1
|
Macedonia M, Mathias B, Rodella C, Andrä C, Sedaghatgoftar N, Repetto C. Reduction in physical activity during Covid-19 lockdowns predicts individual differences in cognitive performance several months after the end of the safety measures. Acta Psychol (Amst) 2024; 250:104472. [PMID: 39306872 DOI: 10.1016/j.actpsy.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 11/12/2024] Open
Abstract
Prior studies suggest that the reductions in physical activity during Covid-19-related lockdowns impacted physical and mental health. Whether reductions in physical activity that occurred during lockdowns also relate to cognitive functions such as memory and attention is less explored. Here, we investigated whether changes in physical activity (PA) that occurred during and following Covid-19-related lockdowns could predict a variety of measures of cognitive performance in 318 young adults. Participants were assessed on their engagement in PA before, during, and after lockdowns. They also completed tests of cognitive control, working memory, and short-term memory following lockdown(s). As expected, engagement in PA decreased during lockdown and returned to near baseline levels thereafter. Decreases in PA during lockdown predicted individual differences in cognitive performance following lockdown. Greater reductions in PA during lockdown were associated with lower scores on the go/no-go task, a measure of cognitive control ability, and the n-back task, a measure of working memory performance. Larger post-lockdown increases in PA were associated with higher scores on the same tasks. Individual differences in pandemic-related stress and insomnia also predicted cognitive outcomes. These findings suggest that reductions of PA can predict cognitive performance, and underscore the importance of maintaining PA for cognitive health, especially in situations such as lockdowns.
Collapse
Affiliation(s)
- Manuela Macedonia
- Department of Information Engineering, Johannes Kepler University, Linz, Austria.
| | - Brian Mathias
- School of Psychology, University of Aberdeen, Aberdeen, United Kingdom
| | - Claudia Rodella
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Christian Andrä
- Department of Movement and Sport Pedagogy, University of Applied Sciences for Sport and Management, Potsdam, Germany
| | | | - Claudia Repetto
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
2
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
3
|
Callow DD, Spira AP, Bakker A, Smith JC. Sleep Quality Moderates the Associations between Cardiorespiratory Fitness and Hippocampal and Entorhinal Volume in Middle-Aged and Older Adults. Med Sci Sports Exerc 2024; 56:1740-1746. [PMID: 38742864 PMCID: PMC11326995 DOI: 10.1249/mss.0000000000003454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
INTRODUCTION/PURPOSE As individuals age, the entorhinal cortex (ERC) and hippocampus-crucial structures for memory-tend to atrophy, with related cognitive decline. Simultaneously, lifestyle factors that can be modified, such as exercise and sleep, have been separately linked to slowing of brain atrophy and functional decline. However, the synergistic impact of fitness and sleep on susceptible brain structures in aging adults remains uncertain. METHODS We examined both independent and interactive associations of fitness and subjective sleep quality with regard to ERC thickness and hippocampal volume in 598 middle-aged and older adults from the Human Connectome Lifespan Aging Project. Cardiorespiratory fitness was assessed using the 2-min walk test, whereas subjective sleep quality was measured with the continuous Pittsburgh Sleep Quality Index global score. High-resolution structural magnetic resonance imaging was used to examine mean ERC thickness and bilateral hippocampal volume. Through multiple linear regression analyses, we investigated the moderating effects of subjective sleep quality on the association between fitness and brain structure, accounting for age, sex, education, body mass index, gait speed, and subjective physical activity. RESULTS We found that greater cardiorespiratory fitness, but not subjective sleep quality, was positively associated with bilateral hippocampal volume and ERC thickness. Notably, significant interaction effects suggest that poor subjective sleep quality was associated with a weaker association between fitness and both hippocampal volume and ERC thickness. CONCLUSIONS Findings suggest the potential importance of both cardiorespiratory fitness and subjective sleep quality in preserving critical, age-vulnerable brain structures. Interventions targeting brain health should consider potential combined effects of sleep and fitness on brain health.
Collapse
Affiliation(s)
- Daniel D Callow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD
| |
Collapse
|
4
|
Yu Q, Kong Z, Zou L, Herold F, Ludyga S, Zhang Z, Hou M, Kramer AF, Erickson KI, Taubert M, Hillman CH, Mullen SP, Gerber M, Müller NG, Kamijo K, Ishihara T, Schinke R, Cheval B, McMorris T, Wong KK, Shi Q, Nie J. Imaging body-mind crosstalk in young adults. Int J Clin Health Psychol 2024; 24:100498. [PMID: 39290876 PMCID: PMC11407095 DOI: 10.1016/j.ijchp.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Objective There is evidence that complex relationships exist between motor functions, brain structure, and cognitive functions, particularly in the aging population. However, whether such relationships observed in older adults could extend to other age groups (e.g., younger adults) remains to be elucidated. Thus, the current study addressed this gap in the literature by investigating potential associations between motor functions, brain structure, and cognitive functions in a large cohort of young adults. Methods In the current study, data from 910 participants (22-35 yr) were retrieved from the Human Connectome Project. Interactions between motor functions (i.e., cardiorespiratory fitness, gait speed, hand dexterity, and handgrip strength), brain structure (i.e., cortical thickness, surface area, and subcortical volumes), and cognitive functions were examined using linear mixed-effects models and mediation analyses. The performance of different machine-learning classifiers to discriminate young adults at three different levels (related to each motor function) was compared. Results Cardiorespiratory fitness and hand dexterity were positively associated with fluid and crystallized intelligence in young adults, whereas gait speed and handgrip strength were correlated with specific measures of fluid intelligence (e.g., inhibitory control, flexibility, sustained attention, and spatial orientation; false discovery rate [FDR] corrected, p < 0.05). The relationships between cardiorespiratory fitness and domains of cognitive function were mediated by surface area and cortical volume in regions involved in the default mode, sensorimotor, and limbic networks (FDR corrected, p < 0.05). Associations between handgrip strength and fluid intelligence were mediated by surface area and volume in regions involved in the salience and limbic networks (FDR corrected, p < 0.05). Four machine-learning classifiers with feature importance ranking were built to discriminate young adults with different levels of cardiorespiratory fitness (random forest), gait speed, hand dexterity (support vector machine with the radial kernel), and handgrip strength (artificial neural network). Conclusions In summary, similar to observations in older adults, the current study provides empirical evidence (i) that motor functions in young adults are positively related to specific measures of cognitive functions, and (ii) that such relationships are at least partially mediated by distinct brain structures. Furthermore, our analyses suggest that machine-learning classifier has a promising potential to be used as a classification tool and decision support for identifying populations with below-average motor and cognitive functions.
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, 999078, China
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, 999078, China
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Grosse Allee 6, Basel, CH, 4052, Switzerland
| | - Zhihao Zhang
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Meijun Hou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Arthur F Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, 02115, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Neuroscience, Orlando, FL, 32101, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Marco Taubert
- Department Sport Science, Institute III, Faculty for Humanities, Center for Behavioral and Brain Sciences, Otto von Guericke University, Magdeburg, 39106, Germany
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, 02115, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Sean P Mullen
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois, Urbana, Champaign, 61820, USA
| | - Markus Gerber
- Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Grosse Allee 6, Basel, CH, 4052, Switzerland
| | - Notger G Müller
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, 14476, Germany
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, 466-8666, Japan
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Robert Schinke
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva CH-12114, Switzerland
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva CH-12114, Switzerland
| | - Terry McMorris
- Department Sport and Exercise Science, Institute for Sport, University of Chichester, College Lane, West Sussex, Chichester, PO19 6PE, United Kingdom
| | - Ka Kit Wong
- Faculty of Education, University of Macau, Macao, 999078, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, 999078, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, 999078, Macao, China
| |
Collapse
|
5
|
Skog HM, Määttä S, Säisänen L, Lakka TA, Haapala EA. Associations of physical fitness with cortical inhibition and excitation in adolescents and young adults. Front Neurosci 2024; 18:1297009. [PMID: 38741791 PMCID: PMC11090042 DOI: 10.3389/fnins.2024.1297009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Objective We investigated the longitudinal associations of cumulative motor fitness, muscular strength, and cardiorespiratory fitness (CRF) from childhood to adolescence with cortical excitability and inhibition in adolescence. The other objective was to determine cross-sectional associations of motor fitness and muscular strength with brain function in adolescence. Methods In 45 healthy adolescents (25 girls and 20 boys) aged 16-19 years, we assessed cortical excitability and inhibition by navigated transcranial magnetic stimulation (nTMS), and motor fitness by 50-m shuttle run test and Box and block test, and muscular strength by standing long jump test. These measures of physical fitness and CRF by maximal exercise were assessed also at the ages 7-9, 9-11, and 15-17 years. Cumulative measures of physical measures were computed by summing up sample-specific z-scores at ages 7-9, 9-11, and 15-17 years. Results Higher cumulative motor fitness performance from childhood to adolescence was associated with lower right hemisphere resting motor threshold (rMT), lower silent period threshold (SPt), and lower motor evoked potential (MEP) amplitude in boys. Better childhood-to-adolescence cumulative CRF was also associated with longer silent period (SP) duration in boys and higher MEP amplitude in girls. Cross-sectionally in adolescence, better motor fitness and better muscular strength were associated with lower left and right rMT among boys and better motor fitness was associated with higher MEP amplitude and better muscular strength with lower SPt among girls. Conclusion Physical fitness from childhood to adolescence modifies cortical excitability and inhibition in adolescence. Motor fitness and muscular strength were associated with motor cortical excitability and inhibition. The associations were selective for specific TMS indices and findings were sex-dependent.
Collapse
Affiliation(s)
- Hanna Mari Skog
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo A. Lakka
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Eero A. Haapala
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Chen J, Li T, Zhao B, Chen H, Yuan C, Garden GA, Wu G, Zhu H. The interaction effects of age, APOE and common environmental risk factors on human brain structure. Cereb Cortex 2024; 34:bhad472. [PMID: 38112569 PMCID: PMC10793588 DOI: 10.1093/cercor/bhad472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
Mounting evidence suggests considerable diversity in brain aging trajectories, primarily arising from the complex interplay between age, genetic, and environmental risk factors, leading to distinct patterns of micro- and macro-cerebral aging. The underlying mechanisms of such effects still remain unclear. We conducted a comprehensive association analysis between cerebral structural measures and prevalent risk factors, using data from 36,969 UK Biobank subjects aged 44-81. Participants were assessed for brain volume, white matter diffusivity, Apolipoprotein E (APOE) genotypes, polygenic risk scores, lifestyles, and socioeconomic status. We examined genetic and environmental effects and their interactions with age and sex, and identified 726 signals, with education, alcohol, and smoking affecting most brain regions. Our analysis revealed negative age-APOE-ε4 and positive age-APOE-ε2 interaction effects, respectively, especially in females on the volume of amygdala, positive age-sex-APOE-ε4 interaction on the cerebellar volume, positive age-excessive-alcohol interaction effect on the mean diffusivity of the splenium of the corpus callosum, positive age-healthy-diet interaction effect on the paracentral volume, and negative APOE-ε4-moderate-alcohol interaction effects on the axial diffusivity of the superior fronto-occipital fasciculus. These findings highlight the need of considering age, sex, genetic, and environmental joint effects in elucidating normal or abnormal brain aging.
