1
|
Fox AS, Shackman AJ. An Honest Reckoning With the Amygdala and Mental Illness. Am J Psychiatry 2024; 181:1059-1075. [PMID: 39616453 PMCID: PMC11611071 DOI: 10.1176/appi.ajp.20240941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Anxiety disorders are a leading source of human misery, morbidity, and premature mortality. Existing treatments are far from curative for many, underscoring the need to clarify the underlying neural mechanisms. Although many brain regions contribute, the amygdala has received the most intense scientific attention. Over the past several decades, this scrutiny has yielded a detailed understanding of amygdala function, but it has failed to produce new clinical assays, biomarkers, or cures. Rising to this urgent public health challenge demands an honest reckoning with the functional-neuroanatomical complexity of the amygdala and a shift from theories anchored on "the amygdala" to models centered on specific amygdala nuclei and cell types. This review begins by examining evidence from studies of rodents, monkeys, and humans for the "canonical model," the idea that the amygdala plays a central role in fear- and anxiety-related states, traits, and disorders. Next, the authors selectively highlight work indicating that the canonical model, while true, is overly simplistic and fails to adequately capture the actual state of the evidentiary record, the breadth of amygdala-associated functions and illnesses, or the complexity of the amygdala's functional architecture. The authors describe the implications of these facts for basic and clinical neuroimaging research. The review concludes with some general recommendations for grappling with the complexity of the amygdala and accelerating efforts to understand and more effectively treat amygdala-related psychopathology.
Collapse
Affiliation(s)
- Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Department of Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
2
|
Morrel J, Overholtzer LN, Sukumaran K, Cotter DL, Cardenas-Iniguez C, Tyszka JM, Schwartz J, Hackman DA, Chen JC, Herting MM. Outdoor Air Pollution Relates to Amygdala Subregion Volume and Apportionment in Early Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617429. [PMID: 39463957 PMCID: PMC11507665 DOI: 10.1101/2024.10.14.617429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Outdoor air pollution is associated with an increased risk for psychopathology. Although the neural mechanisms remain unclear, air pollutants may impact mental health by altering limbic brain regions, such as the amygdala. Here, we examine the association between ambient air pollution exposure and amygdala subregion volumes in 9-10-year-olds. Methods Cross-sectional Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data from 4,473 participants (55.4% male) were leveraged. Air pollution was estimated for each participant's primary residential address. Using the probabilistic CIT168 atlas, we quantified total amygdala and 9 distinct subregion volumes from T1- and T2-weighted images. First, we examined how criteria pollutants (i.e., fine particulate matter [PM2.5], nitrogen dioxide, ground-level ozone) and 15 PM2.5 components related with total amygdala volumes using linear mixed-effect (LME) regression. Next, partial least squares correlation (PLSC) analyses were implemented to identify relationships between co-exposure to criteria pollutants as well as PM2.5 components and amygdala subregion volumes. We also conducted complementary analyses to assess subregion apportionment using amygdala relative volume fractions (RVFs). Results No significant associations were detected between pollutants and total amygdala volumes. Using PLSC, one latent dimension (LD) (52% variance explained) captured a positive association between calcium and several basolateral subregions. LDs were also identified for amygdala RVFs (ranging from 30% to 82% variance explained), with PM2.5 and component co-exposure associated with increases in lateral, but decreases in medial and central, RVFs. Conclusions Fine particulate and its components are linked with distinct amygdala differences, potentially playing a role in risk for adolescent mental health problems.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A. Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Tarmoun K, Lachance V, Le Corvec V, Bélanger SM, Beaucaire G, Kourrich S. Comprehensive Analysis of Age- and Sex-Related Expression of the Chaperone Protein Sigma-1R in the Mouse Brain. Brain Sci 2024; 14:881. [PMID: 39335377 PMCID: PMC11430507 DOI: 10.3390/brainsci14090881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Sigma-1R (S1R) is a ubiquitously distributed protein highly expressed in the brain and liver. It acts as a ligand-inducible chaperone protein localized at the endoplasmic reticulum. S1R participates in several signaling pathways that oversee diverse cellular and neurological functions, such as calcium and proteome homeostasis, neuronal activity, memory, and emotional regulation. Despite its crucial functions, S1R expression profile in the brain with respect to age and sex remains elusive. To shed light on this matter, we assessed S1R distribution in the mouse brain across different developmental stages, including juvenile, early adult, and middle-aged mice. Using immunohistochemistry, we found that S1R is predominantly expressed in the hippocampus in juvenile mice, particularly in CA1 and CA3 regions. Notably, S1R is not expressed in the subgranular layer of the dentate gyrus of juvenile mice. We observed dynamic changes in S1R levels during development, with most brain regions showing either an abrupt or gradual decline as mice transition from juveniles to adults. Sexual dimorphism is observed before puberty in the hippocampus and hypothalamus and during adulthood in the hippocampus and cortex.
Collapse
Affiliation(s)
- Khadija Tarmoun
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Véronik Lachance
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Victoria Le Corvec
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Sara-Maude Bélanger
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Guillaume Beaucaire
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
| | - Saïd Kourrich
- Department of Biological Sciences, Faculty of Sciences, University of Quebec at Montreal, 141 President-Kennedy Street, Montreal, QC H2X 1Y4, Canada
- Center of Excellence for Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H2X 3Y7, Canada
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
4
|
Li M, Yan Y, Jia H, Gao Y, Qiu J, Yang W. Neural basis underlying the association between thought control ability and happiness: The moderating role of the amygdala. Psych J 2024; 13:625-638. [PMID: 38450574 DOI: 10.1002/pchj.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Thought control ability (TCA) plays an important role in individuals' health and happiness. Previous studies demonstrated that TCA was closely conceptually associated with happiness. However, empirical research supporting this relationship was limited. In addition, the neural basis underlying TCA and how this neural basis influences the relationship between TCA and happiness remain unexplored. In the present study, the voxel-based morphometry (VBM) method was adopted to investigate the neuroanatomical basis of TCA in 314 healthy subjects. The behavioral results revealed a significant positive association between TCA and happiness. On the neural level, there was a significant negative correlation between TCA and the gray matter density (GMD) of the bilateral amygdala. Split-half validation analysis revealed similar results, further confirming the stability of the VBM analysis findings. Furthermore, gray matter covariance network and graph theoretical analyses showed positive association between TCA and both the node degree and node strength of the amygdala. Moderation analysis revealed that the GMD of the amygdala moderated the relationship between TCA and happiness. Specifically, the positive association between TCA and self-perceived happiness was stronger in subjects with a lower GMD of the amygdala. The present study indicated the neural basis underlying the association between TCA and happiness and offered a method of improving individual well-being.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Yuchi Yan
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Hui Jia
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Yixin Gao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
| |
Collapse
|
5
|
Hudachek L, Wamsley EJ. Consolidation of emotional memory during waking rest depends on trait anxiety. Neurobiol Learn Mem 2024; 212:107940. [PMID: 38762039 DOI: 10.1016/j.nlm.2024.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
A short period of eyes-closed waking rest improves long-term memory for recently learned information, including declarative, spatial, and procedural memory. However, the effect of rest on emotional memory consolidation remains unknown. This preregistered study aimed to establish whether post-encoding rest affects emotional memory and how anxiety levels might modulate this effect. Participants completed a modified version of the dot-probe attention task that involved reacting to and encoding word stimuli appearing underneath emotionally negative or neutral photos. We tested the effect of waking rest on memory for these words and pictures by manipulating the state that participants entered just after this task (rest vs. active wake). Trait anxiety levels were measured using the State-Trait Anxiety Inventory and examined as a covariate. Waking rest improved emotional memory consolidation for individuals high in trait anxiety. These results suggest that the beneficial effect of waking rest on memory extends into the emotional memory domain but depends on individual characteristics such as anxiety.
Collapse
Affiliation(s)
- Lauren Hudachek
- Furman University, Department of Psychology & Program in Neuroscience, Greenville, SC 29613, United States.
| | - Erin J Wamsley
- Furman University, Department of Psychology & Program in Neuroscience, Greenville, SC 29613, United States.
| |
Collapse
|
6
|
Labuschagne I, Dominguez JF, Grace S, Mizzi S, Henry JD, Peters C, Rabinak CA, Sinclair E, Lorenzetti V, Terrett G, Rendell PG, Pedersen M, Hocking DR, Heinrichs M. Specialization of amygdala subregions in emotion processing. Hum Brain Mapp 2024; 45:e26673. [PMID: 38590248 PMCID: PMC11002533 DOI: 10.1002/hbm.26673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The amygdala is important for human fear processing. However, recent research has failed to reveal specificity, with evidence that the amygdala also responds to other emotions. A more nuanced understanding of the amygdala's role in emotion processing, particularly relating to fear, is needed given the importance of effective emotional functioning for everyday function and mental health. We studied 86 healthy participants (44 females), aged 18-49 (mean 26.12 ± 6.6) years, who underwent multiband functional magnetic resonance imaging. We specifically examined the reactivity of four amygdala subregions (using regions of interest analysis) and related brain connectivity networks (using generalized psycho-physiological interaction) to fear, angry, and happy facial stimuli using an emotional face-matching task. All amygdala subregions responded to all stimuli (p-FDR < .05), with this reactivity strongly driven by the superficial and centromedial amygdala (p-FDR < .001). Yet amygdala subregions selectively showed strong functional connectivity with other occipitotemporal and inferior frontal brain regions with particular sensitivity to fear recognition and strongly driven by the basolateral amygdala (p-FDR < .05). These findings suggest that amygdala specialization to fear may not be reflected in its local activity but in its connectivity with other brain regions within a specific face-processing network.
