. Effects of bisphenol-A and other endocrine disruptors compared with abnormalities of schizophrenia: an endocrine-disruption theory of schizophrenia. Schizophr Bull 2009; 35:256-78. [PMID: 18245062 PMCID: PMC2643957 DOI: 10.1093/schbul/sbm147] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, numerous substances have been identified as so-called "endocrine disruptors" because exposure to them results in disruption of normal endocrine function with possible adverse health outcomes. The pathologic and behavioral abnormalities attributed to exposure to endocrine disruptors like bisphenol-A (BPA) have been studied in animals. Mental conditions ranging from cognitive impairment to autism have been linked to BPA exposure by more than one investigation. Concurrent with these developments in BPA research, schizophrenia research has continued to find evidence of possible endocrine or neuroendocrine involvement in the disease. Sufficient information now exists for a comparison of the neurotoxicological and behavioral pathology associated with exposure to BPA and other endocrine disruptors to the abnormalities observed in schizophrenia. This review summarizes these findings and proposes a theory of endocrine disruption, like that observed from BPA exposure, as a pathway of schizophrenia pathogenesis. The review shows similarities exist between the effects of exposure to BPA and other related chemicals with schizophrenia. These similarities can be observed in 11 broad categories of abnormality: physical development, brain anatomy, cellular anatomy, hormone function, neurotransmitters and receptors, proteins and factors, processes and substances, immunology, sexual development, social behaviors or physiological responses, and other behaviors. Some of these similarities are sexually dimorphic and support theories that sexual dimorphisms may be important to schizophrenia pathogenesis. Research recommendations for further elaboration of the theory are proposed.
Collapse
Affiliation(s)
- James S Brown
- Department of Psychiatry, VCU School of Medicine, Richmond, VA, USA.
| |
Collapse
|
28
|
Elevation of inducible nitric oxide synthase and cyclooxygenase-2 expression in the mouse brain after chronic nonylphenol exposure. Int J Mol Sci 2008; 9:1977-88. [PMID: 19325730 PMCID: PMC2635611 DOI: 10.3390/ijms9101977] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023] Open
Abstract
The present study was performed to investigate the effects of chronic administration of nonylphenol (NP) on the expression of inflammation-related genes in the brains of mice. NP was given orally by gavages at 0, 50, 100, and 200 mg/kg/d. The expression of inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), was evaluated by immunohistochemistry and immunoblotting assays. The nitric oxide (NO) level and nitric oxide synthase (NOS) activity were also measured by biochemical analyses. The results showed that NP at a high dose (200 mg/kg/d) significantly increased the expression of iNOS and COX-2 in both the hippocampus and cortex. In parallel with the increase in iNOS expression, the NO level was significantly greater at the dose of 200 mg/kg/d, compared to the control. The activity of NOS was also increased in the brain of mice at the dose of 100 and 200 mg/kg/d. These findings demonstrate that NP may have the potential to induce the chronic inflammation or cause neurotoxicity in the mouse brain.
