1
|
Takano M, Wada M, Nakajima S, Taniguchi K, Honda S, Mimura Y, Kitahata R, Zomorrodi R, Blumberger DM, Daskalakis ZJ, Uchida H, Mimura M, Noda Y. Optimizing the identification of long-interval intracortical inhibition from the dorsolateral prefrontal cortex. Clin Neurophysiol 2025; 169:102-113. [PMID: 39578189 DOI: 10.1016/j.clinph.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE This study aimed to optimally evaluate the effect of the long-interval intracortical inhibition (LICI) in the dorsolateral prefrontal cortex (DLPFC) through transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) by eliminating the volume conductance with signal source estimation and using a realistic sham coil as a control. METHODS We compared the LICI effects from the DLPFC between the active and sham stimulation conditions in 27 healthy participants. Evoked responses between the two conditions were evaluated at the sensor and source levels. RESULTS At the sensor level, a significant LICI effect was confirmed in the active condition in the global mean field power analysis; however, in the local mean field power analysis focused on the DLPFC, no LICI effect was observed in the active condition. However, in the signal source estimation analysis for the DLPFC, we could reconfirm a significant LICI effect (p = 0.023) in the interval 30-250 ms post-stimulus, compared to the sham condition. CONCLUSIONS Our results demonstrate that application of realistic sham stimulation condition and source estimation method allows for a robust and optimal identification of the LICI effect in the DLPFC. SIGNIFICANCE The optimal DLPFC-LICI effect was identified by the use of the sophisticated sham coil.
Collapse
Affiliation(s)
- Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; TEIJIN PHARMA LIMITED, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Faculty of Environmental and Information Studies, Media and Governance, Graduate school of Keio University
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, International University of Health and Welfare, Mita Hospital, Tokyo, Japan.
| |
Collapse
|
2
|
Wang Q, Gong A, Feng Z, Bai Y, Ziemann U. Interactions of transcranial magnetic stimulation with brain oscillations: a narrative review. Front Syst Neurosci 2024; 18:1489949. [PMID: 39698203 PMCID: PMC11652484 DOI: 10.3389/fnsys.2024.1489949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse. These intricate TMS-EEG and EEG-TMS interactions are increasingly attracting the interest of researchers and clinicians. This review surveys the literature of TMS and its interactions with brain oscillations as measured by EEG in health and disease.
Collapse
Affiliation(s)
- Qijun Wang
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anjuan Gong
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Lassman S, Zifman N, Fogel H, Hassin-Baer S, Anis S. TMS-evoked potentials provide novel neurophysiological features of Tourette syndrome. Parkinsonism Relat Disord 2024; 130:107217. [PMID: 39612660 DOI: 10.1016/j.parkreldis.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
INTRODUCTION Gilles de la Tourette syndrome (TS) is a neuropsychiatric disorder associated with abnormal activation of the cortico-striatal-thalamo-cortical circuits and dopaminergic system. We sought to examine changes in neurotransmission relating to cortical excitation/inhibition of TS by measuring TMS-evoked potentials (TEPs) of selected networks. METHODS Thirty-three adult TS patients and 18 healthy controls underwent evaluation of symptom severity using the YGTSS (tics), PUTS (premonitory urge), Y-BOCS (OCD), CAARS (ADHD), BDI (depression), and BAI (anxiety). TMS-EEG was performed to measure TEPs obtained from the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), and primary visual cortex (V1). RESULTS TEP analysis revealed a delayed P180 latency in M1 for TS patients compared to controls (p = 0.006). Lower early amplitude of TEP in response to stimulation of DLPFC (50-70 ms), and delayed DLPFC P180 latency were associated with higher tic severity (p = 0.001 and p = 0.003, respectively). M1 early amplitude (50-70 ms) also effectively differentiated TS with mild-moderate from severe tics (p = 0.003). Significant correlation was found between TEP V1 early amplitude (15-45 ms) and severity of TS anxiety. CONCLUSION Distinct TEP patterns registered in response to DLPFC, M1, and V1 stimulation may shed light on the underlying pathophysiology of TS and are associated with tic severity and comorbidities.
Collapse
Affiliation(s)
- Simon Lassman
- Movement Disorders Institute, Department of Neurology, Chiam Sheba Medical Center, Ramat-Gan, Israel
| | - Noa Zifman
- QuantalX Neuroscience Ltd, Kfar-Saba, Israel
| | - Hilla Fogel
- QuantalX Neuroscience Ltd, Kfar-Saba, Israel
| | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chiam Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Saar Anis
- Movement Disorders Institute, Department of Neurology, Chiam Sheba Medical Center, Ramat-Gan, Israel; Center for Neurological Restoration, Neurological Institute, Cleveland Clinic Foundation, Cleveland, USA.
| |
Collapse
|
4
|
Beck M, Heyl M, Mejer L, Vinding M, Christiansen L, Tomasevic L, Siebner H. Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex. Hum Brain Mapp 2024; 45:e70048. [PMID: 39460649 PMCID: PMC11512442 DOI: 10.1002/hbm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) triggers time-locked cortical activity that can be recorded with electroencephalography (EEG). Transcranial evoked potentials (TEPs) are widely used to probe brain responses to TMS. Here, we systematically reviewed 137 published experiments that studied TEPs elicited from TMS to the human primary motor cortex (M1) in healthy individuals to investigate the impact of methodological choices. We scrutinized prevalent methodological choices and assessed how consistently they were reported in published papers. We extracted amplitudes and latencies from reported TEPs and compared specific TEP peaks and components between studies using distinct methods. Reporting of methodological details was overall sufficient, but some relevant information regarding the TMS settings and the recording and preprocessing of EEG data were missing in more than 25% of the included experiments. The published TEP latencies and amplitudes confirm the "prototypical" TEP waveform following stimulation of M1, comprising distinct N15, P30, N45, P60, N100, and P180 peaks. However, variations in amplitude were evident across studies. Higher stimulation intensities were associated with overall larger TEP amplitudes. Active noise masking during TMS generally resulted in lower TEP amplitudes compared to no or passive masking but did not specifically impact those TEP peaks linked to long-latency sensory processing. Studies implementing independent component analysis (ICA) for artifact removal generally reported lower TEP magnitudes. In summary, some aspects of reporting practices could be improved in future TEP studies to enable replication. Methodological choices, including TMS intensity and the use of noise masking or ICA, introduce systematic differences in reported TEP amplitudes. Further investigation into the significance of these and other methodological factors and their interactions is warranted.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Marieke Heyl
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Louise Mejer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Mikkel C. Vinding
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of NeurologyCopenhagen University Hospital Bispebjerg and FrederiksbergKøbenhavnDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
5
|
Song Y, Gordon PC, Roy O, Metsomaa J, Belardinelli P, Rostami M, Ziemann U. Involvement of muscarinic acetylcholine receptor-mediated cholinergic neurotransmission in TMS-EEG responses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111167. [PMID: 39383933 DOI: 10.1016/j.pnpbp.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a valuable tool for investigating brain functions in health and disease. However, the detailed neural mechanisms underlying TMS-EEG responses, including TMS-evoked EEG potentials (TEPs) and TMS-induced EEG oscillations (TIOs), remain largely unknown. Combining TMS-EEG with pharmacological interventions provides a unique opportunity to elucidate the roles of specific receptor-mediated neurotransmissions in these responses. Here, we investigated the involvement of muscarinic acetylcholine receptor (mAChR)-mediated cholinergic neurotransmission in TMS-EEG responses by evaluating the effects of mAChR antagonists on TEPs and TIOs in twenty-four healthy participants using a randomized, placebo-controlled crossover design. TEPs and TIOs were measured before and after administering a single oral dose of scopolamine (a non-selective mAChR antagonist), biperiden (an M1 mAChR antagonist), or placebo, with TMS targeting the left medial prefrontal cortex (mPFC), angular gyrus (AG), and supplementary motor area (SMA). The results indicated that mAChR-mediated cholinergic neurotransmission played a role in TEPs, but not TIOs, in a target-specific manner. Specifically, scopolamine significantly increased the amplitude of a local TEP component between approximately 40 and 63 ms post-stimulus when TMS was applied to the SMA, but not the mPFC or AG. Biperiden produced a similar but less pronounced effect. Importantly, the effects of these mAChR antagonists on TEPs were independent of those on sensory-evoked EEG potentials caused by TMS-associated sensory stimulation. These findings expand our understanding of TMS-EEG physiology, providing insights for its application in physiological and clinical research.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Olivier Roy
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CERVO Brain Research Centre, Quebec, Canada; Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Finland
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Iran
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
6
|
Shibata S, Onishi H, Mima T. TMS-EEG signatures of the effects of transcranial static magnetic field stimulation (tSMS) on cortical excitability. Sci Rep 2024; 14:22394. [PMID: 39333555 PMCID: PMC11436792 DOI: 10.1038/s41598-024-72875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
In transcranial static magnetic field stimulation (tSMS), a strong and small magnet placed over the head can modulate cortical functions below the magnet as well as those in the region remote from the magnet. We studied the neuromodulation induced by tSMS using transcranial magnetic stimulation (TMS) combined with simultaneous electroencephalography (EEG) to clarify the neurophysiological underpinnings of tSMS. tSMS or sham stimulation was applied over the left primary motor cortex (M1) for 20 min in 15 healthy subjects. Single pulse TMS was delivered over the left M1 before and after the intervention, while recording EEG. The amplitude around the P30 of the TMS-evoked potentials (TEPs) in the left primary sensorimotor area (SM1) significantly decreased after the real tSMS, and that around the N60 of the TEPs in the right SM1 significantly increased after the real tSMS. In addition, the alpha power of the TMS-induced oscillatory responses (IORs) in the left and right SM1 significantly decreased after the real tSMS. TMS-EEG is a powerful tool for studying local and global cortical reactivity to external stimuli at high temporal resolution. tSMS altered TEPs and IORs both at the stimulated cortex and at the contralateral cortex. These findings would be related to the neurophysiological mechanisms underlying the neuromodulation induced by tSMS.
Collapse
Affiliation(s)
- Sumiya Shibata
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan.
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan.
