1
|
Gao M, Ooms JF, Leurs R, Vischer HF. Histamine H 3 Receptor Isoforms: Insights from Alternative Splicing to Functional Complexity. Biomolecules 2024; 14:761. [PMID: 39062475 PMCID: PMC11274711 DOI: 10.3390/biom14070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative splicing significantly enhances the diversity of the G protein-coupled receptor (GPCR) family, including the histamine H3 receptor (H3R). This post-transcriptional modification generates multiple H3R isoforms with potentially distinct pharmacological and physiological profiles. H3R is primarily involved in the presynaptic inhibition of neurotransmitter release in the central nervous system. Despite the approval of pitolisant for narcolepsy (Wakix®) and daytime sleepiness in adults with obstructive sleep apnea (Ozawade®) and ongoing clinical trials for other H3R antagonists/inverse agonists, the functional significance of the numerous H3R isoforms remains largely enigmatic. Recent publicly available RNA sequencing data have confirmed the expression of multiple H3R isoforms in the brain, with some isoforms exhibiting unique tissue-specific distribution patterns hinting at isoform-specific functions and interactions within neural circuits. In this review, we discuss the complexity of H3R isoforms with a focus on their potential roles in central nervous system (CNS) function. Comparative analysis across species highlights evolutionary conservation and divergence in H3R splicing, suggesting species-specific regulatory mechanisms. Understanding the functionality of H3R isoforms is crucial for the development of targeted therapeutics. This knowledge will inform the design of more precise pharmacological interventions, potentially enhancing therapeutic efficacy and reducing adverse effects in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Henry F. Vischer
- Amsterdam Institute of Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.G.); (J.F.O.); (R.L.)
| |
Collapse
|
2
|
Thomas SD, Abdalla S, Eissa N, Akour A, Jha NK, Ojha S, Sadek B. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer's Disease, Parkinson's Disease, and Autism Spectrum Disorder. Pharmaceuticals (Basel) 2024; 17:831. [PMID: 39065682 PMCID: PMC11279978 DOI: 10.3390/ph17070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3β pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Sabna Abdalla
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
3
|
Kim JB, Kim Y, Kim SJ, Ha TY, Kim DK, Kim DW, So M, Kim SH, Woo HG, Yoon D, Park SM. Integration of National Health Insurance claims data and animal models reveals fexofenadine as a promising repurposed drug for Parkinson's disease. J Neuroinflammation 2024; 21:53. [PMID: 38383441 PMCID: PMC10880337 DOI: 10.1186/s12974-024-03041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common and costly progressive neurodegenerative disease of unclear etiology. A disease-modifying approach that can directly stop or slow its progression remains a major unmet need in the treatment of PD. A clinical pharmacology-based drug repositioning strategy is a useful approach for identifying new drugs for PD. METHODS We analyzed claims data obtained from the National Health Insurance Service (NHIS), which covers a significant portion of the South Korean population, to investigate the association between antihistamines, a class of drugs commonly used to treat allergic symptoms by blocking H1 receptor, and PD in a real-world setting. Additionally, we validated this model using various animal models of PD such as the 6-hydroxydopmaine (6-OHDA), α-synuclein preformed fibrils (PFF) injection, and Caenorhabditis elegans (C. elegans) models. Finally, whole transcriptome data and Ingenuity Pathway Analysis (IPA) were used to elucidate drug mechanism pathways. RESULTS We identified fexofenadine as the most promising candidate using National Health Insurance claims data in the real world. In several animal models, including the 6-OHDA, PFF injection, and C. elegans models, fexofenadine ameliorated PD-related pathologies. RNA-seq analysis and the subsequent experiments suggested that fexofenadine is effective in PD via inhibition of peripheral immune cell infiltration into the brain. CONCLUSION Fexofenadine shows promise for the treatment of PD, identified through clinical data and validated in diverse animal models. This combined clinical and preclinical approach offers valuable insights for developing novel PD therapeutics.
Collapse
Affiliation(s)
- Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Yujeong Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Jeong Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | - Tae-Young Ha
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Dong-Kyu Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | - Dong Won Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | | | - Seung Ho Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Goo Woo
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | - Dukyong Yoon
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea.
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, Korea.
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
4
|
Tighilet B, Trico J, Marouane E, Zwergal A, Chabbert C. Histaminergic System and Vestibular Function in Normal and Pathological Conditions. Curr Neuropharmacol 2024; 22:1826-1845. [PMID: 38504566 PMCID: PMC11284731 DOI: 10.2174/1570159x22666240319123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 03/21/2024] Open
Abstract
Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Jessica Trico
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Andreas Zwergal
- Department of Neurology, LMU University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| |
Collapse
|
5
|
Semenova EI, Partevian SA, Shulskaya MV, Rudenok MM, Lukashevich MV, Baranova NM, Doronina OB, Doronina KS, Rosinskaya AV, Fedotova EY, Illarioshkin SN, Slominsky PA, Shadrina MI, Alieva AK. Analysis of ADORA2A, MTA1, PTGDS, PTGS2, NSF, and HNMT Gene Expression Levels in Peripheral Blood of Patients with Early Stages of Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9412776. [PMID: 38027039 PMCID: PMC10681775 DOI: 10.1155/2023/9412776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Parkinson's disease (PD) is a common chronic, age-related neurodegenerative disease. This disease is characterized by a long prodromal period. In this context, it is important to search for the genes and mechanisms that are involved in the development of the pathological process in the earliest stages of the disease. Published data suggest that blood cells, particularly lymphocytes, may be a model for studying the processes that occur in the brain in PD. Thus, in the present work, we performed an analysis of changes in the expression of the genes ADORA2A, MTA1, PTGDS, PTGS2, NSF, and HNMT in the peripheral blood of patients with early stages of PD (stages 1 and 2 of the Hoehn-Yahr scale). We found significant and PD-specific expression changes of four genes, i.e., MTA1, PTGS2, NSF, and HNMT, in the peripheral blood of patients with early stages of PD. These genes may be associated with PD pathogenesis in the early clinical stages and can be considered as potential candidate genes for this disease. Altered expression of the ADORA2A gene in treated PD patients may indicate that this gene is involved in processes affected by antiparkinsonian therapy.
Collapse
Affiliation(s)
- Ekaterina I. Semenova
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia
| | - Suzanna A. Partevian
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia
| | - Marina V. Shulskaya
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia
| | - Margarita M. Rudenok
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia
| | - Maria V. Lukashevich
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia
| | - Nina M. Baranova
- Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Olga B. Doronina
- Novosibirsk State Medical University, 52, Krasnyy Ave., 630091 Novosibirsk, Russia
| | - Kseniya S. Doronina
- Novosibirsk State Medical University, 52, Krasnyy Ave., 630091 Novosibirsk, Russia
| | - Anna V. Rosinskaya
- State Public Health Institution Primorsk Regional Clinical Hospital No. 1, 57 Aleutskaya St., 690091 Vladivostok, Russia
| | | | | | - Petr A. Slominsky
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia
| | - Maria I. Shadrina
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia
| | - Anelya Kh. Alieva
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia
| |
Collapse
|
6
|
Arai T, Kamagata K, Uchida W, Andica C, Takabayashi K, Saito Y, Tuerxun R, Mahemuti Z, Morita Y, Irie R, Kirino E, Aoki S. Reduced neurite density index in the prefrontal cortex of adults with autism assessed using neurite orientation dispersion and density imaging. Front Neurol 2023; 14:1110883. [PMID: 37638188 PMCID: PMC10450631 DOI: 10.3389/fneur.2023.1110883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Background Core symptoms of autism-spectrum disorder (ASD) have been associated with prefrontal cortex abnormalities. However, the mechanisms behind the observation remain incomplete, partially due to the challenges of modeling complex gray matter (GM) structures. This study aimed to identify GM microstructural alterations in adults with ASD using neurite orientation dispersion and density imaging (NODDI) and voxel-wise GM-based spatial statistics (GBSS) to reduce the partial volume effects from the white matter and cerebrospinal fluid. Materials and methods A total of 48 right-handed participants were included, of which 22 had ASD (17 men; mean age, 34.42 ± 8.27 years) and 26 were typically developing (TD) individuals (14 men; mean age, 32.57 ± 9.62 years). The metrics of NODDI (neurite density index [NDI], orientation dispersion index [ODI], and isotropic volume fraction [ISOVF]) were compared between groups using GBSS. Diffusion tensor imaging (DTI) metrics and surface-based cortical thickness were also compared. The associations between magnetic resonance imaging-based measures and ASD-related scores, including ASD-spectrum quotient, empathizing quotient, and systemizing quotient were also assessed in the region of interest (ROI) analysis. Results After controlling for age, sex, and intracranial volume, GBSS demonstrated significantly lower NDI in the ASD group than in the TD group in the left prefrontal cortex (caudal middle frontal, lateral orbitofrontal, pars orbitalis, pars triangularis, rostral middle frontal, and superior frontal region). In the ROI analysis of individuals with ASD, a significantly positive correlation was observed between the NDI in the left rostral middle frontal, superior frontal, and left frontal pole and empathizing quotient score. No significant between-group differences were observed in all DTI metrics, other NODDI (i.e., ODI and ISOVF) metrics, and cortical thickness. Conclusion GBSS analysis was used to demonstrate the ability of NODDI metrics to detect GM microstructural alterations in adults with ASD, while no changes were detected using DTI and cortical thickness evaluation. Specifically, we observed a reduced neurite density index in the left prefrontal cortices associated with reduced empathic abilities.