Collapse
Affiliation(s)
- Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill NC 27514, United States
| | - Tengfei Li
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, United States
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Bingxin Zhao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, 265 South 37th Street, 3rd & 4th Floors, Philadelphia, PA 19104-1686, United States
| | - Hui Chen
- School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Rd, Hangzhou 310058, China
- Department of Nutrition, Harvard T H Chan School of Public Health, 665 Huntington Avenue Boston, MA, 02115, United States
| | - Gwenn A Garden
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, 170 Manning Drive Chapel Hill, NC 27599-7025, United States
| | - Guorong Wu
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, United States
- Departments of Statistics and Operations Research, University of North Carolina at Chapel Hill, 318 E Cameron Ave #3260, Chapel Hill, NC 27599, United States
- Departments of Computer Science, University of North Carolina at Chapel Hill, 201 South Columbia Street, Chapel Hill, NC 27599, United States
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Dr, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, 101 Renee Lynne Ct, Carrboro, NC 27510, United States
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill NC 27514, United States
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599, United States
- Departments of Statistics and Operations Research, University of North Carolina at Chapel Hill, 318 E Cameron Ave #3260, Chapel Hill, NC 27599, United States
- Departments of Computer Science, University of North Carolina at Chapel Hill, 201 South Columbia Street, Chapel Hill, NC 27599, United States
- Departments of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27514, United States
| |
Collapse
|
7
|
Rosario MA, Kern KL, Mumtaz S, Storer TW, Schon K. Cardiorespiratory fitness is associated with cortical thickness of medial temporal brain areas associated with spatial cognition in young but not older adults. Eur J Neurosci 2024; 59:82-100. [PMID: 38056827 PMCID: PMC10979765 DOI: 10.1111/ejn.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Cardiorespiratory fitness has a potent effect on neurocognitive health, especially regarding the hippocampal memory system. However, less is known about the impact of cardiorespiratory fitness on medial temporal lobe extrahippocampal neocortical regions. Specifically, it is unclear how cardiorespiratory fitness modulates these brain regions in young adulthood and if these regions are differentially related to cardiorespiratory fitness in young versus older adults. The primary goal of this study was to investigate if cardiorespiratory fitness predicted medial temporal lobe cortical thickness which, with the hippocampus, are critical for spatial learning and memory. Additionally, given the established role of these cortices in spatial navigation, we sought to determine if cardiorespiratory fitness and medial temporal lobe cortical thickness would predict greater subjective sense of direction in both young and older adults. Cross-sectional data from 56 young adults (20-35 years) and 44 older adults (55-85 years) were included. FreeSurfer 6.0 was used to automatically segment participants' 3T T1-weighted images. Using hierarchical multiple regression analyses, we confirmed significant associations between greater cardiorespiratory fitness and greater left entorhinal, left parahippocampal, and left perirhinal cortical thickness in young, but not older, adults. Left parahippocampal cortical thickness interacted with age group to differentially predict subjective sense of direction in young and older adults. Young adults displayed a positive, and older adults a negative, correlation between left parahippocampal cortical thickness and sense of direction. Our findings extend previous work on the association between cardiorespiratory fitness and hippocampal subfield structure in young adults to left medial temporal lobe neocortical regions.
Collapse
Affiliation(s)
- Michael A. Rosario
- Graduate Program for Neuroscience, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Kathryn L. Kern
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Shiraz Mumtaz
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thomas W. Storer
- Men’s Health, Aging, and Metabolism Unit, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Karin Schon
- Graduate Program for Neuroscience, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
- Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Aslanyan V, Ortega N, Fenton L, Harrison TM, Raman R, Mack WJ, Pa J. Protective effects of sleep duration and physical activity on cognitive performance are influenced by β-amyloid and brain volume but not tau burden among cognitively unimpaired older adults. Neuroimage Clin 2023; 39:103460. [PMID: 37379733 PMCID: PMC10316126 DOI: 10.1016/j.nicl.2023.103460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Sleep and physical activity have gained traction as modifiable risk factors for Alzheimer's disease. Sleep duration is linked to amyloid-β clearance while physical activity is associated with brain volume maintenance. We investigate how sleep duration and physical activity are associated with cognition by testing if the associations between sleep duration or physical activity to cognition are explained by amyloid-β burden and brain volume, respectively. Additionally, we explore the mediating role of tau deposition in sleep duration-cognition and physical activity-cognition relationships. METHODS This cross-sectional study obtained data from participants in the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study, a randomized clinical trial. In trial screening, cognitively unimpaired participants (age 65-85 years) underwent amyloid PET and brain MRI; APOE genotype and lifestyle questionnaire data were obtained. Cognitive performance was assessed using the Preclinical Alzheimer Cognitive Composite (PACC). Self-reported nightly sleep duration and weekly physical activity were the primary predictors. Regional Aβ and tau pathologies and volumes were the proposed variables influencing relationships between sleep duration or physical activity and cognition. RESULTS Aβ data were obtained from 4322 participants (1208 with MRI, 59% female, 29% amyloid positive). Sleep duration was associated with a Aβ composite score (β = -0.005, CI: (-0.01, -0.001)) and Aβ burden in the anterior cingulate (ACC) (β = -0.012, CI: (-0.017, -0.006)) and medial orbitofrontal cortices (MOC) (β = -0.009, CI: (-0.014, -0.005)). Composite (β = -1.54, 95% CI:(-1.93, -1.15)), ACC (β = -1.22, CI:(-1.54, -0.90)) and MOC (β = -1.44, CI:(-1.86, -1.02)) Aβ deposition was associated with PACC. Sleep duration-PACC association was explained by Aβ burden in path analyses. Physical activity was associated with hippocampal (β = 10.57, CI: (1.06, 20.08)), parahippocampal (β = 9.3, CI: (1.69, 16.91)), entorhinal (β = 14.68, CI: (1.75, 27.61), and fusiform gyral (β = 38.38, CI: (5.57, 71.18)) volumes, which were positively associated with PACC (p < 0.02 for hippocampus, entorhinal cortex and fusiform gyrus). Physical activity-cognition relationship was explained by regional volumes. PET tau imaging was available for 443 participants. No direct sleep duration-tau burden, physical activity by tau burden, or mediation by regional tau was observed in sleep duration-cognition or physical activity-cognition relationships. DISCUSSION Sleep duration and physical activity are associated with cognition through independent paths of brain Aβ and brain volume, respectively. These findings implicate neural and pathological mechanisms for the relationships between sleep duration and physical activity on cognition. Dementia risk reduction approaches that emphasize the adequate sleep duration and a physically active lifestyle may benefit those with risk for Alzheimer's disease.
Collapse
Affiliation(s)
- Vahan Aslanyan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Nancy Ortega
- Alzheimer's Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92121, USA
| | - Laura Fenton
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rema Raman
- Alzheimer Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, CA 92093, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Judy Pa
- Alzheimer's Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92121, USA.
| |
Collapse
|
9
|
Serra L, Petrosini L, Mandolesi L, Bonarota S, Balsamo F, Bozzali M, Caltagirone C, Gelfo F. Walking, Running, Swimming: An Analysis of the Effects of Land and Water Aerobic Exercises on Cognitive Functions and Neural Substrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16310. [PMID: 36498383 PMCID: PMC9740550 DOI: 10.3390/ijerph192316310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In the brain and cognitive reserves framework, aerobic exercise is considered as a protective lifestyle factor able to induce positive effects on both brain structure and function. However, specific aspects of such a beneficial effect still need to be completely clarified. To this aim, the present narrative review focused on the potential brain/cognitive/neural reserve-construction mechanisms triggered by different aerobic exercise types (land activities; such as walking or running; vs. water activities; such as swimming), by considering human and animal studies on healthy subjects over the entire lifespan. The literature search was conducted in PubMed database. The studies analyzed here indicated that all the considered kinds of activities exert a beneficial effect on cognitive/behavioral functions and on the underlying brain neurobiological processes. In particular, the main effects observed involve the cognitive domains of memory and executive functions. These effects appear related to structural and functional changes mainly involving the fronto-hippocampal axis. The present review supports the requirement of further studies that investigate more specifically and systematically the effects of each type of aerobic activity, as a basis to plan more effective and personalized interventions on individuals as well as prevention and healthy promotion policies for the general population.
Collapse
Affiliation(s)
- Laura Serra
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Laura Mandolesi
- Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | - Sabrina Bonarota
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Torino, 10126 Turin, Italy
- Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | | | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| |
Collapse
|
10
|
Qian P, Ma F, Zhang W, Cao D, Li L, Liu Z, Pei P, Zhang T, Wang S, Wu J. Chronic exercise remodels the lysine acetylome in the mouse hippocampus. Front Mol Neurosci 2022; 15:1023482. [PMID: 36385767 PMCID: PMC9650339 DOI: 10.3389/fnmol.2022.1023482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Physical exercise benefits hippocampal function through various molecular mechanisms. Protein acetylation, a conserved and widespread post-translational modification, is involved in the synaptic plasticity and memory. However, whether exercise can change global acetylation and the role of acetylated proteins in the hippocampus have remained largely unknown. Herein, using healthy adult mice running for 6 weeks as exercise model and sedentary mice as control, we analyzed the hippocampal lysine acetylome and proteome by Liquid chromatography-tandem mass spectrometry. As a result, we profiled the lysine acetylation landscape for the hippocampus and identified 3,876 acetyl sites and 1,764 acetylated proteins. A total of 272 acetyl sites on 252 proteins were differentially regulated by chronic exercise, among which 18.58% acetylated proteins were annotated in mitochondria. These proteins were dominantly deacetylated and mainly associated with carbon-related metabolism, the Hippo signaling pathway, ribosomes, and protein processing. Meanwhile, 21 proteins were significantly expressed and enriched in the pathway of complement and coagulation cascades. Our findings provide a new avenue for understanding the molecular mechanisms underlying the benefits of exercise for hippocampal function and can contribute to the promotion of public health.
Collapse
Affiliation(s)
- Ping Qian
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Feifei Ma
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Wanyu Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Dingding Cao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Luya Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhuo Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- *Correspondence: Shan Wang,
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Jianxin Wu,
| |
Collapse
|
11
|
de Brouwer AJ, Areshenkoff CN, Rashid MR, Flanagan JR, Poppenk J, Gallivan JP. Human Variation in Error-Based and Reinforcement Motor Learning Is Associated With Entorhinal Volume. Cereb Cortex 2022; 32:3423-3440. [PMID: 34963128 PMCID: PMC9376876 DOI: 10.1093/cercor/bhab424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Error-based and reward-based processes are critical for motor learning and are thought to be mediated via distinct neural pathways. However, recent behavioral work in humans suggests that both learning processes can be bolstered by the use of cognitive strategies, which may mediate individual differences in motor learning ability. It has been speculated that medial temporal lobe regions, which have been shown to support motor sequence learning, also support the use of cognitive strategies in error-based and reinforcement motor learning. However, direct evidence in support of this idea remains sparse. Here we first show that better overall learning during error-based visuomotor adaptation is associated with better overall learning during the reward-based shaping of reaching movements. Given the cognitive contribution to learning in both of these tasks, these results support the notion that strategic processes, associated with better performance, drive intersubject variation in both error-based and reinforcement motor learning. Furthermore, we show that entorhinal cortex volume is larger in better learning individuals-characterized across both motor learning tasks-compared with their poorer learning counterparts. These results suggest that individual differences in learning performance during error and reinforcement learning are related to neuroanatomical differences in entorhinal cortex.