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
7
|
Li D, Li X, Li J, Liu J, Luo R, Li Y, Wang D, Zhou D, Zhang XY. Neurophysiological markers of disease severity and cognitive dysfunction in major depressive disorder: A TMS-EEG study. Int J Clin Health Psychol 2024; 24:100495. [PMID: 39282218 PMCID: PMC11402404 DOI: 10.1016/j.ijchp.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Transcranial magnetic stimulation-electroencephalography (TMS-EEG) is a powerful technique to study the neuropathology and biomarkers of major depressive disorder (MDD). This study investigated cortical activity and its relationship with clinical symptoms and cognitive dysfunction in MDD patients by indexing TMS-EEG biomarkers in the dorsolateral prefrontal cortex (DLPFC). Methods 133 patients with MDD and 76 healthy individuals participated in this study. Single-pulse TMS was performed on the left DLPFC to obtain TMS-evoked potential (TEP) indices. TMS-EEG waveforms and components were determined by global mean field amplitude. We used the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) to measure participants' cognitive function. Results Patients with MDD had a lower excitatory P180 index compared to healthy controls, and P180 amplitude was negatively correlated with the severity of depressive and anxiety symptoms in patients with MDD. In the MDD group, P30 amplitude was negatively associated with RBANS Visuospatial/ Constructional index and total score. Conclusions TMS-EEG findings suggest that abnormal cortical excitation and inhibition induced by TMS on the DLPFC are associated with the severity of clinical symptoms and cognitive dysfunction in patients with MDD. P180 and P30 have the potential to serve as neurophysiological biomarkers of clinical symptoms and cognitive dysfunction in MDD patients, respectively.
Collapse
Affiliation(s)
- Deyang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xingxing Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jiaxin Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junyao Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ruichenxi Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Zhou
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Santoro V, Hou MD, Premoli I, Belardinelli P, Biondi A, Carobin A, Puledda F, Michalopoulou PG, Richardson MP, Rocchi L, Shergill SS. Investigating cortical excitability and inhibition in patients with schizophrenia: A TMS-EEG study. Brain Res Bull 2024; 212:110972. [PMID: 38710310 DOI: 10.1016/j.brainresbull.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) combined with electromyography (EMG) has widely been used as a non-invasive brain stimulation tool to assess excitation/inhibition (E/I) balance. E/I imbalance is a putative mechanism underlying symptoms in patients with schizophrenia. Combined TMS-electroencephalography (TMS-EEG) provides a detailed examination of cortical excitability to assess the pathophysiology of schizophrenia. This study aimed to investigate differences in TMS-evoked potentials (TEPs), TMS-related spectral perturbations (TRSP) and intertrial coherence (ITC) between patients with schizophrenia and healthy controls. MATERIALS AND METHODS TMS was applied over the motor cortex during EEG recording. Differences in TEPs, TRSP and ITC between the patient and healthy subjects were analysed for all electrodes at each time point, by applying multiple independent sample t-tests with a cluster-based permutation analysis to correct for multiple comparisons. RESULTS Patients demonstrated significantly reduced amplitudes of early and late TEP components compared to healthy controls. Patients also showed a significant reduction of early delta (50-160 ms) and theta TRSP (30-250ms),followed by a reduction in alpha and beta suppression (220-560 ms; 190-420 ms). Patients showed a reduction of both early (50-110 ms) gamma increase and later (180-230 ms) gamma suppression. Finally, the ITC was significantly lower in patients in the alpha band, from 30 to 260 ms. CONCLUSION Our findings support the putative role of impaired GABA-receptor mediated inhibition in schizophrenia impacting excitatory neurotransmission. Further studies can usefully elucidate mechanisms underlying specific symptoms clusters using TMS-EEG biometrics.
Collapse
Affiliation(s)
- V Santoro
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Headache Group, Wolfson SPaRC, Institute of Psychiatry Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| | - M D Hou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - I Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - P Belardinelli
- Cimec, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - A Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - A Carobin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - F Puledda
- Headache Group, Wolfson SPaRC, Institute of Psychiatry Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - P G Michalopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - L Rocchi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - S S Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Kent and Medway Medical School, Canterbury CT2 7FS, United Kingdom; Kent and Medway NHS and Social Care Partnership Trust, Maidstone, ME7 4JL, United Kingdom
| |
Collapse
|
9
|
Solomon EA, Wang JB, Oya H, Howard MA, Trapp NT, Uitermarkt BD, Boes AD, Keller CJ. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. Brain Stimul 2024; 17:698-712. [PMID: 38821396 PMCID: PMC11313454 DOI: 10.1016/j.brs.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is believed to alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach generally evaluates low-frequency neural activity at the cortical surface. However, TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct assessment of deeper and more localized oscillatory responses across the frequency spectrum. OBJECTIVE/HYPOTHESIS Our study used iEEG to understand the effects of TMS on human neural activity in the spectral domain. We asked (1) which brain regions respond to cortically-targeted TMS, and in what frequency bands, (2) whether deeper brain structures exhibit oscillatory responses, and (3) whether the neural responses to TMS reflect evoked versus induced oscillations. METHODS We recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at either the dorsolateral prefrontal cortex (DLPFC) or parietal cortex. iEEG signals were analyzed using spectral methods to understand the oscillatory responses to TMS. RESULTS Stimulation to DLPFC drove widespread low-frequency increases (3-8 Hz) in frontolimbic cortices and high-frequency decreases (30-110 Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with phase-locked evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation. CONCLUSIONS By combining TMS with intracranial EEG recordings, our results suggest that TMS is an effective means to perturb oscillatory neural activity in brain-wide networks, including deeper structures not directly accessed by stimulation itself.
Collapse
Affiliation(s)
- Ethan A Solomon
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA.
| | - Jeffrey B Wang
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Biophysics Graduate Program, Stanford University Medical Center, Stanford, 94305, CA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Matthew A Howard
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Nicholas T Trapp
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Brandt D Uitermarkt
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Aaron D Boes
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Corey J Keller
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
10
|
Fong PY, Rothwell JC, Rocchi L. The Past, Current and Future Research in Cerebellar TMS Evoked Responses-A Narrative Review. Brain Sci 2024; 14:432. [PMID: 38790411 PMCID: PMC11118133 DOI: 10.3390/brainsci14050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is a novel technique to investigate cortical physiology in health and disease. The cerebellum has recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports published recently. However, EEG responses obtained by cerebellar stimulation vary considerably across the literature, possibly due to different experimental methods. Compared to conventional TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone coils are used, resulting in contamination of responses by electromyographic activity and sensory potentials. Understanding technical difficulties and limitations is essential for the development of cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies, highlighting limitations in experimental design and potential issues that can result in discrepancies between experimental outcomes. Lastly, we propose a possible direction for academic and clinical research with cerebellar TMS-EEG.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Medical School, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
11
|
Mancuso M, Cruciani A, Sveva V, Casula E, Brown KE, Di Lazzaro V, Rothwell JC, Rocchi L. Changes in Cortical Activation by Transcranial Magnetic Stimulation Due to Coil Rotation Are Not Attributable to Cranial Muscle Activation. Brain Sci 2024; 14:332. [PMID: 38671984 PMCID: PMC11048461 DOI: 10.3390/brainsci14040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) allows for the study of brain dynamics in health and disease. Cranial muscle activation can decrease the interpretability of TMS-EEG signals by masking genuine EEG responses and increasing the reliance on preprocessing methods but can be at least partly prevented by coil rotation coupled with the online monitoring of signals; however, the extent to which changing coil rotation may affect TMS-EEG signals is not fully understood. Our objective was to compare TMS-EEG data obtained with an optimal coil rotation to induce motor evoked potentials (M1standard) while rotating the coil to minimize cranial muscle activation (M1emg). TMS-evoked potentials (TEPs), TMS-related spectral perturbation (TRSP), and intertrial phase clustering (ITPC) were calculated in both conditions using two different preprocessing pipelines based on independent component analysis (ICA) or signal-space projection with source-informed reconstruction (SSP-SIR). Comparisons were performed with cluster-based correction. The concordance correlation coefficient was computed to measure the similarity between M1standard and M1emg TMS-EEG signals. TEPs, TRSP, and ITPC were significantly larger in M1standard than in M1emg conditions; a lower CCC than expected was also found. These results were similar across the preprocessing pipelines. While rotating the coil may be advantageous to reduce cranial muscle activation, it may result in changes in TMS-EEG signals; therefore, this solution should be tailored to the specific experimental context.
Collapse
Affiliation(s)
- Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (V.D.L.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Elias Casula
- Department of System Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Katlyn E. Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G5, Canada;
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (V.D.L.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, Blocco I S.S. 554 bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
12
|
Lin H, Liang J, Wang Q, Shao Y, Song P, Li S, Bai Y. Effects of accelerated intermittent theta-burst stimulation in modulating brain of Alzheimer's disease. Cereb Cortex 2024; 34:bhae106. [PMID: 38517175 DOI: 10.1093/cercor/bhae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/27/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Intermittent theta-burst stimulation (iTBS) is emerging as a noninvasive therapeutic strategy for Alzheimer's disease (AD). Recent advances highlighted a new accelerated iTBS (aiTBS) protocol, consisting of multiple sessions per day and higher overall pulse doses, in brain modulation. To examine the possibility of applying the aiTBS in treating AD patients, we enrolled 45 patients in AD at early clinical stages, and they were randomly assigned to either receive real or sham aiTBS. Neuropsychological scores were evaluated before and after treatment. Moreover, we detected cortical excitability and oscillatory activity changes in AD, by the single-pulse TMS in combination with EEG (TMS-EEG). Real stimulation showed markedly better performances in the group average of Auditory Verbal Learning Test scores compared to baseline. TMS-EEG revealed that aiTBS has reinforced this memory-related cortical mechanism by increasing cortical excitability and beta oscillatory activity underlying TMS target. We also found an enhancement of local natural frequency after aiTBS treatment. The novel findings implicated that high-dose aiTBS targeting left DLPFC is rapid-acting, safe, and tolerable in AD patients. Furthermore, TMS-related increase of specific neural oscillation elucidates the mechanisms of the AD cognitive impairment ameliorated by aiTBS.
