1
|
Choy O, Raine A. The neurobiology of antisocial personality disorder. Neuropharmacology 2024; 261:110150. [PMID: 39244014 DOI: 10.1016/j.neuropharm.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Despite increasing recognition that there is a neurobiological basis of antisocial behavior in addition to its psychosocial foundation, much less is known about the specificity of the neurobiological findings to the psychiatric condition of antisocial personality disorder (APD). This article provides a review of research on genetic, brain imaging, neurocognitive, and psychophysiological factors in relation to assessments of APD. Findings show that there are significant genetic effects on APD, particularly related to the serotonergic system, as well as abnormalities in brain regions such as the frontal lobe. Associations between psychophysiological measures of autonomic nervous system functioning and APD are more mixed. Results indicating that APD has a significant genetic basis and is characterized by abnormalities in brain structure/function and neurocognitive impairments provide additional evidence that supports the conceptualization of APD as a neurodevelopmental disorder. Findings may also help inform treatment approaches that target neurobiological risks for APD symptoms. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
- Olivia Choy
- Department of Psychology, Nanyang Technological University, Singapore.
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, USA.
| |
Collapse
|
2
|
Rahimi V, Tavanai E, Falahzadeh S, Ranjbar AR, Farahani S. Omega-3 fatty acids and health of auditory and vestibular systems: a comprehensive review. Eur J Nutr 2024; 63:1453-1469. [PMID: 38693450 DOI: 10.1007/s00394-024-03369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE The purpose of this study was to comprehensively review animal and human studies that explore the role of omega-3 PUFAs in maintaining the health of the auditory organ across all life stages. METHODS This narrative review involved searching Scopus, PubMed, Google Scholar, and Cochrane Library databases for relevant articles from December 1980 to July 2023. RESULTS some animal and human studies suggest that both deficiency and excessive intake of long-chain omega-3 PUFAs, particularly docosahexaenoic acid (DHA), can lead to auditory neural conduction impairment and reduced hearing acuity from fetal development to old age (presbycusis). These effects are likely to be dependent on the dosage. Some research indicates that an excessive intake of omega-3, rather than a deficiency, can result in nutritional toxicity and hearing impairments. Animal studies highlight the positive impact of omega-3 supplements with high DHA content in addressing hearing damage, but human research on this subject is limited. Furthermore, certain studies propose that omega-3 PUFAs may prevent or delay age-related hearing loss, with high plasma omega-3 concentration, particularly long-chain omega-3 PUFA, linked to reduced hearing loss. Additionally, consuming fish more than twice a week may be associated with a lower risk of hearing loss in adulthood, with these effects potentially influenced by age and gender. However, the majority of studies have been conducted on animals, and clinical trials are scarce. Research on the influence of omega-3 PUFAs on the peripheral and central vestibular systems remains limited. CONCLUSION This article delves into the impact of omega-3 on the auditory-vestibular system, exploring its influence on neurodevelopment, protection, and treatment. It not only highlights specific research gaps but also offers valuable insights for potential future studies.
Collapse
Affiliation(s)
- Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Falahzadeh
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Reza Ranjbar
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Audiology, Faculty of Rehabilitation Sciences, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, 1148965141, Iran.
| |
Collapse
|
3
|
Merlo G, Bachtel G, Sugden SG. Gut microbiota, nutrition, and mental health. Front Nutr 2024; 11:1337889. [PMID: 38406183 PMCID: PMC10884323 DOI: 10.3389/fnut.2024.1337889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
The human brain remains one of the greatest challenges for modern medicine, yet it is one of the most integral and sometimes overlooked aspects of medicine. The human brain consists of roughly 100 billion neurons, 100 trillion neuronal connections and consumes about 20-25% of the body's energy. Emerging evidence highlights that insufficient or inadequate nutrition is linked to an increased risk of brain health, mental health, and psychological functioning compromise. A core component of this relationship includes the intricate dynamics of the brain-gut-microbiota (BGM) system, which is a progressively recognized factor in the sphere of mental/brain health. The bidirectional relationship between the brain, gut, and gut microbiota along the BGM system not only affects nutrient absorption and utilization, but also it exerts substantial influence on cognitive processes, mood regulation, neuroplasticity, and other indices of mental/brain health. Neuroplasticity is the brain's capacity for adaptation and neural regeneration in response to stimuli. Understanding neuroplasticity and considering interventions that enhance the remarkable ability of the brain to change through experience constitutes a burgeoning area of research that has substantial potential for improving well-being, resilience, and overall brain health through optimal nutrition and lifestyle interventions. The nexus of lifestyle interventions and both academic and clinical perspectives of nutritional neuroscience emerges as a potent tool to enhance patient outcomes, proactively mitigate mental/brain health challenges, and improve the management and treatment of existing mental/brain health conditions by championing health-promoting dietary patterns, rectifying nutritional deficiencies, and seamlessly integrating nutrition-centered strategies into clinical care.
Collapse
Affiliation(s)
- Gia Merlo
- Department of Psychiatry, New York University Grossman School of Medicine and Rory Meyers College of Nursing, New York, NY, United States
| | | | - Steven G. Sugden
- Department of Psychiatry, The University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Crombach A, Rukundo-Zeller AC, Vukojevic V, Nandi C, Bambonye M, de Quervain DJF, Papassotiropoulos A, Elbert T. Differential methylation of linoleic acid pathway genes is associated with PTSD symptoms - a longitudinal study with Burundian soldiers returning from a war zone. Transl Psychiatry 2024; 14:32. [PMID: 38238325 PMCID: PMC10796347 DOI: 10.1038/s41398-024-02757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Soldiers may be exposed to traumatic stress during combat deployment and thus are at risk for developing posttraumatic stress disorder (PTSD). Genetic and epigenetic evidence suggests that PTSD is linked to forming stress-related memories. In the current study, we investigated post-deployment associations of PTSD symptoms with differential DNA methylation in a sample of Burundian soldiers returning from the African Union Mission in Somalia's war zone. We used a matched longitudinal study design to explore epigenetic changes associated with PTSD symptoms in N = 191 participants. PTSD symptoms and saliva samples were collected at 1-3 (t1) and 9-14 months (t2) after the return of the soldiers to their home base. Individuals with either worsening or improving PTSD symptoms were matched for age, stressful, traumatic and self-perpetrated events prior to the post-assessment, traumatic and violent experiences between the post- and the follow-up assessment, and violence experienced during childhood. A mixed model analysis was conducted to identify top nominally significantly differentially methylated genes, which were then used to perform a gene enrichment analysis. The linoleic acid metabolism pathway was significantly associated with post-deployment PTSD symptoms, after accounting for multiple comparisons. Linoleic acid has been linked to memory and immune related processes in previous research. Our findings suggest that differential methylation of linoleic acid pathway genes is associated with PTSD and thus may merit closer inspection as a possible mediator of resilience.
Collapse
Affiliation(s)
- Anselm Crombach
- Department of Psychology, Clinical Child and Adolescent Psychology and Psychotherapy, Saarland University,, Saarbrücken, Germany.
- Department of Psychology, Université Lumière de Bujumbura, Bujumbura, Burundi.
| | - Anja C Rukundo-Zeller
- Department of Psychology, Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | - Vanja Vukojevic
- Department of Biomedicine, Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Corina Nandi
- Department of Psychology, Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | - Manassé Bambonye
- Department of Psychology, Université Lumière de Bujumbura, Bujumbura, Burundi
| | - Dominique J-F de Quervain
- Department of Biomedicine, Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Andreas Papassotiropoulos
- Department of Biomedicine, Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Thomas Elbert
- Department of Psychology, Université Lumière de Bujumbura, Bujumbura, Burundi
- Department of Psychology, Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Wen J, Satyanarayanan SK, Li A, Yan L, Zhao Z, Yuan Q, Su KP, Su H. Unraveling the impact of Omega-3 polyunsaturated fatty acids on blood-brain barrier (BBB) integrity and glymphatic function. Brain Behav Immun 2024; 115:335-355. [PMID: 37914102 DOI: 10.1016/j.bbi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Alzheimer's disease (AD) and other forms of dementia represent major public health challenges but effective therapeutic options are limited. Pathological brain aging is associated with microvascular changes and impaired clearance systems. The application of omega-3 polyunsaturated fatty acids (n-3 or omega-3 PUFAs) is one of the most promising nutritional interventions in neurodegenerative disorders from epidemiological data, clinical and pre-clinical studies. As essential components of neuronal membranes, n-3 PUFAs have shown neuroprotection and anti-inflammatory effects, as well as modulatory effects through microvascular pathophysiology, amyloid-beta (Aβ) clearance and glymphatic pathways. This review meticulously explores these underlying mechanisms that contribute to the beneficial effects of n-3 PUFAs against AD and dementia, synthesizing evidence from both animal and interventional studies.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Ziai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
6
|
Sajad M, Zahoor I, Rashid F, Cerghet M, Rattan R, Giri S. Pyruvate Dehydrogenase-Dependent Metabolic Programming Affects the Oligodendrocyte Maturation and Remyelination. Mol Neurobiol 2024; 61:397-410. [PMID: 37620688 DOI: 10.1007/s12035-023-03546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
The metabolic needs of the premature/premyelinating oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) are distinct. The metabolic control of oligodendrocyte maturation from the pre-OLs to the OLs is not fully understood. Here, we show that the terminal maturation and higher mitochondrial respiration in the OLs is an integrated process controlled through pyruvate dehydrogenase complex (Pdh). Combined bioenergetics and metabolic studies show that OLs show elevated mitochondrial respiration than the pre-OLs. Our signaling studies show that the increased mitochondrial respiration activity in the OLs is mediated by the activation of Pdh due to inhibition of the pyruvate dehydrogenase kinase-1 (Pdhk1) that phosphorylates and inhibits Pdh activity. Accordingly, when Pdhk1 is directly expressed in the pre-OLs, they fail to mature into the OLs. While Pdh converts pyruvate into the acetyl-CoA by its oxidative decarboxylation, our study shows that Pdh-dependent acetyl-CoA generation from pyruvate contributes to the acetylation of the bHLH family transcription factor, oligodendrocyte transcription factor 1 (Olig1) which is known to be involved in the OL maturation. Pdh inhibition via direct expression of Pdhk1 in the pre-OLs blocks the Olig1-acetylation and OL maturation. Using the cuprizone model of demyelination, we show that Pdh is deactivated during the demyelination phase, which is however reversed in the remyelination phase upon cuprizone withdrawal. In addition, Pdh activity status correlates with the Olig1-acetylation status in the cuprizone model. Hence, the Pdh metabolic node activation allows a robust mitochondrial respiration and activation of a molecular program necessary for the terminal maturation of oligodendrocytes. Our findings open a new dialogue in the developmental biology that links cellular development and metabolism. These findings have far-reaching implications in the development of therapies for a variety of demyelinating disorders including multiple sclerosis.