Collapse
|
29
|
The effect of vitamin C on bisphenol A, nonylphenol and octylphenol induced brain damages of male rats. Toxicology 2008; 249:35-9. [PMID: 18508178 DOI: 10.1016/j.tox.2008.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
Bisphenol A (BPA), nonylphenol (NP) and octylphenol (OP) are endocrine-disrupting chemicals that has been shown to exert both toxic and estrogenic effects on mammalian cells. The aim of this study was to investigate if BPA, NP and OP induce oxidative stress on the brain tissue of male rats and if co-administration of vitamin C, an antioxidant, can prevent any possible oxidative stress. The male rats were divided into seven groups as control (vehicle), BPA, NP, OP, BPA+C, NP+C, OP+C. BPA, OP and NP (25 mg/(kg day)) were administrated orally to male Wistar rats for 45 days. In vitamin C co-administration groups (BPA+C, NP+C, OP+C), vitamin C (60 mg/(kg day)) were administrated orally along with BPA, OP and NP (25 mg/(kg day)) treatments. The rats in the control group received olive oil orally. The final body and absolute organ weights of treated rats did not show any significant difference when compared with the control group. Also, there were no significant difference in relative organ weights of BPA, NP, OP, BPA+C and NP+C groups when compared with control group. Only, relative organ weights were increased significantly in OP+C group compared with control group. Decreased levels of reduced glutathione (GSH) were found in the brains of BPA, NP, OP treated rats. The end product of lipid peroxidation, malondialdehyde (MDA), appeared at significantly higher concentrations in the BPA, NP, and OP treated groups when compared to the control group. On the other hand, there were no changes in the brain MDA and GSH levels of BPA+C, NP+C and OP+C groups compared with BPA, NP and OP treatment groups, respectively. In histopathologic examination, the vitamin C co-administrated groups had much more hyperchromatic cells in the brain cortex than that observed in the groups treated with only BPA, NP, and OP. The results of this study demonstrate that BPA, NP and OP generate reactive oxygen species that caused oxidative damage in the brain of male rats. In addition, vitamin C co-administration along with BPA, NP, and OP aggravates this oxidative damage in the brain of rats.
Collapse
|
30
|
Yao G, Ling L, Luan J, Ye D, Zhu P. Nonylphenol induces apoptosis of Jurkat cells by a caspase-8 dependent mechanism. Int Immunopharmacol 2007; 7:444-53. [PMID: 17321467 DOI: 10.1016/j.intimp.2006.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 11/28/2022]
Abstract
Nonylphenol is the final biodegradation product of nonylphenol polyethoxylates, which are widely used surfactants in domestic and industrial products. Although nonylphenol is well known as an endocrine disrupting chemical, its effects on cell death and the mechanisms responsible for these apoptotic effects remain unclear. In the present study, Jurkat cells were treated with 0.1, 1 and 10 microM nonylphenol for 12 and 24 h, respectively. Cell viability was assessed with a Cell Counting Kit. The effects of nonylphenol on apoptosis of Jurkat cells were determined by DNA fragmentation (DNA ladder), Hoechst33258, PI and Annexin V FITC/PI double staining. Changes in mitochondrial membrane potential were detected with JC-1 fluorescence. In addition, enzyme activity of caspase-8 was evaluated by flow cytometry. The results demonstrated that nonylphenol inhibited the proliferation and induced loss of mitochondrial membrane potential, caspase-8 activation, internucleosomal DNA fragmentation. Furthermore, a caspase-8 inhibitor, IETD-fmk, blocked loss of mitochondrial membrane potential and apoptosis. These findings suggested that nonylphenol induced apoptosis of Jurkat cells by caspase-8 dependent mechanisms.
Collapse
Affiliation(s)
- Genhong Yao
- Department of Transfusion & the Postdoctoral Workstation, Jinling Hospital, Medical School, Nanjing University, PR China.