Collapse
Affiliation(s)
- Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45th, Changchun Street, Beijing 100053, China
| | - Junhua Liang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45th, Changchun Street, Beijing 100053, China
| | - Qianqian Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45th, Changchun Street, Beijing 100053, China
| | - Yuxuan Shao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45th, Changchun Street, Beijing 100053, China
| | - Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45th, Changchun Street, Beijing 100053, China
| | - Siran Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45th, Changchun Street, Beijing 100053, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, 133th, south road of square Street, Nanchang 330006, Jiangxi, China
| |
Collapse
|
13
|
Guet-McCreight A, Chameh HM, Mazza F, Prevot TD, Valiante TA, Sibille E, Hay E. In-silico testing of new pharmacology for restoring inhibition and human cortical function in depression. Commun Biol 2024; 7:225. [PMID: 38396202 PMCID: PMC10891083 DOI: 10.1038/s42003-024-05907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Reduced inhibition by somatostatin-expressing interneurons is associated with depression. Administration of positive allosteric modulators of α5 subunit-containing GABAA receptor (α5-PAM) that selectively target this lost inhibition exhibit antidepressant and pro-cognitive effects in rodent models of chronic stress. However, the functional effects of α5-PAM on the human brain in vivo are unknown, and currently cannot be assessed experimentally. We modeled the effects of α5-PAM on tonic inhibition as measured in human neurons, and tested in silico α5-PAM effects on detailed models of human cortical microcircuits in health and depression. We found that α5-PAM effectively recovered impaired cortical processing as quantified by stimulus detection metrics, and also recovered the power spectral density profile of the microcircuit EEG signals. We performed an α5-PAM dose-response and identified simulated EEG biomarker candidates. Our results serve to de-risk and facilitate α5-PAM translation and provide biomarkers in non-invasive brain signals for monitoring target engagement and drug efficacy.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | - Frank Mazza
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Thomas D Prevot
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, ON, Canada
| | - Etienne Sibille
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Solomon EA, Wang JB, Oya H, Howard MA, Trapp NT, Uitermarkt BD, Boes AD, Keller CJ. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552524. [PMID: 37645954 PMCID: PMC10461914 DOI: 10.1101/2023.08.09.552524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly deployed in the treatment of neuropsychiatric illness, under the presumption that stimulation of specific cortical targets can alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach is most useful for evaluating low-frequency neural activity at the cortical surface. As such, little is known about how TMS perturbs rhythmic activity among deeper structures - such as the hippocampus and amygdala - and whether stimulation can alter higher-frequency oscillations. Recent work has established that TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct neural recordings at sufficient spatiotemporal resolution to examine localized oscillatory responses across the frequency spectrum. To that end, we recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at several cortical sites. Stimulation to the dorsolateral prefrontal cortex (DLPFC) drove widespread low-frequency increases (3-8Hz) in frontolimbic cortices, as well as high-frequency decreases (30-110Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with brief evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation. Taken together, we established that non-invasive stimulation can (1) provoke a mixture of low-frequency evoked power and induced theta oscillations and (2) suppress high-frequency activity in deeper brain structures not directly accessed by stimulation itself.
Collapse
Affiliation(s)
- Ethan A. Solomon
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
| | - Jeffrey B. Wang
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
- Biophysics Graduate Program, Stanford University Medical Center, Stanford, CA 94305
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Matthew A. Howard
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Nicholas T. Trapp
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Brandt D. Uitermarkt
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Aaron D. Boes
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Corey J. Keller
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94305
| |
Collapse
|
15
|
Krile L, Ensafi E, Cole J, Noor M, Protzner AB, McGirr A. A dose-response characterization of transcranial magnetic stimulation intensity and evoked potential amplitude in the dorsolateral prefrontal cortex. Sci Rep 2023; 13:18650. [PMID: 37903906 PMCID: PMC10616119 DOI: 10.1038/s41598-023-45730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
By combining transcranial magnetic stimulation (TMS) with electroencephalography, human cortical circuits can be directly interrogated. The resulting electrical trace contains TMS-evoked potential (TEP) components, and it is not known whether the amplitudes of these components are stimulus intensity dependent. We examined this in the left dorsolateral prefrontal cortex in nineteen healthy adult participants and extracted TEP amplitudes for the N40, P60, N120, and P200 components at 110%, 120%, and 130% of resting motor threshold (RMT). To probe plasticity of putative stimulus intensity dose-response relationships, this was repeated after participants received intermittent theta burst stimulation (iTBS; 600 pulses, 80% RMT). The amplitude of the N120 and P200 components exhibited a stimulus intensity dose-response relationship, however the N40 and P60 components did not. After iTBS, the N40 and P60 components continued to exhibit a lack of stimulus intensity dose-dependency, and the P200 dose-response was unchanged. In the N120 component, however, we saw evidence of change within the stimulus intensity dose-dependent relationship characterized by a decrease in absolute peak amplitudes at lower stimulus intensities. These data suggest that TEP components have heterogeneous dose-response relationships, with implications for standardizing and harmonizing methods across experiments. Moreover, the selective modification of the N120 dose-response relationship may provide a novel marker for iTBS plasticity in health and disease.
Collapse
Affiliation(s)
- Louisa Krile
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Elnaz Ensafi
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Jaeden Cole
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Mah Noor
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
16
|
Paparella I, Vanderwalle G, Stagg CJ, Maquet P. An integrated measure of GABA to characterize post-stroke plasticity. Neuroimage Clin 2023; 39:103463. [PMID: 37406594 PMCID: PMC10339061 DOI: 10.1016/j.nicl.2023.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a major cause of death and chronic neurological disability. Despite the improvements in stroke care, the number of patients affected by stroke keeps increasing and many stroke survivors are left permanently disabled. Current therapies are limited in efficacy. Understanding the neurobiological mechanisms underlying post-stroke recovery is therefore crucial to find new therapeutic options to address this medical burden. Long-lasting and widespread alterations of γ-aminobutyric acid (GABA) neurotransmission seem to play a key role in stroke recovery. In this review we first discuss a possible model of GABAergic modulation of post-stroke plasticity. We then overview the techniques currently available to non-invasively assess GABA in patients and the conclusions drawn from this limited body of work. Finally, we address the remaining open questions to clarify GABAergic changes underlying post-stroke recovery, we briefly review possible ways to modulate GABA post stroke and propose a novel approach to thoroughly quantify GABA in stroke patients, by integrating its concentration, the activity of its receptors and its link with microstructural changes.
Collapse
Affiliation(s)
- Ilenia Paparella
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium.
| | - Gilles Vanderwalle
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Research Council Brain Network Dynamics Unit, Oxford, UK
| | - Pierre Maquet
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium; Department of Neurology, Domaine Universitaire du Sart Tilman, Bâtiment B35, CHU de Liège, 4000 Liège, Belgium
| |
Collapse
|
17
|
Bai Y, Belardinelli P, Thoennes C, Blum C, Baur D, Laichinger K, Lindig T, Ziemann U, Mengel A. Cortical reactivity to transcranial magnetic stimulation predicts risk of post-stroke delirium. Clin Neurophysiol 2023; 148:97-108. [PMID: 36526534 DOI: 10.1016/j.clinph.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Post-stroke delirium (PSD) is a frequent and with regard to outcome unfavorable complication in acute stroke. The neurobiological mechanisms predisposing to PSD remain poorly understood, and biomarkers predicting its risk have not been established. We tested the hypothesis that hypoexcitable or disconnected brain networks predispose to PSD by measuring brain reactivity to transcranial magnetic stimulation with electroencephalography (TMS-EEG). METHODS We conducted a cross-sectional study in 33 acute stroke patients within 48 hours of stroke onset. Brain reactivity to single-pulse TMS of dorsolateral prefrontal cortex, primary motor cortex and superior parietal lobule of the right hemisphere was quantified by response intensity, effective connectivity, perturbational complexity index (PCIST), and natural frequency of the TMS-EEG response. PSD development was clinically tracked every 8 hours before and for 7 days following TMS-EEG. RESULTS Fourteen patients developed PSD while 19 patients did not. The PSD group showed lower excitability, effective connectivity, PCIST and natural frequency compared to the non-PSD group. The maximum PCIST over all three TMS sites demonstrated largest classification accuracy with a ROC-AUC of 0.943. This effect was independent of lesion size, affected hemisphere and stroke severity. Maximum PCIST and maximum natural frequency correlated inversely with delirium duration. CONCLUSIONS Brain reactivity to TMS-EEG can unravel brain network states of reduced excitability, effective connectivity, perturbational complexity and natural frequency that identify acute stroke patients at high risk for development of delirium. SIGNIFICANCE Findings provide novel insight into the pathophysiology of pre-delirium brain states and may promote effective delirium prevention strategies in those patients at high risk.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Center for Mind/Brain Sciences - CIMeC, University of Trento, Italy
| | - Catrina Thoennes
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Corinna Blum
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Baur
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kornelia Laichinger
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tobias Lindig
- Department of Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Annerose Mengel
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Gonzalez-Burgos I, Bainier M, Gross S, Schoenenberger P, Ochoa JA, Valencia M, Redondo RL. Glutamatergic and GABAergic Receptor Modulation Present Unique Electrophysiological Fingerprints in a Concentration-Dependent and Region-Specific Manner. eNeuro 2023; 10:ENEURO.0406-22.2023. [PMID: 36931729 PMCID: PMC10124153 DOI: 10.1523/eneuro.0406-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
Brain function depends on complex circuit interactions between excitatory and inhibitory neurons embedded in local and long-range networks. Systemic GABAA-receptor (GABAAR) or NMDA-receptor (NMDAR) modulation alters the excitatory-inhibitory balance (EIB), measurable with electroencephalography (EEG). However, EEG signatures are complex in localization and spectral composition. We developed and applied analytical tools to investigate the effects of two EIB modulators, MK801 (NMDAR antagonist) and diazepam (GABAAR modulator), on periodic and aperiodic EEG features in freely-moving male Sprague Dawley rats. We investigated how, across three brain regions, EEG features are correlated with EIB modulation. We found that the periodic component was composed of seven frequency bands that presented region-dependent and compound-dependent changes. The aperiodic component was also different between compounds and brain regions. Importantly, the parametrization into periodic and aperiodic components unveiled correlations between quantitative EEG and plasma concentrations of pharmacological compounds. MK-801 exposures were positively correlated with the slope of the aperiodic component. Concerning the periodic component, MK-801 exposures correlated negatively with the peak frequency of low-γ oscillations but positively with those of high-γ and high-frequency oscillations (HFOs). As for the power, θ and low-γ oscillations correlated negatively with MK-801, whereas mid-γ correlated positively. Diazepam correlated negatively with the knee of the aperiodic component, positively to β and negatively to low-γ oscillatory power, and positively to the modal frequency of θ, low-γ, mid-γ, and high-γ. In conclusion, correlations between exposures and pharmacodynamic effects can be better-understood thanks to the parametrization of EEG into periodic and aperiodic components. Such parametrization could be key in functional biomarker discovery.