Collapse
Affiliation(s)
- Anouk J de Brouwer
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mohammad R Rashid
- School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jordan Poppenk
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
- School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
12
|
Chi CH, Yang FC, Chang YL. Age-related volumetric alterations in hippocampal subiculum region are associated with reduced retention of the “when” memory component. Brain Cogn 2022; 160:105877. [DOI: 10.1016/j.bandc.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
13
|
Jennen L, Mazereel V, Lecei A, Samaey C, Vancampfort D, van Winkel R. Exercise to spot the differences: a framework for the effect of exercise on hippocampal pattern separation in humans. Rev Neurosci 2022; 33:555-582. [PMID: 35172422 DOI: 10.1515/revneuro-2021-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
Abstract
Exercise has a beneficial effect on mental health and cognitive functioning, but the exact underlying mechanisms remain largely unknown. In this review, we focus on the effect of exercise on hippocampal pattern separation, which is a key component of episodic memory. Research has associated exercise with improvements in pattern separation. We propose an integrated framework mechanistically explaining this relationship. The framework is divided into three pathways, describing the pro-neuroplastic, anti-inflammatory and hormonal effects of exercise. The pathways are heavily intertwined and may result in functional and structural changes in the hippocampus. These changes can ultimately affect pattern separation through direct and indirect connections. The proposed framework might guide future research on the effect of exercise on pattern separation in the hippocampus.
Collapse
Affiliation(s)
- Lise Jennen
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Victor Mazereel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| | - Aleksandra Lecei
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Celine Samaey
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Davy Vancampfort
- University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium.,KU Leuven Department of Rehabilitation Sciences, ON IV Herestraat 49, bus 1510, 3000, Leuven, Belgium
| | - Ruud van Winkel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| |
Collapse
|
14
|
Roy O, Levasseur-Moreau J, Renauld E, Hébert LJ, Leblond J, Bilodeau M, Fecteau S. Whole-brain morphometry in Canadian soldiers with posttraumatic stress disorder. Ann N Y Acad Sci 2021; 1509:37-49. [PMID: 34791677 DOI: 10.1111/nyas.14707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023]
Abstract
Patients with posttraumatic stress disorder (PTSD) display several structural brain differences when compared with healthy individuals. However, findings are particularly inconsistent for soldiers with PTSD. Here, we characterized the brain morphometry of 37 soldiers from the Canadian Armed Forces with adulthood war-related PTSD using structural magnetic resonance imaging. We assessed time since trauma, as well as PTSD, depressive, and anxiety symptoms with the Modified PTSD Symptoms Scale, Beck Depression Inventory, and Beck Anxiety Inventory, respectively. Whole-brain morphometry was extracted with FreeSurfer and compared with a validated normative database of more than 2700 healthy individuals. Volume and thickness from several regions differed from the norms. Frontal regions were smaller and thinner, particularly the superior and rostral middle frontal gyri. Furthermore, smaller left rostral middle frontal gyrus, left pericalcarine cortex, and right fusiform gyrus were associated with more recent trauma. All subcortical structures were bigger, except the hippocampus. These findings suggest a particular brain morphometric signature of PTSD in soldiers. Smaller and thinner frontal and larger subcortical regions support impaired top-down and/or downregulation of emotional response in PTSD. Finally, the correlation of smaller frontal, temporal, and occipital regions with more recent trauma might inform future therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Roy
- CERVO Brain Research Centre, Quebec, Canada.,Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Quebec, Canada.,Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Jean Levasseur-Moreau
- CERVO Brain Research Centre, Quebec, Canada.,Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Quebec, Canada.,Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Emmanuelle Renauld
- CERVO Brain Research Centre, Quebec, Canada.,Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Quebec, Canada.,Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Luc J Hébert
- Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Quebec, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec, Canada.,Department of Rehabilitation, Université Laval, Quebec, Canada
| | - Jean Leblond
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Quebec, Canada
| | - Mathieu Bilodeau
- Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Quebec, Canada.,Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Shirley Fecteau
- CERVO Brain Research Centre, Quebec, Canada.,Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Quebec, Canada.,Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| |
Collapse
|
15
|
Won J, Alfini AJ, Smith JC. Cardiovascular Endurance Modifies the Link between Subjective Sleep Quality and Entorhinal Cortex Thickness in Younger Adults. Med Sci Sports Exerc 2021; 53:2131-2139. [PMID: 33988545 PMCID: PMC8440339 DOI: 10.1249/mss.0000000000002697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Poor sleep is linked to impaired cognitive function, cortical brain atrophy, and lower cortical thickness. Independently, higher cardiovascular endurance has neuroprotective effects. It remains in question, however, whether cardiovascular endurance moderates the relationship between sleep and brain health. The aims of this study included the following: 1) the association between subjective sleep quality and cognitive performance, hippocampus volume, and entorhinal cortex (EC) thickness, and 2) the moderating effects of cardiovascular endurance on the associations of sleep quality with cognitive and magnetic resonance imaging measures in healthy younger adults. METHODS A total of 1095 younger adults (28.8 ± 3.6 yr) from the Human Connectome Project were included in the analyses. The 2-min walk test was used as a proxy of cardiovascular endurance. Self-reported sleep quality was measured using the Pittsburgh Sleep Quality Index. Composite cognitive tests were used to assess global cognition, and T1-weighted structural magnetic resonance imaging data (obtained using Siemens 3T scanner) was used to assess hippocampus volume and EC thickness. Linear regression was used to examine the moderating effects of fitness on the relationships between sleep and each of these neurocognitive outcomes after controlling for age, sex, and education year. RESULTS Poorer sleep quality was associated with both a lower crystalized intelligence score (B = -0.198, P = 0.034) and lower EC thickness (B = -0.013, P = 0.003). With greater 2-min walk test score, the association between greater Pittsburgh Sleep Quality Index score and lower EC thickness was attenuated (B = 0.0008, P = 0.028). CONCLUSIONS Higher cardiovascular endurance may mitigate the relationship between poorer subjective sleep quality and lower EC thickness. Future longitudinal studies should examine the interactive effects of sleep and fitness on brain health among older and more vulnerable populations.
Collapse
Affiliation(s)
- Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD
| | - Alfonso J. Alfini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD
| |
Collapse
|
16
|
Sullivan RM, Wallace AL, Wade NE, Swartz AM, Lisdahl KM. Cannabis Use and Brain Volume in Adolescent and Young Adult Cannabis Users: Effects Moderated by Sex and Aerobic Fitness. J Int Neuropsychol Soc 2021; 27:607-620. [PMID: 34261557 PMCID: PMC8288486 DOI: 10.1017/s135561772100062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Studies examining the impact of adolescent and young adult cannabis use on structural outcomes have been heterogeneous. One already-identified moderator is sex, while a novel potential moderator is extent of aerobic fitness. Here, we sought to investigate the associations of cannabis use, sex, and aerobic fitness levels on brain volume. Second, we explored brain-behavior relationships to interpret these findings. METHODS Seventy-four adolescents and young adults (36 cannabis users and 38 controls) underwent 3 weeks of monitored cannabis abstinence, aerobic fitness testing, structural neuroimaging, and neuropsychological testing. Linear regressions examined cannabis use and its interaction with sex and aerobic fitness on whole-brain cortical volume and subcortical regions of interests. RESULTS No main-effect differences between cannabis users and nonusers were observed; however, cannabis-by-sex interactions identified differences in frontal, temporal, and paracentral volumes. Female cannabis users generally exhibited greater volume while male users exhibited less volume compared to same-sex controls. Positive associations between aerobic fitness and frontal, parietal, cerebellum, and caudate volumes were observed. Cannabis-by-fitness interaction was linked with left superior temporal volume. Preliminary brain-behavior correlations revealed that abnormal volumes were not advantageous in either male or female cannabis users. CONCLUSIONS Aerobic fitness was linked with greater brain volume and sex moderated the effect of cannabis use on volume; preliminary brain-behavior correlations revealed that differences in cannabis users were not linked with advantageous cognitive performance. Implications of sex-specific subtleties and mechanisms of aerobic fitness require large-scale investigation. Furthermore, present findings and prior literature on aerobic exercise warrant examinations of aerobic fitness interventions that aimed at improving neurocognitive health in substance-using youth.
Collapse
Affiliation(s)
| | | | - Natasha E. Wade
- Department of Psychiatry, University of California, San Diego
| | - Ann M. Swartz
- Department of Kinesiology, University of Wisconsin-Milwaukee
| | | |
Collapse
|
17
|
Zhu L, Yu Q, Herold F, Cheval B, Dong X, Cui L, Xiong X, Chen A, Yin H, Kong Z, Mueller N, Kramer AF, Zou L. Brain Structure, Cardiorespiratory Fitness, and Executive Control Changes after a 9-Week Exercise Intervention in Young Adults: A Randomized Controlled Trial. Life (Basel) 2021; 11:292. [PMID: 33808225 PMCID: PMC8066797 DOI: 10.3390/life11040292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiorespiratory fitness (CRF) is assumed to exert beneficial effects on brain structure and executive control (EC) performance. However, empirical evidence of exercise-induced cognitive enhancement is not conclusive, and the role of CRF in younger adults is not fully understood. Here, we conducted a study in which healthy young adults took part in a moderate aerobic exercise intervention program for 9 weeks (exercise group; n = 48), or control condition of non-aerobic exercise intervention (waitlist control group; n = 72). Before and after the intervention period maximal oxygen uptake (VO2max) as an indicator of CRF, the Flanker task as a measure of EC performance and grey matter volume (GMV), as well as cortical thickness via structural magnetic resonance imaging (MRI), were assessed. Compared to the control group, the CRF (heart rate, p < 0.001; VO2max, p < 0.001) and EC performance (congruent and incongruent reaction time, p = 0.011, p < 0.001) of the exercise group were significantly improved after the 9-week aerobic exercise intervention. Furthermore, GMV changes in the left medial frontal gyrus increased in the exercise group, whereas they were significantly reduced in the control group. Likewise, analysis of cortical morphology revealed that the left lateral occipital cortex (LOC.L) and the left precuneus (PCUN.L) thickness were considerably increased in the exercise group, which was not observed in the control group. The exploration analysis confirmed that CRF improvements are linked to EC improvement and frontal grey matter changes. In summary, our results support the idea that regular endurance exercises are an important determinant for brain health and cognitive performance even in a cohort of younger adults.
Collapse
Affiliation(s)
- Lina Zhu
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Qian Yu
- Exercise & Mental Health Laboratory, Institute of Collaborative Innovation (Sport-Psychology-Education), School of Psychology, Shenzhen University, Shenzhen 518060, China;
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; (F.H.); (N.M.)