Collapse
Affiliation(s)
- Takashi Arai
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Rukeye Tuerxun
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Zaimire Mahemuti
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Morita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Meheronnisha SK, Thekkekkara D, Babu A, Tausif YM, Manjula SN. Novel therapeutic targets to halt the progression of Parkinson's disease: an in-depth review on molecular signalling cascades. 3 Biotech 2023; 13:218. [PMID: 37265542 PMCID: PMC10229523 DOI: 10.1007/s13205-023-03637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Recent research has focused mostly on understanding and combating the neurodegenerative mechanisms and symptoms of Parkinson's disease (PD). Moreover, developing novel therapeutic targets to halt the progression of PD remains a key focus for researchers. As yet, no agents have been found to have unambiguous evidence of disease-modifying actions in PD. The primary objective of this review is to summarize the promising targets that have recently been uncovered which include histamine 4 receptors, beta2 adrenergic receptor, phosphodiesterase 4, sphingosine-1-phosphate receptor subtype 1, angiotensin receptors, high-mobility group box 1, rabphilin-3A, purinergic 2Y type 12 receptor, colony-stimulating factor-1 receptor, transient receptor potential vanilloid 4, alanine-serine-cysteine transporter 2, G protein-coupled oestrogen receptor, a mitochondrial antiviral signalling protein, glucocerebrosidase, indolamine-2,3-dioxygenase-1, soluble epoxy hydroxylase and dual specificity phosphatase 6. We have also reviewed the molecular signalling cascades of those novel targets which cause the initiation and progression of PD and gathered some emerging disease-modifying agents that could slow the progression of PD. These approaches will assist in the discovery of novel target molecules, for curing disease symptoms and may provide a glimmer of hope for the treatment of PD. As of now, there is no drug available that will completely prevent the progression of PD by inhibiting the pathogenesis involved in PD, and thus, the newer targets and their inhibitors or activators are the major focus for researchers to suppress PD symptomatology. And the major limitations of these targets are the lack of clinical data and less number pre-clinical data, as we have majorly discussed the different targets which all have well reported for other disease pathogenesis. Thus, finding the disease-drug interactions, the molecular mechanisms, and the major side effects will be major challenges for the researchers.
Collapse
Affiliation(s)
- S. K. Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Y. Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| |
Collapse
|
8
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Chauhan V, Chauhan NK, Dutta S, Pathak D, Nongthomba U. Comparative in-silico analysis of microbial dysbiosis discern potential metabolic link in neurodegenerative diseases. Front Neurosci 2023; 17:1153422. [PMID: 37113148 PMCID: PMC10126365 DOI: 10.3389/fnins.2023.1153422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A healthy gut flora contains a diverse and stable commensal group of microorganisms, whereas, in disease conditions, there is a shift toward pathogenic microbes, termed microbial dysbiosis. Many studies associate microbial dysbiosis with neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). Although, an overall comparative analysis of microbes and their metabolic involvement in these diseases is still lacking. In this study, we have performed a comparative analysis of microbial composition changes occurring in these four diseases. Our research showed a high resemblance of microbial dysbiosis signatures between AD, PD, and MS. However, ALS appeared dissimilar. The most common population of microbes to show an increase belonged to the phyla, Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes. Although, Bacteroidetes and Firmicutes were the only phyla that showed a decrease in their population. The functional analysis of these dysbiotic microbes showed several potential metabolic links which can be involved in the altered microbiome-gut-brain axis in neurodegenerative diseases. For instance, the microbes with elevated populations lack pathways for synthesizing SCFA acetate and butyrate. Also, these microbes have a high capacity for producing L-glutamate, an excitatory neurotransmitter and precursor of GABA. Contrastingly, Tryptophan and histamine have a lower representation in the annotated genome of elevated microbes. Finally, the neuroprotective compound spermidine was less represented in elevated microbes' genomes. Our study provides a comprehensive catalog of potential dysbiotic microbes and their metabolic involvement in neurodegenerative disorders, including AD, PD, MS, and ALS.
Collapse
Affiliation(s)
- Vipin Chauhan
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Nitin K. Chauhan
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Somit Dutta
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Dhruv Pathak
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Upendra Nongthomba
- Developmental and Biomedical Genetics Laboratory, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- *Correspondence: Upendra Nongthomba
| |
Collapse
|
10
|
Zhu J, Ma R, Li G. Drug repurposing: Clemastine fumarate and neurodegeneration. Biomed Pharmacother 2023; 157:113904. [PMID: 36370521 DOI: 10.1016/j.biopha.2022.113904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases have been a weighty problem in elder people who might be stricken with motor or/and cognition defects with lower life quality urging for effective treatment. Drugs are costly from development to market, so that drug repurposing, exploration of existing drugs for novel therapeutic purposes, becomes a wise and popular strategy to raise new treatment options. Clemastine fumarate, different from anti-allergic effect as H1 histamine antagonist, was screened and identified as promising drug for remyelination and autophagy enhancement. Surprisingly, fumarate salt also has similar effect. Hence, whether clemastine fumarate would make a protective impact on neurodegenerative diseases and what contribution fumarate probably makes are intriguing to us. In this review, we summarize the potential mechanism surrounding clemastine fumarate in current literature, and try to distinguish independent or synergistic effect between clemastine and fumarate, aiming to find worthwhile research direction for neurodegeneration diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
11
|
Lu Y, Dong CZ, Bao D, Zhong C, Liu K, Chen L, Wang W, Yang B. The Thr105Ile Variant (rs11558538) in the Histamine N-Methyltransferase Gene May Be Associated with Reduced Risk of Parkinson's Disease: A Meta-analysis. Genet Test Mol Biomarkers 2022; 26:543-549. [DOI: 10.1089/gtmb.2021.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yongxia Lu
- Department of Endocrinology, Metabolism and Gerontology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Cheng Zhen Dong
- Department of Endocrinology, Metabolism and Gerontology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Dongmei Bao
- Department of Neurology, Hanyuan People's Hospital, Yaan, Sichuan Province, P.R. China
| | - Chengqing Zhong
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Keting Liu
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Lifan Chen
- Department of Endocrinology, Metabolism and Gerontology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Wei Wang
- Department of Endocrinology, Metabolism and Gerontology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Baiyuan Yang
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
12
|
Chazot P. The H 4 histamine receptor, a new rational neuroinflammatory target for Parkinson's disease: A commentary. Brain Behav Immun 2022; 100:231-232. [PMID: 34920089 DOI: 10.1016/j.bbi.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022] Open
Affiliation(s)
- Paul Chazot
- Department of Biosciences, Durham University, South Road, Durham DH13LE, UK
| |
Collapse
|
13
|
Liu H, Li J, Wang X, Huang J, Wang T, Lin Z, Xiong N. Excessive Daytime Sleepiness in Parkinson's Disease. Nat Sci Sleep 2022; 14:1589-1609. [PMID: 36105924 PMCID: PMC9464627 DOI: 10.2147/nss.s375098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Excessive daytime sleepiness (EDS) is one of the most common sleep disorders in Parkinson's disease (PD). It has attracted much attention due to high morbidity, poor quality of life, increased risk for accidents, obscure mechanisms, comorbidity with PD and limited therapeutic approaches. In this review, we summarize the current literature on epidemiology of EDS in PD to address the discrepancy between subjective and objective measures and clarify the reason for the inconsistent prevalence in previous studies. Besides, we focus on the effects of commonly used antiparkinsonian drugs on EDS and related pharmacological mechanisms to provide evidence for rational clinical medication in sleepy PD patients. More importantly, degeneration of wake-promoting nuclei owing to primary neurodegenerative process of PD is the underlying pathogenesis of EDS. Accordingly, altered wake-promoting nerve nuclei and neurotransmitter systems in PD patients are highlighted to providing clues for identifying EDS-causing targets in the sleep and wake cycles. Future mechanistic studies toward this direction will hopefully advance the development of novel and specific interventions for EDS in PD patients.