Collapse
Affiliation(s)
- Izelle Labuschagne
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
- School of PsychologyThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Sally Grace
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Simone Mizzi
- School of Health and Biomedical ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Julie D. Henry
- School of PsychologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Craig Peters
- Department of Pharmacy PracticeWayne State UniversityDetroitMichiganUSA
| | | | - Erin Sinclair
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Valentina Lorenzetti
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Gill Terrett
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Peter G. Rendell
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Mangor Pedersen
- Department of Psychology and NeuroscienceAuckland University of TechnologyAucklandNew Zealand
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Darren R. Hocking
- Institute for Health & SportVictoria UniversityMelbourneVictoriaAustralia
| | - Markus Heinrichs
- Department of PsychologyAlbert‐Ludwigs‐University of FreiburgFreiburg im BreisgauGermany
- Freiburg Brain Imaging CenterUniversity Medical Center, Albert‐Ludwigs University of FreiburgFreiburg im BreisgauGermany
| |
Collapse
|
7
|
Schumer MC, Bertocci MA, Aslam HA, Graur S, Bebko G, Stiffler RS, Skeba AS, Brady TJ, Benjamin OE, Wang Y, Chase HW, Phillips ML. Patterns of Neural Network Functional Connectivity Associated With Mania/Hypomania and Depression Risk in 3 Independent Young Adult Samples. JAMA Psychiatry 2024; 81:167-177. [PMID: 37910117 PMCID: PMC10620679 DOI: 10.1001/jamapsychiatry.2023.4150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 11/03/2023]
Abstract
Importance Mania/hypomania is the pathognomonic feature of bipolar disorder (BD). Established, reliable neural markers denoting mania/hypomania risk to help with early risk detection and diagnosis and guide the targeting of pathophysiologically informed interventions are lacking. Objective To identify patterns of neural responses associated with lifetime mania/hypomania risk, the specificity of such neural responses to mania/hypomania risk vs depression risk, and the extent of replication of findings in 2 independent test samples. Design, Setting, and Participants This cross-sectional study included 3 independent samples of young adults aged 18 to 30 years without BD or active substance use disorder within the past 3 months who were recruited from the community through advertising. Of 603 approached, 299 were ultimately included and underwent functional magnetic resonance imaging at the University of Pittsburgh, Pittsburgh, Pennsylvania, from July 2014 to May 2023. Main Outcomes and Measures Activity and functional connectivity to approach-related emotions were examined using a region-of-interest mask supporting emotion processing and emotional regulation. The Mood Spectrum Self-Report assessed lifetime mania/hypomania risk and depression risk. In the discovery sample, elastic net regression models identified neural variables associated with mania/hypomania and depression risk; multivariable regression models identified the extent to which selected variables were significantly associated with each risk measure. Multivariable regression models then determined whether associations in the discovery sample replicated in both test samples. Results A total of 299 participants were included. The discovery sample included 114 individuals (mean [SD] age, 21.60 [1.91] years; 80 female and 34 male); test sample 1, 103 individuals (mean [SD] age, 21.57 [2.09] years; 30 male and 73 female); and test sample 2, 82 individuals (mean [SD] age, 23.43 [2.86] years; 48 female, 29 male, and 5 nonbinary). Associations between neuroimaging variables and Mood Spectrum Self-Report measures were consistent across all 3 samples. Bilateral amygdala-left amygdala functional connectivity and bilateral ventrolateral prefrontal cortex-right dorsolateral prefrontal cortex functional connectivity were positively associated with mania/hypomania risk: discovery omnibus χ2 = 1671.7 (P < .001); test sample 1 omnibus χ2 = 1790.6 (P < .001); test sample 2 omnibus χ2 = 632.7 (P < .001). Bilateral amygdala-left amygdala functional connectivity and right caudate activity were positively associated and negatively associated with depression risk, respectively: discovery omnibus χ2 = 2566.2 (P < .001); test sample 1 omnibus χ2 = 2935.9 (P < .001); test sample 2 omnibus χ2 = 1004.5 (P < .001). Conclusions and Relevance In this study of young adults, greater interamygdala functional connectivity was associated with greater risk of both mania/hypomania and depression. By contrast, greater functional connectivity between ventral attention or salience and central executive networks and greater caudate deactivation were reliably associated with greater risk of mania/hypomania and depression, respectively. These replicated findings indicate promising neural markers distinguishing mania/hypomania-specific risk from depression-specific risk and may provide neural targets to guide and monitor interventions for mania/hypomania and depression in at-risk individuals.
Collapse
Affiliation(s)
- Maya C. Schumer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michele A. Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haris A. Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richelle S. Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alexander S. Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tyler J. Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Osasumwen E. Benjamin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yiming Wang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Henry W. Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Zhao G, Yu L, Chen P, Zhu K, Yang L, Lin W, Luo Y, Dou Z, Xu H, Zhang P, Zhu T, Yu S. Neural mechanisms of attentional bias to emotional faces in patients with chronic insomnia disorder. J Psychiatr Res 2024; 169:49-57. [PMID: 38000184 DOI: 10.1016/j.jpsychires.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE This study used event-related potential (ERP) and resting-state functional connectivity (rs-FC) approaches to investigate the neural mechanisms underlying the emotional attention bias in patients with chronic insomnia disorder (CID). METHODS Twenty-five patients with CID and thirty-three demographically matched healthy controls (HCs) completed clinical questionnaires and underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) scans. EEG analysis examined the group differences in terms of reaction times, P3 amplitudes, event-related spectral perturbations, and inter-trial phase synchrony. Subsequently, seed-based rs-FC analysis of the amygdala nuclei (including the central-medial amygdala [CMA] and basolateral amygdala [BLA]) was performed. The relationship between P3 amplitude, rs-FC and clinical symptom severity in patients with CID was further investigated by correlation analysis. RESULTS CID patients exhibited shorter reaction times than HCs in both standard and deviant stimuli, with the abnormalities becoming more pronounced as attention allocation increased. Compared to HCs, ERP analysis revealed increased P3 amplitude, theta wave power, and inter-trial synchrony in CID patients. The rs-FC analysis showed increased connectivity of the BLA-occipital pole, CMA-precuneus, and CMA-angular gyrus and decreased connectivity of the CMA-thalamus in CID patients. Notably, correlation analysis of the EEG and fMRI measurements showed a significant positive correlation between the P3 amplitude and the rs-FC of the CMA-PCU. CONCLUSION This study confirms an emotional attention bias in CID, specifically in the neural mechanisms of attention processing that vary depending on the allocation of attentional resources. Abnormal connectivity in the emotion-cognition networks may constitute the neural basis of the abnormal scalp activation pattern.
Collapse
Affiliation(s)
- Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peixin Chen
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keli Zhu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Center of Interventional Medicine, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Pan Zhang
- Nervous System Disease Treatment Center, Traditional Chinese Medicine Hospital of Meishan, Meishan, China.
| | - Tianmin Zhu
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
9
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre J, Yushkevich PA, Wolk DA. Aging and Alzheimer's disease have dissociable effects on local and regional medial temporal lobe connectivity. Brain Commun 2023; 5:fcad245. [PMID: 37767219 PMCID: PMC10521906 DOI: 10.1093/braincomms/fcad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura E M Wisse
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Diagnostic Radiology, Lund University, 221 00 Lund, Sweden
| | - Melissa Kelley
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Lane
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Sherin
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael DiCalogero
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Kirstein CF, Güntürkün O, Ocklenburg S. Ultra-high field imaging of the amygdala - A narrative review. Neurosci Biobehav Rev 2023; 152:105245. [PMID: 37230235 DOI: 10.1016/j.neubiorev.2023.105245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The amygdala is an evolutionarily conserved core structure in emotion processing and one of the key regions of interest in affective neuroscience. Results of neuroimaging studies focusing on the amygdala are, however, often heterogeneous since it is composed of functionally and neuroanatomically distinct subnuclei. Fortunately, ultra-high-field imaging offers several advances for amygdala research, most importantly more accurate representation of functional and structural properties of subnuclei and their connectivity. Most clinical studies using ultra-high-field imaging focused on major depression, suggesting either overall rightward amygdala atrophy or distinct bilateral patterns of subnuclear atrophy and hypertrophy. Other pathologies are only sparsely covered. Connectivity analyses identified widespread networks for learning and memory, stimulus processing, cognition, and social processes. They provide evidence for distinct roles of the central, basal, and basolateral nucleus, and the extended amygdala in fear and emotion processing. Amid largely sparse and ambiguous evidence, we propose theoretical and methodological considerations that will guide ultra-high-field imaging in comprehensive investigations to help disentangle the ambiguity of the amygdala's function, structure, connectivity, and clinical relevance.
Collapse
Affiliation(s)
- Cedric Fabian Kirstein
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Department of Psychology, MSH Medical School Hamburg, Germany; Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Germany
| |
Collapse
|
11
|
Mastria G, Mancini V, Viganò A, Piervincenzi C, Petsas N, Puma M, Giannì C, Pantano P, Di Piero V. Neuroimaging markers of Alice in Wonderland syndrome in patients with migraine with aura. Front Neurol 2023; 14:1210811. [PMID: 37767534 PMCID: PMC10520557 DOI: 10.3389/fneur.2023.1210811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Background The Alice in Wonderland syndrome (AIWS) is a transient neurological disturbance characterized by sensory distortions most frequently associated with migraine in adults. Some lines of evidence suggest that AIWS and migraine might share common pathophysiological mechanisms, therefore we set out to investigate the common and distinct neurophysiological alterations associated with these conditions in migraineurs. Methods We conducted a case-control study acquiring resting-state fMRI data from 12 migraine patients with AIWS, 12 patients with migraine with typical aura (MA) and 24 age-matched healthy controls (HC). We then compared the interictal thalamic seed-to-voxel and ROI-to-ROI cortico-cortical resting-state functional connectivity between the 3 groups. Results We found a common pattern of altered thalamic connectivity in MA and AIWS, compared to HC, with more profound and diffuse alterations observed in AIWS. The ROI-to-ROI functional connectivity analysis highlighted an increased connectivity between a lateral occipital region corresponding to area V3 and the posterior part of the superior temporal sulcus (STS) in AIWS, compared to both MA and HC. Conclusion The posterior STS is a multisensory integration area, while area V3 is considered the starting point of the cortical spreading depression (CSD), the neural correlate of migraine aura. This interictal hyperconnectivity might increase the probability of the CSD to directly diffuse to the posterior STS or deactivating it, causing the AIWS symptoms during the ictal phase. Taken together, these results suggest that AIWS in migraineurs might be a form of complex migraine aura, characterized by the involvement of associative and multisensory integration areas.
Collapse
Affiliation(s)
- Giulio Mastria
- My Space Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Mancini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | - Marta Puma
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Kahhale I, Buser NJ, Madan CR, Hanson JL. Quantifying numerical and spatial reliability of hippocampal and amygdala subdivisions in FreeSurfer. Brain Inform 2023; 10:9. [PMID: 37029203 PMCID: PMC10082143 DOI: 10.1186/s40708-023-00189-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
On-going, large-scale neuroimaging initiatives can aid in uncovering neurobiological causes and correlates of poor mental health, disease pathology, and many other important conditions. As projects grow in scale with hundreds, even thousands, of individual participants and scans collected, quantification of brain structures by automated algorithms is becoming the only truly tractable approach. Here, we assessed the spatial and numerical reliability for newly deployed automated segmentation of hippocampal subfields and amygdala nuclei in FreeSurfer 7. In a sample of participants with repeated structural imaging scans (N = 928), we found numerical reliability (as assessed by intraclass correlations, ICCs) was reasonable. Approximately 95% of hippocampal subfields had "excellent" numerical reliability (ICCs ≥ 0.90), while only 67% of amygdala subnuclei met this same threshold. In terms of spatial reliability, 58% of hippocampal subfields and 44% of amygdala subnuclei had Dice coefficients ≥ 0.70. Notably, multiple regions had poor numerical and/or spatial reliability. We also examined correlations between spatial reliability and person-level factors (e.g., participant age; T1 image quality). Both sex and image scan quality were related to variations in spatial reliability metrics. Examined collectively, our work suggests caution should be exercised for a few hippocampal subfields and amygdala nuclei with more variable reliability.
