1
|
Ntoumanis I, Sheronova J, Davydova A, Dolgaleva M, Jääskeläinen IP, Kosonogov V, Shestakova AN, Klucharev V. Deciphering the neural responses to a naturalistic persuasive message. Proc Natl Acad Sci U S A 2024; 121:e2401317121. [PMID: 39413130 PMCID: PMC11513929 DOI: 10.1073/pnas.2401317121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024] Open
Abstract
Effective health promotion may benefit from understanding how persuasion emerges. While earlier research has identified brain regions implicated in persuasion, these studies often relied on event-related analyses and frequently simplified persuasive communications. The present study investigates the neural basis of valuation change induced by a persuasive healthy eating call, employing naturalistic stimuli. Fifty healthy participants performed two blocks of a bidding task, in which they had to bid on sugar-containing, sugar-free, and nonedible products during functional MRI. In between the two blocks, they listened to a persuasive healthy eating call that influenced their bidding behavior. Intriguingly, participants who resisted persuasion exhibited increased synchronization of brain activity during listening in several regions, including default mode network structures. Additionally, intersubject functional connectivity among these brain regions was found to be weaker in persuaded individuals. These results emphasize the individualized nature of processing persuasive messages, challenging conventional interpretations of synchronized neural activity. Our findings support the emerging practice of tailoring persuasive messages in health promotion campaigns.
Collapse
Affiliation(s)
- Ioannis Ntoumanis
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow101000, Russia
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System, Fort Worth, TX76104
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX76010
| | - Julia Sheronova
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow101000, Russia
| | - Alina Davydova
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow101000, Russia
| | - Maria Dolgaleva
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow101000, Russia
| | - Iiro P. Jääskeläinen
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow101000, Russia
| | - Vladimir Kosonogov
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow101000, Russia
| | - Anna N. Shestakova
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow101000, Russia
| | - Vasily Klucharev
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow101000, Russia
- Graduate School of Business, National Research University Higher School of Economics, Moscow119049, Russia
| |
Collapse
|
2
|
Jiang K, Wang J, Gao Y, Li X, Im H, Zhu Y, Du H, Feng L, Zhu W, Zhao G, Hu Y, Zhu P, Zhu W, Wang H, Wang Q. Microstructural and functional substrates underlying dispositional greed and its link with trait but not state impulsivity. Neuroimage 2024; 300:120856. [PMID: 39299662 DOI: 10.1016/j.neuroimage.2024.120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
The interplay between personality traits and impulsivity has long been a central theme in psychology and psychiatry. However, the potential association between Greed Personality Traits (GPT) and impulsivity, encompassing both trait and state impulsivity and future time perspective, remains largely unexplored. To address these issues, we employed questionnaires and an inter-temporal choice task to estimate corresponding trait/state impulsivity and collected multi-modal neuroimaging data (resting-state functional imaging: n = 430; diffusion-weighted imaging: n = 426; task-related functional imaging: n = 53) to investigate the underlying microstructural and functional substrates. Behavioral analyses revealed that GPT mediated the association between time perspective (e.g., present fatalism) and trait impulsivity (e.g., motor impulsivity). Functional imaging analyses further identified that brain activation strengths and patterns related to delay length, particularly in the dorsomedial prefrontal cortex, superior parietal lobule, and cerebellum, were associated with GPT. Moreover, individuals with similar levels of greed exhibited analogous spontaneous brain activity patterns, predominantly in the Default Mode Network (DMN), Fronto-Parietal Network (FPN), and Visual Network (VIS). Diffusion imaging analysis observed specific microstructural characteristics in the spinocerebellar/pontocerebellar fasciculus, internal/external capsule, and corona radiata that support the formation of GPT. Furthermore, the corresponding neural activation pattern, spontaneous neural activity pattern, and analogous functional couplings among the aforementioned brain regions mediated the relationships between time perspective and GPT and between GPT and motor impulsivity. These findings provide novel insights into the possible pathway such as time perspective → dispositional greed → impulsivity and uncover their underlying microstructural and functional substrates.