Collapse
Affiliation(s)
- Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital; Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021; 11:biom11091345. [PMID: 34572558 PMCID: PMC8467868 DOI: 10.3390/biom11091345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Histamine does not only modulate the immune response and inflammation, but also acts as a neurotransmitter in the mammalian brain. The histaminergic system plays a significant role in the maintenance of wakefulness, appetite regulation, cognition and arousal, which are severely affected in neuropsychiatric disorders. In this review, we first briefly describe the distribution of histaminergic neurons, histamine receptors and their intracellular pathways. Next, we comprehensively summarize recent experimental and clinical findings on the precise role of histaminergic system in neuropsychiatric disorders, including cell-type role and its circuit bases in narcolepsy, schizophrenia, Alzheimer's disease, Tourette's syndrome and Parkinson's disease. Finally, we provide some perspectives on future research to illustrate the curative role of the histaminergic system in neuropsychiatric disorders.
Collapse
|
16
|
Shan L, Swaab DF. Changes in histaminergic system in neuropsychiatric disorders and the potential treatment consequences. Curr Neuropharmacol 2021; 20:403-411. [PMID: 34521328 PMCID: PMC9413789 DOI: 10.2174/1570159x19666210909144930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
In contrast to that of other monoamine neurotransmitters, the association of the histaminergic system with neuropsychiatric disorders is not well documented. In the last two decades, several clinical studies involved in the development of drugs targeting the histaminergic system have been reported. These include the H3R-antagonist/inverse agonist, pitolisant, used for the treatment of excessive sleepiness in narcolepsy, and the H1R antagonist, doxepin, used to alleviate symptoms of insomnia. The current review summarizes reports from animal models, including genetic and neuroimaging studies, as well as human brain samples and cerebrospinal fluid measurements from clinical trials, on the possible role of the histaminergic system in neuropsychiatric disorders. These studies will potentially pave the way for novel histamine-related therapeutic strategies.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam. Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam. Netherlands
| |
Collapse
|
17
|
Shan L, Martens GJM, Swaab DF. Histamine-4 Receptor: Emerging Target for the Treatment of Neurological Diseases. Curr Top Behav Neurosci 2021; 59:131-145. [PMID: 34432256 DOI: 10.1007/7854_2021_237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A major challenge in the field of the biogenic amine histamine is the search for new-generation histamine receptor specific drugs. Daniel Bovet and Sir James Black received their Nobel Prizes for Medicine for their work on histamine-1 receptor (H1R) and H2R antagonists to treat allergies and gastrointestinal disorders. The first H3R-targeting drug to reach the market was approved for the treatment of the neurological disorder narcolepsy in 2018. The antagonists for the most recently identified histamine receptor, H4R, are currently under clinical evaluation for their potential therapeutic effects on inflammatory diseases such as atopic dermatitis and pruritus. In this chapter, we propose that H4R antagonists are endowed with prominent anti-inflammatory and immune effects, including in the brain. To substantiate this proposition, we combine data from transcriptional analyses of postmortem human neurodegenerative disease brain samples, human genome-wide association studies (GWAS), and translational animal model studies. The results prompt us to suggest the potential involvement of the H4R in various neurodegenerative diseases and how manipulating the H4R may create new therapeutic opportunities in central nervous system diseases.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Nijmegen, GA, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Sgambellone S, Lucarini L, Lanzi C, Masini E. Novel Insight of Histamine and Its Receptor Ligands in Glaucoma and Retina Neuroprotection. Biomolecules 2021; 11:1186. [PMID: 34439851 PMCID: PMC8392511 DOI: 10.3390/biom11081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a multifactorial neuropathy characterized by increased intraocular pressure (IOP), and it is the second leading cause of blindness worldwide after cataracts. Glaucoma combines a group of optic neuropathies characterized by the progressive degeneration of retinal ganglionic cells (RGCs). Increased IOP and short-term IOP fluctuation are two of the most critical risk factors in glaucoma progression. Histamine is a well-characterized neuromodulator that follows a circadian rhythm, regulates IOP and modulates retinal circuits and vision. This review summarizes findings from animal models on the role of histamine and its receptors in the eye, focusing on the effects of histamine H3 receptor antagonists for the future treatment of glaucomatous patients.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| | - Cecilia Lanzi
- Toxicology Unit, Emergency Department, Careggi University Hospital, 50139 Florence, Italy;
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| |
Collapse
|
19
|
Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav Immun 2021; 92:127-138. [PMID: 33249171 DOI: 10.1016/j.bbi.2020.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Growing evidence indicates that microglia activation and a neuroinflammatory trigger contribute to dopaminergic cell loss in Parkinson's disease (PD). Furthermore, increased density of histaminergic fibers and enhanced histamine levels have been observed in the substantia nigra of PD-postmortem brains. Histamine-induced microglial activation is mediated by the histamine-4 receptor (H4R). In the current study, gene set enrichment and pathway analyses of a PD basal ganglia RNA-sequencing dataset revealed that upregulation of H4R was in the top functional category for PD treatment targets. Interestingly, the H4R antagonist JNJ7777120 normalized the number of nigrostriatal dopaminergic fibers and striatal dopamine levels in a rotenone-induced PD rat model. These improvements were accompanied by a reduction of α-synuclein-positive inclusions in the striatum. In addition, intracerebroventricular infusion of JNJ7777120 alleviated the morphological changes in Iba-1-positive microglia and resulted in a lower tumor necrosis factor-α release from this brain region, as well as in ameliorated apomorphine-induced rotation behaviour. Finally, JNJ7777120 also restored basal ganglia function by decreasing the levels of γ-aminobutyric acid (GABA) and the 5-hydroxyindoleactic acid to serotonin (5-HIAA/5-HT) concentration ratios in the striatum of the PD model. Our results highlight H4R inhibition in microglia as a promising and specific therapeutic target to reduce or prevent neuroinflammation, and as such the development of PD pathology.
Collapse
|
20
|
Nazeri A, Schifani C, Anderson JAE, Ameis SH, Voineskos AN. In Vivo Imaging of Gray Matter Microstructure in Major Psychiatric Disorders: Opportunities for Clinical Translation. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:855-864. [PMID: 32381477 DOI: 10.1016/j.bpsc.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Postmortem studies reveal that individuals with major neuropsychiatric disorders such as schizophrenia and autism spectrum disorder have gray matter microstructural abnormalities. These include abnormalities in neuropil organization, expression of proteins supporting neuritic and synaptic integrity, and myelination. Genetic and postmortem studies suggest that these changes may be causally linked to the pathogenesis of these disorders. Advances in diffusion-weighted magnetic resonance image (dMRI) acquisition techniques and biophysical modeling allow for the quantification of gray matter microstructure in vivo. While several biophysical models for imaging microstructural properties are available, one in particular, neurite orientation dispersion and density imaging (NODDI), holds great promise for clinical applications. NODDI can be applied to both gray and white matter and requires only a single extra shell beyond a standard dMRI acquisition. Since its development only a few years ago, the NODDI algorithm has been used to characterize gray matter microstructure in schizophrenia, Alzheimer's disease, healthy aging, and development. These investigations have shown that microstructural findings in vivo, using NODDI, align with postmortem findings. Not only do NODDI and other advanced dMRI-based modeling methods provide a window into the brain previously only available postmortem, but they may be more sensitive to certain brain changes than conventional magnetic resonance imaging approaches. This opens up exciting new possibilities for clinicians to more rapidly detect disease signatures and allows earlier intervention in the course of the disease. Given that neurites and gray matter microstructure have the capacity to rapidly remodel, these novel dMRI-based methods represent an opportunity to noninvasively monitor neuroplastic changes posttherapy within much shorter time scales.