Collapse
Affiliation(s)
- Irene Gonzalez-Burgos
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - José A Ochoa
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
| | - Miguel Valencia
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
19
|
Donati FL, Mayeli A, Sharma K, Janssen SA, Lagoy AD, Casali AG, Ferrarelli F. Natural Oscillatory Frequency Slowing in the Premotor Cortex of Early-Course Schizophrenia Patients: A TMS-EEG Study. Brain Sci 2023; 13:534. [PMID: 37190501 PMCID: PMC10136843 DOI: 10.3390/brainsci13040534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Despite the heavy burden of schizophrenia, research on biomarkers associated with its early course is still ongoing. Single-pulse Transcranial Magnetic Stimulation coupled with electroencephalography (TMS-EEG) has revealed that the main oscillatory frequency (or "natural frequency") is reduced in several frontal brain areas, including the premotor cortex, of chronic patients with schizophrenia. However, no study has explored the natural frequency at the beginning of illness. Here, we used TMS-EEG to probe the intrinsic oscillatory properties of the left premotor cortex in early-course schizophrenia patients (<2 years from onset) and age/gender-matched healthy comparison subjects (HCs). State-of-the-art real-time monitoring of EEG responses to TMS and noise-masking procedures were employed to ensure data quality. We found that the natural frequency of the premotor cortex was significantly reduced in early-course schizophrenia compared to HCs. No correlation was found between the natural frequency and age, clinical symptom severity, or dose of antipsychotic medications at the time of TMS-EEG. This finding extends to early-course schizophrenia previous evidence in chronic patients and supports the hypothesis of a deficit in frontal cortical synchronization as a core mechanism underlying this disorder. Future work should further explore the putative role of frontal natural frequencies as early pathophysiological biomarkers for schizophrenia.
Collapse
Affiliation(s)
- Francesco L. Donati
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 456, Pittsburgh, PA 15213, USA
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 456, Pittsburgh, PA 15213, USA
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Kamakashi Sharma
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sabine A. Janssen
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Alice D. Lagoy
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 456, Pittsburgh, PA 15213, USA
| | - Adenauer G. Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 456, Pittsburgh, PA 15213, USA
- Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
21
|
Luo X, Che X, Li H. Concurrent TMS-EEG and EEG reveal neuroplastic and oscillatory changes associated with self-compassion and negative emotions. Int J Clin Health Psychol 2023; 23:100343. [PMID: 36299492 PMCID: PMC9577271 DOI: 10.1016/j.ijchp.2022.100343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background/Objective Self-compassion has a consensual relevance for overall mental health, but its mechanisms remain unknown. Using intermittent theta burst stimulation (iTBS) and concurrent transcranial magnetic stimulation-electroencephalography (TMS-EEG), this study investigated the causal relationship of the dorsolateral prefrontal cortex (DLPFC) with self-compassion and explored the changes in neuroplasticity and neural dynamics. Method Thirty-two healthy participants received iTBS or sham stimulation over the DLPFC, before and after which they were instructed to either use self-compassionate strategies or to be rejected in the context of social rejection and to report the level of self-compassion or negative affect. TMS-evoked potentials were evaluated as novel neuroplastic techniques with N45, P60, N100, and P180. Results iTBS uniquely decreased P180 amplitude measured with TMS-EEG whereby sham stimulation had no effect on neuroplasticity. In line with neuroplasticity changes, iTBS enhanced a widespread gamma band power and coherence, which correlated consistently with increased engagement in self-compassion. Meanwhile, iTBS demonstrated opposite effects on theta activity dependent on the social contexts whereby self-compassion decreased and social rejection enhanced it respectively. This unique effect of iTBS on theta activity was also supplemented by the enhancement of theta band coherence following iTBS. Conclusions We found a causal relationship between DLPFC and self-compassion. We also provide evidence to indicate widespread gamma activity and connectivity to correlate with self-compassion as well as the critical role of the DLPFC in modulating theta activity and negative emotions.
Collapse
Affiliation(s)
- Xi Luo
- School of Psychology, Shenzhen University, Shenzhen, China,Key Laboratory of Brain Cognition and Educational Science, Ministry of Education; Centre for Studies of Psychological Applications; Guangdong Key Laboratory of Mental Health and Cognitive Science; School of Psychology, South China Normal University
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China,TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hong Li
- School of Psychology, Shenzhen University, Shenzhen, China,Key Laboratory of Brain Cognition and Educational Science, Ministry of Education; Centre for Studies of Psychological Applications; Guangdong Key Laboratory of Mental Health and Cognitive Science; School of Psychology, South China Normal University,Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China,Corresponding author.
| |
Collapse
|
22
|
van den Bos MAJ, Menon P, Vucic S. Cortical hyperexcitability and plasticity in Alzheimer's disease: developments in understanding and management. Expert Rev Neurother 2022; 22:981-993. [PMID: 36683586 DOI: 10.1080/14737175.2022.2170784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that provides important insights into Alzheimer's Disease (AD). A significant body of work utilizing TMS techniques has explored the pathophysiological relevance of cortical hyperexcitability and plasticity in AD and their modulation in novel therapies. AREAS COVERED This review examines the technique of TMS, the use of TMS to examine specific features of cortical excitability and the use of TMS techniques to modulate cortical function. A search was performed utilizing the PubMed database to identify key studies utilizing TMS to examine cortical hyperexcitability and plasticity in Alzheimer's dementia. We then translate this understanding to the study of Alzheimer's disease pathophysiology, examining the underlying neurophysiologic links contributing to these twin signatures, cortical hyperexcitability and abnormal plasticity, in the cortical dysfunction characterizing AD. Finally, we examine utilization of TMS excitability to guide targeted therapies and, through the use of repetitive TMS (rTMS), modulate cortical plasticity. EXPERT OPINION The examination of cortical hyperexcitability and plasticity with TMS has potential to optimize and expand the window of therapeutic interventions in AD, though remains at relatively early stage of development.
Collapse
Affiliation(s)
- Mehdi A J van den Bos
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
23
|
The phase of sensorimotor mu and beta oscillations has the opposite effect on corticospinal excitability. Brain Stimul 2022; 15:1093-1100. [PMID: 35964870 DOI: 10.1016/j.brs.2022.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Neural oscillations in the primary motor cortex (M1) shape corticospinal excitability. Power and phase of ongoing mu (8-13 Hz) and beta (14-30 Hz) activity may mediate motor cortical output. However, the functional dynamics of both mu and beta phase and power relationships and their interaction, are largely unknown. OBJECTIVE Here, we employ recently developed real-time targeting of the mu and beta rhythm, to apply phase-specific brain stimulation and probe motor corticospinal excitability non-invasively. For this, we used instantaneous read-out and analysis of ongoing oscillations, targeting four different phases (0°, 90°, 180°, and 270°) of mu and beta rhythms with suprathreshold single-pulse transcranial magnetic stimulation (TMS) to M1. Ensuing motor evoked potentials (MEPs) in the right first dorsal interossei muscle were recorded. Twenty healthy adults took part in this double-blind randomized crossover study. RESULTS Mixed model regression analyses showed significant phase-dependent modulation of corticospinal output by both mu and beta rhythm. Strikingly, these modulations exhibit a double dissociation. MEPs are larger at the mu trough and rising phase and smaller at the peak and falling phase. For the beta rhythm we found the opposite behavior. Also, mu power, but not beta power, was positively correlated with corticospinal output. Power and phase effects did not interact for either rhythm, suggesting independence between these aspects of oscillations. CONCLUSION Our results provide insights into real-time motor cortical oscillation dynamics, which offers the opportunity to improve the effectiveness of TMS by specifically targeting different frequency bands.
Collapse
|
24
|
Passera B, Chauvin A, Raffin E, Bougerol T, David O, Harquel S. Exploring the spatial resolution of TMS-EEG coupling on the sensorimotor region. Neuroimage 2022; 259:119419. [PMID: 35777633 DOI: 10.1016/j.neuroimage.2022.119419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The use of TMS-EEG coupling as a neuroimaging tool for the functional exploration of the human brain recently gained strong interest. If this tool directly inherits the fine temporal resolution from EEG, its spatial counterpart remains unknown. In this study, we explored the spatial resolution of TMS-EEG coupling by evaluating the minimal distance between two stimulated cortical sites that would significantly evoke different response dynamics. TMS evoked responses were mapped on the sensorimotor region in twenty participants. The stimulation grid was composed of nine targets separated between 10 and 15 mm on average. The dynamical signatures of TMS evoked activity were extracted and compared between sites using both local and remote linear regression scores and spatial generalized mixed models. We found a significant effect of the distance between stimulated sites on their dynamical signatures, neighboring sites showing differentiable response dynamics. Besides, common dynamical signatures were also found between sites up to 25-30 mm from each other. This overlap in dynamical properties decreased with distance and was stronger between sites within the same Brodmann area. Our results suggest that the spatial resolution of TMS-EEG coupling might be at least as high as 10 mm. Furthermore, our results reveal an anisotropic spatial resolution that was higher across than within the same Brodmann areas, in accordance with the TMS induced E-field modeling. Common cytoarchitectonic leading to shared dynamical properties within the same Brodmann area could also explain this anisotropy. Overall, these findings suggest that TMS-EEG benefits from the spatial resolution of TMS, which makes it an accurate technique for meso-scale brain mapping.