Collapse
Affiliation(s)
- M Sajad
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
| | - Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Ramandeep Rattan
- Gynecologic Oncology and Developmental Therapeutics Research Program, Henry Ford Health Hospital, Detroit, MI, 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
| |
Collapse
|
7
|
Chalifour B, Holzhausen EA, Lim JJ, Yeo EN, Shen N, Jones DP, Peterson BS, Goran MI, Liang D, Alderete TL. The potential role of early life feeding patterns in shaping the infant fecal metabolome: implications for neurodevelopmental outcomes. NPJ METABOLIC HEALTH AND DISEASE 2023; 1:2. [PMID: 38299034 PMCID: PMC10828959 DOI: 10.1038/s44324-023-00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 02/02/2024]
Abstract
Infant fecal metabolomics can provide valuable insights into the associations of nutrition, dietary patterns, and health outcomes in early life. Breastmilk is typically classified as the best source of nutrition for nearly all infants. However, exclusive breastfeeding may not always be possible for all infants. This study aimed to characterize associations between levels of mixed breastfeeding and formula feeding, along with solid food consumption and the infant fecal metabolome at 1- and 6-months of age. As a secondary aim, we examined how feeding-associated metabolites may be associated with early life neurodevelopmental outcomes. Fecal samples were collected at 1- and 6-months, and metabolic features were assessed via untargeted liquid chromatography/high-resolution mass spectrometry. Feeding groups were defined at 1-month as 1) exclusively breastfed, 2) breastfed >50% of feedings, or 3) formula fed ≥50% of feedings. Six-month groups were defined as majority breastmilk (>50%) or majority formula fed (≥50%) complemented by solid foods. Neurodevelopmental outcomes were assessed using the Bayley Scales of Infant Development at 2 years. Changes in the infant fecal metabolome were associated with feeding patterns at 1- and 6-months. Feeding patterns were associated with the intensities of a total of 57 fecal metabolites at 1-month and 25 metabolites at 6-months, which were either associated with increased breastmilk or increased formula feeding. Most breastmilk-associated metabolites, which are involved in lipid metabolism and cellular processes like cell signaling, were associated with higher neurodevelopmental scores, while formula-associated metabolites were associated with lower neurodevelopmental scores. These findings offer preliminary evidence that feeding patterns are associated with altered infant fecal metabolomes, which may be associated with cognitive development later in life.
Collapse
Affiliation(s)
- Bridget Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | | | - Joseph J. Lim
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Emily N. Yeo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Natalie Shen
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, GA USA
| | | | | | - Donghai Liang
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
8
|
Abd Alhusen SK, Hasan AF. Evaluating the renoprotective effects of omega-3-6-9 against cisplatin-induced nephrotoxicity in mice. J Med Life 2023; 16:1756-1759. [PMID: 38585532 PMCID: PMC10994620 DOI: 10.25122/jml-2023-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 04/09/2024] Open
Abstract
Fatty acids, particularly omega-3, omega-6, and omega-9, play a vital role in various biological processes. As the body cannot synthesize omega-3 and omega-6, dietary sources of these fatty acids are essential. Each omega fatty acid has a distinct chemical structure, source, and function. Cisplatin (CP) treatment is known to cause acute kidney injury (AKI) due to its inflammatory effects. This study explored the renoprotective potential of omega-3-6-9 when co-administered with cisplatin in a mice model. We divided adult mice into five groups: a control group received 0.5 ml of liquid paraffin; a cisplatin-only group; two groups were treated with low (50 mg/kg) and high (100 mg/kg) doses of omega-3-6-9 plus cisplatin; and a final group received vitamin E before cisplatin administration. The administration of omega-3-6-9 significantly decreased pro-inflammatory modulators and kidney function markers such as TNF-α, IL-1β, blood urea nitrogen, and creatinine, indicating potential renoprotective effects. Our research concluded that omega-3- 6- 9 had anti-inflammatory properties and was effective against the harmful effects of cisplatin.
Collapse
Affiliation(s)
- Saja Kareem Abd Alhusen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Ali Faris Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
9
|
Lopes PA, Alfaia CM, Pestana JM, Prates JAM. Structured Lipids Engineering for Health: Novel Formulations Enriched in n-3 Long-Chain Polyunsaturated Fatty Acids with Potential Nutritional Benefits. Metabolites 2023; 13:1060. [PMID: 37887385 PMCID: PMC10608893 DOI: 10.3390/metabo13101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Structured lipids (SLs) offer a promising avenue for designing novel formulations enriched in n-3 long-chain polyunsaturated fatty acids (LCPUFAs) with potential health benefits. Triacylglycerols (TAGs), the most common fats in the human diet, are both non-toxic and chemically stable. The metabolic efficiency and digestibility of TAGs are significantly influenced by the position of fatty acids (FAs) within the glycerol backbone, with FAs at the sn-2 position being readily absorbed. Over the past two decades, advancements in SL research have led to the development of modified TAGs, achieved either through chemical or enzymatic processes, resulting in SLs. The ideal structure of SLs involves medium-chain FAs at the sn-1,3 positions and long-chain n-3 LCPUFAs at the sn-2 position of the glycerol backbone, conferring specific physicochemical and nutritional attributes. These tailored SL formulations find wide-ranging applications in the food and nutraceutical industries, showing promise for dietary support in promoting health and mitigating various diseases. In particular, SLs can be harnessed as functional oils to augment TAG metabolism, thereby impeding the development of fatty liver, countering the onset of obesity, and preventing atherosclerosis and age-related chronic diseases. In scrutinising prevailing research trajectories, this review endeavours to provide an in-depth analysis of the multifaceted advantages and repercussions associated with the synthesis of SLs. It elucidates their burgeoning potential in enhancing health and well-being across a range of demographic cohorts. Specifically, the implications of SL utilisation are discussed in the context of healthcare environments and early childhood developmental support.
Collapse
Affiliation(s)
- Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
10
|
Barzegaran M, Jazayeri S, Abolghasemi J, Hosseinzadeh M, Fatemi SF, Mirzaei M, Salehi-Abargouei A. The relationship between dietary lipophilic index and load with depression, anxiety, and stress symptoms. BMC Psychiatry 2023; 23:703. [PMID: 37759180 PMCID: PMC10523600 DOI: 10.1186/s12888-023-05161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Dietary fatty acids can affect brain health by modifying neuronal membrane fluidity. Dietary lipophilic index (LI) and load (LL) may be related to cell membrane fluidity. This study aimed to determine the relationship between dietary LI and LL with symptoms of depression, anxiety and stress. METHODS In this cross-sectional study, taken from the YaHS (Yazd Health Study) population-based cohort, the data of 2,982 individuals was extracted. Several questionnaires- a 178-item Food Frequency Questionnaire (FFQ), Depression, Anxiety and Stress Scale 21 (DASS 21), and International Physical Activity Questionnaire (IPAQ)- were used to obtain information on dietary intake, mental status, and physical activity, respectively. LI and LL were calculated using dietary intake and the melting point of each fatty acid. RESULTS The analysis was performed on 2982 individuals. The odds ratio of depression in the second tertile of dietary LI compared to the first tertile was 0.815 (95% CI 0.66-1.00, P = 0.051, Ptrend = 0.017) and after adjusting confounders was 0.793 (95% CI 0.63-0.99, P = 0.043, Ptrend = 0.011). Also, LL was related inversely with anxiety (0.771, 95% CI 0.63-0.93, P = 0.003) that after multiple regression, OR of anxiety was 0.762 (95% CI 0.53-1.07, P = 0.045). The odds of stress in the third tertile of LL was 1.064 but not statistically significant (95% CI 0.88-1.28, P = 0.729). CONCLUSION This study showed an inverse association between dietary LI and depression symptoms. Anxiety and stress did not show a significant relationship with LI or LL.