Collapse
Affiliation(s)
- Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christin Schifani
- Kimel Family Translational Imaging Genetics Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - John A E Anderson
- Kimel Family Translational Imaging Genetics Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephanie H Ameis
- Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Centre for Brain and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Zhang W, Zhang X, Zhang Y, Qu C, Zhou X, Zhang S. Histamine Induces Microglia Activation and the Release of Proinflammatory Mediators in Rat Brain Via H 1R or H 4R. J Neuroimmune Pharmacol 2019; 15:280-291. [PMID: 31863333 DOI: 10.1007/s11481-019-09887-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
Abstract
Histamine is a major peripheral inflammatory mediator and a neurotransmitter in the central nervous system. We have reported that histamine induces microglia activation and releases proinflammatory factors in primary cultured microglia. Whether histamine has similar effects in vivo is unknown. In the present study, we aimed to investigate the role of histamine and its receptors in the release of inflammatory mediators and activation of microglia in rat brain. We site-directed injected histamine, histamine receptor agonists or histamine receptor antagonists in the rat lateral ventricle using stereotaxic techniques. Flow cytometry was employed to determine histamine receptor expression in rat microglia. Microglia activation was assessed by Iba1 immunohistochemistry. The levels of tumour necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and interleukin-10 (IL-10) were measured with commercial enzyme-linked immunosorbent assay (ELISA) kits, TNF-α, IL-1β and IL-10 mRNA expressions were determined with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). We found that all four types of histamine receptors were expressed in rat brain microglia. Histamine was able to induce microglia activation and subsequent production of the inflammatory factors TNF-α, IL-1β and IL-10, and these effects were partially abolished by H1R and H4R antagonists. However, H2R and H3R antagonists significantly increased production of TNF-α and IL-1β, and decreased IL-10 levels. The H1R or H4R agonists stimulated the production of TNF-α and IL-1β, while the H2R or H3R agonists increased IL-10 release. Our results demonstrate that histamine induces microglia activation and the release of both proinflammatory and anti-inflammatory factors in rat brain, thus contributing to the development of inflammation in the brain. Graphical Abstract Histamine induces microglia activation and the release of both proinflammatory (TNF-α and IL-1β) and anti-inflammatory factors (IL-10) in rat brain, thus contributing to the development of inflammation in the brain.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaojun Zhang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Zhang
- Department of Anesthesiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chen Qu
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiqiao Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Shu Zhang
- Clinical Research Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
22
|
Jiang B, Meng L, Zou N, Wang H, Li S, Huang L, Cheng X, Wang Z, Chen W, Wang C. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152967. [PMID: 31154274 DOI: 10.1016/j.phymed.2019.152967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/20/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND β-Carboline alkaloid harmine (HAR) and harmaline (HAL) are monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors. However, whether HAR and HAL inhibit MAO or AChE selectively and competitively is unclear. PURPOSE The purpose of this study was to investigate the potential competition inhibition of HAR and HAL on MAO and AChE in brain endothelial cells (RBE4) and in healthy rats to provide a basis for the application of the inhibitors in the treatment of patients with depression and with Parkinson's disease or Alzheimer's disease. STUDY DESIGN/METHODS The transport properties of HAR and HAL by using blood-brain barrier models constructed with RBE4 were systematically investigated. Then, the modulation effects of HAR and HAL on CNS neurotransmitters (NTs) in healthy rat brains were determined by a microdialysis method coupled with LC-MS/MS. The competition inhibition of HAR and HAL on MAO and AChE was evaluated through real time-PCR, Western blot analysis, and molecular docking experiments. RESULTS Results showed that HAL and HAR can be detected in the blood and striatum 300 min after intravenous injection (1 mg/kg). Choline (Ch), gamma-aminobutyric acid (GABA), glutamate (Glu), and phenylalanine (Phe) levels in the striatum decreased in a time-dependent manner after the HAL treatment, with average velocities of 1.41, 0.73, 3.86, and 1.10 (ng/ml)/min, respectively. The Ch and GABA levels in the striatum decreased after the HAR treatment, with average velocities of 1.16 and 0.22 ng/ml/min, respectively. The results of the cocktail experiment using the human liver enzyme indicated that the IC50 value of HAL on MAO-A was 0.10 ± 0.08 µm and that of HAR was 0.38 ± 0.21 µm. Their IC50 values on AChE were not obtained. These findings indicated that HAL and HAR selectively acted on MAO in vitro. However, RT-PCR and Western blot analysis results showed that the AChE mRNA and protein expression decreased in a time-dependent manner in RBE4 cells after the HAR and HAL treatments. CONCLUSION NT analysis results showed that HAL and HAR selectively affect AChE in vivo. HAL and HAR may be highly and suitably developed for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China; Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liyuan Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan Zou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Hanxue Wang
- Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Lifeng Huang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
23
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
24
|
Histamine N-Methyltransferase in the Brain. Int J Mol Sci 2019; 20:ijms20030737. [PMID: 30744146 PMCID: PMC6386932 DOI: 10.3390/ijms20030737] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Brain histamine is a neurotransmitter and regulates diverse physiological functions. Previous studies have shown the involvement of histamine depletion in several neurological disorders, indicating the importance of drug development targeting the brain histamine system. Histamine N-methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. Although pharmacological studies using HNMT inhibitors have been conducted to reveal the direct involvement of HNMT in brain functions, HNMT inhibitors with high specificity and sufficient blood–brain barrier permeability have not been available until now. Recently, we have phenotyped Hnmt-deficient mice to elucidate the importance of HNMT in the central nervous system. Hnmt disruption resulted in a robust increase in brain histamine concentration, demonstrating the essential role of HNMT in the brain histamine system. Clinical studies have suggested that single nucleotide polymorphisms of the human HNMT gene are associated with several brain disorders such as Parkinson’s disease and attention deficit hyperactivity disorder. Postmortem studies also have indicated that HNMT expression is altered in human brain diseases. These findings emphasise that an increase in brain histamine levels by novel HNMT inhibitors could contribute to the improvement of brain disorders.
Collapse
|
25
|
Whalen TC, Gittis AH. Histamine and deep brain stimulation: the pharmacology of regularizing a brain. J Clin Invest 2018; 128:5201-5202. [PMID: 30371507 PMCID: PMC6264646 DOI: 10.1172/jci124777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) patients have increased histamine in their basal ganglia, but the role of this neurotransmitter in PD is poorly understood. In this issue of the JCI, Zhuang et al. demonstrate that histamine levels rise in the subthalamic nucleus (STN) to compensate for abnormal firing patterns. Injection of histamine into the STN restores normal firing patterns and motor activity, whereas merely changing firing rates has no behavioral effect. Moreover, STN deep brain stimulation, a widespread therapy for PD, regularizes firing through endogenous histamine release. This suggests that abnormal firing patterns, rather than rates, cause PD symptoms, and this histaminergic pathway may lead to new treatments for the disease.