Collapse
Affiliation(s)
- Keying Jiang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Jinlian Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Yuanyuan Gao
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Xiang Li
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | | | - Yingying Zhu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Hanxiao Du
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Lei Feng
- School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Wenwei Zhu
- School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Guang Zhao
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Ying Hu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - Peng Zhu
- Huzhou Key Laboratory of Brain Science and Child Learning, Huzhou University, Huzhou 300387, PR China
| | - Wenfeng Zhu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China
| | - He Wang
- Tianjin Key Laboratory of Neuromodulation and Neurorepair, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, PR China; Huzhou Key Laboratory of Brain Science and Child Learning, Huzhou University, Huzhou 300387, PR China; Institute of Mathematics and Interdisciplinary Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
3
|
Hu K, Wang R, Zhao S, Yin E, Wu H. The association between social rewards and anxiety: Links from neurophysiological analysis in virtual reality and social interaction game. Neuroimage 2024; 299:120846. [PMID: 39260780 DOI: 10.1016/j.neuroimage.2024.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
Individuals' affective experience can be intricate, influenced by various factors including monetary rewards and social factors during social interaction. However, within this array of factors, divergent evidence has been considered as potential contributors to social anxiety. To gain a better understanding of the specific factors associated with anxiety during social interaction, we combined a social interaction task with neurophysiological recordings obtained through an anxiety-elicitation task conducted in a Virtual Reality (VR) environment. Employing inter-subject representational similarity analysis (ISRSA), we explored the potential linkage between individuals' anxiety neural patterns and their affective experiences during social interaction. Our findings suggest that, after controlling for other factors, the influence of the partner's emotional cues on individuals' affective experiences is specifically linked to their neural pattern of anxiety. This indicates that the emergence of anxiety during social interaction may be particularly associated with the emotional cues provided by the social partner, rather than individuals' own reward or prediction errors during social interaction. These results provide further support for the cognitive theory of social anxiety and extend the application of VR in future cognitive and affective studies.
Collapse
Affiliation(s)
- Keyu Hu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau, China
| | - Ruien Wang
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau, China
| | - Shaokai Zhao
- Defense Innovation Institute, Academy of Military Sciences, Beijing, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences, Beijing, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau, China.
| |
Collapse
|
4
|
Owen LLW, Manning JR. High-level cognition is supported by information-rich but compressible brain activity patterns. Proc Natl Acad Sci U S A 2024; 121:e2400082121. [PMID: 39178232 PMCID: PMC11363287 DOI: 10.1073/pnas.2400082121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/08/2024] [Indexed: 08/25/2024] Open
Abstract
To efficiently yet reliably represent and process information, our brains need to produce information-rich signals that differentiate between moments or cognitive states, while also being robust to noise or corruption. For many, though not all, natural systems, these two properties are often inversely related: More information-rich signals are less robust, and vice versa. Here, we examined how these properties change with ongoing cognitive demands. To this end, we applied dimensionality reduction algorithms and pattern classifiers to functional neuroimaging data collected as participants listened to a story, temporally scrambled versions of the story, or underwent a resting state scanning session. We considered two primary aspects of the neural data recorded in these different experimental conditions. First, we treated the maximum achievable decoding accuracy across participants as an indicator of the "informativeness" of the recorded patterns. Second, we treated the number of features (components) required to achieve a threshold decoding accuracy as a proxy for the "compressibility" of the neural patterns (where fewer components indicate greater compression). Overall, we found that the peak decoding accuracy (achievable without restricting the numbers of features) was highest in the intact (unscrambled) story listening condition. However, the number of features required to achieve comparable classification accuracy was also lowest in the intact story listening condition. Taken together, our work suggests that our brain networks flexibly reconfigure according to ongoing task demands and that the activity patterns associated with higher-order cognition and high engagement are both more informative and more compressible than the activity patterns associated with lower-order tasks and lower engagement.