Collapse
|
13
|
Malykhin N, Pietrasik W, Aghamohammadi-Sereshki A, Ngan Hoang K, Fujiwara E, Olsen F. Emotional recognition across the adult lifespan: Effects of age, sex, cognitive empathy, alexithymia traits, and amygdala subnuclei volumes. J Neurosci Res 2023; 101:367-383. [PMID: 36478439 DOI: 10.1002/jnr.25152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The ability to recognize others' emotions is vital to everyday life. The goal of this study was to assess which emotions show age-related decline in recognition accuracy of facial emotional expressions across the entire adult lifespan and how this process is related to cognitive empathy (Theory of Mind [ToM]), alexithymia traits, and amygdala subnuclei volumes in a large cohort of healthy individuals. We recruited 140 healthy participants 18-85 years old. Facial affect processing was assessed with the Penn Emotion Recognition task (ER40) that contains images of the five basic emotions: Neutral, Happy, Sad, Angry, and Fearful. Structural magnetic resonance imaging (MRI) datasets were acquired on a 4.7T MRI system. Structural equation modeling was used to test the relationship between studied variables. We found that while both sexes demonstrated age-related reduction in recognition of happy emotions and preserved recognition of sadness, male participants showed age-related reduction in recognition of fear, while in female participants, age-related decline was linked to recognition of neutral and angry facial expressions. In both sexes, accurate recognition of sadness negatively correlated with alexithymia traits. On the other hand, better ToM capabilities in male participants were associated with improvement in recognition of positive and neutral emotions. Finally, none of the observed age-related reductions in emotional recognition were related to amygdala and its subnuclei volumes. In contrast, both global volume of amygdala and its cortical and centromedial subnuclei had significant direct effects on recognition of sad images.
Collapse
Affiliation(s)
- Nikolai Malykhin
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wojciech Pietrasik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kim Ngan Hoang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Esther Fujiwara
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Hu H, Liu F, Liu L, Mei Y, Xie B, Shao Y, Qiao Y. Smaller amygdala subnuclei volume in schizophrenia patients with violent behaviors. Brain Imaging Behav 2023; 17:11-17. [PMID: 36565399 DOI: 10.1007/s11682-022-00736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 01/01/2023]
Abstract
To investigate the association between the volume of amygdala subnuclei and violent behaviors in patients with schizophrenia (SCZ). In the present study, we recruited 40 SCZ patients with violent behaviors (VS), 26 SCZ patients without violent behaviors (NVS), and 28 matched healthy controls (HC) who completed T1-weighted magnetic resonance imaging. Both the total amygdala and amygdala subnuclei volumes were estimated with FreeSurfer. When comparing the SCZ patients with HC, SCZ patients had a smaller volume of the left basal nucleus (P < 0.05, uncorrected). Further, the VS patients had a smaller volume of the left amygdala central nucleus than the NVS group (P < 0.05, Bonferroni corrected). Our study suggests that a smaller volume of the left amygdala basal nucleus may be a biomarker for SCZ and that a smaller volume of the left central nucleus may be relevant to violence risk in patients with schizophrenia.
Collapse
Affiliation(s)
- Hao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fengju Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Li Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yi Mei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Bin Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yang Shao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yi Qiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
15
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre JA, Yushkevich PA, Wolk DA. Aging and Alzheimer's Disease Have Dissociable Effects on Medial Temporal Lobe Connectivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.18.23284749. [PMID: 36711782 PMCID: PMC9882834 DOI: 10.1101/2023.01.18.23284749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighborhood - the Anterior-Temporal and Posterior-Medial brain networks - in normal agers, individuals with preclinical Alzheimer's disease, and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbors in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (1) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (2) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and, (3) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging vs. Alzheimer's disease.
Collapse
|
16
|
Guerra KTK, Renner J, Vásquez CE, Rasia‐Filho AA. Human cortical amygdala dendrites and spines morphology under open‐source three‐dimensional reconstruction procedures. J Comp Neurol 2022; 531:344-365. [PMID: 36355397 DOI: 10.1002/cne.25430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/12/2022]
Abstract
Visualizing nerve cells has been fundamental for the systematic description of brain structure and function in humans and other species. Different approaches aimed to unravel the morphological features of neuron types and diversity. The inherent complexity of the human nervous tissue and the need for proper histological processing have made studying human dendrites and spines challenging in postmortem samples. In this study, we used Golgi data and open-source software for 3D image reconstruction of human neurons from the cortical amygdaloid nucleus to show different dendrites and pleomorphic spines at different angles. Procedures required minimal equipment and generated high-quality images for differently shaped cells. We used the "single-section" Golgi method adapted for the human brain to engender 3D reconstructed images of the neuronal cell body and the dendritic ramification by adopting a neuronal tracing procedure. In addition, we elaborated 3D reconstructions to visualize heterogeneous dendritic spines using a supervised machine learning-based algorithm for image segmentation. These tools provided an additional upgrade and enhanced visual display of information related to the spatial orientation of dendritic branches and for dendritic spines of varied sizes and shapes in these human subcortical neurons. This same approach can be adapted for other techniques, areas of the central or peripheral nervous system, and comparative analysis between species.
Collapse
Affiliation(s)
- Kétlyn T. Knak Guerra
- Graduate Program in Neuroscience Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Josué Renner
- Department of Basic Sciences/Physiology Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
- Graduate Program in Biosciences Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| | - Carlos E. Vásquez
- Graduate Program in Neuroscience Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Alberto A. Rasia‐Filho
- Graduate Program in Neuroscience Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Department of Basic Sciences/Physiology Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
- Graduate Program in Biosciences Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| |
Collapse
|
17
|
Cao L, Li H, Liu J, Jiang J, Li B, Li X, Zhang S, Gao Y, Liang K, Hu X, Bao W, Qiu H, Lu L, Zhang L, Hu X, Gong Q, Huang X. Disorganized functional architecture of amygdala subregional networks in obsessive-compulsive disorder. Commun Biol 2022; 5:1184. [PMCID: PMC9636402 DOI: 10.1038/s42003-022-04115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractA precise understanding of amygdala-centered subtle networks may help refine neurocircuitry models of obsessive-compulsive disorder (OCD). We applied connectivity-based parcellation methodology to segment the amygdala based on resting-state fMRI data of 92 medication-free OCD patients without comorbidity and 90 matched healthy controls (HC). The amygdala was parcellated into two subregions corresponding to basolateral amygdala (BLA) and centromedial amygdala (CMA). Amygdala subregional functional connectivity (FC) maps were generated and group differences were evaluated with diagnosis-by-subregion flexible factorial ANOVA. We found significant diagnosis × subregion FC interactions in insula, supplementary motor area (SMA), midcingulate cortex (MCC), superior temporal gyrus (STG) and postcentral gyrus (PCG). In HC, the BLA demonstrated stronger connectivity with above regions compared to CMA, whereas in OCD, the connectivity pattern reversed to stronger CMA connectivity comparing to BLA. Relative to HC, OCD patients exhibited hypoconnectivity between left BLA and left insula, and hyperconnectivity between right CMA and SMA, MCC, insula, STG, and PCG. Moreover, OCD patients showed reduced volume of left BLA and right CMA compared to HC. Our findings characterized disorganized functional architecture of amygdala subregional networks in accordance with structural defects, providing direct evidence regarding the specific role of amygdala subregions in the neurocircuitry models of OCD.
Collapse
|
18
|
Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder. Transl Psychiatry 2022; 12:209. [PMID: 35589678 PMCID: PMC9120054 DOI: 10.1038/s41398-022-01976-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/04/2023] Open
Abstract
The hippocampus and amygdala limbic structures are critical to the etiology of major depressive disorder (MDD). However, there are no high-resolution characterizations of the role of their subregions in the whole brain network (connectome). Connectomic examination of these subregions can uncover disorder-related patterns that are otherwise missed when treated as single structures. 38 MDD patients and 40 healthy controls (HC) underwent anatomical and diffusion imaging using 7-Tesla MRI. Whole-brain segmentation was performed along with hippocampus and amygdala subregion segmentation, each representing a node in the connectome. Graph theory analysis was applied to examine the importance of the limbic subregions within the brain network using centrality features measured by node strength (sum of weights of the node's connections), Betweenness (number of shortest paths that traverse the node), and clustering coefficient (how connected the node's neighbors are to one another and forming a cluster). Compared to HC, MDD patients showed decreased node strength of the right hippocampus cornu ammonis (CA) 3/4, indicating decreased connectivity to the rest of the brain, and decreased clustering coefficient of the right dentate gyrus, implying it is less embedded in a cluster. Additionally, within the MDD group, the greater the embedding of the right amygdala central nucleus (CeA) in a cluster, the greater the severity of depressive symptoms. The altered role of these limbic subregions in the whole-brain connectome is related to diagnosis and depression severity, contributing to our understanding of the limbic system involvement in MDD and may elucidate the underlying mechanisms of depression.
Collapse
|
19
|
Guimond S, Mothi SS, Makowski C, Chakravarty MM, Keshavan MS. Altered amygdala shape trajectories and emotion recognition in youth at familial high risk of schizophrenia who develop psychosis. Transl Psychiatry 2022; 12:202. [PMID: 35562339 PMCID: PMC9106712 DOI: 10.1038/s41398-022-01957-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023] Open
Abstract
Relatives of individuals with schizophrenia have a higher risk of developing the illness compared to the general population. Thus, youth at familial high risk (FHR) offer a unique opportunity to identify neuroimaging-based endophenotypes of psychosis. Previous studies have identified lower amygdalo-hippocampal volume in FHR, as well as lower verbal memory and emotion recognition. However, whether these phenotypes increase the risk of transition to psychosis remains unclear. To determine if individuals who develop psychosis have abnormal neurodevelopmental trajectories of the amygdala and hippocampus, we investigated longitudinal changes of these structures in a unique cohort of 82 youth FHR and 56 healthy controls during a 3-year period. Ten individuals from the FHR group converted to psychosis. Longitudinal changes were compared using linear mixed-effects models. Group differences in verbal memory and emotion recognition performance at baseline were also analyzed. Surface-based morphometry measures revealed variation in amygdalar shape (concave shape of the right dorsomedial region) in those who converted to psychosis. Significantly lower emotion recognition performance at baseline was observed in converters. Percent trial-to-trial transfer on the verbal learning task was also significantly impaired in FHR, independently of the conversion status. Our results identify abnormal shape development trajectories in the dorsomedial amygdala and lower emotion recognition abilities as phenotypes of transition to psychosis. Our findings illustrate potential markers for early identification of psychosis, aiding prevention efforts in youth at risk of schizophrenia.