Collapse
Affiliation(s)
- Mahdieh Barzegaran
- Department of Nutrition , School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition , School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Jamileh Abolghasemi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hosseinzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health , Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Fatemeh Fatemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Mirzaei
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health , Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Hemida M, Rosendahl S, Jokinen TS, Moore R, Vuori KA, Anturaniemi J, Hielm-Björkman A. Assessing the association between supplemented puppyhood dietary fat sources and owner-reported epilepsy in adulthood, among Finnish companion dogs. Front Vet Sci 2023; 10:1227437. [PMID: 37781290 PMCID: PMC10540444 DOI: 10.3389/fvets.2023.1227437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Epilepsy is a serious and common neurological condition in dogs, despite the wide number of antiepileptic drugs available, in approximately one third of the patients, epilepsy remains unsatisfactorily controlled. We aim to analyze whether feeding dietary fat sources during puppyhood was associated with canine epilepsy in adulthood. Methods A nested case-control study was compiled from the validated DogRisk food frequency questionnaire (DogRisk FFQ). DogRisk FFQ collected feeding, disease, and background data about the dog. The study sample consisted of 108 owner-reported epileptic cases and 397 non-epileptic controls. Each case was matched with up to four controls for the key confounding factors of sex, breed, and age. We analyzed associations between feeding as a puppy and owner-reported epilepsy as an adult dog using Cox regression. We tested 55 different food variables. Results We found that feeding fish fat from dietary sources at least once a week during puppyhood was inversely associated with epilepsy in later life in the unadjusted analysis [OR 0.46 (95% CI 0.25-0.83), p=0.01], while when adjusting for keeping conditions and dog characteristics the association was [OR 0.45 (95% CI 0.23-0.88), p=0.02]. When adjusted for keeping conditions, dog characteristics, and other feeding factors, the association was of similar magnitude but not significance [OR 0.56 (95% CI 0.27-1.15), p=0.12]. Discussion The study indicates possible protective associations of feeding the dog with dietary sources of fish fat against epilepsy, although the result could be confounded by other feeding factors. Findings are compatible with current knowledge regarding the role of omega-3 fatty acids and ketogenic diet, a low carbohydrate, high fat diet as supportive treatments of epilepsy. As our findings are based on observations, we suggest the possibility of causality but do not prove it. Dietary intervention studies should now be conducted to confirm our findings.
Collapse
Affiliation(s)
- Manal Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Sarah Rosendahl
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja S. Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Kostenko A, Aron AT. Ironing out Neurodegeneration: New Class of Lipids Promotes Ferroptosis in Dopaminergic Neurons. ACS CENTRAL SCIENCE 2023; 9:867-869. [PMID: 37252357 PMCID: PMC10214519 DOI: 10.1021/acscentsci.3c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Anastasiia Kostenko
- Department of Chemistry
and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Allegra T. Aron
- Department of Chemistry
and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
13
|
Liang Z, Lou Y, Li Z, Liu S. Causal relationship between human blood omega-3 fatty acids and the risk of epilepsy: A two-sample Mendelian randomization study. Front Neurol 2023; 14:1130439. [PMID: 36970527 PMCID: PMC10034028 DOI: 10.3389/fneur.2023.1130439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThough omega-3 fatty acids reduce seizures in several animal models, considerable controversy exists regarding the association between omega-3 fatty acids and epilepsy in human.ObjectiveTo assess whether genetically determined human blood omega-3 fatty acids are causally associated with the risk of epilepsy outcomes.MethodsWe conducted a two-sample Mendelian randomization (MR) analysis by applying summary statistics of genome-wide association study datasets of both exposure and outcomes. Single nucleotide polymorphisms significantly associated with blood omega-3 fatty acids levels were selected as instrumental variables to estimate the causal effects on epilepsy. Five MR analysis methods were conducted to analyze the final results. The inverse-variance weighted (IVW) method was used as the primary outcome. The other MR analysis methods (MR-Egger, weighted median, simple mode, and weighted mode) were conducted as the complement to IVW. Sensitivity analyses were also conducted to evaluate heterogeneity and pleiotropy.ResultsGenetically predicted the increase of human blood omega-3 fatty acids levels was associated with a higher risk of epilepsy (OR = 1.160, 95%CI = 1.051–1.279, P = 0.003).ConclusionsThis study revealed a causal relationship between blood omega-3 fatty acids and the risk of epilepsy, thus providing novel insights into the development mechanism of epilepsy.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Zijian Li
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Songyan Liu
| |
Collapse
|
14
|
Xiao L, Xiang J, Liu X, Yang L, Wei Y, Fang S, Li J, Ye Y. Lipidomic changes of cerebral cortex in aldehyde dehydrogenase-2 knock-in heterozygote mice after chronic alcohol exposure. Front Mol Neurosci 2023; 15:1053411. [PMID: 36743287 PMCID: PMC9893510 DOI: 10.3389/fnmol.2022.1053411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Alcohol is the main legal drug in the world, and excessive consumption of alcohol seriously damages the morphological structure and function of various organs. The insufficiency of an essential enzyme in ethanol metabolism, aldehyde dehydrogenase-2 (ALDH2), will aggravate the alcohol-induced brain injury. The effect of ALDH2 after chronic alcohol exposure on global lipid profiling of the brain remains unclear. Methods In this study, ALDH2*2 knock-in mice were fed the Lieber-DeCarli liquid diet containing ethanol for 8 weeks. Blood alcohol and acetaldehyde levels were examined, and the mice were tested through novel object recognition and the Y-maze test to evaluate cognitive impairment toward the end of the study. The lipidome profiling of cerebral cortex samples was investigated using a lipidomics method based on ultra-high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOFMS). Results and Discussion Compared with similarly treated wild-type (WT) mice, ALDH2*2 mice exhibited poor cognitive performance, though the result did not achieve statistical significance. The lipidomics results indicated that 74 differential lipid species were selected in WT mice, of which 57 species were up-regulated, and 17 were down-regulated. Moreover, 99 differential lipids were identified in ALDH2*2 mice, of which 73 were up-regulated, and 26 were down-regulated. For ALDH2*2 mice, the number of changed significantly glycerophospholipids (GPs) subtypes was lower than that of WT mice. Interestingly, compared with WT mice, a lower proportion of polyunsaturated fatty acids (PUFAs) was found in ALDH2*2 mice. Collectively, the results provide clear evidence for a lipidomic signature of marked changes in the cerebral cortex of ALDH2*2 mice after chronic alcohol exposure. Highlights • The cerebral cortex of heterozygous ALDH2*2 mice showed more significant changes in lipidome profiles after chronic alcohol exposure than wild-type mice.• Most lipids were significantly up-regulated in both groups of mice, whereas the increase in TAG was restricted to WT mice.• For ALDH2*2 mice, GPs substances changed significantly, and SHexCer and SM subclasses in sphingolipids also deserved attention.
Collapse
Affiliation(s)
- Li Xiao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jin Xiang
- Clinical Pharmacology Lab, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wei
- College of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shiyong Fang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Jing Li
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Bavaria, Germany
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Akomolafe SF, Asowata-Ayodele AM. Roasted cashew ( Anacardium occidentale L.) nut-enhanced diet forestalls cisplatin-initiated brain harm in rats. Heliyon 2022; 8:e11066. [PMID: 36276737 PMCID: PMC9578995 DOI: 10.1016/j.heliyon.2022.e11066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
The incessant dose constraining symptom of the chemotherapeutic agent, cisplatin is neurotoxicity. This examination tried to explore the neuroprotective impact of roasted cashew nut-enhanced diet against brain deficits related with treatment with cisplatin. Rats were separated in to six groups: Control, CIS (cisplatin [7 mg/kg body weight, i.p]), CIS +10% CN (cisplatin plus 10% roasted cashew nut), CIS +20% CN (cisplatin plus 20% roasted cashew nut), 10% CN (10% roasted cashew nut) and 20% CN (20% roasted cashew nut) for 28 days. Key enzymes associated with brain function, including cholinesterases (AChE and BChE), monoaminergic enzyme (MAO), arginase, and adenosine deaminase (ADA), were investigated after the treatment. The following oxidative stress indicators were also measured in the rat brain: glutathione-S-transferase (GST), glutathione peroxidase (GPx), total antioxidant capacity (TAC), total thiol (T-SH), non-protein thiol (NPSH), thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), nitric oxide (NO), superoxide dismutase (SOD). Our outcomes demonstrated that roasted cashew nut enhanced diet showed inhibitory impact on activities of AChE, BChE, ADA, MAO and arginase in cisplatin-induced rats. The roasted cashew nut supplemented diet also boosted redox equilibrium and displayed protection against cispaltin-induced oxidative damage to rats' brains by an increase in SOD, CAT, GST and GPx activities, TAC, T-SH, NPSH and NO levels as well as a considerable drop in ROS and RBARS levels. Roasted cashew nut enhanced diet additionally forestalled neuronal degeneration in rat brain. Thus, roasted cashew nuts could be used as a nutraceutical or functional food to treat cisplatin-induced neurotoxicity. Practical applications The results show that increasing roasted cashew nut consumption can significantly improve antioxidant status, reduce lipid peroxidation, and suppress cholinesterase, adenosine deaminase, monoamine oxidase, and arginase activities in the brain under cisplatin-induced circumstances.