Collapse
Affiliation(s)
| | - Aryn H. Gittis
- Center for the Neural Basis of Cognition and
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Khatami M. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and 'Dark Energy': loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med 2018; 7:20. [PMID: 29961900 PMCID: PMC6026585 DOI: 10.1186/s40169-018-0193-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health involves a synchronized network of catabolic and anabolic signals among organs/tissues/cells that requires differential bioenergetics from mitochondria and glycolysis (biological laws or biorhythms). We defined biological circadian rhythms as Yin (tumoricidal) and Yang (tumorigenic) arms of acute inflammation (effective immunity) involving immune and non-immune systems. Role of pathogens in altering immunity and inducing diseases and cancer has been documented for over a century. However, in 1955s decision makers in cancer/medical establishment allowed public (current baby boomers) to consume million doses of virus-contaminated polio vaccines. The risk of cancer incidence and mortality sharply rose from 5% (rate of hereditary/genetic or innate disease) in 1900s, to its current scary status of 33% or 50% among women and men, respectively. Despite better hygiene, modern detection technologies and discovery of antibiotics, baby boomers and subsequent 2–3 generations are sicker than previous generations at same age. American health status ranks last among other developed nations while America invests highest amount of resources for healthcare. In this perspective we present evidence that cancer is an induced disease of twentieth century, facilitated by a great deception of cancer/medical establishment for huge corporate profits. Unlike popularized opinions that cancer is 100, 200 or 1000 diseases, we demonstrate that cancer is only one disease; the severe disturbances in biorhythms (differential bioenergetics) or loss of balance in Yin and Yang of effective immunity. Cancer projects that are promoted and funded by decision makers are reductionist approaches, wrong and unethical and resulted in loss of millions of precious lives and financial toxicity to society. Public vaccination with pathogen-specific vaccines (e.g., flu, hepatitis, HPV, meningitis, measles) weakens, not promotes, immunity. Results of irresponsible projects on cancer sciences or vaccines are increased population of drug-dependent sick society. Outcome failure rates of claimed ‘targeted’ drugs, ‘precision’ or ‘personalized’ medicine are 90% (± 5) for solid tumors. We demonstrate that aging, frequent exposures to environmental hazards, infections and pathogen-specific vaccines and ingredients are ‘antigen overload’ for immune system, skewing the Yin and Yang response profiles and leading to induction of ‘mild’, ‘moderate’ or ‘severe’ immune disorders. Induction of decoy or pattern recognition receptors (e.g., PRRs), such as IRAK-M or IL-1dRs (‘designer’ molecules) and associated genomic instability and over-expression of growth promoting factors (e.g., pyruvate kinases, mTOR and PI3Ks, histamine, PGE2, VEGF) could lead to immune tolerance, facilitating cancer cells to hijack anabolic machinery of immunity (Yang) for their increased growth requirements. Expression of constituent embryonic factors would negatively regulate differentiation of tumor cells through epithelial–mesenchymal-transition and create “dual negative feedback loop” that influence tissue metabolism under hypoxic conditions. It is further hypothesized that induction of tolerance creates ‘dark energy’ and increased entropy and temperature in cancer microenvironment allowing disorderly cancer proliferation and mitosis along with increased glucose metabolism via Crabtree and Pasteur Effects, under mitophagy and ribophagy, conditions that are toxic to host survival. Effective translational medicine into treatment requires systematic and logical studies of complex interactions of tumor cells with host environment that dictate clinical outcomes. Promoting effective immunity (biological circadian rhythms) are fundamental steps in correcting host differential bioenergetics and controlling cancer growth, preventing or delaying onset of diseases and maintaining public health. The author urges independent professionals and policy makers to take a closer look at cancer dilemma and stop the ‘scientific/medical ponzi schemes’ of a powerful group that control a drug-dependent sick society before all hopes for promoting public health evaporate.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
27
|
Thannickal TC, John J, Shan L, Swaab DF, Wu MF, Ramanathan L, McGregor R, Chew KT, Cornford M, Yamanaka A, Inutsuka A, Fronczek R, Lammers GJ, Worley PF, Siegel JM. Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Sci Transl Med 2018; 10:10/447/eaao4953. [PMID: 29950444 PMCID: PMC8235614 DOI: 10.1126/scitranslmed.aao4953] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/18/2017] [Accepted: 01/26/2018] [Indexed: 01/18/2023]
Abstract
The changes in brain function that perpetuate opiate addiction are unclear. In our studies of human narcolepsy, a disease caused by loss of immunohistochemically detected hypocretin (orexin) neurons, we encountered a control brain (from an apparently neurologically normal individual) with 50% more hypocretin neurons than other control human brains that we had studied. We discovered that this individual was a heroin addict. Studying five postmortem brains from heroin addicts, we report that the brain tissue had, on average, 54% more immunohistochemically detected neurons producing hypocretin than did control brains from neurologically normal subjects. Similar increases in hypocretin-producing cells could be induced in wild-type mice by long-term (but not short-term) administration of morphine. The increased number of detected hypocretin neurons was not due to neurogenesis and outlasted morphine administration by several weeks. The number of neurons containing melanin-concentrating hormone, which are in the same hypothalamic region as hypocretin-producing cells, did not change in response to morphine administration. Morphine administration restored the population of detected hypocretin cells to normal numbers in transgenic mice in which these neurons had been partially depleted. Morphine administration also decreased cataplexy in mice made narcoleptic by the depletion of hypocretin neurons. These findings suggest that opiate agonists may have a role in the treatment of narcolepsy, a disorder caused by hypocretin neuron loss, and that increased numbers of hypocretin-producing cells may play a role in maintaining opiate addiction.
Collapse
Affiliation(s)
- Thomas C. Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Joshi John
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Ling Shan
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Ming-Fung Wu
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Lalini Ramanathan
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Keng-Tee Chew
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Marcia Cornford
- Department of Pathology, Harbor University of California, Los Angeles, Medical Center, Torrance, CA 90509, USA
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ayumu Inutsuka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Rolf Fronczek
- Leiden University Medical Centre, Department of Neurology, Leiden, Netherlands.,Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Gert Jan Lammers
- Leiden University Medical Centre, Department of Neurology, Leiden, Netherlands.,Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Paul F. Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA.,Corresponding author.
| |
Collapse
|
28
|
Eissa N, Al-Houqani M, Sadeq A, Ojha SK, Sasse A, Sadek B. Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder. Front Neurosci 2018; 12:304. [PMID: 29867317 PMCID: PMC5964170 DOI: 10.3389/fnins.2018.00304] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
Autistic Spectrum Disorder (ASD) is a complex neurodevelopmental brain disorder characterized by two core behavioral symptoms, namely impairments in social communication and restricted/repetitive behavior. The molecular mechanisms underlying ASD are not well understood. Recent genetic as well as non-genetic animal models contributed significantly in understanding the pathophysiology of ASD, as they establish autism-like behavior in mice and rats. Among the genetic causes, several chromosomal mutations including duplications or deletions could be possible causative factors of ASD. In addition, the biochemical basis suggests that several brain neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), gamma-amino butyric acid (GABA), acetylcholine (ACh), glutamate (Glu) and histamine (HA) participate in the onset and progression of ASD. Despite of convincible understanding, risperidone and aripiprazole are the only two drugs available clinically for improving behavioral symptoms of ASD following approval by Food and Drug Administration (FDA). Till date, up to our knowledge there is no other drug approved for clinical usage specifically for ASD symptoms. However, many novel drug candidates and classes of compounds are underway for ASD at different phases of preclinical and clinical drug development. In this review, the diversity of numerous aetiological factors and the alterations in variety of neurotransmitter generation, release and function linked to ASD are discussed with focus on drugs currently used to manage neuropsychiatric symptoms related to ASD. The review also highlights the clinical development of drugs with emphasis on their pharmacological targets aiming at improving core symptoms in ASD.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Al-Houqani
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adel Sadeq
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
29
|
Corrêa MF, Barbosa ÁJR, Teixeira LB, Duarte DA, Simões SC, Parreiras-E-Silva LT, Balbino AM, Landgraf RG, Bouvier M, Costa-Neto CM, Fernandes JPS. Pharmacological Characterization of 5-Substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel Antagonists for the Histamine H 3 and H 4 Receptors with Anti-inflammatory Potential. Front Pharmacol 2017; 8:825. [PMID: 29184503 PMCID: PMC5694482 DOI: 10.3389/fphar.2017.00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
The histamine receptors (HRs) are traditional G protein-coupled receptors of extensive therapeutic interest. Recently, H3R and H4R subtypes have been targeted in drug discovery projects for inflammation, asthma, pain, cancer, Parkinson’s, and Alzheimer’s diseases, which includes searches for dual acting H3R/H4R ligands. In the present work, nine 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01 series) molecules were synthesized and evaluated as H3R and H4R ligands. Our data show that the N-allyl-substituted compound LINS01004 bears the highest affinity for H3R (pKi 6.40), while the chlorinated compound LINS01007 has moderate affinity for H4R (pKi 6.06). In addition, BRET assays to assess the functional activity of Gi1 coupling indicate that all compounds have no intrinsic activity and act as antagonists of these receptors. Drug-likeness assessment indicated these molecules are promising leads for further improvements. In vivo evaluation of compounds LINS01005 and LINS01007 in a mouse model of asthma showed a better anti-inflammatory activity of LINS01007 (3 g/kg) than the previously tested compound LINS01005. This is the first report with functional data of these compounds in HRs, and our results also show the potential of their applications as anti-inflammatory.