Collapse
Affiliation(s)
- Synthia Guimond
- grid.38142.3c000000041936754XDepartment of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA ,grid.28046.380000 0001 2182 2255Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada ,grid.265705.30000 0001 2112 1125Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC Canada
| | - Suraj S. Mothi
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Carolina Makowski
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.416102.00000 0004 0646 3639McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Montreal, QC Canada ,grid.266100.30000 0001 2107 4242Center for Multimodal Imaging and Genetics, Department of Radiology, University of California San Diego, San Diego, United States
| | - M. Mallar Chakravarty
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC Canada
| | - Matcheri S. Keshavan
- grid.38142.3c000000041936754XDepartment of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| |
Collapse
|
20
|
Affective Neuroscience of Loneliness: Potential Mechanisms underlying the Association between Perceived Social Isolation, Health, and Well-Being. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220011. [PMID: 36778655 PMCID: PMC9910279 DOI: 10.20900/jpbs.20220011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Loneliness, or the subjective feeling of social isolation, is an important social determinant of health. Loneliness is associated with poor physical health, including higher rates of cardiovascular disease and dementia, faster cognitive decline, and increased risk of mortality, as well as disruptions in mental health, including higher levels of depression, anxiety, and negative affect. Theoretical accounts suggest loneliness is a complex cognitive and emotional state characterized by increased levels of inflammation and affective disruptions. This review examines affective neuroscience research on social isolation in animals and loneliness in humans to better understand the relationship between perceptions of social isolation and the brain. Loneliness associated increases in inflammation and neural changes consistent with increased sensitivity to social threat and disrupted emotion regulation suggest interventions targeting maladaptive social cognitions may be especially effective. Work in animal models suggests the neural changes associated with social isolation may be reversible. Therefore, ameliorating loneliness may be an actionable social determinant of health target. However, more research is needed to understand how loneliness impacts healthy aging, explore the role of inflammation as a potential mechanism in humans, and determine the best time to deliver interventions to improve physical health, mental health, and well-being across a diverse array of populations.
Collapse
|
21
|
Gao J, Yang X, Chen X, Liu R, Wang P, Meng F, Li Z, Zhou Y. Resting-state functional connectivity of the amygdala subregions in unmedicated patients with obsessive-compulsive disorder before and after cognitive behavioural therapy. J Psychiatry Neurosci 2021; 46:E628-E638. [PMID: 34785511 PMCID: PMC8598242 DOI: 10.1503/jpn.210084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cognitive behavioural therapy (CBT) is considered an effective first-line treatment for obsessive-compulsive disorder (OCD). However, the neural basis of CBT for OCD has not yet been elucidated. The role of the amygdala in OCD and its functional coupling with the cerebral cortex have received increasing attention, and may provide new understanding of the neural basis of CBT for OCD. METHODS We acquired baseline resting-state functional MRI (fMRI) scans from 45 unmedicated patients with OCD and 40 healthy controls; we then acquired another wave of resting-state fMRI scans from the patients with OCD after 12 weeks of CBT. We performed seed-based resting-state functional connectivity analyses of the amygdala subregions to examine changes in patients with OCD as a result of CBT. RESULTS Compared to healthy controls, patients with OCD showed significantly increased resting-state functional connectivity at baseline between the left basolateral amygdala and the right middle frontal gyrus, and between the superficial amygdala and the right cuneus. In patients with OCD who responded to CBT, we found decreased resting-state functional connectivity after CBT between the amygdala subregions and the visual association cortices and increased resting-state functional connectivity between the amygdala subregions and the right inferior parietal lobe. Furthermore, these changes in resting-state functional connectivity were positively associated with changes in scores on the compulsion or obsession subscales of the Yale-Brown Obsessive-Compulsive Scale. LIMITATIONS Because of the lack of a second scan for healthy controls after 12 weeks, our results may have been confounded by other variables. CONCLUSION Our findings yield insights into the pathophysiology of OCD; they also reveal the potential neural changes elicited by CBT, and thus have implications for guiding effective treatment strategies with CBT for OCD.
Collapse
|
22
|
Underwood R, Tolmeijer E, Wibroe J, Peters E, Mason L. Networks underpinning emotion: A systematic review and synthesis of functional and effective connectivity. Neuroimage 2021; 243:118486. [PMID: 34438255 PMCID: PMC8905299 DOI: 10.1016/j.neuroimage.2021.118486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
We reviewed 33 studies of functional connectivity of emotion in healthy participants. Our results challenge a hierarchical model of emotion processing. Causal connectivity analyze identify dynamic modulatory relationships between regions. We derive a quality tool to make recommendations addressing variability in study design.
Existing models of emotion processing are based almost exclusively on brain activation data, yet make assumptions about network connectivity. There is a need to integrate connectivity findings into these models. We systematically reviewed all studies of functional and effective connectivity employing tasks to investigate negative emotion processing and regulation in healthy participants. Thirty-three studies met inclusion criteria. A quality assessment tool was derived from prominent neuroimaging papers. The evidence supports existing models, with primarily limbic regions for salience and identification, and frontal areas important for emotion regulation. There was mixed support for the assumption that regulatory influences on limbic and sensory areas come predominantly from prefrontal areas. Rather, studies quantifying effective connectivity reveal context-dependent dynamic modulatory relationships between occipital, subcortical, and frontal regions, arguing against purely top-down regulatory theoretical models. Our quality assessment tool found considerable variability in study design and tasks employed. The findings support and extend those of previous syntheses focused on activation studies, and provide evidence for a more nuanced view of connectivity in networks of human emotion processing and regulation.
Collapse
Affiliation(s)
- Raphael Underwood
- Psychology & Neuroscience, Department of Psychology, King's College London, Institute of Psychiatry, United Kingdom.
| | - Eva Tolmeijer
- Psychology & Neuroscience, Department of Psychology, King's College London, Institute of Psychiatry, United Kingdom
| | - Johannes Wibroe
- Psychology & Neuroscience, Department of Psychology, King's College London, Institute of Psychiatry, United Kingdom
| | - Emmanuelle Peters
- Psychology & Neuroscience, Department of Psychology, King's College London, Institute of Psychiatry, United Kingdom
| | - Liam Mason
- Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London United Kingdom; Research Department of Clinical, Educational and Health Psychology, London, United Kingdom
| |
Collapse
|
23
|
Roddy D, Kelly JR, Farrell C, Doolin K, Roman E, Nasa A, Frodl T, Harkin A, O'Mara S, O'Hanlon E, O'Keane V. Amygdala substructure volumes in Major Depressive Disorder. NEUROIMAGE-CLINICAL 2021; 31:102781. [PMID: 34384996 PMCID: PMC8361319 DOI: 10.1016/j.nicl.2021.102781] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 11/27/2022]
Abstract
The role of the amygdala in the experience of emotional states and stress is well established. Connections from the amygdala to the hypothalamus activate the hypothalamic-pituitaryadrenal (HPA) axis and the cortisol response. Previous studies have failed to find consistent whole amygdala volume changes in Major Depressive Disorder (MDD), but differences may exist at the smaller substructural level of the amygdala nuclei. High-resolution T1 and T2-weighted-fluid-attenuated inversion recovery MRIs were compared between 80 patients with MDD and 83 healthy controls (HC) using the automated amygdala substructure module in FreeSurfer 6.0. Volumetric assessments were performed for individual nuclei and three anatomico-functional composite groups of nuclei. Salivary cortisol awakening response (CAR), as a measure of HPA responsivity, was measured in a subset of patients. The right medial nucleus volume was larger in MDD compared to HC (p = 0.002). Increased right-left volume ratios were found in MDD for the whole amygdala (p = 0.004), the laterobasal composite (p = 0.009) and in the central (p = 0.003) and medial (p = 0.014) nuclei. The CAR was not significantly different between MDD and HC. Within the MDD group the left corticoamygdaloid transition area was inversely correlated with the CAR, as measured by area under the curve (AUCg) (p ≤ 0.0001). In conclusion, our study found larger right medial nuclei volumes in MDD compared to HC and relatively increased right compared to left whole and substructure volume ratios in MDD. The results suggest that amygdala substructure volumes may be involved in the pathophysiology of depression.
Collapse
Affiliation(s)
- Darren Roddy
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - John R Kelly
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland.
| | - Chloë Farrell
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Kelly Doolin
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Elena Roman
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Anurag Nasa
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Frodl
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Shane O'Mara
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Erik O'Hanlon
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Veronica O'Keane
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
24
|
Kragel PA, Čeko M, Theriault J, Chen D, Satpute AB, Wald LW, Lindquist MA, Feldman Barrett L, Wager TD. A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron 2021; 109:2404-2412.e5. [PMID: 34166604 DOI: 10.1016/j.neuron.2021.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Animals must rapidly respond to threats to survive. In rodents, threat-related signals are processed through a subcortical pathway from the superior colliculus to the amygdala, a putative "low road" to affective behavior. This pathway has not been well characterized in humans. We developed a novel pathway identification framework that uses pattern recognition to identify connected neural populations and optimize measurement of inter-region connectivity. We first verified that the model identifies known thalamocortical pathways with high sensitivity and specificity in 7 T (n = 56) and 3 T (n = 48) fMRI experiments. Then we identified a human functional superior colliculus-pulvinar-amygdala pathway. Activity in this pathway encodes the intensity of normative emotional responses to negative images and sounds but not pleasant images or painful stimuli. These results provide a functional description of a human "low road" pathway selective for negative exteroceptive events and demonstrate a promising method for characterizing human functional brain pathways.
Collapse
Affiliation(s)
- Philip A Kragel
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology, Emory University, Atlanta, GA 30322, USA; Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA 30322, USA.
| | - Marta Čeko
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jordan Theriault
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Ajay B Satpute
- Department of Psychology, Northeastern University, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA
| | - Lawrence W Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02129, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02129, USA
| | - Tor D Wager
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
25
|
Wu X, Guo T, Zhang C, Hong TY, Cheng CM, Wei P, Hsieh JC, Luo J. From "Aha!" to "Haha!" Using Humor to Cope with Negative Stimuli. Cereb Cortex 2021; 31:2238-2250. [PMID: 33258955 DOI: 10.1093/cercor/bhaa357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Humor has been considered an effective emotion regulation strategy, and some behavioral studies have examined its superior effects on negative emotion regulation. However, its neural mechanisms remain unknown. Our functional magnetic resonance imaging study directly compared the emotion regulation effects and neural bases of humorous coping (reappraisal) and ordinary reappraisal following exposure to negative pictures. The behavioral results suggested that humorous reappraisal was more effective in downregulating negative emotions and upregulating positive emotions both in the short and long term. We also found 2 cooperative neural pathways involved in coping with negative stimuli by means of humor: the "hippocampal-thalamic-frontal pathway" and the "amygdala-cerebellar pathway." The former is associated with the restructuring of mental representations of negative situations and accompanied by an insightful ("Aha!") experience, while the latter is associated with humorous emotional release and accompanied by an expression of laughter ("Haha!"). Furthermore, the degree of hippocampal functional connectivity with both the thalamus and frontal cortex was positively correlated with changes in positive emotion, and this result implied that the degree of emotion regulation could be strongly directly related to the depth of cognitive reconstruction. These findings highlight that regulating negative emotions with humor involves cognitive restructuring and the release of positive emotions.