Collapse
Affiliation(s)
- Lucy L. W. Owen
- Department of Psychiatry and Human Behavior, Carney Institute for Brain Sciences, Brown University, Providence, RI02906
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
- Department of Computer Science, University of Montana, Missoula, MT59812
| | - Jeremy R. Manning
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| |
Collapse
|
5
|
Jiang K, Zhao G, Feng Q, Guan S, Im H, Zhang B, Wang P, Jia X, Zhu H, Zhu Y, Wang H, Wang Q. The computational and neural substrates of individual differences in impulsivity under loss framework. Hum Brain Mapp 2024; 45:e26808. [PMID: 39126347 PMCID: PMC11316248 DOI: 10.1002/hbm.26808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Numerous neuroimaging studies have identified significant individual variability in intertemporal choice, often attributed to three neural mechanisms: (1) increased reward circuit activity, (2) decreased cognitive control, and (3) prospection ability. These mechanisms that explain impulsivity, however, have been primarily studied in the gain domain. This study extends this investigation to the loss domain. We employed a hierarchical Bayesian drift-diffusion model (DDM) and the inter-subject representational similarity approach (IS-RSA) to investigate the potential computational neural substrates underlying impulsivity in loss domain across two experiments (n = 155). These experiments utilized a revised intertemporal task that independently manipulated the amounts of immediate and delayed-loss options. Behavioral results demonstrated positive correlations between the drift rate, measured by the DDM, and the impulsivity index K in Exp. 1 (n = 97) and were replicated in Exp. 2 (n = 58). Imaging analyses further revealed that the drift rate significantly mediated the relations between brain properties (e.g., prefrontal cortex activations and gray matter volume in the orbitofrontal cortex and precuneus) and K in Exp. 1. IS-RSA analyses indicated that variability in the drift rate also mediated the associations between inter-subject variations in activation patterns and individual differences in K. These findings suggest that individuals with similar impulsivity levels are likely to exhibit similar value processing patterns, providing a potential explanation for individual differences in impulsivity within a loss framework.
Collapse
Affiliation(s)
- Keying Jiang
- Faculty of PsychologyTianjin Normal UniversityTianjinChina
| | - Guang Zhao
- Faculty of PsychologyTianjin Normal UniversityTianjinChina
| | - Qian Feng
- Epilepsy Center, Tsinghua University Hospital of Integrated Traditional Chinese and Western MedicineBeijingChina
| | - Shunping Guan
- Faculty of PsychologyTianjin Normal UniversityTianjinChina
| | | | - Bin Zhang
- Faculty of PsychologyTianjin Normal UniversityTianjinChina
| | - Pinchun Wang
- Faculty of PsychologyTianjin Normal UniversityTianjinChina
| | - Xuji Jia
- Faculty of PsychologyTianjin Normal UniversityTianjinChina
| | - Haidong Zhu
- Normal CollegeShihezi UniversityShiheziChina
| | - Ye Zhu
- Faculty of PsychologyTianjin Normal UniversityTianjinChina
| | - He Wang
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Qiang Wang
- Faculty of PsychologyTianjin Normal UniversityTianjinChina
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence InterventionHefeiChina
- Institute of Mathematics and Interdisciplinary SciencesTianjin Normal UniversityTianjinChina
| |
Collapse
|
6
|
Qiu Y, Wu X, Liu B, Huang R, Wu H. Neural substrates of affective temperaments: An intersubject representational similarity analysis to resting-state functional magnetic resonance imaging in nonclinical subjects. Hum Brain Mapp 2024; 45:e26696. [PMID: 38685815 PMCID: PMC11058400 DOI: 10.1002/hbm.26696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Previous research has suggested that certain types of the affective temperament, including depressive, cyclothymic, hyperthymic, irritable, and anxious, are subclinical manifestations and precursors of mental disorders. However, the neural mechanisms that underlie these temperaments are not fully understood. The aim of this study was to identify the brain regions associated with different affective temperaments. We collected the resting-state functional magnetic resonance imaging (fMRI) data from 211 healthy adults and evaluated their affective temperaments using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire. We used intersubject representational similarity analysis to identify brain regions associated with each affective temperament. Brain regions associated with each affective temperament were detected. These regions included the prefrontal cortex, anterior cingulate cortex (ACC), precuneus, amygdala, thalami, hippocampus, and visual areas. The ACC, lingual gyri, and precuneus showed similar activity across several affective temperaments. The similarity in related brain regions was high among the cyclothymic, irritable, and anxious temperaments, and low between hyperthymic and the other affective temperaments. These findings may advance our understanding of the neural mechanisms underlying affective temperaments and their potential relationship to mental disorders and may have potential implications for personalized treatment strategies for mood disorders.