Collapse
Affiliation(s)
- Seun F. Akomolafe
- Department of Biochemistry, Ekiti State University, P.M.B. 5363, Ado Ekiti, Nigeria,Corresponding author.
| | | |
Collapse
|
16
|
Dorninger F, Vaz FM, Waterham HR, Klinken JBV, Zeitler G, Forss-Petter S, Berger J, Wiesinger C. Ether lipid transfer across the blood-brain and placental barriers does not improve by inactivation of the most abundant ABC transporters. Brain Res Bull 2022; 189:69-79. [PMID: 35981629 DOI: 10.1016/j.brainresbull.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
Phospholipid transport from the periphery to the brain is an understudied topic. When certain lipid species are deficient due to impaired synthesis, though, transfer across the blood-brain barrier is essential for replenishing lipids in the brain. For example, the deficiency in plasmalogens, the most abundant ether lipids in mammals, has detrimental effects on the brain, which is a major issue in inherited peroxisomal disorders but also contributes to more common disorders like Alzheimer's disease. Oral administration of alkylglycerols like batyl alcohol, which carry a pre-formed ether bond, enables replenishment of ether lipids in various peripheral tissues. However, plasmalogen deficiency in the brain cannot be overcome by this approach. Here, we tried to increase cerebral plasmalogen uptake by modulating the efflux transport across the blood-brain barrier. We hypothesized, based on previous literature, that at least some ether lipid species readily enter endothelial cells of the barrier through the transporter MFSD2A but are re-exported by ATP-binding cassette (ABC) transporters. By crossbreeding Mdr1a-/-/Mdr1b-/-/Bcrp-/- and ether lipid-deficient Gnpat-/- mice as well as pharmacological inhibition with MK-571 to inactivate the major ABC transporters at the blood-brain barrier, we evaluated the potential of combined ABC transporter inhibition and oral batyl alcohol administration for the treatment of plasmalogen deficiency. We found that even in the absence of the most abundant ABC transporters, batyl alcohol supplementation did not restore plasmalogen levels in the brain, despite the presence of a wide spectrum of ether lipid subspecies in the plasma as demonstrated by lipidomic analysis. Surprisingly, batyl alcohol treatment of pregnant Gnpat+/- dams had beneficial effects on the plasmalogen levels of Gnpat-/- offspring with defective ether lipid biosynthesis, independently of ABC transporter status at the placental barrier. Our results underline the autonomy of brain lipid homeostasis and indicate that peripheral supplementation of ether lipids is not sufficient to supply the brain with larger amounts of plasmalogens. Yet, the findings suggest that alkylglycerol treatment during pregnancy may pose a viable option to ameliorate some of the severe developmental defects of inborn ether lipid deficiency.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Hans R Waterham
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Jan B van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
17
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
18
|
Moradi S, Alivand M, KhajeBishak Y, AsghariJafarabadi M, Alipour M, Chilibeck PD, Alipour B. The effect of short-term omega-3 fatty acids supplementation on appetite in healthy men: A randomized double-blinded controlled clinical trial. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Neuffer J, Gourru M, Thomas A, Lefèvre-Arbogast S, Foubert-Samier A, Helmer C, Delcourt C, Féart C, Samieri C. A Biological Index to Screen Multi-Micronutrient Deficiencies Associated with the Risk to Develop Dementia in Older Persons from the Community. J Alzheimers Dis 2021; 85:331-342. [PMID: 34806604 DOI: 10.3233/jad-215011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Low blood status in several nutritional compounds, including long-chain omega-3 fatty acids (LC n-3 PUFA), carotenoids, and vitamin D, have been associated with a higher risk to develop dementia. Nutritional deficiencies may potentiate each other regarding dementia risk; yet the association of multiple nutritional deficiencies with dementia has been little explored. OBJECTIVE To develop an index of micronutritional biological status (MNBS) for the screening of multi-micronutritional deficiencies associated with the risk of dementia in a prospective population-based cohort of older persons. METHODS We included participants from the Bordeaux Three-City study, who were free of dementia at baseline, had blood measurements of LC n-3 PUFA, carotenoids, and 25(OH)D, and who were followed for up to 18 years for dementia. We used penalized splines in Cox models to model dose-response relationships of each nutritional component with the risk of dementia and construct a risk index. RESULTS 629 participants with an average age of 73.1 years were included in the study. Each increase of 1 SD of the MNBS index was associated with a 46%higher risk of dementia (HR = 1.46, 95%CI 1.23; 1.73). Participants with highest index ([mean+1SD; max]) had a 4-fold increased risk of dementia compared with participants with a low index ([min; mean-1SD]) (HR = 4.17, 95%CI 2.30; 7.57). CONCLUSION This index of assessment of micronutritional biological status is a practical tool that may help identify populations with inadequate nutritional status, screen eligible individuals for nutritional prevention in primary care, or for supplementation in preventive trials of dementia.
Collapse
Affiliation(s)
- Jeanne Neuffer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Marjorie Gourru
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Aline Thomas
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Sophie Lefèvre-Arbogast
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | | | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Cécile Delcourt
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Catherine Féart
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Cécilia Samieri
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| |
Collapse
|
20
|
Passeri E, Elkhoury K, Jiménez Garavito MC, Desor F, Huguet M, Soligot-Hognon C, Linder M, Malaplate C, Yen FT, Arab-Tehrany E. Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice. Int J Mol Sci 2021; 22:11859. [PMID: 34769291 PMCID: PMC8584305 DOI: 10.3390/ijms222111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (-50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Elodie Passeri
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Kamil Elkhoury
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| | | | - Frédéric Desor
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Marion Huguet
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Claire Soligot-Hognon
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Michel Linder
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| | - Catherine Malaplate
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Frances T. Yen
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Elmira Arab-Tehrany
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| |
Collapse
|
21
|
Zachariou V, Bauer CE, Seago ER, Panayiotou G, Hall ED, Butterfield DA, Gold BT. Healthy dietary intake moderates the effects of age on brain iron concentration and working memory performance. Neurobiol Aging 2021; 106:183-196. [PMID: 34284261 DOI: 10.1016/j.neurobiolaging.2021.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022]
Abstract
Age-related brain iron accumulation is linked with oxidative stress, neurodegeneration and cognitive decline. Certain nutrients can reduce brain iron concentration in animal models, however, this association is not well established in humans. Moreover, it remains unknown if nutrition can moderate the effects of age on brain iron concentration and/or cognition. Here, we explored these issues in a sample of 73 healthy older adults (61-86 years old), while controlling for several factors such as age, gender, years of education, physical fitness and alcohol-intake. Quantitative susceptibility mapping was used for assessment of brain iron concentration and participants performed an N-Back paradigm to evaluate working memory performance. Nutritional-intake was assessed via a validated questionnaire. Nutrients were grouped into nutrition factors based on previous literature and factor analysis. One factor, comprised of vitamin E, lysine, DHA omega-3 and LA omega-6 PUFA, representing food groups such as nuts, healthy oils and fish, moderated the effects of age on both brain iron concentration and working memory performance, suggesting that these nutrients may slow the rate of brain iron accumulation and working memory declines in aging.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Elayna R Seago
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Georgia Panayiotou
- Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Edward D Hall
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - D Allan Butterfield
- Department of Chemistry, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
22
|
Gervasi T, Barreca D, Laganà G, Mandalari G. Health Benefits Related to Tree Nut Consumption and Their Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22115960. [PMID: 34073096 PMCID: PMC8198490 DOI: 10.3390/ijms22115960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022] Open
Abstract
Long-term studies with regular tree nut consumption have indicated positive outcomes for multiple health benefits. Here, we review the beneficial effects of tree nuts, highlighting the impact on glucose modulation, body weight management, cardiovascular risk, inflammation, oxidative stress, cognitive performance, and gut microbiota. Nuts are important sources of nutrients and phytochemicals, which, together with a healthy lipid profile, could help prevent certain chronic diseases, protect against oxidative stress and inflammation, and improve cognitive performance, thus reducing the impact of aging and neurodegeneration.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy;
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (G.L.); (G.M.)
- Correspondence: ; Tel.: +39-(0)906765187
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (G.L.); (G.M.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (G.L.); (G.M.)
| |
Collapse
|
23
|
The effect of omega3 fatty acid supplementation on PPARγ and UCP2 expressions, resting energy expenditure, and appetite in athletes. BMC Sports Sci Med Rehabil 2021; 13:48. [PMID: 33964966 PMCID: PMC8106165 DOI: 10.1186/s13102-021-00266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
Background Omega3 fatty acids as a ligand of energy-related genes, have a role in metabolism, and energy expenditure. These effects are due to changes in the expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and uncoupling protein2 (UCP2). This study evaluated the effect of omega3 supplements on PPARγ mRNA expression and UCP2 mRNA expression and protein levels, as regulators of energy metabolism, resting energy expenditure (REE), and appetite in athletes. Methods In a 3-week double-blind RCT in Tabriz, Iran, in 2019, 36 male athletes, age 21.86 (±3.15) y with 16.17 (±5.96)% body fat were randomized to either an intervention (2000 mg/day omega3; EPA: 360, DHA: 240) or placebo (2000 mg/day edible paraffin) groups. Appetite and REE were assessed before and after the intervention. PPARγ and UCP2 mRNA expression and UCP2 protein levels in blood were evaluated by standard methods. Results Results showed PPARγ mRNA levels, and UCP2 mRNA and protein levels increased in omega3 group (p < 0.05), as did REE (p < 0.05). Also, differences in the sensation of hunger or satiety were significant (p < 0.05). Conclusions Our findings showed that omega3 supplementation leads to the up-regulation of PPARγ and UCP2 expressions as the indicators of metabolism in healthy athletes.