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland;
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, FPSE, University of Geneva, 1205 Geneva, Switzerland
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Lei Cui
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Xuan Xiong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Hengchan Yin
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China;
| | - Notger Mueller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; (F.H.); (N.M.)
| | - Arthur F. Kramer
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA 02115, USA;
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Liye Zou
- Exercise & Mental Health Laboratory, Institute of Collaborative Innovation (Sport-Psychology-Education), School of Psychology, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
18
|
Bang-Kittilsen G, Egeland J, Holmen TL, Bigseth TT, Andersen E, Mordal J, Ulleberg P, Engh JA. High-intensity interval training and active video gaming improve neurocognition in schizophrenia: a randomized controlled trial. Eur Arch Psychiatry Clin Neurosci 2021; 271:339-353. [PMID: 33156372 DOI: 10.1007/s00406-020-01200-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022]
Abstract
There is a need for treatments targeting neurocognitive dysfunctions in schizophrenia. The aim of this study was to investigate the neurocognitive effect of aerobic high-intensity interval training (HIIT). A comparison group performed sport simulating active video gaming (AVG). We anticipated that HIIT would improve neurocognition beyond any effect of AVG, due to engagement in higher intensity cardiorespiratory demands. Recent research on the beneficial neurocognitive effect of AVG challenges this expectation but added new relevance to comparing the two interventions. This is an observer-blinded randomized controlled trial. Eighty-two outpatients diagnosed with schizophrenia were allocated to HIIT (n = 43) or AVG (n = 39). Both groups received two supervised sessions per week for 12 weeks. The attrition rate was 31%, and 65% of the participants were defined as protocol compliant study completers. Intention-to-treat analyses showed significant improvements in the neurocognitive composite score from baseline to post-intervention and from baseline to 4 months follow-up in the total sample. The same pattern of results was found in several subdomains. Contrary to our hypothesis, we found no interaction effects of time and group, indicating equal effects in both groups. Separate within-group analysis unexpectedly showed trends of differential effects in the learning domain, as HIIT showed post-intervention improvement in verbal but not visual learning, while AVG showed improvement in visual but not verbal learning. HIIT and AVG improve neurocognition equally, suggesting that both interventions may be applied to target neurocognition in schizophrenia. Future research should investigate trends towards possible differential effects of exercise modes on neurocognitive subdomains. NCT02205684, 31.07.14.
Collapse
Affiliation(s)
- Gry Bang-Kittilsen
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Mail Office Box 2168, 3103, Tønsberg, Norway.
| | - Jens Egeland
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Mail Office Box 2168, 3103, Tønsberg, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Tom Langerud Holmen
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Mail Office Box 2168, 3103, Tønsberg, Norway
| | - Therese Torgersen Bigseth
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Mail Office Box 2168, 3103, Tønsberg, Norway
| | - Eivind Andersen
- Faculty of Humanities, Sports and Educational Science, University of Southeast Norway, Horten, Norway
| | - Jon Mordal
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Mail Office Box 2168, 3103, Tønsberg, Norway
| | - Pål Ulleberg
- Department of Psychology, University of Oslo, Oslo, Norway
| | - John Abel Engh
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Mail Office Box 2168, 3103, Tønsberg, Norway
| |
Collapse
|
19
|
Gronek P, Haas AN, Czarny W, Podstawski R, Delabary MDS, Clark CCT, Boraczyński M, Tarnas M, Wycichowska P, Pawlaczyk M, Gronek J. The Mechanism of Physical Activity-induced Amelioration of Parkinson's Disease: A Narrative Review. Aging Dis 2021; 12:192-202. [PMID: 33532136 PMCID: PMC7801266 DOI: 10.14336/ad.2020.0407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Physical activity, together with its ameliorative effects on Parkinson's disease (PD) symptoms, remains a relatively unappreciated factor which may be beneficial for the treatment outcome. Contemporary evidence supports the positive effects of non-pharmacological approaches to PD symptom management, in particular the effects of the exercise on both, motor and non-motor symptoms. The aim of the study was to review the mechanisms of exercise-induced amelioration of PD symptoms. Methods: Electronic databases (PubMed, Web of Science and Google Scholar) were searched using the following key words: "Parkinson and physical activity" OR "Parkinson disease and exercise" OR "Parkinson disease and lifestyle factors" OR "Parkinson disease and longevity". A total of 97 studies which investigated PD genetics and various forms of exercise and their etiologic impact on PD were reviewed. The studies were subdivided into four topic groups: 1) genetics of PD, 2) exercise and the brain, 3) physical activity and PD, 4) mind-body interventions, and discussed accordingly. Adequate levels of physical activity are associated with higher quality of life in PD patients. Physical activity may have protective and stimulatory effects for better functional efficiency in higher-level cognitive networks. It can also improve balance and motor functions by improving muscle strength. Given the etiologic evidence of the beneficial effects of physical activity on PD, albeit tentative, a concerted effort to elucidate the processes and outcomes of physical activity on ameliorating symptoms of PD must be undertaken.
Collapse
Affiliation(s)
- Piotr Gronek
- Laboratory of Genetics, Department of Health Sciences, Poznań University of Physical Education, Poznań, Poland.
| | - Aline Nogueira Haas
- School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Wojciech Czarny
- Department of Human Sciences, University of Rzeszów, Poland.
| | - Robert Podstawski
- Department of Tourism, Recreation and Ecology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Marcela do Santos Delabary
- School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Cain CT Clark
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom.
| | | | - Maria Tarnas
- Laboratory of Genetics, Department of Health Sciences, Poznań University of Physical Education, Poznań, Poland.
| | - Paulina Wycichowska
- Laboratory of Genetics, Department of Health Sciences, Poznań University of Physical Education, Poznań, Poland.
| | - Mariola Pawlaczyk
- Department of Geriatric Medicine and Gerontology, Poznań University of Medical Sciences, Poznań, Poland.
| | - Joanna Gronek
- Laboratory of Genetics, Department of Health Sciences, Poznań University of Physical Education, Poznań, Poland.
| |
Collapse
|
20
|
Wade NE, Wallace AL, Sullivan RM, Swartz AM, Lisdahl KM. Association between brain morphometry and aerobic fitness level and sex in healthy emerging adults. PLoS One 2020; 15:e0242738. [PMID: 33259511 PMCID: PMC7707547 DOI: 10.1371/journal.pone.0242738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Aerobic fitness may be beneficial for neuroanatomical structure. However, few have investigated this in emerging adults while also accounting for potential sex differences. Here we examine aerobic fitness level, sex, and their interaction in relation to cortical thickness, surface area, and volume. METHOD Sixty-three young adults between the ages of 16-26 were balanced for sex and demonstrated a wide range of aerobic fitness levels. Exclusion criteria included left-handedness, past-year independent Axis-I disorders, major medical/neurologic disorders, prenatal medical issues, prenatal alcohol/illicit drug exposure, or excessive substance use. Participants completed an MRI scan and a graded exercise test to volitional fatigue (VO2 max). Data analyses were run in Freesurfer and data was corrected for multiple comparisons with Monte Carlo simulations at .05. RESULTS Males demonstrated higher VO2 values. Higher VO2 values were statistically independently related to thinner lateral occipital, superior parietal, cuneus, precuneus, and inferior parietal regions, smaller lateral occipital volume, and larger inferior parietal surface area. Compared to females, males had larger volume in rostral anterior cingulate, lateral occipital, and superior frontal regions, and greater surface area in fusiform, inferior parietal, rostral and caudal anterior cingulate, and superior parietal regions. VO2*Sex interactions revealed higher-fit females had higher inferior parietal, paracentral, and supramarginal surface area, while lower-fit males showed larger surface area in these same regions. CONCLUSIONS Individuals with higher aerobic fitness performance had thinner cortices, lower volume, and larger surface area in sensorimotor regions than lower fit individuals, perhaps suggesting earlier neuromaturation in higher fit individuals. Larger surface area was associated with higher-fit females and lower-fit males. Thus both sex and aerobic fitness are important in shaping brain health in emerging adults.
Collapse
Affiliation(s)
- Natasha E. Wade
- Department of Psychiatry, University of California, San Diego, CA, United States of America
| | - Alexander L. Wallace
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Ryan M. Sullivan
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Ann M. Swartz
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| |
Collapse
|
21
|
Wade NE, Kaiver CM, Wallace AL, Hatcher KF, Swartz AM, Lisdahl KM. Objective aerobic fitness level and neuropsychological functioning in healthy adolescents and emerging adults: Unique sex effects. PSYCHOLOGY OF SPORT AND EXERCISE 2020; 51:101794. [PMID: 35495562 PMCID: PMC9053538 DOI: 10.1016/j.psychsport.2020.101794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective Research suggests positive relationships between aerobic fitness and cognition in older adults; however, limited research has adequately investigated the relationship between objectively measured aerobic fitness and broad cognitive functioning in healthy adolescents and young adults without psychiatric or physical health disorders. Further, studies to date have disproportionately examined males and failed to examine sex differences. Here we examine the relationship between aerobic fitness and neuropsychological functioning in physically healthy youth and whether sex moderates these findings. Design Sixty-four healthy emerging adults (16-25 years-old; 32 female) underwent measurement of objective aerobic fitness (VO2 max) and neuropsychological assessment. Exclusion criteria included: left-handedness, prenatal medical issues or alcohol/illicit drug exposure, Axis-I psychiatric disorders, major medical disorders including metabolic conditions such as diabetes, hypertension, hyperlipidemia, major neurologic disorders, LOS greater than 2 min, intellectual disability or learning disability, regular substance use (e.g., greater than biweekly use of cannabis) or positive drug toxicology testing. Method Multiple regressions examined VO2 max, sex, sex*VO2interaction in relation to neurocognition, controlling for objectively measured body fat percentage. Results Prior to including body fat percentage, higher VO2 max related to improved working memory (Letter-Number Sequencing; p = .03) and selective attention (CPT-II hit response time standard error; p = .03). Aerobic fitness significantly interacted with sex, as higher-fit males had better performance on two sustained attention tasks while females did not demonstrate this pattern (CPT-II variability standard error, p = .047; Ruff 2&7 Total Speed, p = .02). Body fat percentage was positively slower cognitive flexibility (D-KEFS color-word switching/inhibition, p = .046). Conclusions VO2 independently predicted better working memory and selective attention. Increased aerobic fitness level related to increased performance on sustained attention tasks in males but not females. Therefore, aerobic fitness may be positively related to better cognitive functioning in physically healthy adolescents and emerging adults without metabolic conditions. Further research into factors (e.g., intensity or type of activity) that may relate to beneficial outcomes by sex are needed.