Collapse
Affiliation(s)
- Xiaofei Wu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing 100048, China.,Department of Psychology, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingting Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Zhang
- Department of Psychology, School of Educational Science, Shanxi Normal University, Linfen 041004, China
| | - Tzu-Yi Hong
- Institute of Brain Science, School of Medicine, Brain Research Center, Yang-Ming University, Taipei 11267, Taiwan.,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Chou-Ming Cheng
- Institute of Brain Science, School of Medicine, Brain Research Center, Yang-Ming University, Taipei 11267, Taiwan.,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing 100048, China
| | - Jen-Chuen Hsieh
- Institute of Brain Science, School of Medicine, Brain Research Center, Yang-Ming University, Taipei 11267, Taiwan.,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing 100048, China.,Department of Psychology, Shaoxing University, China, 312000
| |
Collapse
|
26
|
Gao W, Biswal B, Chen S, Wu X, Yuan J. Functional coupling of the orbitofrontal cortex and the basolateral amygdala mediates the association between spontaneous reappraisal and emotional response. Neuroimage 2021; 232:117918. [PMID: 33652140 DOI: 10.1016/j.neuroimage.2021.117918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Emotional regulation is known to be associated with activity in the amygdala. The amygdala is an emotion-generative region that comprises of structurally and functionally distinct nuclei. However, little is known about the contributions of different frontal-amygdala sub-region pathways to emotion regulation. Here, we investigated how functional couplings between frontal regions and amygdala sub-regions are involved in different spontaneous emotion regulation processes by using an individual-difference approach and a generalized psycho-physiological interaction (gPPI) approach. Specifically, 50 healthy participants reported their dispositional use of spontaneous cognitive reappraisal and expressive suppression in daily life and their actual use of these two strategies during the performance of an emotional-picture watching task. Results showed that functional coupling between the orbitofrontal cortex (OFC) and the basolateral amygdala (BLA) was associated with higher scores of both dispositional and actual uses of reappraisal. Similarly, functional coupling between the dorsolateral prefrontal cortex (dlPFC) and the centromedial amygdala (CMA) was associated with higher scores of both dispositional and actual uses of suppression. Mediation analyses indicated that functional coupling of the right OFC-BLA partially mediated the association between reappraisal and emotional response, irrespective of whether reappraisal was measured by dispositional use (indirect effect(SE)=-0.2021 (0.0811), 95%CI(BC)= [-0.3851, -0.0655]) or actual use (indirect effect(SE)=-0.1951 (0.0796), 95%CI(BC)= [-0.3654, -0.0518])). These findings suggest that spontaneous reappraisal and suppression involve distinct frontal- amygdala functional couplings, and the modulation of BLA activity from OFC may be necessary for changing emotional response during spontaneous reappraisal.
Collapse
Affiliation(s)
- Wei Gao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - ShengDong Chen
- School of Psychology, Qufu Normal University, Qufu, Shandong, China
| | - XinRan Wu
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - JiaJin Yuan
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Emotional arousal impairs association memory: roles of prefrontal cortex regions. ACTA ACUST UNITED AC 2021; 28:76-81. [PMID: 33593925 PMCID: PMC7888235 DOI: 10.1101/lm.052480.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The brain processes underlying impairing effects of emotional arousal on associative memory were previously attributed to two dissociable routes using high-resolution fMRI of the MTL (Madan et al. 2017). Extrahippocampal MTL regions supporting associative encoding of neutral pairs suggested unitization; conversely, associative encoding of negative pairs involved compensatory hippocampal activity. Here, whole-brain fMRI revealed prefrontal contributions: dmPFC was more involved in hippocampal-dependent negative pair learning and vmPFC in extrahippocampal neutral pair learning. Successful encoding of emotional memory associations may require emotion regulation/conflict resolution (dmPFC), while neutral memory associations may be accomplished by anchoring new information to prior knowledge (vmPFC).
Collapse
|
28
|
Aghamohammadi-Sereshki A, Coupland NJ, Silverstone PH, Huang Y, Hegadoren KM, Carter R, Seres P, Malykhin NV. Effects of childhood adversity on the volumes of the amygdala subnuclei and hippocampal subfields in individuals with major depressive disorder. J Psychiatry Neurosci 2021; 46:E186-E195. [PMID: 33497169 PMCID: PMC7955852 DOI: 10.1503/jpn.200034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Reductions in total hippocampus volume have frequently been reported in MRI studies in major depressive disorder (MDD), but reports of differences in total amygdala volume have been inconsistent. Childhood maltreatment is an important risk factor for MDD in adulthood and may affect the volume of the hippocampus and amygdala. In the present study, we examined associations between the volumes of the amygdala subnuclei and hippocampal subfields and history of childhood maltreatment in participants with MDD. METHODS We recruited 35 patients who met the DSM-IV criteria for MDD and 35 healthy controls. We acquired MRI data sets on a 4.7 T Varian Inova scanner. We manually delineated the amygdala subnuclei (lateral, basal and accessory basal nuclei, and the cortical and centromedial groups) and hippocampal subfields (cornu ammonis, subiculum and dentate gyrus) using reliable volumetric methods. We assessed childhood maltreatment using the Childhood Trauma Questionnaire in participants with MDD. RESULTS In participants with MDD, a history of childhood maltreatment had significant negative associations with volume in the right amygdala, anterior hippocampus and total cornu ammonis subfield bilaterally. For volumes of the amygdala subnuclei, such effects were limited to the basal, accessory basal and cortical subnuclei in the right hemisphere, but they did not survive correction for multiple comparisons. We did not find significant effects of MDD or antidepressant treatment on volumes of the amygdala subnuclei. LIMITATIONS Our study was a cross-sectional study. CONCLUSION Our results provide evidence of negative associations between history of childhood maltreatment and volumes of medial temporal lobe structures in participants with MDD. This may help to identify potential mechanisms by which maltreatment leads to clinical impacts.
Collapse
Affiliation(s)
- Arash Aghamohammadi-Sereshki
- From the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada (Aghamohammadi-Sereshki); the Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada (Coupland, Silverstone, Carter, Malykhin); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta., Canada (Huang, Carter, Seres, Malykhin); the Faculty of Nursing, University of Alberta, Edmonton, Alta., Canada (Hegadoren); and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta., Canada (Malykhin)
| | - Nicholas J Coupland
- From the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada (Aghamohammadi-Sereshki); the Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada (Coupland, Silverstone, Carter, Malykhin); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta., Canada (Huang, Carter, Seres, Malykhin); the Faculty of Nursing, University of Alberta, Edmonton, Alta., Canada (Hegadoren); and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta., Canada (Malykhin)
| | - Peter H Silverstone
- From the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada (Aghamohammadi-Sereshki); the Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada (Coupland, Silverstone, Carter, Malykhin); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta., Canada (Huang, Carter, Seres, Malykhin); the Faculty of Nursing, University of Alberta, Edmonton, Alta., Canada (Hegadoren); and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta., Canada (Malykhin)
| | - Yushan Huang
- From the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada (Aghamohammadi-Sereshki); the Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada (Coupland, Silverstone, Carter, Malykhin); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta., Canada (Huang, Carter, Seres, Malykhin); the Faculty of Nursing, University of Alberta, Edmonton, Alta., Canada (Hegadoren); and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta., Canada (Malykhin)
| | - Kathleen M Hegadoren
- From the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada (Aghamohammadi-Sereshki); the Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada (Coupland, Silverstone, Carter, Malykhin); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta., Canada (Huang, Carter, Seres, Malykhin); the Faculty of Nursing, University of Alberta, Edmonton, Alta., Canada (Hegadoren); and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta., Canada (Malykhin)
| | - Rawle Carter
- From the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada (Aghamohammadi-Sereshki); the Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada (Coupland, Silverstone, Carter, Malykhin); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta., Canada (Huang, Carter, Seres, Malykhin); the Faculty of Nursing, University of Alberta, Edmonton, Alta., Canada (Hegadoren); and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta., Canada (Malykhin)
| | - Peter Seres
- From the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada (Aghamohammadi-Sereshki); the Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada (Coupland, Silverstone, Carter, Malykhin); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta., Canada (Huang, Carter, Seres, Malykhin); the Faculty of Nursing, University of Alberta, Edmonton, Alta., Canada (Hegadoren); and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta., Canada (Malykhin)
| | - Nikolai V Malykhin
- From the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada (Aghamohammadi-Sereshki); the Department of Psychiatry, University of Alberta, Edmonton, Alta., Canada (Coupland, Silverstone, Carter, Malykhin); the Department of Biomedical Engineering, University of Alberta, Edmonton, Alta., Canada (Huang, Carter, Seres, Malykhin); the Faculty of Nursing, University of Alberta, Edmonton, Alta., Canada (Hegadoren); and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alta., Canada (Malykhin)
| |
Collapse
|
29
|
Wang X, Blain SD, Wei D, Yang W, Yang J, Zhuang K, He L, DeYoung CG, Qiu J. The role of frontal-subcortical connectivity in the relation between coping styles and reactivity and downregulation of negative emotion. Brain Cogn 2020; 146:105631. [PMID: 33120205 DOI: 10.1016/j.bandc.2020.105631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/05/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
Coping styles (CS) reflect individuals' habitual use of strategies for coping with negative events in daily life. Although research into coping has not reached consistent agreement about classifying coping strategies as either inherently adaptive or maladaptive, the influence of maladaptive CS on mental health is noticeable. CS might also be related to emotion regulation and associated brain systems. Participants (N = 165) completed measurements of CS, trait emotions including trait anxiety, depressive symptoms and happiness and then performed an emotion regulation task, in conjunction with functional MRI. Individual differences in maladaptive CS use were associated with higher trait negative emotionality and higher state reactivity of negative emotion. Concurrent bilateral amygdala-right middle frontal gyrus (MFG) connectivity during passive negative stimulus processing mediated the relation between maladaptive CS and negative emotion ratings. Psychophysiological interaction analyses showed that maladaptive and adaptive CS were linked to patterns of frontal-subcortical connectivity during state emotion regulation. These results suggest that maladaptive CS might be related to negative emotion processing and weaker spontaneous regulation and indicate that maladaptive CS is a risk factor in individual mental health.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Beijing 100875, China
| | - Scott D Blain
- Psychology Department, University of Minnesota Twin Cities, MN, USA
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Beijing 100875, China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Beijing 100875, China
| | - Junyi Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University (SWU), Chongqing 400715, China; School of Education Science, Xinyang Normal University, Xinyang 464000, China
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Beijing 100875, China
| | - Li He
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Beijing 100875, China
| | - Colin G DeYoung
- Psychology Department, University of Minnesota Twin Cities, MN, USA.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
30
|
Premachandran H, Zhao M, Arruda-Carvalho M. Sex Differences in the Development of the Rodent Corticolimbic System. Front Neurosci 2020; 14:583477. [PMID: 33100964 PMCID: PMC7554619 DOI: 10.3389/fnins.2020.583477] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, a growing body of research has shown sex differences in the prevalence and symptomatology of psychopathologies, such as depression, anxiety, and fear-related disorders, all of which show high incidence rates in early life. This has highlighted the importance of including female subjects in animal studies, as well as delineating sex differences in neural processing across development. Of particular interest is the corticolimbic system, comprising the hippocampus, amygdala, and medial prefrontal cortex. In rodents, these corticolimbic regions undergo dynamic changes in early life, and disruption to their normative development is believed to underlie the age and sex-dependent effects of stress on affective processing. In this review, we consolidate research on sex differences in the hippocampus, amygdala, and medial prefrontal cortex across early development. First, we briefly introduce current principles on sexual differentiation of the rodent brain. We then showcase corticolimbic regional sex differences in volume, morphology, synaptic organization, cell proliferation, microglia, and GABAergic signaling, and explain how these differences are influenced by perinatal and pubertal gonadal hormones. In compiling this research, we outline evidence of what and when sex differences emerge in the developing corticolimbic system, and illustrate how temporal dynamics of its maturational trajectory may differ in male and female rodents. This will help provide insight into potential neural mechanisms underlying sex-specific critical windows for stress susceptibility and behavioral emergence.