Collapse
|
24
|
Abstract
This review provides an overview of the composition, structure, and biological activities of milk fat globule membrane (MFGM) compounds with focus on the future application of this compound as a food ingredient. MFGM is a particular component of mammalian milks and is comprised of a tri-layer of polar lipids, glycolipids and proteins. In recent years, MFGM has been extensively studied for the purpose of enhancing the efficacy of infant nutrition formula. For example, infant formulas supplemented with bovine MFGM have shown promising results with regard to neurodevelopment and defense against infections. Components of MFGM have been shown to present several health benefits as the proteins of the membrane have shown antiviral activity and a reduction in the incidence of diarrhea. Moreover, the presence of sphingomyelin, a phospholipid, implies beneficial effects on human health such as enhanced neuronal development in infants and the protection of neonates from bacterial infections. The development of a lipid that is similar to human milk fat would represent a significant advance for the infant formula industry and would offer high technology formulas for those infants that depend on infant formula. The complexity of the structure of MFGM and its nutritional and technological properties is critically examined in this review with a focus on issues relevant to the dairy industry.
Collapse
|
25
|
Leyrolle Q, Decoeur F, Briere G, Amadieu C, Quadros ARAA, Voytyuk I, Lacabanne C, Benmamar-Badel A, Bourel J, Aubert A, Sere A, Chain F, Schwendimann L, Matrot B, Bourgeois T, Grégoire S, Leblanc JG, De Moreno De Leblanc A, Langella P, Fernandes GR, Bretillon L, Joffre C, Uricaru R, Thebault P, Gressens P, Chatel JM, Layé S, Nadjar A. Maternal dietary omega-3 deficiency worsens the deleterious effects of prenatal inflammation on the gut-brain axis in the offspring across lifetime. Neuropsychopharmacology 2021; 46:579-602. [PMID: 32781459 PMCID: PMC8026603 DOI: 10.1038/s41386-020-00793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) and poor maternal nutritional habits are risk factors for the occurrence of neurodevelopmental disorders (NDD). Human studies show the deleterious impact of prenatal inflammation and low n-3 polyunsaturated fatty acid (PUFA) intake on neurodevelopment with long-lasting consequences on behavior. However, the mechanisms linking maternal nutritional status to MIA are still unclear, despite their relevance to the etiology of NDD. We demonstrate here that low maternal n-3 PUFA intake worsens MIA-induced early gut dysfunction, including modification of gut microbiota composition and higher local inflammatory reactivity. These deficits correlate with alterations of microglia-neuron crosstalk pathways and have long-lasting effects, both at transcriptional and behavioral levels. This work highlights the perinatal period as a critical time window, especially regarding the role of the gut-brain axis in neurodevelopment, elucidating the link between MIA, poor nutritional habits, and NDD.
Collapse
Affiliation(s)
- Q. Leyrolle
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - F. Decoeur
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - G. Briere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - C. Amadieu
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. R. A. A. Quadros
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - I. Voytyuk
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - C. Lacabanne
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Benmamar-Badel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - J. Bourel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Aubert
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Sere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - F. Chain
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - L. Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - B. Matrot
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - T. Bourgeois
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - S. Grégoire
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - J. G. Leblanc
- CERELA-CONICET, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | | | - P. Langella
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - G. R. Fernandes
- Rene Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, MG Brazil
| | - L. Bretillon
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - C. Joffre
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - R. Uricaru
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Thebault
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.13097.3c0000 0001 2322 6764Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH UK
| | - J. M. Chatel
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - S. Layé
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Nadjar
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| |
Collapse
|
26
|
Morales-Martínez A, Zamorano-Carrillo A, Montes S, El-Hafidi M, Sánchez-Mendoza A, Soria-Castro E, Martínez-Lazcano JC, Martínez-Gopar PE, Ríos C, Pérez-Severiano F. Rich fatty acids diet of fish and olive oils modifies membrane properties in striatal rat synaptosomes. Nutr Neurosci 2021; 24:1-12. [PMID: 30822260 DOI: 10.1080/1028415x.2019.1584692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Essential fatty acids (EFAs) and non-essential fatty acids (nEFAs) exert experimental and clinical neuroprotection in neurodegenerative diseases. The main EFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), nEFAs, and oleic acid (OA) contained in olive and fish oils are inserted into the cell membranes, but the exact mechanism through which they exert neuroprotection is still unknown. Objectives and Methods: In this study, we assessed the fatty acids content and membrane fluidity in striatal rat synaptosomes after fatty acid-rich diets (olive- or a fish-oil diet, 15% w/w). Then, we evaluated the effect of enriching striatum synaptosomes with fatty acids on the oxidative damage produced by the prooxidants ferrous sulfate (FeSO4) or quinolinic acid (QUIN). Results and Discussion: Lipid profile analysis in striatal synaptosomes showed that EPA content increased in the fish oil group in comparison with control and olive groups. Furthermore, we found that synaptosomes enriched with fatty acids and incubated with QUIN or FeSO4 showed a significant oxidative damage reduction. Results suggest that EFAs, particularly EPA, improve membrane fluidity and confer antioxidant effect.
Collapse
Affiliation(s)
- Adriana Morales-Martínez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Elizabeth Soria-Castro
- Departamento de Patología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | | | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| |
Collapse
|
27
|
Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain Behav Immun 2021; 91:716-730. [PMID: 32976934 DOI: 10.1016/j.bbi.2020.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Brain aging is characterized by a decline in cognitive functions, which can lead to the development of neurodegenerative pathologies. Age-related spatial learning and memory deficits are associated with a chronic low-grade inflammation. Anxiety disorders and stress response alterations, occurring for a part of the elderly, have also been linked to an increased neuroinflammation and thus, an accelerated cognitive decline. Nutrition is an innovative strategy to prevent age-related cognitive impairments. Among the nutrients, n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides from proteins, especially those from marine resources, are good candidates for their immunomodulatory, anxiolytic and neuroprotective properties. The aim of this study is to determine the combined effect of n-3 LC-PUFAs and low molecular weight peptides on cognitive functions, and their mechanism of action. We are the first to show that a dietary supplementation with a fish hydrolysate containing n-3 LC-PUFAs and low molecular weight peptides prevented the age-related spatial short-term memory deficits and modulated navigation strategies adopted during spatial learning. In addition, the fish hydrolysate displayed anxiolytic activities with the reduction of anxiety-like behaviour in aged mice, restored the plasmatic corticosterone levels similar to adult animals following an acute stress and modulated the hypothalamic stress response. These effects on behaviour can be explained by the immunomodulatory and neuroprotective properties of the fish hydrolysate that limited microgliosis in vivo, decreased LPS-induced expression of pro-inflammatory cytokines and increased the expression of growth factors such as BDNF and NGF in vitro. Thus, n-3 LC-PUFAs and low molecular weight peptides contained in the fish hydrolysate can play an important role in the limitation of neuroinflammation and stress response alterations during aging and represent a potential strategy for the prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- M Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; Abyss Ingredients, 56850 Caudan, France
| | - P Mortessagne
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - V Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - S Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | - E Bouvret
- Abyss Ingredients, 56850 Caudan, France
| | - A L Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
28
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
29
|
Peng S, Peng Z, Qin M, Huang L, Zhao B, Wei L, Ning J, Tuo QH, Yuan TF, Shi Z, Liao DF. Targeting neuroinflammation: The therapeutic potential of ω-3 PUFAs in substance abuse. Nutrition 2020; 83:111058. [PMID: 33360033 DOI: 10.1016/j.nut.2020.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Substance abuse is a chronic relapsing disorder that results in serious health and socioeconomic issues worldwide. Addictive drugs induce long-lasting morphologic and functional changes in brain circuits and account for the formation of compulsive drug-seeking and drug-taking behaviors. Yet, there remains a lack of reliable therapy. In recent years, accumulating evidence indicated that neuroinflammation was implicated in the development of drug addiction. Findings from both our and other laboratories suggest that ω-3 polyunsaturated fatty acids (PUFAs) are effective in treating neuroinflammation-related mental diseases, and indicate that they could exert positive effects in treating drug addiction. Thus, in the present review, we summarized and evaluated recently published articles reporting the neuroinflammation mechanism in drug addiction and the immune regulatory ability of ω-3 PUFAs. We also sought to identify some of the challenges ahead in the translation of ω-3 PUFAs into addiction treatment.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| |
Collapse
|
30
|
Effects of co-administration of rapamycin and evening primrose/hemp seed oil supplement on immunologic factors and cell membrane fatty acids in experimental autoimmune encephalomyelitis. Gene 2020; 759:144987. [PMID: 32712065 DOI: 10.1016/j.gene.2020.144987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The immune response is influenced by the administration of omega-3 polyunsaturated fatty acids (PUFA). Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE) are affected by PUFA. The combination of evening primrose/hemp seed oil (EPO/HSO) has essential fatty acids (EFAs) for human optimal health due to the favorable ratio of omega-6/omega-3 and antioxidantal properties. The study was conducted to evaluate the effects of EPO/HSO on improving the membrane fatty acids composition of spleen and blood cells and immunologic factors in compared to rapamycin (RAPA) in the EAE model. METHODS AND MATERIALS Chronic-EAE was induced by induction of MOG in C57BL/6J mice (female, age: 6-8 weeks, weight 18-21). Mice were assigned to 5 groups (6/group) to evaluate the therapeutic effects of EPO/HSO supplement in comparison with rapamycin: A group; EPO/HSO + RAPA, B group; RAPA, C group; EPO/HSO. Results were compared to two control groups (EAE and naive). The fatty acid profile of the spleen and blood cell membrane was evaluated. Real-time-polymerase chain reaction was used for the evaluate the genes expression levels of interleukin (IL) -4, IL-5, and IL-13 in lymphocytes. Also, IL-4 of serum was evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS Our findings indicated that EPO/HSO therapy significantly increased the percentage of essential fatty acids in cell membrane of the spleen and blood. The relative expression of IL-4, IL-5, and IL-13 genes in lymphocytes and serum level of IL-4 was significantly increased in the HSO/EPO treated group versus other groups. CONCLUSION These results point to potential therapeutic effects on the repair of the structure of cell membranes and suppression of inflammation by EPO/HSO in EAE.