Collapse
Affiliation(s)
- Brice Passera
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France; Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alan Chauvin
- Univ. Grenoble Alpes, CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Thierry Bougerol
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; Centre Hospitalier Univ. Grenoble Alpes, Service de Psychiatrie, F-38000 Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Sylvain Harquel
- Univ. Grenoble Alpes, CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNC, F-38000 Grenoble, France; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland.
| |
Collapse
|
25
|
Directionality of the injected current targeting the P20/N20 source determines the efficacy of 140 Hz transcranial alternating current stimulation (tACS)-induced aftereffects in the somatosensory cortex. PLoS One 2022; 17:e0266107. [PMID: 35324989 PMCID: PMC8947130 DOI: 10.1371/journal.pone.0266107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Interindividual anatomical differences in the human cortex can lead to suboptimal current directions and may result in response variability of transcranial electrical stimulation methods. These differences in brain anatomy require individualized electrode stimulation montages to induce an optimal current density in the targeted area of each individual subject. We aimed to explore the possible modulatory effects of 140 Hz transcranial alternating current stimulation (tACS) on the somatosensory cortex using personalized multi-electrode stimulation montages. In two randomized experiments using either tactile finger or median nerve stimulation, we measured by evoked potentials the plasticity aftereffects and oscillatory power changes after 140 Hz tACS at 1.0 mA as compared to sham stimulation (n = 17, male = 9). We found a decrease in the power of oscillatory mu-rhythms during and immediately after tactile discrimination tasks, indicating an engagement of the somatosensory system during stimulus encoding. On a group level both the oscillatory power and the evoked potential amplitudes were not modulated by tACS neither after tactile finger stimulation nor after median nerve stimulation as compared to sham stimulation. On an individual level we could however demonstrate that lower angular difference (i.e., differences between the injected current vector in the target region and the source orientation vector) is associated with significantly higher changes in both P20/N20 and N30/P30 source activities. Our findings suggest that the higher the directionality of the injected current correlates to the dipole orientation the greater the tACS-induced aftereffects are.
Collapse
|
26
|
Gordon PC, Belardinelli P, Stenroos M, Ziemann U, Zrenner C. Prefrontal theta phase-dependent rTMS-induced plasticity of cortical and behavioral responses in human cortex. Brain Stimul 2022; 15:391-402. [PMID: 35182810 DOI: 10.1016/j.brs.2022.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Prefrontal theta oscillations are involved in neuronal information transfer and retention. Phases along the theta cycle represent varied excitability states, whereby high-excitability states correspond to high-frequency neuronal activity and heightened capacity for plasticity induction, as demonstrated in animal studies. Human studies corroborate this model and suggest a core role of prefrontal theta activity in working memory (WM). OBJECTIVE/HYPOTHESIS We aimed at modulating prefrontal neuronal excitability and WM performance in healthy humans, using real-time EEG analysis for triggering repetitive transcranial magnetic stimulation (rTMS) theta-phase synchronized to the left dorsomedial prefrontal cortex. METHODS 16 subjects underwent 3 different rTMS interventions on separate days, with pulses triggered according to the individual's real-time EEG activity: 400 rTMS gamma-frequency (100 Hz) triplet bursts applied during either the negative peak of the prefrontal theta oscillation, the positive peak, or at random phase. Changes in cortical excitability were assessed with EEG responses following single-pulse TMS, and behavioral effects by using a WM task. RESULTS Negative-peak rTMS increased single-pulse TMS-induced prefrontal theta power and theta-gamma phase-amplitude coupling, and decreased WM response time. In contrast, positive-peak rTMS decreased prefrontal theta power, while no changes were observed after random-phase rTMS. CONCLUSION Findings point to the feasibility of EEG-TMS technology in a theta-gamma phase-amplitude coupling mode for effectively modifying WM networks in human prefrontal cortex, with potential for therapeutic applications.
Collapse
Affiliation(s)
- Pedro Caldana Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Biondi A, Rocchi L, Santoro V, Rossini PG, Beatch GN, Richardson MP, Premoli I. Spontaneous and TMS-related EEG changes as new biomarkers to measure anti-epileptic drug effects. Sci Rep 2022; 12:1919. [PMID: 35121751 PMCID: PMC8817040 DOI: 10.1038/s41598-022-05179-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2022] [Indexed: 01/02/2023] Open
Abstract
Robust biomarkers for anti-epileptic drugs (AEDs) activity in the human brain are essential to increase the probability of successful drug development. The frequency analysis of electroencephalographic (EEG) activity, either spontaneous or evoked by transcranial magnetic stimulation (TMS-EEG) can provide cortical readouts for AEDs. However, a systematic evaluation of the effect of AEDs on spontaneous oscillations and TMS-related spectral perturbation (TRSP) has not yet been provided. We studied the effects of Lamotrigine, Levetiracetam, and of a novel potassium channel opener (XEN1101) in two groups of healthy volunteers. Levetiracetam suppressed TRSP theta, alpha and beta power, whereas Lamotrigine decreased delta and theta but increased the alpha power. Finally, XEN1101 decreased TRSP delta, theta, alpha and beta power. Resting-state EEG showed a decrease of theta band power after Lamotrigine intake. Levetiracetam increased theta, beta and gamma power, while XEN1101 produced an increase of delta, theta, beta and gamma power. Spontaneous and TMS-related cortical oscillations represent a powerful tool to characterize the effect of AEDs on in vivo brain activity. Spectral fingerprints of specific AEDs should be further investigated to provide robust and objective biomarkers of biological effect in human clinical trials.
Collapse
Affiliation(s)
- Andrea Biondi
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, Ground Floor (G.33.08), 5 Cutcombe Road, Camberwell, London, SE5 9RX, UK.
| | - L Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - V Santoro
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, Ground Floor (G.33.08), 5 Cutcombe Road, Camberwell, London, SE5 9RX, UK
| | - P G Rossini
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, Ground Floor (G.33.08), 5 Cutcombe Road, Camberwell, London, SE5 9RX, UK
| | - G N Beatch
- Xenon Pharmaceuticals Inc., Burnaby, Canada
| | - M P Richardson
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, Ground Floor (G.33.08), 5 Cutcombe Road, Camberwell, London, SE5 9RX, UK
| | - I Premoli
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, Ground Floor (G.33.08), 5 Cutcombe Road, Camberwell, London, SE5 9RX, UK
| |
Collapse
|
28
|
Motor cortex oscillates at its intrinsic post-movement beta rhythm following real (but not sham) single pulse, rhythmic and arrhythmic transcranial magnetic stimulation. Neuroimage 2022; 251:118975. [DOI: 10.1016/j.neuroimage.2022.118975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
|
29
|
Harvey DY, Hamilton R. Noninvasive brain stimulation to augment language therapy for poststroke aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:241-250. [PMID: 35078601 DOI: 10.1016/b978-0-12-823384-9.00012-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Behavioral language treatment approaches represent the standard of care for persons with aphasia (PWA), but the benefits of these treatments are variable. Moreover, due to the logistic and financial limitations on the amount of behavioral therapy available to patients, it is often infeasible for PWA to receive behavioral interventions with the level of frequency, intensity, or duration that would provide significant and lasting benefit, underscoring the need for novel, effective treatment approaches. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have emerged as promising neurally-based tools to enhance language abilities for PWA following stroke. This chapter first provides an overview of the methods and physiologic basis motivating the use of NIBS to enhance aphasia recovery followed by a selective review of the growing evidence of its potential as a novel therapeutic tool. Subsequent sections discuss some of the principles that may prove most useful in guiding and optimizing the effects of NIBS on aphasia recovery, focusing on how the functional state of the brain at the time of stimulation interacts with the behavioral aftereffects of neuromodulation. We conclude with a discussion of current challenges and future directions for NIBS in aphasia treatment.
Collapse
Affiliation(s)
- Denise Y Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
30
|
Ross JM, Ozdemir RA, Lian SJ, Fried PJ, Schmitt EM, Inouye SK, Pascual-Leone A, Shafi MM. A structured ICA-based process for removing auditory evoked potentials. Sci Rep 2022; 12:1391. [PMID: 35082350 PMCID: PMC8791940 DOI: 10.1038/s41598-022-05397-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs), recorded using electroencephalography (EEG), reflect a combination of TMS-induced cortical activity and multi-sensory responses to TMS. The auditory evoked potential (AEP) is a high-amplitude sensory potential-evoked by the "click" sound produced by every TMS pulse-that can dominate the TEP and obscure observation of other neural components. The AEP is peripherally evoked and therefore should not be stimulation site specific. We address the problem of disentangling the peripherally evoked AEP of the TEP from components evoked by cortical stimulation and ask whether removal of AEP enables more accurate isolation of TEP. We hypothesized that isolation of the AEP using Independent Components Analysis (ICA) would reveal features that are stimulation site specific and unique individual features. In order to improve the effectiveness of ICA for removal of AEP from the TEP, and thus more clearly separate the transcranial-evoked and non-specific TMS-modulated potentials, we merged sham and active TMS datasets representing multiple stimulation conditions, removed the resulting AEP component, and evaluated performance across different sham protocols and clinical populations using reduction in Global and Local Mean Field Power (GMFP/LMFP) and cosine similarity analysis. We show that removing AEPs significantly reduced GMFP and LMFP in the post-stimulation TEP (14 to 400 ms), driven by time windows consistent with the N100 and P200 temporal characteristics of AEPs. Cosine similarity analysis supports that removing AEPs reduces TEP similarity between subjects and reduces TEP similarity between stimulation conditions. Similarity is reduced most in a mid-latency window consistent with the N100 time-course, but nevertheless remains high in this time window. Residual TEP in this window has a time-course and topography unique from AEPs, which follow-up exploratory analyses suggest could be a modulation in the alpha band that is not stimulation site specific but is unique to individual subject. We show, using two datasets and two implementations of sham, evidence in cortical topography, TEP time-course, GMFP/LMFP and cosine similarity analyses that this procedure is effective and conservative in removing the AEP from TEP, and may thus better isolate TMS-evoked activity. We show TEP remaining in early, mid and late latencies. The early response is site and subject specific. Later response may be consistent with TMS-modulated alpha activity that is not site specific but is unique to the individual. TEP remaining after removal of AEP is unique and can provide insight into TMS-evoked potentials and other modulated oscillatory dynamics.