| | | | | | | | | |
Collapse
|
31
|
Park SY, Tournell C, Sinjoanu RC, Ferreira A. Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience 2006; 144:119-27. [PMID: 17055174 PMCID: PMC1955430 DOI: 10.1016/j.neuroscience.2006.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
A growing body of evidence suggests that the proteolytic cleavage of the microtubule-associated protein tau, the main component of neurofibrillary tangles, might play a role in the molecular mechanisms underlying beta-amyloid (Abeta) -induced neurotoxicity in central neurons. In the present study, we analyzed whether sex hormones could prevent such tau cleavage, and hence, protect rat hippocampal neurons against Abeta toxicity. Our results indicated that estrogen and testosterone prevented caspase-3- and calpain-mediated tau cleavage, respectively. Thus, estrogen decreased the levels of caspase-3-cleaved 50-kDa truncated tau, while testosterone prevented the generation of a calpain-cleaved 17-kDa tau fragment. In addition, our results showed that the decrease in the levels of these tau proteolytic forms was accompanied by an increased cell survival in Abeta-treated neurons. Furthermore, our findings indicated that testosterone was more effective than estrogen in protecting hippocampal neurons against Abeta-induced cell death. Collectively, our data suggest that preventing the decline of estrogen and testosterone associated with normal aging might reduce the susceptibility of central neurons to Abeta-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Adriana Ferreira
- *Send Correspondence to: Adriana Ferreira, M.D., Ph.D., Department of Cell and Molecular Biology, Searle Building Room 5-474, 320 East Superior Street, Chicago, IL 60611, Phone (312) 503 0597, Fax (312) 503 7345, E-mail:
| |
Collapse
|
32
|
Ramilo G, Valverde I, Lago J, Vieites JM, Cabado AG. Cytotoxic effects of BADGE (bisphenol A diglycidyl ether) and BFDGE (bisphenol F diglycidyl ether) on Caco-2 cells in vitro. Arch Toxicol 2006; 80:748-55. [PMID: 16783546 DOI: 10.1007/s00204-006-0121-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 05/17/2006] [Indexed: 11/25/2022]
Abstract
Bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) are used as starting substances for the manufacturing of epoxy resins used in internal can coatings. They are obtained by a condensation reaction between epichlorohydrin with bisphenol A and bisphenol F, respectively. These potential endocrine disrupting chemicals are able to enter the food chain and to reach the intestinal epithelium, causing structural and functional damages. The human colorectal adenocarcinoma cell line Caco-2 is a widely used in vitro model of the intestinal cells. The aim of this study was to characterize BADGE and BFDGE toxicity in Caco-2 cells, in particular, at the cellular and molecular level. Using several approaches, we characterized BADGE- and BFDGE-induced cell toxicity in Caco-2 cells. The treatment was done using different concentrations up to cytotoxic doses and different times of exposure to the agents. We evaluated the effect of these compounds on cell morphology, cell detachment, cell proliferation, F-actin disruption and plasma membrane integrity. Both compounds are able to induce morphological changes, cell detachment from the substratum and to inhibit cell proliferation, being these effects time and dose-dependent. Moreover, BADGE and BFDGE induce F-actin depolymerization, this effect is very potent at 24 h of incubation with the agents and a complete F-actin disruption can be observed at 200 microM BADGE or BFDGE. In addition, cell integrity is not damaged, since neither propidium iodide uptake nor LDH release takes place in Caco-2 cells exposed to high doses of these agents for 24 h.
Collapse
Affiliation(s)
- Graciela Ramilo
- Microbiology and Biotoxins Area, ANFACO-CECOPESCA, Campus Univ de Vigo, Vigo, Pontevedra, Spain
| | | | | | | | | |
Collapse
|
33
|
Welshons WV, Nagel SC, vom Saal FS. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 2006; 147:S56-69. [PMID: 16690810 DOI: 10.1210/en.2005-1159] [Citation(s) in RCA: 658] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over 6 billion pounds per year of the estrogenic monomer bisphenol A (BPA) are used to manufacture polycarbonate plastic products, in resins lining metal cans, in dental sealants, and in blends with other types of plastic products. The ester bond linking BPA molecules in polycarbonate and resins undergoes hydrolysis, resulting in the release of free BPA into food, beverages, and the environment, and numerous monitoring studies now show almost ubiquitous human exposure to biologically active levels of this chemical. BPA exerts estrogenic effects through the classical nuclear estrogen receptors, and BPA acts as a selective estrogen receptor modulator. However, BPA also initiates rapid responses via estrogen receptors presumably associated with the plasma membrane. Similar to estradiol, BPA causes changes in some cell functions at concentrations between 1 pM and 1 nM, and the mean and median range of unconjugated BPA measured by multiple techniques in human pregnant maternal, fetal, and adult blood and other tissues exceeds these levels. In contrast to these published findings, BPA manufacturers persist in describing BPA as a weak estrogen and insist there is little concern with human exposure levels. Our concern with human exposure to BPA derives from 1) identification of molecular mechanisms mediating effects in human and animal tissues at very low doses, 2) in vivo effects in experimental animals caused by low doses within the range of human exposure, and 3) widespread human exposure to levels of BPA that cause adverse effects in animals.