Collapse
|
31
|
Ajibawo-Aganbi U, Saleem S, Khan SZA, Veliginti S, Perez Bastidas MV, Lungba RM, Cancarevic I. Can Nutritional Adequacy Help Evade Neurodegeneration in Older Age? A Review. Cureus 2020; 12:e10921. [PMID: 33062461 PMCID: PMC7556684 DOI: 10.7759/cureus.10921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
There is an increase in susceptibility to chronic and debilitating diseases with aging. The reason for the underlying neuronal degeneration and normal aging of the brain remains elusive. Different research studies have been conducted to discover how the brain degenerates and the importance of vitamins' role in the neurocognitive decline. Comprehensive literature research was conducted using all relevant data available from PubMed and Google scholar for this article. There has been evidence linking the consumption of essential nutrients to preventing the disease conditions that result in cognitive decline. This article provides the latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive aging. An adequate supply of nutrients like vitamin B2 (riboflavin), vitamin B12, vitamin E, essential fatty acid (omega-3 fatty acid), and flavonoids play a vital role in ensuring healthy aging, enhancing memory, and strengthening neuroprotection. These nutrients help in neurodegenerative diseases like Alzheimer's disease and Parkinson's. We recommend more research studies to determine the underlying mechanism of how these essential nutrients work in the prevention of cognitive decline. These studies will help provide the evidence needed for new dietary recommendations for combating these diseases that often affect aging patients.
Collapse
Affiliation(s)
- Uvie Ajibawo-Aganbi
- Health Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sania Saleem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Seyad Zulficar Ali Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Family Medicine, Ministry of Health Oman, Salalah, OMN
| | - Swathi Veliginti
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria V Perez Bastidas
- Pulmonary Research Department, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rayan M Lungba
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
32
|
Haider S, Madiha S, Batool Z. Amelioration of motor and non-motor deficits and increased striatal APoE levels highlight the beneficial role of pistachio supplementation in rotenone-induced rat model of PD. Metab Brain Dis 2020; 35:1189-1200. [PMID: 32529399 DOI: 10.1007/s11011-020-00584-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Pistachio contains polyphenolic compounds including flavonoids and anthocyanins which have antioxidant and antiinflammatory activity. Present study was aimed to evaluate the protective effects of pistachio on neurobehavioral and neurochemical changes in rats with Parkinson's disease (PD). Animal model of PD was induced by the injection of rotenone (1.5 mg/kg/day, s.c.) for 8 days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks in both pre- and post-treatment. At the end of treatment brain was dissected out and striatum was isolated for biochemical and neurochemical analysis. Memory was assessed by Morris water maze (MWM) and novel object recognition (NOR) test while open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test were used to observe motor behavior. Rotenone administration significantly (p < 0.01) impaired the memory but pistachio in both pre- and post-treatment groups significantly (p < 0.01) improved memory performance. Rotenone-induced motor deficits were significantly attenuated in both pre- and post-pistachio treatment. Increased oxidative stress and decreased DA and 5-HT levels induced by rotenone were also significantly attenuated by pistachio supplementation. Furthermore, raised apolipoprotein E (APoE) levels in rotenone injected rats were also normalized following treatment with pistachio. Present findings show that pistachio possesses neuroprotective effects and improves memory and motor deficits via increasing DA levels and improving oxidative status in brain.
Collapse
Affiliation(s)
- Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, 75270, Karachi, Pakistan.
| | - Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
33
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Genetics of Omega-3 Long-Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs. Genes (Basel) 2020; 11:E587. [PMID: 32466330 PMCID: PMC7288343 DOI: 10.3390/genes11050587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
Meat eating quality with a healthy composition hinges on intramuscular fat (IMF), fat melting point (FMP), tenderness, juiciness, flavour and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) content. These health-beneficial n-3 LC-PUFA play significant roles in optimal cardiovascular, retinal, maternal and childhood brain functions, and include alpha linolenic (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and docosapentaenoic (DPA) acids. The primary objective of this review was to access, retrieve, synthesise and critically appraise the published literature on the synthesis, metabolism and genetics of n-3 LC-PUFA and meat eating quality. Studies on IMF content, FMP and fatty acid composition were reviewed to identify knowledge gaps that can inform future research with Tattykeel Australian White (TAW) lambs. The TAW is a new sheep breed exclusive to MARGRA brand of lamb with an outstanding low fat melting point (28-39°C), high n-3 LC-PUFA EPA+DHA content (33-69mg/100g), marbling (3.4-8.2%), tenderness (20.0-38.5N) and overall consumer liking (7.9-8.5). However, correlations between n-3 LC-PUFA profile, stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), other lipogenic genes and meat quality traits present major knowledge gaps. The review also identified research opportunities in nutrition-genetics interactions aimed at a greater understanding of the genetics of n-3 LC-PUFA, feedlot finishing performance, carcass traits and eating quality in the TAW sheep. It was concluded that studies on IMF, FMP and n-3 LC-PUFA profiles in parental and progeny generations of TAW sheep will be foundational for the genetic selection of healthy lamb eating qualities and provide useful insights into their correlations with SCD, FASN and FABP4 genes.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01, Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, New South Wales 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| |
Collapse
|
34
|
Barón-Mendoza I, González-Arenas A. Relationship between the effect of polyunsaturated fatty acids (PUFAs) on brain plasticity and the improvement on cognition and behavior in individuals with autism spectrum disorder. Nutr Neurosci 2020; 25:387-410. [PMID: 32338174 DOI: 10.1080/1028415x.2020.1755793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: This work aimed to compile information about the neuronal processes in which polyunsaturated fatty acids (PUFAs) could modulate brain plasticity, in order to analyze the role of nutritional intervention with the ω-3 and ω-6 fatty acids as a therapeutic strategy for the Autism Spectrum Disorder (ASD)-related signs and symptoms.Methods: We reviewed different articles reporting the effect of PUFAS on neurite elongation, membrane expansion, cytoskeleton rearrangement and neurotransmission, considering the ASD-related abnormalities in these processes.Results: In accordance to the reviewed studies, it is clear that ASD is one of the neurological conditions associated with an impairment in neuronal plasticity; therefore, PUFAs-rich diet improvements on cognition and behavioral deficits in individuals with autism, could be involved with the regulation of neuronal processes implicated in the atypical brain plasticity related with this neurodevelopmental disorder.Discussion: The behavioral and cognitive improvement observed in individuals with ASD after PUFAs treatment might underlie, at least in part, in the ability of ω-3 and ω-6 fatty acids to induce neurite outgrowth, probably, through the dynamic regulation of the neuronal cytoskeleton along with the expansion of neuronal membranes. Furthermore, it might also be associated with an enhancement of the efficacy of synaptic transmission and the modulation of neurotransmitters release.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
35
|
Babiszewska M. Effects of energy and essential fatty acids content in breast milk on infant's head dimensions. Am J Hum Biol 2020; 32:e23418. [PMID: 32307819 DOI: 10.1002/ajhb.23418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Essential fatty acids (EFA), including linoleic acid (LA) and alpha-linolenic acid (ALA), are indispensable for proper brain growth especially in the first months after birth when it develops most rapidly. Since fats, especially EFA, in breast milk are highly variable between mothers, we indirectly examined whether milk energy, LA and ALA content in breast milk affect volume and shape of the infant's head. METHODS The study encompassed 60 mothers and their healthy term-born infants between the third and sixth month of lactation. The percentage of macronutrients and dry matter in human milk samples was assessed using Fourier-transform infrared spectroscopy (FTIR), and LA and ALA concentrations in breast milk were determined using gas chromatography (GC). Infant head measurements were taken using standard anthropometric equipment and methods. RESULTS LA content in breast milk was found to be positively associated with head volume in boys. Furthermore, ALA content was positively associated with the head height-to-length ratio thus with more arched head in infants irrespective of sex. No relationship was found between milk energy content in mothers' milk and infant head dimensions. CONCLUSIONS This is the first study to demonstrate a relationship between EFA concentration in human milk and infant head dimensions. Given that LA and ALA in human milk are variable in women and due to the extremely rapid growth of nerve tissue in the first months of life, adequate supply of EFA in breast milk should attract the attention of public health sciences.