Collapse
Affiliation(s)
| | - Mudi Zhao
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
31
|
Lieberz J, Scheele D, Spengler FB, Matheisen T, Schneider L, Stoffel-Wagner B, Kinfe TM, Hurlemann R. Kinetics of oxytocin effects on amygdala and striatal reactivity vary between women and men. Neuropsychopharmacology 2020; 45:1134-1140. [PMID: 31785587 PMCID: PMC7235226 DOI: 10.1038/s41386-019-0582-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Accumulating evidence suggests that intranasal oxytocin (OXT; 24 IU) reduces amygdala responses to fear-related stimuli in men, while exerting inverse effects in women. However, OXT enhances activity of the brain reward system in both sexes. Importantly, a crucial and still open question is whether there are sex-specific dose-response relationships for the amygdala and striatal regions. To address this question, a total of 90 healthy women participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study and the results were compared with our previous findings from men. Participants were randomly assigned to three doses of OXT (6 IU, 12 IU, and 24 IU) and completed an emotional face recognition task including fearful and happy faces of varying emotional intensities. Across doses, OXT enhanced amygdala reactivity to low fearful faces compared to placebo and increased responses to happy faces in the dorsal striatum in women. While treatment effects on amygdala reactivity were evident at each given dose, the OXT effect on striatal responses to social stimuli was more pronounced with higher doses, but this dose-dependent effect did not survive correction for multiple comparisons. Importantly, OXT effects on amygdala and striatal activation significantly differed between sexes and striatal baseline sexual-dimorphic response patterns were diminished after administration of OXT. Our findings suggest that OXT increases the salience of social signals by strengthening the sensitivity for these signals in the amygdala and in the striatum in women, while OXT may primarily induce anxiolysis by reducing amygdala responses in men.
Collapse
Affiliation(s)
- Jana Lieberz
- 0000 0001 2240 3300grid.10388.32Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Dirk Scheele
- Division of Medical Psychology, University of Bonn, 53105, Bonn, Germany.
| | - Franny B. Spengler
- grid.5963.9Institute for Psychology, University of Freiburg, 79104 Freiburg, Germany
| | - Tatjana Matheisen
- 0000 0001 2240 3300grid.10388.32Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Lìa Schneider
- 0000 0001 2240 3300grid.10388.32Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Birgit Stoffel-Wagner
- 0000 0001 2240 3300grid.10388.32Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany
| | - Thomas M. Kinfe
- 0000 0001 2107 3311grid.5330.5Department of Neurosurgery, Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - René Hurlemann
- 0000 0001 2240 3300grid.10388.32Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Psychiatry, University of Bonn, 53105 Bonn, Germany ,0000 0001 1009 3608grid.5560.6Department of Psychiatry, University of Oldenburg Medical Campus, 26160 Bad Zwischenahn, Germany
| |
Collapse
|
32
|
Liu Y, Nacewicz BM, Zhao G, Adluru N, Kirk GR, Ferrazzano PA, Styner MA, Alexander AL. A 3D Fully Convolutional Neural Network With Top-Down Attention-Guided Refinement for Accurate and Robust Automatic Segmentation of Amygdala and Its Subnuclei. Front Neurosci 2020; 14:260. [PMID: 32508558 PMCID: PMC7253589 DOI: 10.3389/fnins.2020.00260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in deep learning have improved the segmentation accuracy of subcortical brain structures, which would be useful in neuroimaging studies of many neurological disorders. However, most existing deep learning based approaches in neuroimaging do not investigate the specific difficulties that exist in segmenting extremely small but important brain regions such as the subnuclei of the amygdala. To tackle this challenging task, we developed a dual-branch dilated residual 3D fully convolutional network with parallel convolutions to extract more global context and alleviate the class imbalance issue by maintaining a small receptive field that is just the size of the regions of interest (ROIs). We also conduct multi-scale feature fusion in both parallel and series to compensate the potential information loss during convolutions, which has been shown to be important for small objects. The serial feature fusion enabled by residual connections is further enhanced by a proposed top-down attention-guided refinement unit, where the high-resolution low-level spatial details are selectively integrated to complement the high-level but coarse semantic information, enriching the final feature representations. As a result, the segmentations resulting from our method are more accurate both volumetrically and morphologically, compared with other deep learning based approaches. To the best of our knowledge, this work is the first deep learning-based approach that targets the subregions of the amygdala. We also demonstrated the feasibility of using a cycle-consistent generative adversarial network (CycleGAN) to harmonize multi-site MRI data, and show that our method generalizes well to challenging traumatic brain injury (TBI) datasets collected from multiple centers. This appears to be a promising strategy for image segmentation for multiple site studies and increased morphological variability from significant brain pathology.
Collapse
Affiliation(s)
- Yilin Liu
- Waisman Brain Imaging Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Brendon M. Nacewicz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Gengyan Zhao
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Brain Imaging Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R. Kirk
- Waisman Brain Imaging Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Peter A. Ferrazzano
- Waisman Brain Imaging Laboratory, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Martin A. Styner
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
- Department of Computer Science, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Andrew L. Alexander
- Waisman Brain Imaging Laboratory, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
33
|
Beitchman JA, Griffiths DR, Hur Y, Ogle SB, Bromberg CE, Morrison HW, Lifshitz J, Adelson PD, Thomas TC. Experimental Traumatic Brain Injury Induces Chronic Glutamatergic Dysfunction in Amygdala Circuitry Known to Regulate Anxiety-Like Behavior. Front Neurosci 2020; 13:1434. [PMID: 32038140 PMCID: PMC6985437 DOI: 10.3389/fnins.2019.01434] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Up to 50% of traumatic brain injury (TBI) survivors demonstrate persisting and late-onset anxiety disorders indicative of limbic system dysregulation, yet the pathophysiology underlying the symptoms is unclear. We hypothesize that the development of TBI-induced anxiety-like behavior in an experimental model of TBI is mediated by changes in glutamate neurotransmission within the amygdala. Adult, male Sprague-Dawley rats underwent midline fluid percussion injury or sham surgery. Anxiety-like behavior was assessed at 7 and 28 days post-injury (DPI) followed by assessment of real-time glutamate neurotransmission in the basolateral amygdala (BLA) and central nucleus of the amygdala (CeA) using glutamate-selective microelectrode arrays. The expression of anxiety-like behavior at 28 DPI coincided with decreased evoked glutamate release and slower glutamate clearance in the CeA, not BLA. Numerous factors contribute to the changes in glutamate neurotransmission over time. In two additional animal cohorts, protein levels of glutamatergic transporters (Glt-1 and GLAST) and presynaptic modulators of glutamate release (mGluR2, TrkB, BDNF, and glucocorticoid receptors) were quantified using automated capillary western techniques at 28 DPI. Astrocytosis and microglial activation have been shown to drive maladaptive glutamate signaling and were histologically assessed over 28 DPI. Alterations in glutamate neurotransmission could not be explained by changes in protein levels for glutamate transporters, mGluR2 receptors, astrocytosis, and microglial activation. Presynaptic modulators, BDNF and TrkB, were significantly decreased at 28 DPI in the amygdala. Dysfunction in presynaptic regulation of glutamate neurotransmission may contribute to anxiety-related behavior and serve as a therapeutic target to improve circuit function.
Collapse
Affiliation(s)
- Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Daniel R Griffiths
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Yerin Hur
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sarah B Ogle
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Banner University Medical Center, Phoenix, AZ, United States
| | - Caitlin E Bromberg
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
34
|
van ‘t Veer AE, Thijssen S, Witteman J, van IJzendoorn MH, Bakermans-Kranenburg MJ. Exploring the neural basis for paternal protection: an investigation of the neural response to infants in danger. Soc Cogn Affect Neurosci 2020; 14:447-457. [PMID: 30847472 PMCID: PMC6523437 DOI: 10.1093/scan/nsz018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023] Open
Abstract
Perceiving potential threat to an infant and responding to it is crucial for offspring survival and parent–child bonding. Using a combination of functional magnetic resonance imaging and multi-informant reports, this longitudinal study explores the neural basis for paternal responses to threat to infants pre-natally (N = 21) and early post-natally (n = 17). Participants viewed videos showing an infant in danger and matched control videos, while instructed to imagine that the infant was their own or someone else’s. Effects were found for infant-threatening vs neutral situations in the amygdala (region-of-interest analyses) and in clusters spanning cortical and subcortical areas (whole-brain analyses). An interaction effect revealed increased activation for own (vs unknown) infants in threatening (vs neutral) situations in bilateral motor areas, possibly indicating preparation for action. Post-natal activation patterns were similar; however, in part of the superior frontal gyrus the distinction between threat to own and unknown infant faded. Fathers showing more protective behavior in daily life recruited part of the frontal pole more when confronted with threat to their own vs an unknown infant. This exploratory study is the first to describe neural mechanisms involved in paternal protection and provides a basis for future work on fathers’ protective parenting.