Collapse
Affiliation(s)
| | | | | | | | - Ann M. Swartz
- University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | |
Collapse
|
22
|
Fuller OK, Whitham M, Mathivanan S, Febbraio MA. The Protective Effect of Exercise in Neurodegenerative Diseases: The Potential Role of Extracellular Vesicles. Cells 2020; 9:cells9102182. [PMID: 32998245 PMCID: PMC7599526 DOI: 10.3390/cells9102182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical activity has systemic effects on the body, affecting almost every organ. It is important not only for general health and wellbeing, but also in the prevention of diseases. The mechanisms behind the therapeutic effects of physical activity are not completely understood; however, studies indicate these benefits are not confined to simply managing energy balance and body weight. They also include systemic factors which are released into the circulation during exercise and which appear to underlie the myriad of benefits exercise can elicit. It was shown that along with a number of classical cytokines, active tissues also engage in inter-tissue communication via extracellular vesicles (EVs), specifically exosomes and other small EVs, which are able to deliver biomolecules to cells and alter their metabolism. Thus, EVs may play a role in the acute and systemic adaptations that take place during and after physical activity, and may be therapeutically useful in the treatment of a range of diseases, including metabolic disorders such as type 2 diabetes and obesity; and the focus of this review, neurological disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Oliver K Fuller
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia;
| | - Martin Whitham
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK;
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia;
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia;
- Correspondence:
| |
Collapse
|
23
|
Woodward ML, Lin J, Gicas KM, Su W, Hui CLM, Honer WG, Chen EYH, Lang DJ. Medial temporal lobe cortical changes in response to exercise interventions in people with early psychosis: A randomized controlled trial. Schizophr Res 2020; 223:87-95. [PMID: 32487465 DOI: 10.1016/j.schres.2020.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/21/2020] [Accepted: 05/17/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Individuals with early psychosis may have prefrontal-limbic cortical deficits, which are associated with symptom severity and cognitive impairment. This study investigated the impact of an exercise intervention on fronto-temporal cortical plasticity in female participants with early psychosis. METHODS In a cohort of 51 female participants with early psychosis from Hong Kong, we investigated the effects of a 12-week, moderate intensity aerobic or Hatha yoga exercise trial (yoga (N = 21), aerobic (N = 18) or waitlist group (N = 12)) on cortical grey matter. Clinical assessments and structural MRI were completed pre- and post- a 12-week exercise intervention. RESULTS Increases in cortical volume and thickness were observed in the medial temporal cortical regions, primarily in fusiform cortical thickness (F(2, 48) = 4.221, p = 0.020, η2 = 0.150) and volume (F(2, 48) = 3.521, p = 0.037, η2 = 0.128) for participants with early psychosis in the aerobic arm, but not in the yoga and waitlist arms. Increased fusiform cortical thickness (ß = 0.402, p = 0.003) was associated with increased hippocampal volume for all psychosis participants. For the aerobic group only, increases in the entorhinal and fusiform temporal gyri were associated with reduced symptom severity. CONCLUSIONS These findings suggest exercise-induced neuroplasticity in medial temporal cortical regions occurs with aerobic exercise. These changes may be associated with improvements in psychosis symptom severity. People with early psychosis may benefit from exercise interventions, particularly aerobic exercise, as an adjunct treatment to address clinical, physical health, and neuroanatomic concerns. NIH National Library of Medicine ClinicalTrials.gov Registration #: NCT01207219https://clinicaltrials.gov/ct2/show/NCT01207219.
Collapse
Affiliation(s)
| | - Jingxia Lin
- School of Nursing, The University of Hong Kong, Hong Kong
| | | | - Wayne Su
- Department of Psychiatry, University of British Columbia, Canada
| | - Christy L M Hui
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Canada
| | - Eric Y H Chen
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Donna J Lang
- Department of Radiology, University of British Columbia, Canada.
| |
Collapse
|
24
|
Stillman CM, Esteban-Cornejo I, Brown B, Bender CM, Erickson KI. Effects of Exercise on Brain and Cognition Across Age Groups and Health States. Trends Neurosci 2020; 43:533-543. [PMID: 32409017 DOI: 10.1016/j.tins.2020.04.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
Exercise has been shown to benefit brain structure and function, particularly in aging populations. However, the mechanisms by which exercise exerts its effects, especially in humans, are not fully understood. This review argues that one reason for this knowledge gap is that exercise likely operates through multiple levels of mechanisms. Furthermore, the mechanisms of exercise may vary depending on factors such as age and health state. We discuss the state of evidence at each of three levels of analysis (molecular/cellular, brain structure/function, and mental states and higher-order behaviors) and highlight consistencies across these levels, inconsistencies within them, and knowledge gaps. Lastly, based on these, we speculate about which mechanisms of exercise may be universal across age groups and populations versus those that might be distinct to specific age ranges or populations.
Collapse
Affiliation(s)
| | - Irene Esteban-Cornejo
- PROFITH 'PROmoting FITness and Health through physical activity' Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belinda Brown
- College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia
| | | | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia.
| |
Collapse
|
25
|
Chinn GA, Sasaki Russell JM, Banh ET, Lee SC, Sall JW. Voluntary Exercise Rescues the Spatial Memory Deficit Associated With Early Life Isoflurane Exposure in Male Rats. Anesth Analg 2020; 129:1365-1373. [PMID: 31517674 DOI: 10.1213/ane.0000000000004418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Early life anesthesia exposure results in long-term cognitive deficits in rats. Environmental enrichment consisting of social housing, a stimulating environment, and voluntary exercise can rescue this deficit. We hypothesized that exercise alone is sufficient to rescue the cognitive deficit associated with perinatal anesthesia. METHODS Postnatal day 7 male rats (P7) underwent isoflurane (Iso) or sham exposure and were subsequently weaned at P21. They were then singly housed in a cage with a running wheel or a fixed wheel. After 3 weeks of exercise, animals underwent behavioral testing for spatial and recognition memory assessments. Animals were killed at various time points to accomplish either bromodeoxyuridine (BrdU) labeling or quantitative real-time polymerase chain reaction (qRT-PCR) to quantify brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) levels. RESULTS Postweaning voluntary exercise rescued the long-term spatial memory deficit associated with perinatal Iso exposure. Iso-sedentary animals did not discriminate the goal quadrant, spending no more time than chance during the Barnes maze probe trial (1-sample t test, P = .524) while all other groups did (1-sample t test, PIso-exercise = .033; Pcontrol [Con]-sedentary = .004). We did not find a deficit in recognition memory tasks after Iso exposure as we observed previously. BrdU incorporation in the adult hippocampus of Iso-sedentary animals was decreased compared to sedentary controls (Tukey P = .005). Exercise prevented this decrease, with Iso-exercise animals having more proliferation than Iso-sedentary (Tukey P < .001). There was no effect of exercise or Iso on BDNF mRNA in either the cortex or hippocampus (cortex: FExercise[1,32] = 0.236, P = .631; FIso [1,32] = 0.038, P = .847; FInteraction [1,32] = 1.543, P = .223; and hippocampus: FExercise[1,33] = 1.186, P = .284; FIso [1,33] = 1.46, P = .236; FInteraction[1,33] = 1.78, P = .191). CONCLUSIONS Exercise restores BrdU incorporation and rescues a spatial memory deficit after early life anesthesia exposure. This demonstrates sufficiency of exercise alone in the context of environmental enrichment to recover a behavioral phenotype after a perinatal insult.
Collapse
Affiliation(s)
- Gregory A Chinn
- From the Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | | | | | | | | |
Collapse
|
26
|
Ruotsalainen I, Gorbach T, Perkola J, Renvall V, Syväoja HJ, Tammelin TH, Karvanen J, Parviainen T. Physical activity, aerobic fitness, and brain white matter: Their role for executive functions in adolescence. Dev Cogn Neurosci 2020; 42:100765. [PMID: 32072938 PMCID: PMC7013351 DOI: 10.1016/j.dcn.2020.100765] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 11/26/2022] Open
Abstract
Physical activity and exercise beneficially link to brain properties and cognitive functions in older adults, but the findings concerning adolescents remain tentative. During adolescence, the brain undergoes significant changes, which are especially pronounced in white matter. Studies provide contradictory evidence regarding the influence of physical activity or aerobic-exercise on executive functions in youth. Little is also known about the link between both fitness and physical activity with the brain's white matter during puberty. We investigated the connection between aerobic fitness and physical activity with the white matter in 59 adolescents. We further determined whether white matter interacts with the connection of fitness or physical activity with core executive functions. Our results show that only the level of aerobic fitness, but not of physical activity relates to white matter. Furthermore, the white matter of the corpus callosum and the right superior corona radiata moderates the links of aerobic fitness and physical activity with working memory. Our results suggest that aerobic fitness and physical activity have an unequal contribution to the white matter properties in adolescents. We propose that the differences in white matter properties could underlie the variations in the relationship between either physical activity or aerobic fitness with working memory.
Collapse
Affiliation(s)
- Ilona Ruotsalainen
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Tetiana Gorbach
- Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden; Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland
| | - Jaana Perkola
- Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Ville Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; AMI Centre, Aalto NeuroImaging, School of Science, Aalto University, Espoo, Finland
| | - Heidi J Syväoja
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Tuija H Tammelin
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Juha Karvanen
- Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
27
|
Sullivan RM, Wallace AL, Wade NE, Swartz AM, Lisdahl KM. Assessing the Role of Cannabis Use on Cortical Surface Structure in Adolescents and Young Adults: Exploring Gender and Aerobic Fitness as Potential Moderators. Brain Sci 2020; 10:E117. [PMID: 32098300 PMCID: PMC7071505 DOI: 10.3390/brainsci10020117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/05/2022] Open
Abstract
Cannabis use in adolescents and young adults is linked with aberrant brain structure, although findings to date are inconsistent. We examined whether aerobic fitness moderated the effects of cannabis on cortical surface structure and whether gender may play a moderating role. Seventy-four adolescents and young adults completed three-weeks of monitored abstinence, aerobic fitness testing, and structural magnetic resonance imaging (sMRI). Whole-sample linear regressions examined the effects of gender, VO2 max, cannabis use, and their interactions on the surface area (SA) and local gyrification index (LGI). Cannabis use was associated with greater cuneus SA. Gender-by-cannabis predicted precuneus and frontal SA, and precentral, supramarginal, and frontal LGI; female cannabis users demonstrated greater LGI, whereas male cannabis users demonstrated decreased LGI compared to non-users. Aerobic fitness was positively associated with various SA and LGI regions. Cannabis-by-aerobic fitness predicted cuneus SA and occipital LGI. These findings demonstrate that aerobic fitness moderates the impact of cannabis on cortical surface structure, and gender differences are evident. These moderating factors may help explain inconsistencies in the literature and warrant further investigation. Present findings and aerobic fitness literature jointly suggest aerobic intervention may be a low-cost avenue for improving cortical surface structure, although the impact may be gender-specific.