Collapse
Affiliation(s)
- Yidan Qiu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal UniversityGuangzhouChina
| | - Xiaoyan Wu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal UniversityGuangzhouChina
| | - Bingyi Liu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal UniversityGuangzhouChina
| | - Ruiwang Huang
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal UniversityGuangzhouChina
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Barrett AMY, Cheng TW, Flannery JE, Mills KL, Fisher PA, McCann CF, Pfeifer JH. Comparing the multivariate relationships of conceptual adversity models and structural brain development in adolescent girls: A registered report. Dev Psychol 2024; 60:858-877. [PMID: 38358662 PMCID: PMC11332272 DOI: 10.1037/dev0001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Adverse experiences throughout development confer risk for a multitude of negative long-term outcomes, but the processes via which these experiences are neurobiologically embedded are still unclear. Adolescence provides an opportunity to understand how these experiences impact the brain's rapidly changing structure. Two models are central to current adversity conceptualizations: a cumulative risk model, where all types of experiences are combined to represent accumulating stress, and a dimensional model, where certain features of experience (e.g., threat or deprivation) exert unique neurophysiological influence. In this registered report, we extended upon previous research by using a form of representational similarity analysis to examine whether the dimensional and cumulative risk models of adversity predict cortical thinning in frontoparietal and frontotemporal networks and volumetric changes in subcortical regions throughout adolescence. Drawing from a longitudinal sample of 179 adolescent girls (ages 10-13 years at the first wave) from Lane County, Oregon, United States, and up to four waves of follow-up data, we found that operationalizing adversity by similarity in threat and deprivation provided better prediction of brain development than similarity in overall adversity. However, these dimensions do not exhibit unique associations with developmental changes in the hypothesized brain changes. These results underscore the significance of carefully defining adversity and considering its impact on the entire brain. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Kathryn L. Mills
- Department of Psychology, University of Oregon
- PROMENTA Research Center, Department of Psychology, University of Oslo
| | - Philip A. Fisher
- Stanford Center on Early Childhood and Graduate School of Education, Stanford University
| | - Clare F. McCann
- Department of Psychology, University of California, Los Angeles
| | | |
Collapse
|
8
|
Weber R, Hopp FR, Eden A, Fisher JT, Lee HE. Vicarious punishment of moral violations in naturalistic drama narratives predicts cortical synchronization. Neuroimage 2024; 292:120613. [PMID: 38631616 DOI: 10.1016/j.neuroimage.2024.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Punishment of moral norm violators is instrumental for human cooperation. Yet, social and affective neuroscience research has primarily focused on second- and third-party norm enforcement, neglecting the neural architecture underlying observed (vicarious) punishment of moral wrongdoers. We used naturalistic television drama as a sampling space for observing outcomes of morally-relevant behaviors to assess how individuals cognitively process dynamically evolving moral actions and their consequences. Drawing on Affective Disposition Theory, we derived hypotheses linking character morality with viewers' neural processing of characters' rewards and punishments. We used functional magnetic resonance imaging (fMRI) to examine neural responses of 28 female participants while free-viewing 15 short story summary video clips of episodes from a popular US television soap opera. Each summary included a complete narrative structure, fully crossing main character behaviors (moral/immoral) and the consequences (reward/punishment) characters faced for their actions. Narrative engagement was examined via intersubject correlation and representational similarity analysis. Highest cortical synchronization in 9 specifically selected regions previously implicated in processing moral information was observed when characters who act immorally are punished for their actions with participants' empathy as an important moderator. The results advance our understanding of the moral brain and the role of normative considerations and character outcomes in viewers' engagement with popular narratives.