Collapse
Affiliation(s)
- Anna E van ‘t Veer
- Methodology and Statistics Unit, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
- Correspondence should be addressed to Anna van ‘t Veer, Methodology and Statistics Unit, Institute of Psychology, Leiden University, Wassenaarseweg 52, Box 9555, 2300 RB, Leiden, the Netherlands. E-mail:
| | - Sandra Thijssen
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Jurriaan Witteman
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
- Leiden University Centre for Linguistics, Leiden University, Leiden, the Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
35
|
Murphy JE, Yanes JA, Kirby LAJ, Reid MA, Robinson JL. Left, right, or bilateral amygdala activation? How effects of smoothing and motion correction on ultra-high field, high-resolution functional magnetic resonance imaging (fMRI) data alter inferences. Neurosci Res 2020; 150:51-59. [PMID: 30763590 PMCID: PMC7566741 DOI: 10.1016/j.neures.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 01/10/2023]
Abstract
Given the amygdala's role in survival mechanisms, and its pivotal contributions to psychological processes, it is no surprise that it is one of the most well-studied brain regions. One of the common methods for understanding the functional role of the amygdala is the use of functional magnetic resonance imaging (fMRI). However, fMRI tends to be acquired using resolutions that are not optimal for smaller brain structures. Furthermore, standard processing includes spatial smoothing and motion correction which further degrade the resolution of the data. Inferentially, this may be detrimental when determining if the amygdalae are active during a task. Indeed, studies using the same task may show differential amygdala(e) activation. Here, we examine the effects of well-accepted preprocessing steps on whole-brain submillimeter fMRI data to determine the impact on activation patterns associated with a robust task known to activate the amygdala(e). We analyzed 7T fMRI data from 30 healthy individuals collected at sub-millimeter in-plane resolution and used a field standard preprocessing pipeline with different combinations of smoothing kernels and motion correction options. Resultant amygdalae activation patterns were altered depending on which combination of smoothing and motion correction were performed, indicating that whole-brain preprocessing steps have a significant impact on the inferences that can be drawn about smaller, subcortical structures like the amygdala.
Collapse
Affiliation(s)
- Jerry E Murphy
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States.
| | - Julio A Yanes
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States
| | - Lauren A J Kirby
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States
| | - Meredith A Reid
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States; Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, United States; Alabama Advanced Imaging Consortium, United States
| | - Jennifer L Robinson
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, United States; Auburn University MRI Research Center, 560 Devall Drive, Auburn, AL, 36849, United States; Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, United States; Alabama Advanced Imaging Consortium, United States; Center for Neuroscience, Auburn University, AL, 36849, United States
| |
Collapse
|
36
|
Heesink L, Gladwin T, Vink M, van Honk J, Kleber R, Geuze E. Neural activity during the viewing of emotional pictures in veterans with pathological anger and aggression. Eur Psychiatry 2020; 47:1-8. [DOI: 10.1016/j.eurpsy.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
AbstractAnger and aggression are common mental health problems after military deployment. Anger and aggression have been associated with abnormalities in subcortical and cortical levels of the brain and their connectivity. Here, we tested brain activation during the processing of emotional stimuli in military veterans with and without anger and aggression problems. Thirty military veterans with anger and aggression problems and 29 veterans without a psychiatric diagnosis (all males) participated in this study. During an fMRI scan 32 negative, 32 positive and 32 neutral pictures from the International Affective Picture System were presented in intermixed order. The Aggression group showed heightened activity in brain areas including the supplementary motor area, the cingulum and the parietal cortex, in response to stimuli, regardless of category. Furthermore, the Aggression group showed stronger connectivity between the dorsal anterior cingulate cortex (dACC) and the amygdala during the viewing of negative stimuli, and weaker connectivity between dACC and medial prefrontal cortex during the viewing of positive stimuli. Veterans with anger and aggression problems showed enhanced brain response to all stimuli during the task, irrespective of valence and they rated the pictures more likely as negative. We take this to indicate enhanced preparation for action and attention to the presentation of stimuli that could prove to be threatening. Further, group differences in functional connectivity involving the dACC reveal abnormal processing of stimuli with negative and positive valence. In sum, the results point towards a bias towards an enhanced sensitivity to perceived or potential threat in aggression.
Collapse
|
37
|
Quarmley M, Gur RC, Turetsky BI, Watters AJ, Bilker WB, Elliott MA, Calkins ME, Kohler CG, Ruparel K, Rupert P, Gur RE, Wolf DH. Reduced safety processing during aversive social conditioning in psychosis and clinical risk. Neuropsychopharmacology 2019; 44:2247-2253. [PMID: 31112989 PMCID: PMC6898578 DOI: 10.1038/s41386-019-0421-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Social impairment occurs across the psychosis spectrum, but its pathophysiology remains poorly understood. Here we tested the hypothesis that reduced differential responses (aversive vs. neutral) in neural circuitry underpinning aversive conditioning of social stimuli characterizes the psychosis spectrum. Participants age 10-30 included a healthy control group (HC, analyzed n = 36) and a psychosis spectrum group (PSY, n = 71), including 49 at clinical risk for psychosis and 22 with a frank psychotic disorder. 3T fMRI utilized a passive aversive conditioning paradigm, with neutral faces as conditioned stimuli (CS) and a scream as the unconditioned stimulus. fMRI conditioning was indexed as the activation difference between aversive and neutral trials. Analysis focused on amygdala, ventromedial prefrontal cortex, and anterior insula, regions previously implicated in aversive and social-emotional processing. Ventromedial prefrontal cortex activated more to neutral than aversive CS; this "safety effect" was driven by HC and reduced in PSY, and correlated with subjective emotional ratings following conditioning. Insula showed the expected aversive conditioning effect, and although no group differences were found, its activation in PSY correlated with anxiety severity. Unexpectedly, amygdala did not show aversive conditioning; its activation trended greater for neutral than aversive CS, and did not differ significantly based on group or symptom severity. We conclude that abnormalities in social aversive conditioning are present across the psychosis spectrum including clinical risk, linked to a failure of safety processing. Aversive and safety learning provide translational paradigms yielding insight into pathophysiology of psychosis risk, and providing potential targets for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Megan Quarmley
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ruben C. Gur
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bruce I. Turetsky
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Anna J. Watters
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Warren B. Bilker
- 0000 0004 1936 8972grid.25879.31Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mark A. Elliott
- 0000 0004 1936 8972grid.25879.31Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Monica E. Calkins
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Christian G. Kohler
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kosha Ruparel
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Petra Rupert
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Raquel E. Gur
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Daniel H. Wolf
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
38
|
The Emotional Facet of Subjective and Neural Indices of Similarity. Brain Topogr 2019; 32:956-964. [PMID: 31728708 PMCID: PMC6882781 DOI: 10.1007/s10548-019-00743-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/02/2019] [Indexed: 12/27/2022]
Abstract
Emotional similarity refers to the tendency to group stimuli together because they evoke the same feelings in us. The majority of research on similarity perception that has been conducted to date has focused on non-emotional stimuli. Different models have been proposed to explain how we represent semantic concepts, and judge the similarity among them. They are supported from behavioural and neural evidence, often combined by using Multivariate Pattern Analyses. By contrast, less is known about the cognitive and neural mechanisms underlying the judgement of similarity between real-life emotional experiences. This review summarizes the major findings, debates and limitations in the semantic similarity literature. They will serve as background to the emotional facet of similarity that will be the focus of this review. A multi-modal and overarching approach, which relates different levels of neuroscientific explanation (i.e., computational, algorithmic and implementation), would be the key to further unveil what makes emotional experiences similar to each other.
Collapse
|
39
|
Weis CN, Huggins AA, Bennett KP, Parisi EA, Larson CL. High-Resolution Resting-State Functional Connectivity of the Extended Amygdala. Brain Connect 2019; 9:627-637. [DOI: 10.1089/brain.2019.0688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Carissa N. Weis
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Ashley A. Huggins
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Kenneth P. Bennett
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Elizabeth A. Parisi
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Christine L. Larson
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| |
Collapse
|
40
|
Brown SSG, Rutland JW, Verma G, Feldman RE, Schneider M, Delman BN, Murrough JM, Balchandani P. Ultra-High-Resolution Imaging of Amygdala Subnuclei Structural Connectivity in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:184-193. [PMID: 31570286 DOI: 10.1016/j.bpsc.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is an increasingly common and disabling illness. As the amygdala has been reported to have pathological involvement in mood disorders, we aimed to investigate for the first time potential changes to structural connectivity of individual amygdala subnuclei in MDD using ultra-high-field 7T diffusion magnetic resonance imaging. METHODS Twenty-four patients with MDD (11 women) and 24 age-matched healthy control participants (7 women) underwent diffusion-weighted imaging with a 1.05-mm isotropic resolution at 7T. Amygdala nuclei regions of interest were obtained through automated segmentation of 0.69-mm resolution T1-weighted images and 0.35-mm resolution T2-weighted images. Probabilistic tractography was performed on all subjects, with random seeding at each amygdala nucleus. RESULTS The right lateral, basal, central, and centrocortical amygdala nuclei exhibited significantly increased connection density to the rest of the brain, whereas the left medial nucleus demonstrated significantly lower connection density (false discovery rate p < .05). Increased connection density in the right lateral and basal nuclei was driven by the stria terminalis, and the significant difference in the right central nucleus was driven by the uncinate fasciculus. Decreased connection density at the left medial nucleus did not appear to be driven by any individual white matter tract. CONCLUSIONS By exploiting ultra-high-resolution magnetic resonance imaging, structural hyperconnectivity was demonstrated involving the amygdaloid nuclei in the right hemisphere in MDD. To a lesser extent, impairment of subnuclei connectivity was shown in the left hemisphere.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - John W Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gaurav Verma
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rebecca E Feldman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Molly Schneider
- Depression and Anxiety Disorders Centre for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bradley N Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James M Murrough
- Depression and Anxiety Disorders Centre for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
41
|
Involvement of hippocampal subfields and anterior-posterior subregions in encoding and retrieval of item, spatial, and associative memories: Longitudinal versus transverse axis. Neuroimage 2019; 191:568-586. [DOI: 10.1016/j.neuroimage.2019.01.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 11/18/2022] Open
|
42
|
Hur J, Stockbridge MD, Fox AS, Shackman AJ. Dispositional negativity, cognition, and anxiety disorders: An integrative translational neuroscience framework. PROGRESS IN BRAIN RESEARCH 2019; 247:375-436. [PMID: 31196442 PMCID: PMC6578598 DOI: 10.1016/bs.pbr.2019.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When extreme, anxiety can become debilitating. Anxiety disorders, which often first emerge early in development, are common and challenging to treat, yet the underlying mechanisms have only recently begun to come into focus. Here, we review new insights into the nature and biological bases of dispositional negativity, a fundamental dimension of childhood temperament and adult personality and a prominent risk factor for the development of pediatric and adult anxiety disorders. Converging lines of epidemiological, neurobiological, and mechanistic evidence suggest that dispositional negativity increases the likelihood of psychopathology via specific neurocognitive mechanisms, including attentional biases to threat and deficits in executive control. Collectively, these observations provide an integrative translational framework for understanding the development and maintenance of anxiety disorders in adults and youth and set the stage for developing improved intervention strategies.