Collapse
Affiliation(s)
- Jessica M Ross
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Recep A Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shu Jing Lian
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Eva M Schmitt
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Sharon K Inouye
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Guttmann Brain Health Institute, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Ye Y, Wang J, Che X. Concurrent TMS-EEG to Reveal the Neuroplastic Changes in the Prefrontal and Insular Cortices in the Analgesic Effects of DLPFC-rTMS. Cereb Cortex 2022; 32:4436-4446. [DOI: 10.1093/cercor/bhab493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract
The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear. Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex. Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed neuroplastic changes associated with DLPFC analgesia.
Collapse
|
32
|
Rossi S, Santarnecchi E, Feurra M. Noninvasive brain stimulation and brain oscillations. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:239-247. [PMID: 35034738 DOI: 10.1016/b978-0-12-819410-2.00013-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent technological advances in the field of noninvasive brain stimulation (NIBS) have allowed to interact with endogenous brain oscillatory activity, the main neural communication code of our brain, opening new scenarios for transient modifications of cognitive and behavioral performances: such a possibility can be capitalized both for research purposes in healthy subjects, as well as in the context of therapeutic and rehabilitative settings. Among NiBS methodologies, transcranial magnetic stimulation (TMS) has been the first used to this purpose, and also thanks to the technical development of TMS-EEG co-registering systems, the mechanistic knowledge regarding the role of brain oscillations has been improved. Another approach to brain oscillations considers electric stimulation methods, such as transcranial direct current stimulation (tDCS), and especially transcranial alternating current stimulation (tACS), for which -however- some technical and conceptual caveats have emerged. In this chapter, we briefly review the uses of NiBS in this field up to now, by providing an update on the current status of research applications as well as of its attempts of exploitation in translational clinical applications, especially regarding motor disorders and for understanding and reducing some psychiatric symptoms.
Collapse
Affiliation(s)
- Simone Rossi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Emiliano Santarnecchi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
33
|
Bridging the gap: TMS-EEG from Lab to Clinic. J Neurosci Methods 2022; 369:109482. [PMID: 35041855 DOI: 10.1016/j.jneumeth.2022.109482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 01/06/2023]
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has reached technological maturity and has been an object of significant scientific interest for over two decades. Ιn parallel, accumulating evidence highlights the potential of TMS-EEG as a useful tool in the field of clinical neurosciences. Nevertheless, its clinical utility has not yet been established, partly because technical and methodological limitations have created a gap between an evolving scientific tool and standard clinical practice. Here we review some of the identified gaps that still prevent TMS-EEG moving from science laboratories to clinical practice. The principal and partly overlapping gaps include: 1) complex and laborious application, 2) difficulty in obtaining high-quality signals, 3) suboptimal accuracy and reliability, and 4) insufficient understanding of the neurobiological substrate of the responses. All these four aspects need to be satisfactorily addressed for the method to become clinically applicable and enter the diagnostic and therapeutic arena. In the current review, we identify steps that might be taken to address these issues and discuss promising recent studies providing tools to aid bridging the gaps.
Collapse
|
34
|
Zhang M, Frohlich F. Cell type-specific excitability probed by optogenetic stimulation depends on the phase of the alpha oscillation. Brain Stimul 2022; 15:472-482. [PMID: 35219922 PMCID: PMC8975618 DOI: 10.1016/j.brs.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alpha oscillations have been proposed to provide phasic inhibition in the brain. Yet, pinging alpha oscillations with transcranial magnetic stimulation (TMS) to examine phase-dependent network excitability has resulted in conflicting findings. At the cellular level, such gating by the alpha oscillation remains poorly understood. OBJECTIVE We examine how the excitability of pyramidal cells and presumed fast-spiking inhibitory interneurons depends on the phase of the alpha oscillation. METHODS Optogenetic stimulation pulses were administered at random phases of the alpha oscillation in the posterior parietal cortex (PPC) of two adult ferrets that expressed channelrhodopsin in pyramidal cells. Post-stimulation firing probability was calculated as a function of the stimulation phase of the alpha oscillation for both verum and sham stimulation. RESULTS The excitability of pyramidal cells depended on the alpha phase, in anticorrelation with their intrinsic phase preference; pyramidal cells were more responsive to optogenetic stimulation at the alpha phase with intrinsically low firing rates. In contrast, presumed fast-spiking inhibitory interneurons did not show such a phase dependency despite their stronger intrinsic phase preference. CONCLUSIONS Alpha oscillations gate input to PPC in a phase-dependent manner such that low intrinsic activity was associated with higher responsiveness to input. This finding supports a model of cortical oscillation, in which internal processing and communication are limited to the depolarized half-cycle, whereas the other half-cycle serves as a signal detector for unexpected input. The functional role of different parts of the alpha cycle may vary across the cortex depending on local neuronal firing properties.
Collapse
Affiliation(s)
- Mengsen Zhang
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
di Hou M, Santoro V, Biondi A, Shergill SS, Premoli I. A systematic review of TMS and neurophysiological biometrics in patients with schizophrenia. J Psychiatry Neurosci 2021; 46:E675-E701. [PMID: 34933940 PMCID: PMC8695525 DOI: 10.1503/jpn.210006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation can be combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) to evaluate the excitatory and inhibitory functions of the cerebral cortex in a standardized manner. It has been postulated that schizophrenia is a disorder of functional neural connectivity underpinned by a relative imbalance of excitation and inhibition. The aim of this review was to provide a comprehensive overview of TMS-EMG and TMS-EEG research in schizophrenia, focused on excitation or inhibition, connectivity, motor cortical plasticity and the effect of antipsychotic medications, symptom severity and illness duration on TMS-EMG and TMS-EEG indices. METHODS We searched PsycINFO, Embase and Medline, from database inception to April 2020, for studies that included TMS outcomes in patients with schizophrenia. We used the following combination of search terms: transcranial magnetic stimulation OR tms AND interneurons OR glutamic acid OR gamma aminobutyric acid OR neural inhibition OR pyramidal neurons OR excita* OR inhibit* OR GABA* OR glutam* OR E-I balance OR excitation-inhibition balance AND schizoaffective disorder* OR Schizophrenia OR schizophreni*. RESULTS TMS-EMG and TMS-EEG measurements revealed deficits in excitation or inhibition, functional connectivity and motor cortical plasticity in patients with schizophrenia. Increased duration of the cortical silent period (a TMS-EMG marker of γ-aminobutyric acid B receptor activity) with clozapine was a relatively consistent finding. LIMITATIONS Most of the studies used patients with chronic schizophrenia and medicated patients, employed cross-sectional group comparisons and had small sample sizes. CONCLUSION TMS-EMG and TMS-EEG offer an opportunity to develop a novel and improved understanding of the physiologic processes that underlie schizophrenia and to assess the therapeutic effect of antipsychotic medications. In the future, these techniques may also help predict disease progression and further our understanding of the excitatory/inhibitory balance and its implications for mechanisms that underlie treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Meng di Hou
- From the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Hou, Shergill); the Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Santoro, Biondi, Premoli); and the Kent and Medway Medical School, Canterbury, UK (Shergill)
| | | | | | | | | |
Collapse
|
36
|
Donati FL, Kaskie R, Reis CC, D'Agostino A, Casali AG, Ferrarelli F. Reduced TMS-evoked fast oscillations in the motor cortex predict the severity of positive symptoms in first-episode psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110387. [PMID: 34129889 PMCID: PMC8380703 DOI: 10.1016/j.pnpbp.2021.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Accumulating evidence points to neurophysiological abnormalities of the motor cortex in Schizophrenia (SCZ). However, whether these abnormalities represent a core biological feature of psychosis rather than a superimposed neurodegenerative process is yet to be defined, as it is their putative relationship with clinical symptoms. in this study, we used Transcranial Magnetic Stimulation coupled with electroencephalography (TMS-EEG) to probe the intrinsic oscillatory properties of motor (Brodmann Area 4, BA4) and non-motor (posterior parietal, BA7) cortical areas in twenty-three first-episode psychosis (FEP) patients and thirteen age and gender-matched healthy comparison (HC) subjects. Patients underwent clinical evaluation at baseline and six-months after the TMS-EEG session. We found that FEP patients had reduced EEG activity evoked by TMS of the motor cortex in the beta-2 (25-34 Hz) frequency band in a cluster of electrodes overlying BA4, relative to HC participants. Beta-2 deficits in the TMS-evoked EEG response correlated with worse positive psychotic symptoms at baseline and also predicted positive symptoms severity at six-month follow-up assessments. Altogether, these findings indicate that reduced TMS-evoked fast oscillatory activity in the motor cortex is an early neural abnormality that: 1) is present at illness onset; 2) may represent a state marker of psychosis; and 3) could play a role in the development of new tools of outcome prediction in psychotic patients.
Collapse
Affiliation(s)
- Francesco Luciano Donati
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Health Sciences, University of Milan, Milan, Italy
| | - Rachel Kaskie
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Catarina Cardoso Reis
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | | | - Adenauer Girardi Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
37
|
GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:48. [PMID: 34824891 PMCID: PMC8588888 DOI: 10.5334/tohm.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous inhibitory neurotransmitter critical to the control of movement both cortically and subcortically. Modulation of GABA can alter the characteristic rest as well as movement-related oscillatory activity in the alpha (8-12 Hz), beta (13-30 Hz, and gamma (60-90 Hz) frequencies, but the specific mechanisms by which GABAergic modulation can modify these well-described changes remains unclear. Through pharmacologic GABAergic modulation and evaluation across the age spectrum, the contributions of GABA to these characteristic oscillatory activities are beginning to be understood. Here, we review how baseline GABA signaling plays a key role in motor networks and in cortical oscillations detected by scalp electroencephalography and magnetoencephalography. We also discuss the data showing specific alterations to baseline movement related oscillatory changes from pharmacologic intervention on GABAergic tone as well as with healthy aging. These data provide greater insight into the physiology of movement and may help improve future development of novel therapeutics for patients who suffer from movement disorders.