Collapse
Affiliation(s)
- Magdalena Babiszewska
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
36
|
Joffre C, Dinel AL, Chataigner M, Pallet V, Layé S. n-3 Polyunsaturated Fatty Acids and Their Derivates Reduce Neuroinflammation during Aging. Nutrients 2020; 12:nu12030647. [PMID: 32121189 PMCID: PMC7146513 DOI: 10.3390/nu12030647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
: Aging is associated to cognitive decline, which can lead to loss of life quality, personal suffering, and ultimately neurodegenerative diseases. Neuroinflammation is one of the mechanisms explaining the loss of cognitive functions. Indeed, aging is associated to the activation of inflammatory signaling pathways, which can be targeted by specific nutrients with anti-inflammatory effects. Dietary n-3 polyunsaturated fatty acids (PUFAs) are particularly attractive as they are present in the brain, possess immunomodulatory properties, and are precursors of lipid derivates named specialized pro-resolving mediators (SPM). SPMs are crucially involved in the resolution of inflammation that is modified during aging, resulting in chronic inflammation. In this review, we first examine the effect of aging on neuroinflammation and then evaluate the potential beneficial effect of n-3 PUFA as precursors of bioactive derivates, particularly during aging, on the resolution of inflammation. Lastly, we highlight evidence supporting a role of n-3 PUFA during aging.
Collapse
Affiliation(s)
- Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Correspondence:
| | - Anne-Laure Dinel
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mathilde Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Abyss Ingredients, 56850 Caudan, France
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| |
Collapse
|
37
|
Bourlieu C, Mahdoueni W, Paboeuf G, Gicquel E, Ménard O, Pezennec S, Bouhallab S, Deglaire A, Dupont D, Carrière F, Vié V. Physico-chemical behaviors of human and bovine milk membrane extracts and their influence on gastric lipase adsorption. Biochimie 2020; 169:95-105. [DOI: 10.1016/j.biochi.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
|
38
|
Holton KF, Kirkland AE. Moving past antioxidant supplementation for the dietary treatment of multiple sclerosis. Mult Scler 2019; 26:1012-1023. [PMID: 31823691 DOI: 10.1177/1352458519893925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current research has demonstrated the definitive presence of oxidative stress in multiple sclerosis (MS). This finding has led to clinical trial research which has indicated that specific antioxidants have the ability to effectively reduce markers of oxidative stress. However, few interventions testing antioxidant supplements have shown efficacy for reducing the symptom burden in the disorder. This paper quickly reviews what is currently known about oxidative stress and antioxidants in MS, explains which nutrients are critical for the creation and maintenance of the myelin sheath, describes potential negative effectors in the diet which may be contributing to oxidative stress, and how these aspects of diet, combined with current knowledge on antioxidants, may be able to be combined into a whole food dietary intervention which can be tested for efficacy in MS.
Collapse
Affiliation(s)
- Kathleen F Holton
- Department of Health Studies and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Anna E Kirkland
- Department of Psychology, American University, Washington, DC, USA
| |
Collapse
|
39
|
Grochowska M, Laskus T, Radkowski M. Gut Microbiota in Neurological Disorders. Arch Immunol Ther Exp (Warsz) 2019; 67:375-383. [PMID: 31578596 PMCID: PMC6805802 DOI: 10.1007/s00005-019-00561-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
The incidence of neurological disorders such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD) is increasing throughout the world, but their pathogenesis remains unclear and successful treatment remains elusive. Bidirectional communications between the central nervous system and gut microbiota may play some role in the pathogenesis of the above disorders. Up to a thousand bacterial species reside in human intestine; they colonize the gut shortly after birth and remain for life. Numerous studies point to the role of microbiota composition in the development, course and treatment of MS, AD and PD.
Collapse
Affiliation(s)
- Marta Grochowska
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
40
|
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| | - Priyatharini Ambigaipalan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| |
Collapse
|
41
|
Jougleux JL, Rioux FM, Fiset S, Boudreau LH, Surette ME. Influence of iron-deficient diets during gestation and lactation on cerebral fatty acids and eicosanoids in guinea pig offspring-Comparison of studies with different sources of dietary lipids. Prostaglandins Leukot Essent Fatty Acids 2019; 149:37-45. [PMID: 31422159 DOI: 10.1016/j.plefa.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 11/29/2022]
Abstract
Previous studies showed that mild iron deficiency anaemia (IDA) induced by feeding an iron deficient (ID) diet to female guinea pigs during gestation and lactation to alters the auditory functions of the offspring when corn oil is the only source of dietary lipids. Conversely, feeding an ID diet with a dietary fatty acid composition similar to that of typical human western diets induced minor impairments. Since tissue fatty acid metabolism is affected by dietary iron, the current study measured the impacts of these ID diets (ID-corn and ID-west) compared to the corresponding iron-sufficient control diets (IS-corn and IS-west) on encephalum fatty acid metabolism in the offspring at post-natal day 24. IDA induced by the ID-corn diet resulted in significant increases in encephalum n-6 PUFA content, but IDA induced by the ID-west diet had little impact on fatty acid profiles compared to the IS-west group. Brain COX II protein expression and FADS2 mRNA expression were statistically unaffected in both experiments, but encephalum PGE2 concentrations were significantly reduced in ID-west pups. These results suggest IDA studies during prenatal development should consider dietary lipid compositions.
Collapse
Affiliation(s)
- Jean-Luc Jougleux
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada
| | - France M Rioux
- École des sciences de la Nutrition, Faculté des Sciences de la Santé, Université d'Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Sylvain Fiset
- Secteur Administration et Sciences Humaines, Université de Moncton, Campus Edmundston, Edmundston, NB, E3V 2S8, Canada
| | - Luc H Boudreau
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada
| | - Marc E Surette
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
42
|
Arshad Z, Rezapour-Firouzi S, Ebrahimifar M, Mosavi Jarrahi A, Mohammadian M. Association of Delta-6-Desaturase Expression with
Aggressiveness of Cancer, Diabetes Mellitus, and Multiple
Sclerosis: A Narrative Review. Asian Pac J Cancer Prev 2019; 20:1005-1018. [PMID: 31030467 PMCID: PMC6948902 DOI: 10.31557/apjcp.2019.20.4.1005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: The phosphatidylinositol 3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/
mTOR) signaling regulates multiple cellular processes and organizes cell proliferation, survival, and differentiation
with the available nutrients, in particular, fatty acids. Polyunsaturated fatty acids (PUFAs) are cytotoxic to cancer cells
and play a critical role in the treatment of multiple sclerosis (MS) and diabetes mellitus (DM). PUFAs are produced in
the body by desaturases and elongases from dietary essential fatty acids (EFAs), primarily involving delta-6-desaturase
(D6D). D6D is a rate-limiting enzyme for maintaining many aspects of lipid homeostasis and normal health. D6D is
important to recognize the mechanisms that regulate the expression of this enzyme in humans. A lower level of D6D was
seen in breast tumors compared to normal tissues. Interestingly, the elevated serum level of D6D was seen in MS and
DM, which explains the critical role of D6D in inflammatory diseases. Methods: We searched databases of PubMed,
Web of Science (WOS), Google Scholar, Scopus and related studies by predefined eligibility criteria. We assessed
their quality and extracted data. Results: Regarding the mTOR signaling pathway, there is remarkable contributions of
many inflammatory diseases to attention to common metabolic pathways are depicted. Of course, we need to have the
insights into each disorder and their pathological process. The first step in balancing the intake of EFAs is to prevent
the disruption of metabolism and expression of the D6D enzyme. Conclusions: The ω6 and ω3 pathways are two major
pathways in the biosynthesis of PUFAs. In both of these, D6D is a vital bifunctional enzyme desaturating linoleic acid
or alpha-linolenic acid. Therefore, if ω6 and ω3 EFAs are given together in a ratio of 2: 1, the D6D expression will be
down-regulated and normalized.
Collapse
Affiliation(s)
- Zhila Arshad
- Department of Pathology of Anatomy, School of medicine, Baku University of Medical Sciences, Baku, Azerbaijan
| | - Soheila Rezapour-Firouzi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran. ,
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Alireza Mosavi Jarrahi
- Department of Social Medicine, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Mohammadian
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
43
|
Rees A, Sirois S, Wearden A. Prenatal maternal docosahexaenoic acid intake and infant information processing at 4.5mo and 9mo: A longitudinal study. PLoS One 2019; 14:e0210984. [PMID: 30759104 PMCID: PMC6373900 DOI: 10.1371/journal.pone.0210984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/06/2019] [Indexed: 11/22/2022] Open
Abstract
Previous research suggesting an association between maternal prenatal docosahexaenoic acid (DHA) intake and infant cognition has yet to assess whether there is a critical trimester for the observed effects. We used a comprehensive Food Frequency Questionnaire to estimate DHA levels during both the second and third trimesters of pregnancy, in a sample of 125 pregnant women. Infants were assessed at 4.5 months and 9 months post-partum using specific tests of visual acuity, habituation, and visual attention. Based on maternal DHA levels during pregnancy, mothers were subdivided into high, medium, and low groups, and their infants compared for task performance using one-way ANOVAs with maternal DHA groups. On the 9 month visual acuity test, infants whose mothers were in the medium DHA group performed significantly better than those with mothers in the low or high DHA groups (p = 0.008). However, no significant finding was found for any of the other cognitive assessment measures. Despite a number of studies reporting a positive effect of higher DHA levels on cognitive development, this study fails to support those conclusions. We can, however, conclude that it appears to be DHA intake in the third trimester specifically, which is influencing the development of visual acuity towards the end of the first postnatal year.