Collapse
Affiliation(s)
- Wade V Welshons
- Department of Biomedical Sciences, E102 Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65211-5120, USA.
| | | | | |
Collapse
|
34
|
Yao G, Yang L, Hu Y, Liang J, Liang J, Hou Y. Nonylphenol-induced thymocyte apoptosis involved caspase-3 activation and mitochondrial depolarization. Mol Immunol 2006; 43:915-26. [PMID: 16046237 DOI: 10.1016/j.molimm.2005.06.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Indexed: 11/15/2022]
Abstract
Although the effect of 4-nonylphenol on cells of immune system have long been recognized, little is known about the effect of 4-nonylphenol on the induction of apoptosis and related signaling events in the lymphoid cells. In the present study, we used cultured thymocytes of mice to investigate the ability of 4-nonylphenol to induce the apoptosis of thymocytes and to explore the role of signal transduction pathway leading to apoptosis. The results showed that the cytotoxic effects of 4-nonyphenol involved DNA fragmentation (DNA ladder), characteristic of apoptosis. Staining of 4-nonyphenol-treated thymocytes with DNA-binding fluorochrome Hoechst 33258 showed the typical apoptotic nuclei condensation and fragmentation of chromatin. The rates of apoptosis of the 4-nonylphenol-treated thymocytes increased significantly at 4 and 6 h, which were determined by analysis of hypodiploid cells and FITC-Annexin V and PI double staining. Flow cytometer analysis also revealed that the loss of mitochondrial membrane potential and increased activity of caspase-3 occurred concomitantly with the onset of 4-nonyphenol-induced apoptosis. Furthermore, a caspase-3 inhibitor, z-DEVD-fmk protected thymocytes from apoptosis induced by 4-nonyphenol. These results suggest that 4-nonylphenol induces thymocyte apoptosis via caspase-3 activation and mitochondrial depolarization.
Collapse
Affiliation(s)
- Genhong Yao
- Jiangsu Province Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | |
Collapse
|
35
|
Geenen K, Favoreel HW, Nauwynck HJ. Cell type-specific resistance of trigeminal ganglion neurons towards apoptotic stimuli. Vet Microbiol 2005; 113:223-9. [PMID: 16326038 DOI: 10.1016/j.vetmic.2005.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Trigeminal ganglion (TG) neurons are important target cells for many alphaherpesviruses and constitute a major site of virus latency and reactivation. Earlier we showed that porcine TG neurons are remarkably more resistant towards (apoptotic) cell death resulting from infection by the swine alphaherpesvirus pseudorabies virus (PRV) compared to a broad range of other primary porcine cell types and that this resistance does not depend on the strongly anti-apoptotic US3 viral protein kinase (Geenen, K., Favoreel, H.W., Nauwynck, H.J., 2005a. Higher resistance of porcine trigeminal ganglion neurons towards pseudorabies virus-induced cell death compared with other porcine cell types in vitro. J. Gen. Virol. 86, 1251-1260). Although other viral anti-apoptotic proteins may be involved in survival of TG neurons during PRV infection, an additional factor may be that TG neurons possess a cell type-dependent capacity to withstand apoptosis compared to other cell types. To investigate this, we treated uninfected porcine TG cultures, swine kidney cells, and porcine superior cervical ganglion (SCG) neurons with several apoptosis-inducing reagents (staurosporine, camptothecin and genistein). None of these reagents were able to trigger substantial apoptotic cell death in TG neurons, whereas non-neuronal TG cells, swine kidney cells, and SCG neurons showed a clear dose-dependent increase in apoptosis using either of these reagents. In conclusion, sensory TG neurons may contain a cell type-specific capacity to withstand different apoptotic assaults, including infection with an alphaherpesvirus.