Collapse
|
38
|
Gordon PC, Jovellar DB, Song Y, Zrenner C, Belardinelli P, Siebner HR, Ziemann U. Recording brain responses to TMS of primary motor cortex by EEG - utility of an optimized sham procedure. Neuroimage 2021; 245:118708. [PMID: 34743050 PMCID: PMC8752966 DOI: 10.1016/j.neuroimage.2021.118708] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Optimized sham TMS-EEG is introduced and tested. Sham combined auditory and supramaximal electrical somatosensory stimulation. Subjects reported equal sensory perception during sham and real TMS. Subtraction revealed evoked EEG potentials and beta-band power specific to real TMS. The optimized sham procedure is relevant in research and therapeutic settings.
Introduction Electroencephalography (EEG) is increasingly used to investigate brain responses to transcranial magnetic stimulation (TMS). A relevant issue is that TMS is associated with considerable auditory and somatosensory stimulation, causing peripherally evoked potentials (PEPs) in the EEG, which contaminate the direct cortical responses to TMS (TEPs). All previous attempts to control for PEPs suffer from significant limitations. Objective/Hypothesis To design an optimized sham procedure to control all sensory input generated by subthreshold real TMS targeting the hand area of the primary motor cortex (M1), enabling reliable separation of TEPs from PEPs. Methods In 23 healthy (16 female) subjects, we recorded EEG activity evoked by an optimized sham TMS condition which masks and matches auditory and somatosensory co-stimulation during the real TMS condition: auditory control was achieved by noise masking and by using a second TMS coil that was placed on top of the real TMS coil and produced a calibrated sound pressure level. Somatosensory control was obtained by electric stimulation (ES) of the scalp with intensities sufficient to saturate somatosensory input. ES was applied in both the sham and real TMS conditions. Perception of auditory and somatosensory inputs in the sham and real TMS conditions were compared by psychophysical testing. Transcranially evoked EEG signal changes were identified by subtraction of EEG activity in the sham condition from EEG activity in the real TMS condition. Results Perception of auditory and somatosensory inputs in the sham vs. real TMS conditions was comparable. Both sham and real TMS evoked a series of similar EEG signal deflections and induced broadband power increase in oscillatory activity. Notably, the present procedure revealed EEG potentials and a transient increase in beta band power at the site of stimulation that were only present in the real TMS condition. Discussion The results validate the effectiveness of our optimized sham approach. Despite the presence of typical responses attributable to sensory input, the procedure provided evidence for direct cortical activation by subthreshold TMS of M1. The findings are relevant for future TMS-EEG experiments that aim at measuring regional brain target engagement controlled by an optimized sham procedure.
Collapse
Affiliation(s)
- Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - D Blair Jovellar
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - YuFei Song
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital - Bispebjerg and Fredriksberg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
39
|
Vlachou S. A Brief History and the Significance of the GABA B Receptor. Curr Top Behav Neurosci 2021; 52:1-17. [PMID: 34595739 DOI: 10.1007/7854_2021_264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABA type B (GABAB) receptors (GABABRs) are the only metabotropic G protein-coupled receptors for GABA and can be found distributed not only in the central nervous system, but also in the periphery. This chapter introduces important, fundamental knowledge related to GABABR function and the various potential therapeutic applications of the development of novel GABABR-active compounds, as documented through extensive studies presented in subsequent chapters of this Current Topic in Behavioral Neurosciences volume on the role of the neurobiology of GABABR function. The compounds that have received increased attention in the last few years compared to GABABR agonists and antagonists - the positive allosteric modulators - exhibit better pharmacological profiles and fewer side effects. As we continue to unveil the mystery of GABABRs at the molecular and cellular levels, we further understand the significance of these receptors. Future directions should aim for developing highly selective GABABR compounds for treating neuropsychiatric disorders and their symptomatology.
Collapse
Affiliation(s)
- Styliani Vlachou
- Neuropsychopharmacology Division, Behavioural Neuroscience Laboratory, School of Psychology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
40
|
Intermittent Theta Burst Stimulation to the Primary Motor Cortex Reduces Cortical Inhibition: A TMS-EEG Study. Brain Sci 2021; 11:brainsci11091114. [PMID: 34573136 PMCID: PMC8472376 DOI: 10.3390/brainsci11091114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: The aim of this study was to reveal the effects of intermittent theta burst stimulation (iTBS) in modulating cortical networks using transcranial magnetic stimulation and electroencephalography (TMS-EEG) recording. Methods: Eighteen young adults participated in our study and received iTBS to the primary motor cortex (M1), supplementary motor area, and the primary visual cortex in three separate sessions. A finger tapping task and ipsilateral single-pulse TMS-EEG recording for the M1 were administrated before and after iTBS in each session. The effects of iTBS in motor performance and TMS-evoked potentials (TEPs) were investigated. Results: The results showed that iTBS to the M1, but not supplementary motor area or the primary visual cortex, significantly reduced the N100 amplitude of M1 TEPs in bilateral hemispheres (p = 0.019), with a more prominent effect in the contralateral hemisphere than in the stimulated hemisphere. Moreover, only iTBS to the M1 decreased global mean field power (corrected ps < 0.05), interhemispheric signal propagation (t = 2.53, p = 0.030), and TMS-induced early α-band synchronization (p = 0.020). Conclusion: Our study confirmed the local and remote after-effects of iTBS in reducing cortical inhibition in the M1. TMS-induced oscillations after iTBS for changed cortical excitability in patients with various neurological and psychiatric conditions are worth further exploration.
Collapse
|
41
|
Chen T, Su H, Wang L, Li X, Wu Q, Zhong N, Du J, Meng Y, Duan C, Zhang C, Shi W, Xu D, Song W, Zhao M, Jiang H. Modulation of Methamphetamine-Related Attention Bias by Intermittent Theta-Burst Stimulation on Left Dorsolateral Prefrontal Cortex. Front Cell Dev Biol 2021; 9:667476. [PMID: 34414178 PMCID: PMC8370756 DOI: 10.3389/fcell.2021.667476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have identified the treatment effect of repetitive transcranial magnetic stimulation (rTMS) on cravings of patients with methamphetamine use disorder (MUD). However, the mechanism underlying the treatment effect remains largely unknown. A potential candidate mechanism could be that rTMS over the dorsolateral prefrontal cortex (DLPFC) modulates the attention bias to methamphetamine-related cues. The purpose of this study is therefore to determine the modulation of rTMS on methamphetamine-related attention bias and the corresponding electrophysiological changes. Methods Forty-nine patients with severe MUD were included for analysis. The subjects were randomized to receive the active intermittent theta-burst stimulation (iTBS) or sham iTBS targeting DLPFC for 20 sessions. Participants performed the Addiction Stroop Task before and after the treatment while being recorded by a 64-channel electroencephalogram. Baseline characteristics were collected through the Addiction Severity Index. Results Post-treatment evaluations showed a reduced error rate in discriminating the color of methamphetamine words in the active iTBS group compared with the sham iTBS group. Following rTMS treatment, we found the significant time-by-group effect for the N1 amplitude (methamphetamine words > neutral words) and P3 latency (methamphetamine words > neutral words). The change of N1 amplitude was positively correlated with cravings in the active group. Moreover, reduced power of neural oscillation in the beta band, manifesting at frontal central areas, was also found in the active group. Conclusion This study suggests that attention bias and the beta oscillation during the attentional processing of methamphetamine words in patients with MUD could be modulated by iTBS applied to left DLPFC.
Collapse
Affiliation(s)
- Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihui Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianying Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Meng
- Yunnan Institute on Drug Dependence, Kunming, China
| | - Chunmei Duan
- Yunnan Institute on Drug Dependence, Kunming, China
| | | | - Wen Shi
- Shanghai Female Compulsory Rehabilitation Center, Shanghai, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Weidong Song
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Hijma HJ, Groeneveld GJ. Analgesic drug development: proof-of-mechanism and proof-of-concept in early phase clinical studies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
43
|
Hussain SJ, Vollmer MK, Stimely J, Norato G, Zrenner C, Ziemann U, Buch ER, Cohen LG. Phase-dependent offline enhancement of human motor memory. Brain Stimul 2021; 14:873-883. [PMID: 34048939 DOI: 10.1016/j.brs.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Skill learning engages offline activity in the primary motor cortex (M1). Sensorimotor cortical activity oscillates between excitatory trough and inhibitory peak phases of the mu (8-12 Hz) rhythm. We recently showed that these mu phases influence the magnitude and direction of neuroplasticity induction within M1. However, the contribution of M1 activity during mu peak and trough phases to human skill learning has not been investigated. OBJECTIVE To evaluate the effects of phase-dependent TMS during mu peak and trough phases on offline learning of a newly-acquired motor skill. METHODS On Day 1, three groups of healthy adults practiced an explicit motor sequence learning task with their non-dominant left hand. After practice, phase-dependent TMS was applied to the right M1 during either mu peak or mu trough phases. The third group received sham TMS during random mu phases. On Day 2, all subjects were re-tested on the same task to evaluate offline learning. RESULTS Subjects who received phase-dependent TMS during mu trough phases showed increased offline skill learning compared to those who received phase-dependent TMS during mu peak phases or sham TMS during random mu phases. Additionally, phase-dependent TMS during mu trough phases elicited stronger whole-brain broadband oscillatory power responses than phase-dependent TMS during mu peak phases. CONCLUSIONS We conclude that sensorimotor mu trough phases reflect brief windows of opportunity during which TMS can strengthen newly-acquired skill memories.
Collapse
Affiliation(s)
- Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA; Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Mary K Vollmer
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Stimely
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Zrenner
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Characterizing Cortical Oscillatory Responses in Major Depressive Disorder Before and After Convulsive Therapy: A TMS-EEG Study. J Affect Disord 2021; 287:78-88. [PMID: 33774319 DOI: 10.1016/j.jad.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a powerful technique for interrogating neural circuit dysfunction in psychiatric disorders. Here, we utilized time-frequency analyses to characterize differences in neural oscillatory dynamics between subjects with major depressive disorder (MDD) and healthy controls (HC). We further examined changes in TMS-related oscillatory power following convulsive therapy. METHODS Oscillatory power was examined following TMS over the dorsolateral prefrontal and motor cortices (DLPFC and M1) in 38 MDD subjects, and 22 HCs. We further investigated how these responses changed in the MDD group following an acute course of convulsive therapy (either magnetic seizure therapy [MST, n = 24] or electroconvulsive therapy [ECT, n = 14]). RESULTS Prior to treatment, MDD subjects exhibited increased oscillatory power within delta, theta, and alpha frequency bands with TMS-EEG over the DLPFC, but showed no differences to HCs with stimulation over M1. Following MST, DLPFC stimulation revealed attenuated baseline-normalized power in the delta and theta bands, with reductions in the delta, theta, and alpha power following ECT. TMS over M1 revealed reduced delta and theta power following ECT, with no changes observed following MST. An association was also observed between the treatment- induced change in alpha power and depression severity score. LIMITATIONS Limitations include the modest sample size, open-label MST and ECT treatment designs, and lack of a placebo condition. CONCLUSIONS These results provide evidence of alterations in TMS-related oscillatory activity in MDD, and further suggest modulation of oscillatory power following ECT and MST.