Collapse
Affiliation(s)
- Michelle F Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Álefe J R Barbosa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Larissa B Teixeira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego A Duarte
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sarah C Simões
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lucas T Parreiras-E-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aleksandro M Balbino
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Richardt G Landgraf
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Claudio M Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
30
|
Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther 2017; 175:116-132. [DOI: 10.1016/j.pharmthera.2017.02.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss. PLoS One 2017; 12:e0178573. [PMID: 28570646 PMCID: PMC5453544 DOI: 10.1371/journal.pone.0178573] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/15/2017] [Indexed: 11/24/2022] Open
Abstract
The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt) neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone) neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC), the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD) during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within “non-visible” phenotypically defined cells has fundamental implications for our understanding of brain plasticity.
Collapse
|
32
|
Sanna MD, Ghelardini C, Thurmond RL, Masini E, Galeotti N. Behavioural phenotype of histamine H4 receptor knockout mice: Focus on central neuronal functions. Neuropharmacology 2017; 114:48-57. [DOI: 10.1016/j.neuropharm.2016.11.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/28/2016] [Accepted: 11/26/2016] [Indexed: 11/25/2022]
|
33
|
Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:65-98. [DOI: 10.1016/bs.irn.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Frick L, Rapanelli M, Abbasi E, Ohtsu H, Pittenger C. Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav Immun 2016; 57:326-337. [PMID: 27381299 PMCID: PMC5012904 DOI: 10.1016/j.bbi.2016.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/08/2016] [Accepted: 07/02/2016] [Indexed: 01/24/2023] Open
Abstract
Microglia mediate neuroinflammation and regulate brain development and homeostasis. Microglial abnormalities are implicated in a range of neuropsychiatric pathology, including Tourette syndrome (TS) and autism. Histamine (HA) is both a neurotransmitter and an immune modulator. HA deficiency has been implicated as a rare cause of TS and may contribute to other neuropsychiatric conditions. In vitro studies suggest that HA can regulate microglia, but this has never been explored in vivo. We used immunohistochemistry to examine the effects of HA deficiency in histidine decarboxylase (Hdc) knockout mice and of HA receptor stimulation in wild-type animals. We find HA to regulate microglia in vivo, via the H4 receptor. Chronic HA deficiency in Hdc knockout mice reduces ramifications of microglia in the striatum and (at trend level) in the hypothalamus, but not elsewhere in the brain. Depletion of histaminergic neurons in the hypothalamus has a similar effect. Microglia expressing IGF-1 are particularly reduced, However, the microglial response to challenge with lipopolysacchariade (LPS) is potentiated in Hdc knockout mice. Genetic abnormalities in histaminergic signaling may produce a vulnerability to inflammatory challenge, setting the state for pathogenically dysregulated neuroimmune responses.
Collapse
Affiliation(s)
- Luciana Frick
- Department of Psychiatry, Yale University, New Haven, CT
| | | | - Eeman Abbasi
- Department of Psychiatry, Yale University, New Haven, CT
| | - Hiroshi Ohtsu
- Tohoku University, Graduate School of Engineering, Sendai, Janpan
| | - Christopher Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Child Study Center, Yale University, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
35
|
Schneider EH, Seifert R. The histamine H4-receptor and the central and peripheral nervous system: A critical analysis of the literature. Neuropharmacology 2016; 106:116-28. [PMID: 25986697 DOI: 10.1016/j.neuropharm.2015.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022]
Abstract
Expression and function of histamine H4R in central and peripheral nervous system have been a matter of controversy for more than a decade. The scientific discussion is often limited to a few publications postulating the presence of functional H4R on neurons of the central and peripheral nervous system, but the even larger number of reports showing negative data is often neglected. In this article, we critically review the existing literature on H4R in central and peripheral nervous system and discuss the weak points often overlooked by the community. We identified as most important problems (i) insufficient validation or quality of antibodies, (ii) missing knockout controls, (iii) uncritical interpretation of RT-PCR results instead of qPCR experiments, (iv) insufficient controls to confirm specificity of pharmacological tools, (v) uncritical reliance on results produced by a single method and (vi) uncritical reliance on results not reproduced by independent research groups. Additionally, there may be a publication as well as a citation bias favoring the awareness of positive results, but neglecting negative data. We conclude that H4R expression on neurons of the brain is not convincingly supported by the current literature, at least as long as the positive data are not reproduced by independent research groups. Expression and function of H4R on peripheral neurons or non-neuronal cells of the nervous system, specifically on microglia is an interesting alternative hypothesis that, however, requires further verification. This article is part of a Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
36
|
Bolam JP, Ellender TJ. Histamine and the striatum. Neuropharmacology 2016; 106:74-84. [PMID: 26275849 PMCID: PMC4917894 DOI: 10.1016/j.neuropharm.2015.08.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/25/2022]
Abstract
The neuromodulator histamine is released throughout the brain during periods of wakefulness. Combined with an abundant expression of histamine receptors, this suggests potential widespread histaminergic control of neural circuit activity. However, the effect of histamine on many of these circuits is unknown. In this review we will discuss recent evidence for histaminergic modulation of the basal ganglia circuitry, and specifically its main input nucleus; the striatum. Furthermore, we will discuss recent findings of histaminergic dysfunction in several basal ganglia disorders, including in Parkinson's disease and most prominently, in Tourette's syndrome, which has led to a resurgence of interest in this neuromodulator. Combined, these recent observations not only suggest a central role for histamine in modulating basal ganglia activity and behaviour, but also as a possible target in treating basal ganglia disorders. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- J Paul Bolam
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom
| | - Tommas J Ellender
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom.
| |
Collapse
|
37
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2016; 95:e4147. [PMID: 27399132 PMCID: PMC5058861 DOI: 10.1097/md.0000000000004147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIMS Several neuropathological, biochemical, and pharmacological data suggested a possible role of histamine in the etiopathogenesis of Parkinson disease (PD). The single nucleotide polymorphism (SNP) rs11558538 in the histamine N-methyltransferase (HNMT) gene has been associated with the risk of developing PD by several studies but not by some others. We carried out a systematic review that included all the studies published on PD risk related to the rs11558538 SNP, and we conducted a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS We used several databases to perform the systematic review, the software Meta-DiSc 1.1.1 to perform the meta-analysis of the eligible studies, and the Q-statistic to test heterogeneity between studies. RESULTS The meta-analysis included 4 eligible case-control association studies for the HNMT rs11558538 SNP and the risk for PD (2108 patients, 2158 controls). The frequency of the minor allele positivity showed a statistically significant association with a decreased risk for PD, both in the total series and in Caucasians. Although homozygosity for the minor allele did not reach statistical significance, the test for trend indicates the occurrence of a gene-dose effect. Global diagnostic odds ratios (95% confidence intervals) for rs11558538T were 0.61 (0.46-0.81) for the total group, and 0.63 (0.45-0.88) for Caucasian patients. CONCLUSION The present meta-analysis confirms published evidence suggesting that the HNMT rs11558538 minor allele is related to a reduced risk of developing PD.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey
- Department of Medicine-Neurology, Hospital “Príncipe de Asturias,” Universidad de Alcalá, Alcalá de Henares, Madrid
| | | | | | - José A.G. Agúndez
- Department of Pharmacology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
38
|
Homberg JR, Olivier JDA, VandenBroeke M, Youn J, Ellenbroek AK, Karel P, Shan L, van Boxtel R, Ooms S, Balemans M, Langedijk J, Muller M, Vriend G, Cools AR, Cuppen E, Ellenbroek BA. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model. Dis Model Mech 2016; 9:1147-1158. [PMID: 27483345 PMCID: PMC5087833 DOI: 10.1242/dmm.024752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 01/25/2023] Open
Abstract
Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1). Because current Drd1 receptor agonists are not Drd1 selective, pharmacological tools are not sufficient to delineate the role of the Drd1. Here, we describe a novel rat model with a genetic mutation in Drd1 in which we measured basic behavioural phenotypes and social cognition. The I116S mutation was predicted to render the receptor less stable. In line with this computational prediction, this Drd1 mutation led to a decreased transmembrane insertion of Drd1, whereas Drd1 expression, as measured by Drd1 mRNA levels, remained unaffected. Owing to decreased transmembrane Drd1 insertion, the mutant rats displayed normal basic motoric and neurological parameters, as well as locomotor activity and anxiety-like behaviour. However, measures of social cognition like social interaction, scent marking, pup ultrasonic vocalizations and sociability, were strongly reduced in the mutant rats. This profile of the Drd1 mutant rat offers the field of neuroscience a novel genetic rat model to study a series of psychiatric disorders including schizophrenia, autism, depression, bipolar disorder and drug addiction.