Collapse
Affiliation(s)
- Kristin Geenen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | |
Collapse
|
36
|
Facciolo RM, Madeo M, Alò R, Canonaco M, Dessì-Fulgheri F. Neurobiological Effects of Bisphenol A May Be Mediated by Somatostatin Subtype 3 Receptors in Some Regions of the Developing Rat Brain. Toxicol Sci 2005; 88:477-84. [PMID: 16162846 DOI: 10.1093/toxsci/kfi322] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Considerable attention has been focused on environmental disruptors such as the xenoestrogen bisphenol A, which influences reproductive, developmental, and cognitive activities through its interaction with specific neuromediating systems in an estrogen-like fashion. In the present study, the effects of this xenoestrogen proved to be preferentially directed toward hypothalamic and extrahypothalamic somatostatin receptor subtype 3, which displayed a higher binding affinity of its specific nonpeptide agonist L-796-778 than that of L-779-976 (subtype 2). One type of action, with respect to animals treated with vehicle alone, consisted of a very strong (p < 0.001) decrease of somatostatin receptor subtype 3 mRNA levels in layer V of the frontoparietal cortex of adult rats (Sprague-Dawley) after transplacental and lactational exposure to bisphenol A (400 microg/kg/day). Similarly, such treatment in 7-day-old rats was responsible for a very strong reduction of the subtype 3 mRNA levels in the hypothalamic periventricular nuclei and a strong (p < 0.01) increase of the subtype 3 mRNA levels in the ventromedial nuclei. Moreover, even greater upregulated and downregulated activities were reported when subtype 3 mRNA levels were determined in the presence of receptor agonists specific for distinct alpha GABA(A) receptor subunits (alpha(1,5)). The predominant effects of bisphenol A on somatostatin receptor subtype 3 mRNA levels occurring in an alpha GABA(A) subunit-dependent manner tend to suggest the early modulatory importance of this environmental disruptor on cross-talking mechanisms that are implicated in the plasticity of neural circuits, with consequential influence on neuroendocrine/sociosexual behaviors.
Collapse
MESH Headings
- Air Pollutants, Occupational/toxicity
- Amides/pharmacology
- Animals
- Animals, Newborn
- Benzhydryl Compounds
- Brain/drug effects
- Brain/metabolism
- Dose-Response Relationship, Drug
- Estrogens, Non-Steroidal/toxicity
- Female
- Gene Expression Regulation, Developmental/drug effects
- Indoles/pharmacology
- Lactation/drug effects
- Maternal Exposure
- Nitrobenzenes/pharmacology
- Organogenesis
- Phenols/toxicity
- Pregnancy
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, Somatostatin/agonists
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Somatostatin/agonists
Collapse
Affiliation(s)
- Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory of Ecology Department, University of Calabria, Arcavacata di Rende-Cosenza, Italy.
| | | | | | | | | |
Collapse
|
37
|
Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, Nadal A. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:969-77. [PMID: 16079065 PMCID: PMC1280335 DOI: 10.1289/ehp.8002] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glucagon, secreted from pancreatic alpha-cells integrated within the islets of Langerhans, is involved in the regulation of glucose metabolism by enhancing the synthesis and mobilization of glucose in the liver. In addition, it has other extrahepatic effects ranging from lipolysis in adipose tissue to the control of satiety in the central nervous system. In this article, we show that the endocrine disruptors bisphenol A (BPA) and diethylstilbestrol (DES), at a concentration of 10(-9) M, suppressed low-glucose-induced intracellular calcium ion ([Ca2+]i) oscillations in alpha-cells, the signal that triggers glucagon secretion. This action has a rapid onset, and it is reproduced by the impermeable molecule estradiol (E2) conjugated to horseradish peroxidase (E-HRP). Competition studies using E-HRP binding in immunocytochemically identified alpha-cells indicate that 17beta-E2, BPA, and DES share a common membrane-binding site whose pharmacologic profile differs from the classical ER. The effects triggered by BPA, DES, and E2 are blocked by the G alpha i- and G alpha o-protein inhibitor pertussis toxin, by the guanylate cyclase-specific inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, and by the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester. The effects are reproduced by 8-bromo-guanosine 3',5'-cyclic monophosphate and suppressed in the presence of the cGMP-dependent protein kinase inhibitor KT-5823. The action of E2, BPA, and DES in pancreatic alpha-cells may explain some of the effects elicited by endocrine disruptors in the metabolism of glucose and lipid.