Collapse
Affiliation(s)
- Juyoen Hur
- Department of Psychology, University of Maryland, College Park, MD, United States.
| | | | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA, United States; California National Primate Research Center, University of California, Davis, CA, United States
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD, United States; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, United States; Maryland Neuroimaging Center, University of Maryland, College Park, MD, United States.
| |
Collapse
|
43
|
Fox AS, Shackman AJ. The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neurosci Lett 2019; 693:58-67. [PMID: 29195911 PMCID: PMC5976525 DOI: 10.1016/j.neulet.2017.11.056] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/30/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022]
Abstract
Anxiety disorders impose a staggering burden on public health, underscoring the need to develop a deeper understanding of the distributed neural circuits underlying extreme fear and anxiety. Recent work highlights the importance of the central extended amygdala, including the central nucleus of the amygdala (Ce) and neighboring bed nucleus of the stria terminalis (BST). Anatomical data indicate that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated to assemble states of fear and anxiety. Neuroimaging studies show that the Ce and BST are engaged by a broad spectrum of potentially threat-relevant cues. Mechanistic work demonstrates that the Ce and BST are critically involved in organizing defensive responses to a wide range of threats. Studies in rodents have begun to reveal the specific molecules, cells, and microcircuits within the central extended amygdala that underlie signs of fear and anxiety, but the relevance of these tantalizing discoveries to human experience and disease remains unclear. Using a combination of focal perturbations and whole-brain imaging, a new generation of nonhuman primate studies is beginning to close this gap. This work opens the door to discovering the mechanisms underlying neuroimaging measures linked to pathological fear and anxiety, to understanding how the Ce and BST interact with one another and with distal brain regions to govern defensive responses to threat, and to developing improved intervention strategies.
Collapse
Affiliation(s)
- Andrew S Fox
- Department of Psychology and University of California, Davis, CA 95616, United States; California National Primate Research Center, University of California, Davis, CA 95616, United States.
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, United States; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, United States; Maryland Neuroimaging Center, University of Maryland,College Park, MD 20742, United States.
| |
Collapse
|
44
|
The role of the basolateral amygdala in dreaming. Cortex 2018; 113:169-183. [PMID: 30660955 DOI: 10.1016/j.cortex.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/09/2018] [Accepted: 12/06/2018] [Indexed: 01/04/2023]
Abstract
Neuroimaging studies have repeatedly shown amygdala activity during sleep (REM and NREM). Consequently, various theorists propose central roles for the amygdala in dreaming - particularly in the generation of dream affects, which seem to play a major role in dream plots. However, a causal role for the amygdala in dream phenomena has never been demonstrated. The traditional first step in determining this role is to observe the functional effects of isolated lesions to the brain structure in question. However, circumscribed bilateral amygdala lesions are extremely rare. Furthermore, the treatment of the amygdala as a unitary structure is problematic, as the basolateral and centromedial amygdala (BLA and CMA) may serve very different functions. We analysed 23 dream reports collected from eight adult patients with bilateral calcification of the BLA as a result of a very rare genetic condition called Urbach-Wiethe Disease (UWD). We compared these dream reports to 52 reports collected from 17 matched controls. Given that the BLA has been implicated in various affective processes in waking life, we predicted that the emotional content of the patients' dreams would differ from that of controls. Due to the exploratory nature of this research, a range of different dream characteristics were analysed. A principal components analysis run on all data returned three key factors, namely pleasantness, length and danger. The UWD patients' dream reports were significantly more pleasant and significantly shorter and less complex than control reports. No differences were found in levels of threat or danger. The results support some current hypotheses concerning the amygdala's role in dreaming, and call others into question. Future research should examine whether these UWD patients show generally impaired emotional episodic memory due to BLA damage, which could explain some of the current findings.
Collapse
|
45
|
Ritchey M, Wang SF, Yonelinas AP, Ranganath C. Dissociable medial temporal pathways for encoding emotional item and context information. Neuropsychologia 2018; 124:66-78. [PMID: 30578805 DOI: 10.1016/j.neuropsychologia.2018.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 01/28/2023]
Abstract
Emotional experiences are typically remembered with a greater sense of recollection than neutral experiences, but memory benefits for emotional items do not typically extend to their source contexts. Item and source memory have been attributed to different subregions of the medial temporal lobes (MTL), but it is unclear how emotional item recollection fits into existing models of MTL function and, in particular, what is the role of the hippocampus. To address these issues, we used high-resolution functional magnetic resonance imaging (fMRI) to examine MTL contributions to successful emotional item and context encoding. The results showed that emotional items were recollected more often than neutral items. Whereas amygdala and perirhinal cortex (PRC) activity supported the recollection advantage for emotional items, hippocampal and parahippocampal cortex activity predicted subsequent source memory for both types of items, reflecting a double dissociation between anterior and posterior MTL regions. In addition, amygdala activity during encoding modulated the relationships of PRC activity and hippocampal activity to subsequent item recollection and source memory, respectively. Specifically, whereas PRC activity best predicted subsequent item recollection when amygdala activity was relatively low, hippocampal activity best predicted source memory when amygdala activity was relatively high. We interpret these findings in terms of complementary compared to synergistic amygdala-MTL interactions. The results suggest that emotion-related enhancements in item recollection are supported by an amygdala-PRC pathway, which is separable from the hippocampal pathway that binds items to their source context.
Collapse
Affiliation(s)
- Maureen Ritchey
- Department of Psychology, Boston College, Chestnut Hill, MA, United States.
| | - Shao-Fang Wang
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Andrew P Yonelinas
- Department of Psychology, University of California Davis, Davis, CA, United States
| | - Charan Ranganath
- Department of Psychology, University of California Davis, Davis, CA, United States; Center for Neuroscience, University of California Davis, Davis, CA, United States
| |
Collapse
|
46
|
Issa HA, Staes N, Diggs-Galligan S, Stimpson CD, Gendron-Fitzpatrick A, Taglialatela JP, Hof PR, Hopkins WD, Sherwood CC. Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Struct Funct 2018; 224:239-251. [DOI: 10.1007/s00429-018-1751-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/09/2018] [Indexed: 12/24/2022]
|
47
|
Conejero I, Thouvenot E, Abbar M, Mouchabac S, Courtet P, Olié E. Neuroanatomy of conversion disorder: towards a network approach. Rev Neurosci 2018; 29:355-368. [DOI: 10.1515/revneuro-2017-0041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/16/2017] [Indexed: 01/22/2023]
Abstract
Abstract
The pathophysiology of conversion disorder is not well understood, although studies using functional brain imaging in patients with motor and sensory symptoms are progressively increasing. We conducted a systematic review of the literature with the aim of summarising the available data on the neuroanatomical features of this disorder. We also propose a general model of the neurobiological disturbance in motor conversion disorder. We systematically searched articles in Medline using the Medical Subject Headings terms ‘(conversion disorder or hysterical motor disorder) and (neuropsychology or cognition) or (functional magnetic resonance imaging or positron emission tomography or neuroimaging) or (genetics or polymorphisms or epigenetics) or (biomarkers or biology)’, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Two authors independently reviewed the retrieved records and abstracts, assessed the exhaustiveness of data abstraction, and confirmed the quality rating. Analysis of the available literature data shows that multiple specialised brain networks (self-agency, action monitoring, salience system, and memory suppression) influence action selection and modulate supplementary motor area activation. Some findings suggest that conceptualisation of movement and motor intention is preserved in patients with limb weakness. More studies are needed to fully understand the brain alterations in conversion disorders and pave the way for the development of effective therapeutic strategies.
Collapse
|
48
|
Tillman RM, Stockbridge MD, Nacewicz BM, Torrisi S, Fox AS, Smith JF, Shackman AJ. Intrinsic functional connectivity of the central extended amygdala. Hum Brain Mapp 2018; 39:1291-1312. [PMID: 29235190 PMCID: PMC5807241 DOI: 10.1002/hbm.23917] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022] Open
Abstract
The central extended amygdala (EAc)-including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)-plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community-dwelling adults. Multiband imaging, high-precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole-brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with "deidentified" neuroimaging data.
Collapse
Affiliation(s)
| | - Melissa D. Stockbridge
- Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkMaryland20742
| | - Brendon M. Nacewicz
- Department of PsychiatryUniversity of Wisconsin—Madison, 6001 Research Park BoulevardMadisonWisconsin53719
| | - Salvatore Torrisi
- Section on the Neurobiology of Fear and AnxietyNational Institute of Mental HealthBethesdaMaryland20892
| | - Andrew S. Fox
- Department of PsychologyUniversity of CaliforniaDavisCalifornia95616
- California National Primate Research CenterUniversity of CaliforniaDavisCalifornia95616
| | - Jason F. Smith
- Department of PsychologyUniversity of MarylandCollege ParkMaryland20742
| | - Alexander J. Shackman
- Department of PsychologyUniversity of MarylandCollege ParkMaryland20742
- Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkMaryland20742
- Maryland Neuroimaging CenterUniversity of MarylandCollege ParkMaryland20742
| |
Collapse
|
49
|
|
50
|
Huang F, Tang S, Sun P, Luo J. Neural correlates of novelty and appropriateness processing in externally induced constraint relaxation. Neuroimage 2018; 172:381-389. [PMID: 29408576 DOI: 10.1016/j.neuroimage.2018.01.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/21/2017] [Accepted: 01/28/2018] [Indexed: 11/27/2022] Open
Abstract
Novelty and appropriateness are considered the two fundamental features of creative thinking, including insight problem solving, which can be performed through chunk decomposition and constraint relaxation. Based on a previous study that separated the neural bases of novelty and appropriateness in chunk decomposition, in this study, we used event-related functional magnetic resonance imaging (fMRI) to further dissociate these mechanisms in constraint relaxation. Participants were guided to mentally represent the method of problem solving according to the externally provided solutions that were elaborately prepared in advance and systematically varied in their novelty and appropriateness for the given problem situation. The results showed that novelty processing was completed by the temporoparietal junction (TPJ) and regions in the executive system (dorsolateral prefrontal cortex [DLPFC]), whereas appropriateness processing was completed by the TPJ and regions in the episodic memory (hippocampus), emotion (amygdala), and reward systems (orbitofrontal cortex [OFC]). These results likely indicate that appropriateness processing can result in a more memorable and richer experience than novelty processing in constraint relaxation. The shared and distinct neural mechanisms of the features of novelty and appropriateness in constraint relaxation are discussed, enriching the representation of the change theory of insight.
Collapse
Affiliation(s)
- Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Shuang Tang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Pei Sun
- Department of Psychology, Tsinghua University, Beijing 100084, China
| | - Jing Luo
- School of Psychology, Capital Normal University, Beijing 100048, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|