Collapse
Affiliation(s)
- Ryan M. Sullivan
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; (R.M.S.); (A.L.W.)
| | - Alexander L. Wallace
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; (R.M.S.); (A.L.W.)
| | - Natasha E. Wade
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Ann M. Swartz
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; (R.M.S.); (A.L.W.)
| |
Collapse
|
28
|
Nauer RK, Schon K, Stern CE. Cardiorespiratory fitness and mnemonic discrimination across the adult lifespan. ACTA ACUST UNITED AC 2020; 27:91-103. [PMID: 32071255 PMCID: PMC7029721 DOI: 10.1101/lm.049197.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/10/2019] [Indexed: 11/24/2022]
Abstract
With a rising aging population, it is important to develop behavioral tasks that assess and track cognitive decline, and to identify protective factors that promote healthy brain aging. Mnemonic discrimination tasks that rely on pattern separation mechanisms are a promising metric to detect subtle age-related memory impairments. Behavioral performance on these tasks rely on the integrity of the hippocampus and surrounding circuitry, which are brain regions known to be adversely affected in aging and neurodegenerative disorders. Aerobic exercise, which improves cardiorespiratory fitness (CRF), has been shown to counteract aging-related decreases in structural and functional brain integrity and attenuate decline of cognitive performance. Here, we tested the hypothesis that higher CRF attenuates age-related deficits in mnemonic discrimination in both a nonspatial mnemonic discrimination (Mnemonic Similarity Task) and a virtual navigation task (Route Disambiguation Task). Importantly, we included individuals across the lifespan (aged 18–83 yr), including the middle-age range, to determine mnemonic discrimination performance across adulthood. Participants completed two mnemonic discrimination tasks and a treadmill test to assess CRF. Our results demonstrate robust negative age-related effects on mnemonic discrimination performance across both the nonspatial and spatial domains. Critically, higher CRF mitigated age-related attenuation in spatial contextual discrimination task performance, but did not show an attenuation effect on performance for object-based mnemonic discrimination. These results suggest that performance on spatial mnemonic discrimination may be a useful tool to track vulnerability in older individuals at risk for cognitive decline, and that higher CRF may lead to cognitive preservation across the adult lifespan, particularly for spatial disambiguation of similar contexts.
Collapse
Affiliation(s)
- Rachel K Nauer
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Karin Schon
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Chantal E Stern
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
29
|
Wittfeld K, Jochem C, Dörr M, Schminke U, Gläser S, Bahls M, Markus MRP, Felix SB, Leitzmann MF, Ewert R, Bülow R, Völzke H, Janowitz D, Baumeister SE, Grabe HJ. Cardiorespiratory Fitness and Gray Matter Volume in the Temporal, Frontal, and Cerebellar Regions in the General Population. Mayo Clin Proc 2020; 95:44-56. [PMID: 31902428 DOI: 10.1016/j.mayocp.2019.05.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To analyze the association between cardiorespiratory fitness (CRF) and global and local brain volumes. PARTICIPANTS AND METHODS We studied 2103 adults (21-84 years old) from 2 independent population-based cohorts (Study of Health in Pomerania, examinations from June 25, 2008, through September 30, 2012). Cardiorespiratory fitness was measured using peak oxygen uptake (VO2peak), oxygen uptake at the anaerobic threshold (VO2@AT), and maximal power output from cardiopulmonary exercise testing on a bicycle ergometer. Magnetic resonance imaging brain data were analyzed by voxel-based morphometry using regression models with adjustment for age, sex, education, smoking, body weight, systolic blood pressure, glycated hemoglobin level, and intracranial volume. RESULTS Volumetric analyses revealed associations of CRF with gray matter (GM) volume and total brain volume. After multivariable adjustment, a 1-standard deviation increase in VO2peak was related to a 5.31 cm³ (95% CI, 3.27 to 7.35 cm³) higher GM volume. Whole-brain voxel-based morphometry analyses revealed significant positive relations between CRF and local GM volumes. The VO2peak was strongly associated with GM volume of the left middle temporal gyrus (228 voxels), the right hippocampal gyrus (146 voxels), the left orbitofrontal cortex (348 voxels), and the bilateral cingulate cortex (68 and 43 voxels). CONCLUSION Cardiorespiratory fitness was positively associated with GM volume, total brain volume, and specific GM and white matter clusters in brain areas not primarily involved in movement processing. These results, from a representative population sample, suggest that CRF might contribute to improved brain health and might, therefore, decelerate pathology-specific GM decrease.
Collapse
Affiliation(s)
- Katharina Wittfeld
- German Center for Neurodegenerative Disease, Site Rostock/Greifswald, Germany; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany.
| | - Carmen Jochem
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany
| | - Ulf Schminke
- Department of Neurology, University Medicine Greifswald, Germany
| | - Sven Gläser
- Department of Internal Medicine B, University Medicine Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany
| | - Marcello R P Markus
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany; German Center for Diabetes Research, Partner Site Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Germany
| | - Ralf Ewert
- Department of Internal Medicine B, University Medicine Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, Germany; German Center for Diabetes Research, Partner Site Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Sebastian E Baumeister
- Institute for Community Medicine, University Medicine Greifswald, Germany; Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Germany; Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Hans Jörgen Grabe
- German Center for Neurodegenerative Disease, Site Rostock/Greifswald, Germany; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| |
Collapse
|
30
|
Abstract
OBJECTIVE The objective of this study was to examine the effects of physical exercise on parahippocampal function. METHODS Studies were identified using electronic databases, including PubMed, PsychInfo, Sports Discus, and Google Scholar. In total, 28 articles met the inclusionary criteria. Among these, 20 were among humans and 8 in animal models. Among the 20 human studies that examined some aspects of the parahippocampal gyrus, 5 evaluated the entorhinal cortex and 1 evaluated the perirhinal cortex. Among the 20 human studies, 3 evaluated neural activity (or BOLD-signal changes), 14 evaluated brain volume (gray or white matter), 2 examined fractional anisotropy, 1 examined glucose metabolism, and 1 examined functional connectivity between the parahippocampal gyrus and a proximal brain tissue. Among the 8 animal studies, 4 evaluated the entorhinal cortex, with the other 4 examining the perirhinal cortex. RESULTS The results demonstrated that, among both animal and human models, exercise had widespread effects on parahippocampal function. These effects, included, for example, increased neural excitability in the parahippocampal gyrus, increased gray/white matter, reduced volume of lesions, enhanced regional glucose metabolism, increased cerebral blood flow, augmented markers of synaptic plasticity, and increased functional connectivity with other proximal brain structures. CONCLUSION Exercise appears to have extensive effects on parahippocampal function.
Collapse
Affiliation(s)
- P D Loprinzi
- 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi , University, MS, USA
| |
Collapse
|
31
|
Gronek P, Balko S, Gronek J, Zajac A, Maszczyk A, Celka R, Doberska A, Czarny W, Podstawski R, Clark CCT, Yu F. Physical Activity and Alzheimer's Disease: A Narrative Review. Aging Dis 2019; 10:1282-1292. [PMID: 31788339 PMCID: PMC6844593 DOI: 10.14336/ad.2019.0226] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Although age is a dominant risk factor for Alzheimer’s disease (AD), epidemiological studies have shown that physical activity may significantly decrease age-related risks for AD, and indeed mitigate the impact in existing diagnosis. The aim of this study was to perform a narrative review on the preventative, and mitigating, effects of physical activity on AD onset, including genetic factors, mechanism of action and physical activity typology. In this article, we conducted a narrative review of the influence physical activity and exercise have on AD, utilising key terms related to AD, physical activity, mechanism and prevention, searching the online databases; Web of Science, PubMed and Google Scholar, and, subsequently, discuss possible mechanisms of this action. On the basis of this review, it is evident that physical activity and exercise may be incorporated in AD, notwithstanding, a greater number of high-quality randomised controlled trials are needed, moreover, physical activity typology must be acutely considered, primarily due to a dearth of research on the efficacy of physical activity types other than aerobic.
Collapse
Affiliation(s)
- Piotr Gronek
- 1Faculty of Physical Education, Sport and Rehabilitation, Poznan University of Physical Education, Poland
| | - Stefan Balko
- 2Department of Physical Education and Sport, Faculty of Education, Jan Evangelista Purkyne University in Usti nad Labem, Czech Republic
| | - Joanna Gronek
- 1Faculty of Physical Education, Sport and Rehabilitation, Poznan University of Physical Education, Poland
| | - Adam Zajac
- 3Department of Physical Education, University of Physical Education and Sport, Gdansk, Poland
| | - Adam Maszczyk
- 4Department of Methodology and Statistics, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Roman Celka
- 1Faculty of Physical Education, Sport and Rehabilitation, Poznan University of Physical Education, Poland
| | - Agnieszka Doberska
- 1Faculty of Physical Education, Sport and Rehabilitation, Poznan University of Physical Education, Poland
| | - Wojciech Czarny
- 5Faculty of Physical Education, Department of Human Sciences, University of Rzeszow, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Robert Podstawski
- 6Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Cain C T Clark
- 7Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, United Kingdom
| | - Fang Yu
- 8School of Nursing, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Nauer RK, Dunne MF, Stern CE, Storer TW, Schon K. Improving fitness increases dentate gyrus/CA3 volume in the hippocampal head and enhances memory in young adults. Hippocampus 2019; 30:488-504. [PMID: 31588607 DOI: 10.1002/hipo.23166] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022]
Abstract
Converging evidence suggests a relationship between aerobic exercise and hippocampal neuroplasticity that interactively impacts hippocampally dependent memory. The majority of human studies have focused on the potential for exercise to reduce brain atrophy and attenuate cognitive decline in older adults, whereas animal studies often center on exercise-induced neurogenesis and hippocampal plasticity in the dentate gyrus (DG) of young adult animals. In the present study, initially sedentary young adults (18-35 years) participated in a moderate-intensity randomized controlled exercise intervention trial (ClinicalTrials.gov; NCT02057354) for a duration of 12 weeks. The aims of the study were to investigate the relationship between change in cardiorespiratory fitness (CRF) as determined by estimated V ˙ O 2 MAX , hippocampally dependent mnemonic discrimination, and change in hippocampal subfield volume. Results show that improving CRF after exercise training is associated with an increased volume in the left DG/CA3 subregion in young adults. Consistent with previous studies that found exercise-induced increases in anterior hippocampus in older adults, this result was specific to the hippocampal head, or most anterior portion, of the subregion. Our results also demonstrate a positive relationship between change in CRF and change in corrected accuracy for trials requiring the highest level of discrimination on a putative behavioral pattern separation task. This relationship was observed in individuals who were initially lower-fit, suggesting that individuals who show greater improvement in their CRF may receive greater cognitive benefit. This work extends animal models by providing evidence for exercise-induced neuroplasticity specific to the neurogenic zone of the human hippocampus.
Collapse
Affiliation(s)
- Rachel K Nauer
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts.,Center for Memory and Brain, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew F Dunne
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Chantal E Stern
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts.,Center for Memory and Brain, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Thomas W Storer
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karin Schon
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts.,Center for Memory and Brain, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
33
|
Ruotsalainen I, Renvall V, Gorbach T, Syväoja HJ, Tammelin TH, Karvanen J, Parviainen T. Aerobic fitness, but not physical activity, is associated with grey matter volume in adolescents. Behav Brain Res 2019; 362:122-130. [DOI: 10.1016/j.bbr.2018.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
34
|
Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H. Exercise and Hippocampal Memory Systems. Trends Cogn Sci 2019; 23:318-333. [PMID: 30777641 PMCID: PMC6422697 DOI: 10.1016/j.tics.2019.01.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/17/2023]
Abstract
No medications prevent or reverse age-related cognitive decline. Physical activity (PA) enhances memory in rodents, but findings are mixed in human studies. As a result, exercise guidelines specific for brain health are absent. Here, we re-examine results from human studies, and suggest the use of more sensitive tasks to evaluate PA effects on age-related changes in the hippocampus, such as relational memory and mnemonic discrimination. We discuss recent advances from rodent and human studies into the underlying mechanisms at both the central and peripheral levels, including neurotrophins and myokines that could contribute to improved memory. Finally, we suggest guidelines for future research to help expedite well-founded PA recommendations for the public.