Collapse
Affiliation(s)
- Paloma Alonso-Magdalena
- Institute of Bioengineering, Miguel Hernández University, Sant Joan d'Alacant, Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Nadal A, Alonso-Magdalena P, Ripoll C, Fuentes E. Disentangling the molecular mechanisms of action of endogenous and environmental estrogens. Pflugers Arch 2004; 449:335-43. [PMID: 15517344 DOI: 10.1007/s00424-004-1343-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/30/2004] [Indexed: 01/07/2023]
Abstract
The gonadal hormone 17beta-estradiol is involved in numerous cellular processes. In many cases, 17beta-estradiol actions are imitated by synthetic and natural chemicals in the environment. Their actions differ depending on the target tissue, the receptors involved and the molecular pathways activated. The plethora of estrogenic actions is triggered by different receptors and other specific structures that activate different signalling pathways. This amount of information may lead to a maze of effects triggered by endogenous and environmental estrogens that we intend to clarify in this review. Understanding the variety of estrogen receptors, their different locations and the signalling pathways activated by estrogenic ligands is fundamental for understanding the diversity of actions that estrogens have in different tissues and cells.
Collapse
Affiliation(s)
- Angel Nadal
- Institute of Bioengineering, School of Medicine, Miguel Hernández University, Sant Joan Campus, Carretera Alicante-Valencia Km 87, 03550 Alicante, Spain.
| | | | | | | |
Collapse
|
39
|
Negishi T, Kawasaki K, Suzaki S, Maeda H, Ishii Y, Kyuwa S, Kuroda Y, Yoshikawa Y. Behavioral alterations in response to fear-provoking stimuli and tranylcypromine induced by perinatal exposure to bisphenol A and nonylphenol in male rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1159-64. [PMID: 15289160 PMCID: PMC1247475 DOI: 10.1289/ehp.6961] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The purpose of this study was to examine whether perinatal exposure to two major environmental endocrine-disrupting chemicals, bisphenol A (BPA; 0.1 mg/kg/day orally) and nonylphenol [NP; 0.1 mg/kg/day (low dose) and 10 mg/kg/day (high dose) orally] daily from gestational day 3 to postnatal day 20 (transplacental and lactational exposures) would lead to behavioral alterations in the male offspring of F344 rats. Neither BPA nor NP exposure affected behavioral characteristics in an open-field test (8 weeks of age), in a measurement of spontaneous motor activity (12 weeks of age), or in an elevated plus-maze test (14 weeks of age). A passive avoidance test (13 weeks of age) showed that both BPA- and NP-treated offspring tended to delay entry into a dark compartment. An active avoidance test at 15 weeks of age revealed that BPA-treated offspring showed significantly fewer avoidance responses and low-dose NP-treated offspring exhibited slightly fewer avoidance responses. Furthermore, BPA-treated offspring significantly increased the number of failures to avoid electrical unconditioned stimuli within 5-sec electrical shock presentation compared with the control offspring. In a monoamine-disruption test using 5 mg/kg (intraperitoneal) tranylcypromine (Tcy), a monoamine oxidase inhibitor, both BPA-treated and low-dose NP-treated offspring at 22-24 weeks of age failed to show a significant increment in locomotion in response to Tcy, whereas control and high-dose NP-treated offspring significantly increased locomotion behavior after Tcy injection. In addition, when only saline was injected during a monoamine-disruption test, low-dose NP-treated offspring showed frequent rearing compared with the control offspring. The present results indicate that perinatal low-dose BPA or NP exposure irreversibly influenced the reception of fear-provoking stimuli (e.g., electrical shock), as well as monoaminergic neural pathways. Key words: behavior, bisphenol A, fear, learning, monoamine, nonylphenol.
Collapse
Affiliation(s)
- Takayuki Negishi
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | |
Collapse
|