Collapse
Affiliation(s)
- Rene Weber
- University of California, Santa Barbara, Department of Communication - Media Neuroscience Lab; University of California, Santa Barbara, Department of Psychological and Brain Sciences; Ewha Womans University, Department of Communication and Media.
| | - Frederic R Hopp
- University of Amsterdam, Amsterdam School of Communication Research
| | - Allison Eden
- Michigan State University, Department of Communication
| | | | - Hye-Eun Lee
- Ewha Womans University, Department of Communication and Media
| |
Collapse
|
9
|
Hsiao PYA, Kim MJ, Chou FCB, Chen PHA. Intersubject representational similarity analysis uncovers the impact of state anxiety on brain activation patterns in the human extrastriate cortex. Brain Imaging Behav 2024; 18:412-420. [PMID: 38324234 DOI: 10.1007/s11682-024-00854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The current study used functional magnetic resonance imaging (fMRI) and showed that state anxiety modulated extrastriate cortex activity in response to emotionally-charged visual images. State anxiety and neuroimaging data from 53 individuals were subjected to an intersubject representational similarity analysis (ISRSA), wherein the geometries between neural and behavioral data were compared. This analysis identified the extrastriate cortex (fusiform gyrus and area MT) to be the sole regions whose activity patterns covaried with state anxiety. Importantly, we show that this brain-behavior association is revealed when treating state anxiety data as a multidimensional response pattern, rather than a single composite score. This suggests that ISRSA using multivariate distances may be more sensitive in identifying the shared geometries between self-report questionnaires and brain imaging data. Overall, our findings demonstrate that a transient state of anxiety may influence how visual information - especially those relevant to the valence dimension - is processed in the extrastriate cortex.
Collapse
Affiliation(s)
- Po-Yuan A Hsiao
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - M Justin Kim
- Department of Psychology, Sungkyunkwan University, Seoul, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Feng-Chun B Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Pin-Hao A Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Gu C, Peng Y, Nastase SA, Mayer RE, Li P. Onscreen presence of instructors in video lectures affects learners' neural synchrony and visual attention during multimedia learning. Proc Natl Acad Sci U S A 2024; 121:e2309054121. [PMID: 38466840 PMCID: PMC10963011 DOI: 10.1073/pnas.2309054121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/20/2024] [Indexed: 03/13/2024] Open
Abstract
COVID-19 forced students to rely on online learning using multimedia tools, and multimedia learning continues to impact education beyond the pandemic. In this study, we combined behavioral, eye-tracking, and neuroimaging paradigms to identify multimedia learning processes and outcomes. College students viewed four video lectures including slides with either an onscreen human instructor, an animated instructor, or no onscreen instructor. Brain activity was recorded via fMRI, visual attention was recorded via eye-tracking, and learning outcome was assessed via post-tests. Onscreen presence of instructor, compared with no instructor presence, resulted in superior post-test performance, less visual attention on the slide, more synchronized eye movements during learning, and higher neural synchronization in cortical networks associated with socio-emotional processing and working memory. Individual variation in cognitive and socio-emotional abilities and intersubject neural synchronization revealed different levels of cognitive and socio-emotional processing in different learning conditions. The instructor-present condition evoked increased synchronization, likely reflecting extra processing demands in attentional control, working memory engagement, and socio-emotional processing. Although human instructors and animated instructors led to comparable learning outcomes, the effects were due to the dynamic interplay of information processing vs. attentional distraction. These findings reflect a benefit-cost trade-off where multimedia learning outcome is enhanced only when the cognitive benefits motivated by the social presence of onscreen instructor outweigh the cognitive costs brought about by concurrent attentional distraction unrelated to learning.