Collapse
Affiliation(s)
- Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Carmen Soto
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Seungwoo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Matthew Sodoma
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Henriette van Praag
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
35
|
Aerobic Fitness Level Moderates the Association Between Cannabis Use and Executive Functioning and Psychomotor Speed Following Abstinence in Adolescents and Young Adults. J Int Neuropsychol Soc 2019; 25:134-145. [PMID: 30474579 PMCID: PMC6374167 DOI: 10.1017/s1355617718000966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The high rate of cannabis (CAN) use in emerging adults is concerning given prior research suggesting neurocognitive deficits associated with CAN use in youth. Regular CAN use downregulates endocannabinoid activity, while aerobic exercise upregulates cannabinoid receptor 1 activity and releases endocannabinoids. Here we investigate the influence of regular CAN use on neuropsychological performance, and whether aerobic fitness moderates these effects. METHODS Seventy-nine young adults (37 CAN users) aged 16-26 participated. Groups were balanced for aerobic fitness level. Exclusion criteria included: left-handedness, past-year independent Axis-I disorders, major medical/neurologic disorders, prenatal issues, or prenatal alcohol/illicit drug exposure. After 3 weeks of abstinence, participants completed a neuropsychological battery and a maximal oxygen consumption test (VO2 max). Multiple regressions tested whether past-year CAN use, VO2 max, and CAN*VO2 max interaction predicted neuropsychological performance, controlling for past-year alcohol use, cotinine, gender, and depression symptoms. RESULTS Increased CAN use was associated with decreased performance on working memory and psychomotor tasks. High aerobic fitness level was related to better performance on visual memory, verbal fluency, and sequencing ability. CAN*VO2 max predicted performance of psychomotor speed, visual memory, and sequencing ability. CONCLUSIONS Following monitored abstinence, increased CAN use was associated with poorer performance in working memory and psychomotor speed. Higher aerobic fitness level moderated the impact of CAN on visual memory, executive function and psychomotor speed, as more aerobically fit CAN users demonstrated better performance relative to low-fit users. Therefore, aerobic fitness may present an affordable and efficacious method to improve cognitive functioning in CAN users. (JINS, 2019, 25, 134-145).
Collapse
|
36
|
Hill T, Polk JD. BDNF, endurance activity, and mechanisms underlying the evolution of hominin brains. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:47-62. [PMID: 30575024 DOI: 10.1002/ajpa.23762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/21/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES As a complex, polygenic trait, brain size has likely been influenced by a range of direct and indirect selection pressures for both cognitive and non-cognitive functions and capabilities. It has been hypothesized that hominin brain expansion was, in part, a correlated response to selection acting on aerobic capacity (Raichlen & Polk, 2013). According to this hypothesis, selection for aerobic capacity increased the activity of various signaling molecules, including those involved in brain growth. One key molecule is brain-derived neurotrophic factor (BDNF), a protein that regulates neuronal development, survival, and plasticity in mammals. This review updates, partially tests, and expands Raichlen and Polk's (2013) hypothesis by evaluating evidence for BDNF as a mediator of brain size. DISCUSSION We contend that selection for endurance capabilities in a hot climate favored changes to muscle composition, mitochondrial dynamics and increased energy budget through pathways involving regulation of PGC-1α and MEF2 genes, both of which promote BDNF activity. In addition, the evolution of hairlessness and the skin's thermoregulatory response provide other molecular pathways that promote both BDNF activity and neurotransmitter synthesis. We discuss how these pathways contributed to the evolution of brain size and function in human evolution and propose avenues for future research. Our results support Raichlen and Polk's contention that selection for non-cognitive functions has direct mechanistic linkages to the evolution of brain size in hominins.
Collapse
Affiliation(s)
- Tyler Hill
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - John D Polk
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, Illinois
| |
Collapse
|
37
|
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast 2018; 4:17-52. [PMID: 30564545 PMCID: PMC6296262 DOI: 10.3233/bpl-180069] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 02/06/2023] Open
Abstract
Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.
Collapse
Affiliation(s)
- Laura M. Vecchio
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Ying Meng
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Kristiana Xhima
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Nir Lipsman
- Institute of Medical Sciences, University of Toronto, ON, Canada
- Physical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
| | - Clement Hamani
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
38
|
Spallazzi M, Dobisch L, Becke A, Berron D, Stucht D, Oeltze-Jafra S, Caffarra P, Speck O, Düzel E. Hippocampal vascularization patterns: A high-resolution 7 Tesla time-of-flight magnetic resonance angiography study. NEUROIMAGE-CLINICAL 2018; 21:101609. [PMID: 30581106 PMCID: PMC6413539 DOI: 10.1016/j.nicl.2018.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/03/2018] [Accepted: 11/18/2018] [Indexed: 01/11/2023]
Abstract
Considerable evidence suggests a close relationship between vascular and degenerative pathology in the human hippocampus. Due to the intrinsic fragility of its vascular network, the hippocampus appears less able to cope with hypoperfusion and anoxia than other cortical areas. Although hippocampal blood supply is generally provided by the collateral branches of the posterior cerebral artery (PCA) and the anterior choroidal artery (AChA), different vascularization patterns have been detected postmortem. To date, a methodology that enables the classification of individual hippocampal vascularization patterns in vivo has not been established. In this study, using high-resolution 7 Tesla time-of-flight angiography data (0.3 mm isotropic resolution) in young adults, we classified individual variability in hippocampal vascularization patterns involved in medial temporal lobe blood supply in vivo. A strong concordance between our classification and previous autopsy findings was found, along with interesting anatomical observations, such as the variable contribution of the AChA to hippocampal supply, the relationships between hippocampal and PCA patterns, and the different distribution patterns of the right and left hemispheres. The approach presented here for determining hippocampal vascularization patterns in vivo may provide new insights into not only the vulnerability of the hippocampus to vascular and neurodegenerative diseases but also hippocampal vascular plasticity after exercise training. First attempt to classify human hippocampal vascularization in vivo using 7Tesla Angiography Good concordance between in vivo findings and autopsy studies A new avenue to investigate interindividual variability in hippocampal vascular plasticity A new avenue for linking individual vascular anatomical phenotypes to neurodegenerative and vascular pathology
Collapse
Affiliation(s)
| | - Laura Dobisch
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Andreas Becke
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - David Berron
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Daniel Stucht
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | | | | | - Oliver Speck
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Emrah Düzel
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neuroscience, Univ. College London, London, United Kingdom.
| |
Collapse
|
39
|
Herting MM, Chu X. Exercise, cognition, and the adolescent brain. Birth Defects Res 2018; 109:1672-1679. [PMID: 29251839 DOI: 10.1002/bdr2.1178] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Few adolescents engage in the recommended levels of physical activity, and daily exercise levels tend to drastically decrease throughout adolescence. Beyond physical health benefits, regular exercise may also have important implications for the teenage brain and cognitive and academic capabilities. METHODS This narrative review examines how physical activity and aerobic exercise relate to school performance, cognition, and brain structure and function. RESULTS A number of studies have found that habitual exercise and physical activity are associated with academic performance, cognitive function, brain structure, and brain activity in adolescents. We also discuss how additional intervention studies that examine a wide range of neurological and cognitive outcomes are necessary, as well as characterizing the type, frequency, and dose of exercise and identifying individual differences that contribute to how exercise may benefit the teen brain. CONCLUSIONS Routine exercise relates to adolescent brain structure and function as well as cognitive performance. Together, these studies suggest that physical activity and aerobic exercise may be important factors for optimal adolescent brain development.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Preventive Medicine, University of Southern California, Los Angeles, 90023
| | - Xiaofang Chu
- Department of Preventive Medicine, University of Southern California, Los Angeles, 90023
| |
Collapse
|
40
|
Tsai CK, Kao TW, Lee JT, Wang CC, Chou CH, Liang CS, Yang FC, Chen WL. Global-cognitive health metrics: A novel approach for assessing cognition impairment in adult population. PLoS One 2018; 13:e0197691. [PMID: 29813084 PMCID: PMC5973572 DOI: 10.1371/journal.pone.0197691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Dementia is the supreme worldwide burden for welfare and the health care system in the 21st century. The early identification and control of the modifiable risk factors of dementia are important. Global-cognitive health (GCH) metrics, encompassing controllable cardiovascular health (CVH) and non-CVH risk factors of dementia, is a newly developed approach to assess the risk of cognitive impairment. The components of ideal GCH metrics includes better education, non-obesity, normal blood pressure, no smoking, no depression, ideal physical activity, good social integration, normal glycated hemoglobin (HbA1c), and normal hearing. This study focuses on the association between ideal GCH metrics and the cognitive function in young adults by investigating the Third Health and Nutrition Examination Survey (NHANES III) database, which has not been reported previously. A total of 1243 participants aged 17 to 39 years were recruited in this study. Cognitive functioning was evaluated by the simple reaction time test (SRTT), symbol-digit substitution test (SDST), and serial digit learning test (SDLT). Participants with significantly higher scores of GCH metrics had better cognitive performance (p for trend <0.01 in three cognitive tests). Moreover, better education, ideal physical activity, good social integration and normal glycated hemoglobin were the optimistic components of ideal GCH metrics associated with better cognitive performance after adjusting for covariates (p < 0.05 in three cognitive tests). These findings emphasize the importance of a preventive strategy for modifiable dementia risk factors to enhance cognitive functioning during adulthood.
Collapse
Affiliation(s)
- Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tung-Wei Kao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Ching Wang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Siddarth P, Burggren AC, Eyre HA, Small GW, Merrill DA. Sedentary behavior associated with reduced medial temporal lobe thickness in middle-aged and older adults. PLoS One 2018; 13:e0195549. [PMID: 29649304 PMCID: PMC5896959 DOI: 10.1371/journal.pone.0195549] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/23/2018] [Indexed: 11/24/2022] Open
Abstract
Atrophy of the medial temporal lobe (MTL) occurs with aging, resulting in impaired episodic memory. Aerobic fitness is positively correlated with total hippocampal volume, a heavily studied memory-critical region within the MTL. However, research on associations between sedentary behavior and MTL subregion integrity is limited. Here we explore associations between thickness of the MTL and its subregions (namely CA1, CA23DG, fusiform gyrus, subiculum, parahippocampal, perirhinal and entorhinal cortex,), physical activity, and sedentary behavior. We assessed 35 non-demented middle-aged and older adults (25 women, 10 men; 45-75 years) using the International Physical Activity Questionnaire for older adults, which quantifies physical activity levels in MET-equivalent units and asks about the average number of hours spent sitting per day. All participants had high resolution MRI scans performed on a Siemens Allegra 3T MRI scanner, which allows for detailed investigation of the MTL. Controlling for age, total MTL thickness correlated inversely with hours of sitting/day (r = -0.37, p = 0.03). In MTL subregion analysis, parahippocampal (r = -0.45, p = 0.007), entorhinal (r = -0.33, p = 0.05) cortical and subiculum (r = -0.36, p = .04) thicknesses correlated inversely with hours of sitting/day. No significant correlations were observed between physical activity levels and MTL thickness. Though preliminary, our results suggest that more sedentary non-demented individuals have less MTL thickness. Future studies should include longitudinal analyses and explore mechanisms, as well as the efficacy of decreasing sedentary behaviors to reverse this association.