Collapse
Affiliation(s)
- Judith R Homberg
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Jocelien D A Olivier
- Department of Neurobiology, Unit Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands
| | - Marie VandenBroeke
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Jiun Youn
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Arabella K Ellenbroek
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Peter Karel
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Ling Shan
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Ruben van Boxtel
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands
| | - Sharon Ooms
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Monique Balemans
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Jacqueline Langedijk
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Mareike Muller
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Gert Vriend
- CMBI, Radboud University Nijmegen Medical Centre, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Alexander R Cools
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands
| | - Bart A Ellenbroek
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| |
Collapse
|
39
|
Yang X, Liu C, Zhang J, Han H, Wang X, Liu Z, Xu Y. Association of histamine N-methyltransferase Thr105Ile polymorphism with Parkinson's disease and schizophrenia in Han Chinese: a case-control study. PLoS One 2015; 10:e0119692. [PMID: 25768024 PMCID: PMC4359088 DOI: 10.1371/journal.pone.0119692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/15/2015] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) and schizophrenia (SCZ) are frequent central nervous disorders that have unclear etiologies but that show similarities in their pathogenesis. Since elevated histamine levels in the brain have been associated with PD and SCZ, we wanted to explore whether the Thr105Ile substitution in the histamine N-methyltransferase gene (HNMT-Thr105Ile), which impairs histamine degradation, is associated with either disease. We used the ligase detection reaction to genotype a case-control cohort of Han Chinese patients with PD or SCZ and healthy controls at the HNMT-Thr105Ile locus. The Ile allele was associated with reduced risk of PD (OR 0.516, 95%CI 0.318 to 0.838, p = 0.007) and of SCZ (OR 0.499, 95%CI 0.288 to 0.865, p = 0.011). Genotype frequencies and minor allele frequencies were similar between patients and controls when we compared males with females or early-onset patients with late-onset ones. Genotype and allele frequencies were not significantly different between PD patients with dyskinesia and PD patients without dyskinesia. Our results suggest that the heterozygous Thr/Ile genotype at the HNMT-Thr105Ile locus and the minor Ile105 allele protect against PD and SCZ in Han Chinese.
Collapse
Affiliation(s)
- Xinglong Yang
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China
| | - Chuanxin Liu
- College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
- Department of Psychiatry, Jining Medical College, Jining, Shandong Province, 272051, PR China
| | - Jinxiang Zhang
- Department of Psychiatry, Jining Mental Hospital, Jining, Shandong Province, 272051, PR China
| | - Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, PR China
| | - Xiuyan Wang
- Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Zhoulin Liu
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China
- * E-mail:
| |
Collapse
|
40
|
Baronio D, Castro K, Gonchoroski T, de Melo GM, Nunes GDF, Bambini-Junior V, Gottfried C, Riesgo R. Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid. PLoS One 2015; 10:e0116363. [PMID: 25560049 PMCID: PMC4283962 DOI: 10.1371/journal.pone.0116363] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/08/2014] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data.
Collapse
Affiliation(s)
- Diego Baronio
- Translational Research Group in Autism Spectrum Disorders, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- * E-mail:
| | - Kamila Castro
- Translational Research Group in Autism Spectrum Disorders, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Taylor Gonchoroski
- Translational Research Group in Autism Spectrum Disorders, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Mueller de Melo
- Translational Research Group in Autism Spectrum Disorders, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Della Flora Nunes
- Translational Research Group in Autism Spectrum Disorders, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorders, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
41
|
Feliszek M, Speckmann V, Schacht D, von Lehe M, Stark H, Schlicker E. A search for functional histamine H4 receptors in the human, guinea pig and mouse brain. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:11-7. [PMID: 25300787 DOI: 10.1007/s00210-014-1053-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/28/2014] [Indexed: 01/08/2023]
Abstract
Histamine H4 receptors are expressed in immune cells, but their potential role in the brain is less clear. Although H4 transcripts have been identified in human and rat brain, the presence of H4 receptors on the protein level has so far not been proven since appropriate antibodies fulfilling the strict criteria for G protein-coupled receptors are missing. Here, we searched for functional H4 receptors in human, guinea pig and mouse cortex. We studied whether H4 receptor activation is associated with increased GTPγS binding and reduced noradrenaline release. The latter two effects have been previously shown for H3 receptors, which, like the H4 receptors, are coupled to G i/o protein. G protein activation was studied using (35)S-GTPγS binding in cortical membranes. The electrically induced (3)H-noradrenaline release was determined in superfused cortical slices. The H4 agonist 4-methylhistamine failed to affect (35)S-GTPγS binding and/or noradrenaline release in human, guinea pig and mouse cortex although an H 3 receptor-mediated increase in (35)S-GTPγS binding and inhibition of noradrenaline release occurred in parallel experiments. In conclusion, functional H4 receptors increasing (35)S-GTPγS binding and/or decreasing noradrenaline release are not found in human, guinea pig and mouse cortex.
Collapse
Affiliation(s)
- Monika Feliszek
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Zhang XY, Yu L, Zhuang QX, Peng SY, Zhu JN, Wang JJ. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 2014; 170:156-69. [PMID: 23713466 DOI: 10.1111/bph.12256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/06/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. EXPERIMENTAL APPROACH Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H₁, H₂ and H₄ receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H₁, H₂ and H₄ receptors and for subtypes of Na⁺ -Ca²⁺ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. KEY RESULTS A marked postsynaptic excitatory effect, co-mediated by histamine H₁ and H₂ receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H₁ and H₂ rather than H₄ receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H₁ receptors, whereas HCN channels were responsible for excitation induced by activation of H₂ receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. CONCLUSION AND IMPLICATIONS NCXs coupled to H₁ receptors and HCN channels linked to H₂ receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | | | | | | | | | | |
Collapse
|
43
|
Rocha SM, Pires J, Esteves M, Graça B, Bernardino L. Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci 2014; 8:120. [PMID: 24817841 PMCID: PMC4012198 DOI: 10.3389/fncel.2014.00120] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/16/2014] [Indexed: 01/05/2023] Open
Abstract
Histamine is an amine acting as a major peripheral inflammatory mediator. In the brain, histamine was initially viewed as a neurotransmitter, but new evidences support its involvement in the modulation of innate immune responses. Recently, we showed that histamine modulates microglial migration and cytokine release. Its pleiotropic actions, ranging from neurotransmission to inflammation, highlight histamine as a key player in a vast array of brain physiologic activities and also in the pathogenesis of several neurodegenerative diseases. Herein, we emphasize the role of histamine as a modulator of brain immune reactions, either by acting on invading peripheral immune cells and/or on resident microglial cells. We also unveil the putative involvement of histamine in the microglial-neuronal communication. We first show that histamine modulates the release of inflammatory mediators, namely nitric oxide, by microglia cells. Consequently, the microglia secretome released upon histamine stimulation fosters dopaminergic neuronal death. These data may reveal important new pharmacological applications on the use histamine and antihistamines, particularly in the context of Parkinson’s disease.