Collapse
Affiliation(s)
- Chanyuan Gu
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yingying Peng
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Samuel A. Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08540
| | - Richard E. Mayer
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA93106
| | - Ping Li
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Immersive Learning and Metaverse in Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
11
|
Nanni-Zepeda M, DeGutis J, Wu C, Rothlein D, Fan Y, Grimm S, Walter M, Esterman M, Zuberer A. Neural signatures of shared subjective affective engagement and disengagement during movie viewing. Hum Brain Mapp 2024; 45:e26622. [PMID: 38488450 DOI: 10.1002/hbm.26622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
When watching a negative emotional movie, we differ from person to person in the ease with which we engage and the difficulty with which we disengage throughout a temporally evolving narrative. We investigated neural responses of emotional processing, by considering inter-individual synchronization in subjective emotional engagement and disengagement. The neural underpinnings of these shared responses are ideally studied in naturalistic scenarios like movie viewing, wherein individuals emotionally engage and disengage at their own time and pace throughout the course of a narrative. Despite the rich data that naturalistic designs can bring to the study, there is a challenge in determining time-resolved behavioral markers of subjective engagement and disengagement and their underlying neural responses. We used a within-subject cross-over design instructing 22 subjects to watch clips of either neutral or sad content while undergoing functional magnetic resonance imaging (fMRI). Participants watched the same movies a second time while continuously annotating the perceived emotional intensity, thus enabling the mapping of brain activity and emotional experience. Our analyses revealed that between-participant similarity in waxing (engagement) and waning (disengagement) of emotional intensity was directly related to the between-participant similarity in spatiotemporal patterns of brain activation during the movie(s). Similar patterns of engagement reflected common activation in the bilateral ventromedial prefrontal cortex, regions often involved in self-referenced evaluation and generation of negative emotions. Similar patterns of disengagement reflected common activation in central executive and default mode network regions often involved in top-down emotion regulation. Together this work helps to better understand cognitive and neural mechanisms underpinning engagement and disengagement from emotionally evocative narratives.
Collapse
Affiliation(s)
- Melanni Nanni-Zepeda
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Charley Wu
- Human and Machine Cognition Lab, University of Tübingen, Tübingen, Germany
| | - David Rothlein
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yan Fan
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Simone Grimm
- Berlin Institute of Health, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Esterman
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Agnieszka Zuberer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Lyu 吕奕洲 Y, Su 苏紫杉 Z, Neumann D, Meidenbauer KL, Leong 梁元彰 YC. Hostile Attribution Bias Shapes Neural Synchrony in the Left Ventromedial Prefrontal Cortex during Ambiguous Social Narratives. J Neurosci 2024; 44:e1252232024. [PMID: 38316561 PMCID: PMC10904091 DOI: 10.1523/jneurosci.1252-23.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
Hostile attribution bias refers to the tendency to interpret social situations as intentionally hostile. While previous research has focused on its developmental origins and behavioral consequences, the underlying neural mechanisms remain underexplored. Here, we employed functional near-infrared spectroscopy (fNIRS) to investigate the neural correlates of hostile attribution bias. While undergoing fNIRS, male and female participants listened to and provided attribution ratings for 21 hypothetical scenarios where a character's actions resulted in a negative outcome for the listener. Ratings of hostile intentions were averaged to measure hostile attribution bias. Using intersubject representational similarity analysis, we found that participants with similar levels of hostile attribution bias exhibited higher levels of neural synchrony during narrative listening, suggesting shared interpretations of the scenarios. This effect was localized to the left ventromedial prefrontal cortex (VMPFC) and was particularly prominent in scenarios where the character's intentions were highly ambiguous. We then grouped participants into high and low bias groups based on a median split of their hostile attribution bias scores. A similarity-based classifier trained on the neural data classified participants as having high or low bias with 75% accuracy, indicating that the neural time courses during narrative listening was systematically different between the two groups. Furthermore, hostile attribution bias correlated negatively with attributional complexity, a measure of one's tendency to consider multifaceted causes when explaining behavior. Our study sheds light on the neural mechanisms underlying hostile attribution bias and highlights the potential of using fNIRS to develop nonintrusive and cost-effective neural markers of this sociocognitive bias.