Collapse
Affiliation(s)
- Alison Rees
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Sylvain Sirois
- Département de Psychologie, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Alison Wearden
- School of Psychological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
44
|
Sadeghi-Ardekani K, Haghighi M, Zarrin R. Effects of omega-3 fatty acid supplementation on cigarette craving and oxidative stress index in heavy-smoker males: A double-blind, randomized, placebo-controlled clinical trial. J Psychopharmacol 2018; 32:995-1002. [PMID: 30136619 DOI: 10.1177/0269881118788806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Smoking-induced oxidative stress is thought to contribute to lower levels of omega-3 fatty acids in plasma and brain tissue. This lower level leads to impaired function in a dopaminergic system related to dependence and craving. AIMS The aim of this study was to evaluate the effects of omega-3 fatty acid supplementation on cigarette craving and oxidative stress index in heavy-smoker males. METHODS In this double-blind, randomized clinical trial, 54 heavy-smoker males (smoke ⩾20 cigarettes per day) were randomly selected to receive either five capsules of fish-oil-derived omega-3 fatty acid supplements ( n = 27, each 1 g capsule containing 180 mg of eicosapentaenoic acid and 120 mg of docosahexanoic acid) or a placebo ( n = 27) for 3 months. The psychometric evaluations (nicotine dependence and cigarette craving), biochemical markers (urinary cotinine, serum total antioxidant capacity and total oxidant status) and self-reported smoking status were used to assess the cigarette craving and oxidative stress index (oxidative stress index = total oxidant status/total antioxidant capacity). RESULTS There was a greater reduction in levels of nicotine dependence, cigarette craving and cigarettes smoked per day in the omega-3 fatty acid group compared to the placebo group, and the difference between the two groups increased from baseline to 3-month follow up. The model estimated that these differences were statistically significant ( p < 0.001, p < 0.001 and p < 0.001, respectively). Also, a significant decrease was observed in levels of total oxidant status ( p = 0.008) and oxidative stress index ( p = 0.011) in the omega-3 fatty acid group after intervention. CONCLUSIONS This study showed that high-dose omega-3 fatty acid supplementation appears to be useful in reducing cigarette craving and oxidative stress index in heavy-smoker males.
Collapse
Affiliation(s)
- Kiana Sadeghi-Ardekani
- 1 Nutrition Department, School of Medicine, The Urmia University of Medical Sciences, Iran
| | - Mahmonir Haghighi
- 2 Psychiatry Department, The Urmia University of Medical Sciences, Iran
| | - Rasoul Zarrin
- 1 Nutrition Department, School of Medicine, The Urmia University of Medical Sciences, Iran
| |
Collapse
|
45
|
Choy O, Raine A. Omega-3 Supplementation as a Dietary Intervention to Reduce Aggressive and Antisocial Behavior. Curr Psychiatry Rep 2018; 20:32. [PMID: 29623453 DOI: 10.1007/s11920-018-0894-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Although there is an increasing body of literature on the relationship between omega-3 fatty acids and aggressive/antisocial behavior, evidence to date suggests that there are mixed findings on the efficacy of omega-3 supplementation as a dietary intervention to reduce such behaviors. This article describes the current state of the research regarding omega-3 supplementation and aggressive/antisocial behavior from intervention studies, with an emphasis on randomized controlled trials. RECENT FINDINGS The current evidence base indicates a small effect size (approximately d = .20) for the efficacy of increased omega-3 intake in reducing aggressive and antisocial behavior in children and adults. How precisely omega-3 supplementation results in such behavioral improvement is an open question, although upregulation of dysfunctional prefrontal regions is one candidate mediator. Directions for further research include understanding the more basic mechanisms that may underlie any intervention effects, delineating dose-response relationships, ascertaining optimal treatment duration and composition, conducting follow-ups post-treatment, and testing the provisional hypothesis that more impulsive, reactive forms of aggression may be particularly amenable to omega-3 supplementation.
Collapse
Affiliation(s)
- Olivia Choy
- Department of Psychology, Nanyang Technological University, 14 Nanyang Drive, Singapore, 637332, Singapore.
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Jerry Lee Center of Criminology, 3809 Walnut St, Philadelphia, PA, 19104, USA
| |
Collapse
|
46
|
|
47
|
Rezapour-Firouzi S, Shahabi S, Mohammadzadeh A, Tehrani AA, Kheradmand F, Mazloomi E. The potential effects of hemp seed/evening primrose oils on the mammalian target of rapamycin complex 1 and interferon-gamma genes expression in experimental autoimmune encephalomyelitis. Res Pharm Sci 2018; 13:523-532. [PMID: 30607150 PMCID: PMC6288989 DOI: 10.4103/1735-5362.245964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) has a fundamental role in the metabolism, growth, and regulation of the immune system. The interferon gamma (IFN-γ)derived from T helper 1 (Th1) cells is a prominent pro-inflammatory cytokine in multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE). Due to the exclusive role of rapamycin (RAPA) in mTOR complex 1 (mTORC1) inhibition, essentially Th1 differentiation and IFN-γ production, we evaluated the potential therapeutic effects of hemp seed/evening primrose oils (HSO/EPO) in comparison with RAPA administration in EAE. To evaluate the therapeutic effects of EPO/HSO supplement in comparison with RAPA, EAE was induced using myelin oligodendrocyte glycoprotein (MOG) peptide and complete Freund's adjuvant in C57BL/6 mice. The weight, clinical score, and histological findings were evaluated. Total mRNA was extracted from local lymph nodes and qRT-PCR was used for the purpose of the genes expression level of regulatory associated protein of TORC1 (RAPTOR) and IFN-γ. Our results indicated that the relative expression of RAPTOR and IFN-γ genes were significantly reduced in HSO/EPO, RAPA, and RAPA + HSO/EPO treated groups in comparison with the untreated group. Interestingly, histological findings have shown that the HSO/EPO treated group remarkably regenerated the myelin sheath, but this did not occur in the case of RAPA or combined RAPA and HSO/EPO treated groups. Our findings suggeste that HSO/HPO can be used as a potent immunomodulator and as a good candidate for re-myelination and downregulation of immune response for treatment of MS.
Collapse
Affiliation(s)
- Soheila Rezapour-Firouzi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Shahram Shahabi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Adel Mohammadzadeh
- Departement of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Ali Asgar Tehrani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, I.R. Iran
| | - Fatemeh Kheradmand
- Department of Biochemistry, School of Medicine, Urmia University of Medical Science, Urmia, I.R. Iran
| | - Ebrahim Mazloomi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
48
|
Shih PB, Morisseau C, Le T, Woodside B, German JB. Personalized polyunsaturated fatty acids as a potential adjunctive treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat 2017; 133:11-19. [PMID: 28873340 PMCID: PMC5792652 DOI: 10.1016/j.prostaglandins.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Anorexia nervosa (AN) is a complex psychiatric disorder with high morbidity and mortality rates. While many individuals make full recoveries, up to a third of patients develop a chronic, treatment-resistant form of the illness that leads to a premature death in 15-20% of those affected. There have been few advances in treatment, both in terms of psychological or pharmacologic treatment over the last 30 years. Food aversion is commonly cited by patients with AN as a barrier to normalizing eating and weight. Our group has a keen interest in examining factors that might allow this to be addressed, thus improving treatment outcomes through personalized dietary plans or nutritional supplementation related to underlying genetic status. We demonstrated that polyunsaturated fatty acids (PUFAs)-derived bioactive lipids (eicosanoids) are implicated in not only the risk of AN, but also with its comorbid psychopathology. Of interest, the differential postprandial omega 6-derived eicosanoid shift observed in AN highlights the possibility that the metabolism of PUFAs is an important mechanism underlying the profound food version, contributing to pathological food restriction in AN. A concise knowledge of the relationships among PUFAs, eicosanoids, and AN clinical course and psychopathology could be the key to developing personalized nutritional rehabilitative treatments for those suffering from AN. This paper provides a comprehensive overview of the literature on PUFAs in AN. We also selectively reviewed the clinical benefits PUFA treatments exert in other psychiatric diseases, on weight and appetite regulation, and for resolution of inflammation, all of which are relevant in the disease course and outcome of AN. We propose that personalized PUFA formulation be developed and tested as a novel adjunctive treatment for patients with AN. We hypothesize that with personalized PUFA formulation, food aversion and anxiety about eating will decrease while mood, dietary behavior, and weight restoration will improve in AN, leading to improvements in the overall treatment outcome.
Collapse
Affiliation(s)
| | | | - Thu Le
- University of California, San Diego, CA, USA
| | | | | |
Collapse
|
49
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
50
|
Li YJ, Li YM, Xiang DX. Supplement intervention associated with nutritional deficiencies in autism spectrum disorders: a systematic review. Eur J Nutr 2017; 57:2571-2582. [DOI: 10.1007/s00394-017-1528-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
|