Collapse
Affiliation(s)
- Sandra M Rocha
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior Covilhã, Portugal
| | - Joel Pires
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior Covilhã, Portugal
| | - Marta Esteves
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior Covilhã, Portugal
| | - Baltazar Graça
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior Covilhã, Portugal
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior Covilhã, Portugal
| |
Collapse
|
44
|
Ellenbroek BA, Ghiabi B. The other side of the histamine H3 receptor. Trends Neurosci 2014; 37:191-9. [DOI: 10.1016/j.tins.2014.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
|
45
|
Baronio D, Gonchoroski T, Castro K, Zanatta G, Gottfried C, Riesgo R. Histaminergic system in brain disorders: lessons from the translational approach and future perspectives. Ann Gen Psychiatry 2014; 13:34. [PMID: 25426159 PMCID: PMC4243384 DOI: 10.1186/s12991-014-0034-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 10/21/2014] [Indexed: 11/17/2022] Open
Abstract
Histamine and its receptors were first described as part of immune and gastrointestinal systems, but their presence in the central nervous system and importance in behavior are gaining more attention. The histaminergic system modulates different processes including wakefulness, feeding, and learning and memory consolidation. Histamine receptors (H1R, H2R, H3R, and H4R) belong to the rhodopsin-like family of G protein-coupled receptors, present constitutive activity, and are subjected to inverse agonist action. The involvement of the histaminergic system in brain disorders, such as Alzheimer's disease, schizophrenia, sleep disorders, drug dependence, and Parkinson's disease, is largely studied. Data obtained from preclinical studies point antagonists of histamine receptors as promising alternatives to treat brain disorders. Thus, clinical trials are currently ongoing to assess the effects of these drugs on humans. This review summarizes the role of histaminergic system in brain disorders, as well as the effects of different histamine antagonists on animal models and humans.
Collapse
Affiliation(s)
- Diego Baronio
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Ramiro Barcelos, 2350 - Santa Cecília, Porto Alegre, RS 90035-903 Brazil ; Postgraduate Program in Child and Adolescent Health, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil ; Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Taylor Gonchoroski
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Ramiro Barcelos, 2350 - Santa Cecília, Porto Alegre, RS 90035-903 Brazil ; Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Kamila Castro
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Ramiro Barcelos, 2350 - Santa Cecília, Porto Alegre, RS 90035-903 Brazil ; Postgraduate Program in Child and Adolescent Health, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil ; Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Geancarlo Zanatta
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Ramiro Barcelos, 2350 - Santa Cecília, Porto Alegre, RS 90035-903 Brazil ; Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Ramiro Barcelos, 2350 - Santa Cecília, Porto Alegre, RS 90035-903 Brazil ; Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Ramiro Barcelos, 2350 - Santa Cecília, Porto Alegre, RS 90035-903 Brazil ; Postgraduate Program in Child and Adolescent Health, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil ; Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil ; Child Neurology Unit, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| |
Collapse
|
46
|
John J, Thannickal TC, McGregor R, Ramanathan L, Ohtsu H, Nishino S, Sakai N, Yamanaka A, Stone C, Cornford M, Siegel JM. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann Neurol 2013; 74:786-93. [PMID: 23821583 PMCID: PMC8211429 DOI: 10.1002/ana.23968] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 06/08/2013] [Accepted: 06/19/2013] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine whether histamine cells are altered in human narcolepsy with cataplexy and in animal models of this disease. METHODS Immunohistochemistry for histidine decarboxylase (HDC) and quantitative microscopy were used to detect histamine cells in human narcoleptics, hypocretin (Hcrt) receptor-2 mutant dogs, and 3 mouse narcolepsy models: Hcrt (orexin) knockouts, ataxin-3-orexin, and doxycycline-controlled-diphtheria-toxin-A-orexin. RESULTS We found an average 64% increase in the number of histamine neurons in human narcolepsy with cataplexy, with no overlap between narcoleptics and controls. However, we did not see altered numbers of HDC cells in any of the animal models of narcolepsy. INTERPRETATION Changes in histamine cell numbers are not required for the major symptoms of narcolepsy, because all animal models have these symptoms. The histamine cell changes we saw in humans did not occur in the 4 animal models of Hcrt dysfunction we examined. Therefore, the loss of Hcrt receptor-2, of the Hcrt peptide, or of Hcrt cells is not sufficient to produce these changes. We speculate that the increased histamine cell numbers we see in human narcolepsy may instead be related to the process causing the human disorder. Although research has focused on possible antigens within the Hcrt cells that might trigger their autoimmune destruction, the present findings suggest that the triggering events of human narcolepsy may involve a proliferation of histamine-containing cells. We discuss this and other explanations of the difference between human narcoleptics and animal models of narcolepsy, including therapeutic drug use and species differences.
Collapse
Affiliation(s)
- Joshi John
- Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Neuronal histaminergic system in aging and age-related neurodegenerative disorders. Exp Gerontol 2013; 48:603-7. [DOI: 10.1016/j.exger.2012.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/26/2012] [Accepted: 08/02/2012] [Indexed: 11/30/2022]
|
48
|
AZD5213: a novel histamine H3 receptor antagonist permitting high daytime and low nocturnal H3 receptor occupancy, a PET study in human subjects. Int J Neuropsychopharmacol 2013; 16:1231-9. [PMID: 23217964 DOI: 10.1017/s1461145712001411] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The histamine H3 receptor represents an appealing central nervous system drug target due to its important role in the neurobiology of cognition and wake-sleep regulation. The therapeutic benefit of H3 antagonists/inverse agonists may be hampered by disruption of sleep that has been observed in humans with prolonged high H3 receptor occupancy (H3RO), extending into night-time. AZD5213 is a highly selective H3 antagonist (in vitro inverse agonist) developed to achieve a pharmacokinetic profile permitting circadian fluctuations of H3RO. Its efficacy has been demonstrated in rodent behavioural models of cognition. In human subjects, AZD5213 was safe and well tolerated following repeated doses (1-14 mg/d) and demonstrated a short (∼5 h) half-life. In this PET study H3RO was measured using the radioligand [11C]GSK189254 ([11C]AZ12807110) in seven young male volunteers following single doses of AZD5213 (0.05-30 mg). H3RO was calculated using the Lassen plot method. The plasma concentrations and the affinity constant (K i,pl 1.14 nmol/l, corresponding to the plasma concentration required to occupy 50% of available receptors) were used to estimate the H3RO time-course. AZD5213 showed dose and concentration dependent H3RO ranging from 16 to 90%. These binding characteristics and the pharmacokinetic profile of AZD5213 indicate that high daytime and low night-time H3RO could be achieved following once daily oral dosing of AZD5213. Fluctuations of H3RO following circadian rhythm of the histamine system may be expected to reduce the risk of sleep disruption while maintaining daytime efficacy. AZD5213 may thus be an optimal compound to evaluate the clinical benefit of selective H3 antagonism in cognitive disorders.
Collapse
|
49
|
Pienaar IS, Chinnery PF. Existing and emerging mitochondrial-targeting therapies for altering Parkinson's disease severity and progression. Pharmacol Ther 2013; 137:1-21. [DOI: 10.1016/j.pharmthera.2012.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/07/2012] [Indexed: 02/07/2023]
|
50
|
Gao SF, Qi XR, Zhao J, Balesar R, Bao AM, Swaab DF. Decreased NOS1 expression in the anterior cingulate cortex in depression. ACTA ACUST UNITED AC 2012; 23:2956-64. [PMID: 22989585 DOI: 10.1093/cercor/bhs285] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Decreased function of the anterior cingulate cortex (ACC) is crucially involved in the pathogenesis of depression. A key role of nitric oxide (NO) has also been proposed. We aimed to determine the NO content in the cerebrospinal fluid (CSF) and the expression of NO synthase (NOS) isoforms, that is, NOS1, NOS2, and NOS3 in the ACC in depression. In depressive patients, CSF-NOx levels (the levels of the NO metabolites nitrite and nitrate) were significantly decreased (P = 0.007), indicating a more general decrease of NO production in this disorder. This agreed with a trend toward lower NOS1-mRNA levels (P = 0.083) and a significant decrease of NOS1-immunoreactivity (ir) (P = 0.043) in ACC. In controls, there was a significant positive correlation between ACC-NOS1-ir cell densities and their CSF-NOx levels. Furthermore, both localization of NOS1 in pyramidal neurons that are known to be glutamatergic and co-localization between NOS1 and GABAergic neurons were observed in human ACC. The diminished ACC-NOS1 expression and decreased CSF-NOx levels may be involved in the alterations of ACC activity in depression, possibly by affecting glutamatergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Shang-Feng Gao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China and
| | | | | | | | | | | |
Collapse
|