Collapse
Affiliation(s)
- Prabha Siddarth
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States of America
| | - Alison C. Burggren
- Center for Cognitive Neurosciences, UCLA, Los Angeles, CA, United States of America
| | - Harris A. Eyre
- Discipline of Psychiatry, University of Adelaide, Adelaide, Australia
| | - Gary W. Small
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States of America
| | - David A. Merrill
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
42
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
43
|
Ahlskog JE. Aerobic Exercise: Evidence for a Direct Brain Effect to Slow Parkinson Disease Progression. Mayo Clin Proc 2018; 93:360-372. [PMID: 29502566 DOI: 10.1016/j.mayocp.2017.12.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
No medications are proven to slow the progression of Parkinson disease (PD). Of special concern with longer-standing PD is cognitive decline, as well as motor symptoms unresponsive to dopamine replacement therapy. Not fully recognized is the substantial accumulating evidence that long-term aerobic exercise may attenuate PD progression. Randomized controlled trial proof will not be forthcoming due to many complicating methodological factors. However, extensive and diverse avenues of scientific investigation converge to argue that aerobic exercise and cardiovascular fitness directly influence cerebral mechanisms mediating PD progression. To objectively assess the evidence for a PD exercise benefit, a comprehensive PubMed literature search was conducted, with an unbiased focus on exercise influences on parkinsonism, cognition, brain structure, and brain function. This aggregate literature provides a compelling argument for regular aerobic-type exercise and cardiovascular fitness attenuating PD progression.
Collapse
|
44
|
Bosch BM, Bringard A, Ferretti G, Schwartz S, Iglói K. Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study. NEUROPHOTONICS 2017; 4:041404. [PMID: 28785600 PMCID: PMC5526475 DOI: 10.1117/1.nph.4.4.041404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/05/2017] [Indexed: 05/06/2023]
Abstract
Regular physical exercise has been shown to benefit neurocognitive functions, especially enhancing neurogenesis in the hippocampus. However, the effects of a single exercise session on cognitive functions are controversial. To address this issue, we measured hemodynamic changes in the brain during physical exercise using near-infrared spectroscopy (NIRS) and investigated related effects on memory consolidation processes. Healthy young participants underwent two experimental visits. During each visit, they performed an associative memory task in which they first encoded a series of pictures, then spent 30-min exercising or resting, and finally were asked to recall the picture associations. We used NIRS to track changes in oxygenated hemoglobin concentration over the prefrontal cortex during exercise and rest. To characterize local tissue oxygenation and perfusion, we focused on low frequency oscillations in NIRS, also called vasomotion. We report a significant increase in associative memory consolidation after exercise, as compared to after rest, along with an overall increase in vasomotion. Additionally, performance improvement after exercise correlated positively with power in the neurogenic component (0.02 to 0.04 Hz) and negatively with power in the endothelial component (0.003 to 0.02 Hz). Overall, these results suggest that changes in vasomotion over the prefrontal cortex during exercise may promote memory consolidation processes.
Collapse
Affiliation(s)
- Blanca Marin Bosch
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
| | - Aurélien Bringard
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
- Geneva University Hospitals, Department of Anesthesiology, Pharmacology, and Intensive Care, Geneva, Switzerland
| | - Guido Ferretti
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
- Geneva University Hospitals, Department of Anesthesiology, Pharmacology, and Intensive Care, Geneva, Switzerland
| | - Sophie Schwartz
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
- University of Geneva, Swiss Center for Affective Neurosciences, Geneva, Switzerland
- University of Geneva, Geneva Neuroscience Center, Geneva, Switzerland
| | - Kinga Iglói
- University of Geneva, Faculty of Medicine, Department of Neuroscience, Geneva, Switzerland
- University of Geneva, Swiss Center for Affective Neurosciences, Geneva, Switzerland
- University of Geneva, Geneva Neuroscience Center, Geneva, Switzerland
- Address all correspondence to: Kinga Igloi, E-mail:
| |
Collapse
|
45
|
At least eighty percent of brain grey matter is modifiable by physical activity: A review study. Behav Brain Res 2017; 332:204-217. [DOI: 10.1016/j.bbr.2017.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/27/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022]
|
46
|
Heisz JJ, Clark IB, Bonin K, Paolucci EM, Michalski B, Becker S, Fahnestock M. The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors. J Cogn Neurosci 2017; 29:1895-1907. [PMID: 28699808 DOI: 10.1162/jocn_a_01164] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.
Collapse
|
47
|
Hasselmo ME, Hinman JR, Dannenberg H, Stern CE. Models of spatial and temporal dimensions of memory. Curr Opin Behav Sci 2017; 17:27-33. [PMID: 29130060 DOI: 10.1016/j.cobeha.2017.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Episodic memory involves coding of the spatial location and time of individual events. Coding of space and time is also relevant to working memory, spatial navigation, and the disambiguation of overlapping memory representations. Neurophysiological data demonstrate that neuronal activity codes the current, past and future location of an animal as well as temporal intervals within a task. Models have addressed how neural coding of space and time for memory function could arise, with both dimensions coded by the same neurons. Neural coding could depend upon network oscillatory and attractor dynamics as well as modulation of neuronal intrinsic properties. These models are relevant to the coding of space and time involving structures including the hippocampus, entorhinal cortex, retrosplenial cortex, striatum and parahippocampal gyrus, which have been implicated in both animal and human studies.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215
| | - James R Hinman
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215
| | - Holger Dannenberg
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215
| | - Chantal E Stern
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215
| |
Collapse
|
48
|
de Assis GG, de Almondes KM. Exercise-dependent BDNF as a Modulatory Factor for the Executive Processing of Individuals in Course of Cognitive Decline. A Systematic Review. Front Psychol 2017; 8:584. [PMID: 28469588 PMCID: PMC5395613 DOI: 10.3389/fpsyg.2017.00584] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/29/2017] [Indexed: 01/02/2023] Open
Abstract
Background: Aging naturally triggers a decline in cognition as result of deterioration in cerebral circuits, thus the executive functions (EFs) suffer changes that progress from mild to severe states of impairment. Exercise instead, works as a strategy for cognitive enhancement by modulating neuronal plasticity through the regulation of BDNF. However, whether the exercise-dependent BDNF may improve higher complexity processes such as the EFs is still in a studying process. Results: Current data on exercise-dependent BDNF changes for aging individuals in a course of cognitive impairment was summarized to investigate whether the exercise regulation of BDNF is effective to pronounce long term changes on executive controls. While the exercise-dependent regulation of BDNF is currently undeniable, the role of exercise dependent BDNF as a tool for the improvement of EFs in individuals with dementia is still less clear and seldom discussed. The summary of findings indicate a limited number of studies addressing exercise in order to discuss parameters related to either BDNF or executive functioning in such population conditions (n = 215), further narrowing to a total of 5 studies presenting analysis of both parameters. Nonetheless, positive outcomes from BDNF and EF variables were displayed by all the populations exposed to exercise across studies. Aerobic exercise was shown to be a major source for the enhancement of the BDNF-dependent executive functioning, when compared to cognitive stimulation. Moreover, the effect of exercise-dependent BDNF on domains of executive functioning appears to occur in a dose-dependent manner for the aging individuals, independently of cognitive condition.
Collapse
Affiliation(s)
- Gilmara G. de Assis
- Department of Psychology and Postgraduate Program in Psychobiology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Katie Moraes de Almondes
- Department of Psychology and Postgraduate Program in Psychobiology, Federal University of Rio Grande do NorteNatal, Brazil
| |
Collapse
|
49
|
Macedonia M, Repetto C. Why Your Body Can Jog Your Mind. Front Psychol 2017; 8:362. [PMID: 28337170 PMCID: PMC5343044 DOI: 10.3389/fpsyg.2017.00362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/24/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Manuela Macedonia
- Information Engineering, Johannes Kepler Universität LinzLinz, Austria
- Neural Mechanisms of Human Communication, Max-Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Claudia Repetto
- Psychology, Università Cattolica del Sacro CuoreMilan, Italy
| |
Collapse
|
50
|
Chu B, Chen C, Li J, Chen X, Li Y, Tang W, Jin L, Zhang Y. Effects of Tibetan turnip (Brassica rapa L.) on promoting hypoxia-tolerance in healthy humans. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:246-254. [PMID: 27856303 DOI: 10.1016/j.jep.2016.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/25/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tibetan turnip (Brassica rapa L.), widely distributed in Tibet region, is an edible and medical plant with effects of "tonic and anti-hypoxia" "heat-clearing and detoxification" and "alleviating fatigue" according to traditional Tibetan medical books. AIM OF THE STUDY This research systematically studied the effects of Tibetan turnip on promoting hypoxia-tolerance in humans and the mechanisms. MATERIALS AND METHODS A 7-d, self-control and single-blind human feeding trial was conducted among 27 healthy subjects with 8 males and 10 females in feeding group fed with 7.5g turnip powder 2 times daily while 4 males and 5 females in control group fed with 7.5g radish powder twice a day. Subjects were required to undergo a hypoxia tolerance test (7.1% O2) and a cardiopulmonary function evaluation (Bruce treadmill protocol) before (1st day) and after (9th day) the trial. Simultaneously, the anti-oxidative activities (SOD, CAT, GSH-Px, MDA), routine and biochemical analyses of blood samples were evaluated. RESULTS The females' SpO2 increased significantly by 6.4% at the end of the hypoxia tolerance test after taking turnips (p<0.05), and the hypoxia symptoms in most of the subjects were alleviated as well. The anaerobic threshold, peak O2 pulse and peak VO2/kg were significantly improved after 7-d turnip consumption during the Bruce treadmill test (p<0.05). As for the blood analysis, anti-oxidative activities were boosted effectively after the 7-d treatments. Moreover, mean corpuscular hemoglobin concentration (MCHC) in the males of feeding group increased significantly (p<0.05). However, little changes of all variables were observed in the control group. CONCLUSIONS Consumption of Tibetan turnips for 7 days likely contributed to the hypoxia tolerance in healthy humans, which could be due to its abilities of improving oxygen uptake and delivery, enhancing body antioxidant capacity and increasing MCHC. However, further studies with larger samples and double-blind design are warranted, and future studies covering more diverse populations (unhealthy, athletic) would be also considered. Moreover, researches on identifying Tibetan turnip's active compounds are desired as well.
Collapse
Affiliation(s)
- Bingquan Chu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chun Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiaojie Li
- Aviation Medicine Training Center of Hangzhou, Hangzhou 310013, Zhejiang, China
| | - Xiaojian Chen
- Aviation Medicine Training Center of Hangzhou, Hangzhou 310013, Zhejiang, China
| | - Yunhong Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weimin Tang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lu Jin
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|