Collapse
|
45
|
TMS-EEG signatures of glutamatergic neurotransmission in human cortex. Sci Rep 2021; 11:8159. [PMID: 33854132 PMCID: PMC8047018 DOI: 10.1038/s41598-021-87533-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal activity in the brain reflects an excitation-inhibition balance that is regulated predominantly by glutamatergic and GABAergic neurotransmission, and often disturbed in neuropsychiatric disorders. Here, we tested the effects of a single oral dose of two anti-glutamatergic drugs (dextromethorphan, an NMDA receptor antagonist; perampanel, an AMPA receptor antagonist) and an L-type voltage-gated calcium channel blocker (nimodipine) on transcranial magnetic stimulation (TMS)-evoked electroencephalographic (EEG) potentials (TEPs) and TMS-induced oscillations (TIOs) in 16 healthy adults in a pseudorandomized, double-blinded, placebo-controlled crossover design. Single-pulse TMS was delivered to the hand area of left primary motor cortex. Dextromethorphan increased the amplitude of the N45 TEP, while it had no effect on TIOs. Perampanel reduced the amplitude of the P60 TEP in the non-stimulated hemisphere, and increased TIOs in the beta-frequency band in the stimulated sensorimotor cortex, and in the alpha-frequency band in midline parietal channels. Nimodipine and placebo had no effect on TEPs and TIOs. The TEP results extend previous pharmaco-TMS-EEG studies by demonstrating that the N45 is regulated by a balance of GABAAergic inhibition and NMDA receptor-mediated glutamatergic excitation. In contrast, AMPA receptor-mediated glutamatergic neurotransmission contributes to propagated activity reflected in the P60 potential and midline parietal induced oscillations. This pharmacological characterization of TMS-EEG responses will be informative for interpreting TMS-EEG abnormalities in neuropsychiatric disorders with pathological excitation-inhibition balance.
Collapse
|
46
|
Kompatsiari K, Bossi F, Wykowska A. Eye contact during joint attention with a humanoid robot modulates oscillatory brain activity. Soc Cogn Affect Neurosci 2021; 16:383-392. [PMID: 33416877 PMCID: PMC7990063 DOI: 10.1093/scan/nsab001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/27/2020] [Accepted: 01/08/2021] [Indexed: 11/14/2022] Open
Abstract
Eye contact established by a human partner has been shown to affect various cognitive processes of the receiver. However, little is known about humans' responses to eye contact established by a humanoid robot. Here, we aimed at examining humans' oscillatory brain response to eye contact with a humanoid robot. Eye contact (or lack thereof) was embedded in a gaze-cueing task and preceded the phase of gaze-related attentional orienting. In addition to examining the effect of eye contact on the recipient, we also tested its impact on gaze-cueing effects (GCEs). Results showed that participants rated eye contact as more engaging and responded with higher desynchronization of alpha-band activity in left fronto-central and central electrode clusters when the robot established eye contact with them, compared to no eye contact condition. However, eye contact did not modulate GCEs. The results are interpreted in terms of the functional roles involved in alpha central rhythms (potentially interpretable also as mu rhythm), including joint attention and engagement in social interaction.
Collapse
Affiliation(s)
- Kyveli Kompatsiari
- Italian Institute of Technology, Social Cognition in Human-Robot Interaction (S4HRI), Genova 16152, Italy
| | | | - Agnieszka Wykowska
- Italian Institute of Technology, Social Cognition in Human-Robot Interaction (S4HRI), Genova 16152, Italy
| |
Collapse
|
47
|
Biabani M, Fornito A, Coxon JP, Fulcher BD, Rogasch NC. The correspondence between EMG and EEG measures of changes in cortical excitability following transcranial magnetic stimulation. J Physiol 2021; 599:2907-2932. [DOI: 10.1113/jp280966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mana Biabani
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
| | - James P. Coxon
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
| | - Ben D. Fulcher
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
- School of Physics The University of Sydney Sydney New South Wales 2006 Australia
| | - Nigel C. Rogasch
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
- Discipline of Psychiatry Adelaide Medical School University of Adelaide Adelaide South Australia Australia
- Hopwood Centre for Neurobiology Lifelong Health Theme South Australian Health and Medical Research Institute (SAHMRI) Adelaide South Australia Australia
| |
Collapse
|
48
|
Bossi F, Willemse C, Cavazza J, Marchesi S, Murino V, Wykowska A. The human brain reveals resting state activity patterns that are predictive of biases in attitudes toward robots. Sci Robot 2021; 5:5/46/eabb6652. [PMID: 32999049 DOI: 10.1126/scirobotics.abb6652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/18/2020] [Indexed: 01/11/2023]
Abstract
The increasing presence of robots in society necessitates a deeper understanding into what attitudes people have toward robots. People may treat robots as mechanistic artifacts or may consider them to be intentional agents. This might result in explaining robots' behavior as stemming from operations of the mind (intentional interpretation) or as a result of mechanistic design (mechanistic interpretation). Here, we examined whether individual attitudes toward robots can be differentiated on the basis of default neural activity pattern during resting state, measured with electroencephalogram (EEG). Participants observed scenarios in which a humanoid robot was depicted performing various actions embedded in daily contexts. Before they were introduced to the task, we measured their resting state EEG activity. We found that resting state EEG beta activity differentiated people who were later inclined toward interpreting robot behaviors as either mechanistic or intentional. This pattern is similar to the pattern of activity in the default mode network, which was previously demonstrated to have a social role. In addition, gamma activity observed when participants were making decisions about a robot's behavior indicates a relationship between theory of mind and said attitudes. Thus, we provide evidence that individual biases toward treating robots as either intentional agents or mechanistic artifacts can be detected at the neural level, already in a resting state EEG signal.
Collapse
Affiliation(s)
- Francesco Bossi
- Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Cesco Willemse
- Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.
| | - Jacopo Cavazza
- Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Serena Marchesi
- Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Vittorio Murino
- Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.,Huawei Technologies Ltd., Ireland Research Center, Georges Court, Townsend Street, Dublin 2, Ireland
| | - Agnieszka Wykowska
- Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
49
|
Levin O, Netz Y, Ziv G. Behavioral and Neurophysiological Aspects of Inhibition-The Effects of Acute Cardiovascular Exercise. J Clin Med 2021; 10:E282. [PMID: 33466667 PMCID: PMC7828827 DOI: 10.3390/jcm10020282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
This review summarizes behavioral and neurophysiological aspects of inhibitory control affected by a single bout of cardiovascular exercise. The review also examines the effect of a single bout of cardiovascular exercise on these processes in young adults with a focus on the functioning of prefrontal pathways (including the left dorsolateral prefrontal cortex (DLPFC) and elements of the prefrontal-basal ganglia pathways). Finally, the review offers an overview on the potential effects of cardiovascular exercise on GABA-ergic and glutamatergic neurotransmission in the adult brain and propose mechanisms or processes that may mediate these effects. The main findings show that a single bout of cardiovascular exercise can enhance inhibitory control. In addition, acute exercise appears to facilitate activation of prefrontal brain regions that regulate excitatory and inhibitory pathways (specifically but not exclusively the prefrontal-basal-ganglia pathways) which appear to be impaired in older age. Based on the reviewed studies, we suggest that future work examine the beneficial effects of exercise on the inhibitory networks in the aging brain.
Collapse
Affiliation(s)
- Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, 3001 Heverlee, Belgium;
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Yael Netz
- The Academic College at Wingate, Netanya 4290200, Israel;
| | - Gal Ziv
- The Academic College at Wingate, Netanya 4290200, Israel;
| |
Collapse
|
50
|
Hussain SJ, Claudino L, Bönstrup M, Norato G, Cruciani G, Thompson R, Zrenner C, Ziemann U, Buch E, Cohen LG. Sensorimotor Oscillatory Phase-Power Interaction Gates Resting Human Corticospinal Output. Cereb Cortex 2020; 29:3766-3777. [PMID: 30496352 DOI: 10.1093/cercor/bhy255] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Oscillatory activity within sensorimotor networks is characterized by time-varying changes in phase and power. The influence of interactions between sensorimotor oscillatory phase and power on human motor function, like corticospinal output, is unknown. We addressed this gap in knowledge by delivering transcranial magnetic stimulation (TMS) to the human motor cortex during electroencephalography recordings in 20 healthy participants. Motor evoked potentials, a measure of corticospinal excitability, were categorized offline based on the mu (8-12 Hz) and beta (13-30 Hz) oscillatory phase and power at the time of TMS. Phase-dependency of corticospinal excitability was evaluated across a continuous range of power levels using trial-by-trial linear mixed-effects models. For mu, there was no effect of PHASE or POWER (P > 0.51), but a significant PHASE × POWER interaction (P = 0.002). The direction of phase-dependency reversed with changing mu power levels: corticospinal output was higher during mu troughs versus peaks when mu power was high while the opposite was true when mu power was low. A similar PHASE × POWER interaction was not present for beta oscillations (P > 0.11). We conclude that the interaction between sensorimotor oscillatory phase and power gates human corticospinal output to an extent unexplained by sensorimotor oscillatory phase or power alone.
Collapse
Affiliation(s)
- Sara J Hussain
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leonardo Claudino
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Marlene Bönstrup
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Cruciani
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Thompson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Zrenner
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str 3, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str 3, Tübingen, Germany
| | - Ethan Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|