Collapse
Affiliation(s)
- Yizhou Lyu 吕奕洲
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
| | - Zishan Su 苏紫杉
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
| | - Dawn Neumann
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis 46202, Indiana
| | | | - Yuan Chang Leong 梁元彰
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
- Neuroscience Institute, The University of Chicago, Chicago 60637, Illinois
| |
Collapse
|
13
|
Sohn W, Di X, Liang Z, Zhang Z, Biswal BB. Explorations of using a convolutional neural network to understand brain activations during movie watching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576341. [PMID: 38328194 PMCID: PMC10849516 DOI: 10.1101/2024.01.20.576341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Neuroimaging studies increasingly use naturalistic stimuli like video clips to trigger complex brain activations, but the complexity of such stimuli makes it difficult to assign specific functions to the resulting brain activations, particularly for higher-level content like social interactions. To address this challenge, researchers have turned to deep neural networks, e.g., convolutional neural networks (CNNs). CNNs have shown success in image recognition due to their different levels of features enabling high performance. In this study, we used pre-trained VGG-16, a popular CNN model, to analyze video data and extract hierarchical features from low-level shallow layers to high-level deeper layers, linking these activations to different levels of activation of the human brain. We hypothesized that activations in different layers of VGG-16 would be associated with different levels of brain activation and visual processing hierarchy in the brain. We were also curious about which brain regions would be associated with deeper convolutional layers in VGG-16. The study analyzed a functional MRI (fMRI) dataset where participants watched the cartoon movie Partly Cloudy. Frames of the videos were fed into VGG-16, and activation maps from different kernels and layers were extracted. Time series of the average activation patterns for each kernel were created and fed into a voxel-wise model to study brain activations. Results showed that lower convolutional layers (1st convolutional layer) were mostly associated with lower visual regions, but some kernels (6, 19, 24, 42, 55, and 58) surprisingly showed associations with activations in the posterior cingulate cortex, part of the default mode network. Deeper convolutional layers were associated with more anterior and lateral portions of the visual cortex (e.g., the lateral occipital complex) and the supramarginal gyrus. Analyzing activation features associated with different brain regions showed the promise and limitations of using CNNs to link video content to brain functions.
Collapse
Affiliation(s)
- Wonbum Sohn
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07029, USA
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, 07039, USA
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07029, USA
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China, 518060
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, 518060, China
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07029, USA
| |
Collapse
|
14
|
Zhang Y, Ye W, Yin J, Wu Q, Huang Y, Hao N, Cui L, Zhang M, Cai D. Exploring the role of mutual prediction in inter-brain synchronization during competitive interactions: an fNIRS hyperscanning investigation. Cereb Cortex 2024; 34:bhad483. [PMID: 38100358 DOI: 10.1093/cercor/bhad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Mutual prediction is crucial for understanding the mediation of bodily actions in social interactions. Despite this importance, limited studies have investigated neurobehavioral patterns under the mutual prediction hypothesis in natural competitive scenarios. To address this gap, our study employed functional near-infrared spectroscopy hyperscanning to examine the dynamics of real-time rock-paper-scissors games using a computerized paradigm with 54 participants. Firstly, our results revealed activations in the right inferior frontal gyrus, bilateral dorsolateral prefrontal cortex, and bilateral frontopolar cortex, each displaying distinct temporal profiles indicative of diverse cognitive processes during the task. Subsequently, a task-related increase in inter-brain synchrony was explicitly identified in the right dorsolateral prefrontal cortex, which supported the mutual prediction hypothesis across the two brains. Moreover, our investigation uncovered a close association between the coherence value in the right dorsolateral prefrontal cortex and the dynamic predictive performances of dyads using inter-subject representational similarity analysis. Finally, heightened inter-brain synchrony values were observed in the right dorsolateral prefrontal cortex before a draw compared to a no-draw scenario in the second block, suggesting that cross-brain signal patterns could be reflected in behavioral responses during competition. In summary, these findings provided initial support for expanding the understanding of cognitive processes underpinning natural competitive engagements.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Weihao Ye
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
- School of Psychology, Zhejiang Normal University, Zhejiang 321004, China
| | - Junting Yin
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Qin Wu
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yao Huang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Na Hao
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Liying Cui
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Mingming Zhang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Dan Cai
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
15
|
Tang Y, Hu Y, Zhuang J, Feng C, Zhou X. Uncovering individual variations in bystander intervention of injustice through intrinsic brain connectivity patterns. Neuroimage 2024; 285:120468. [PMID: 38042393 DOI: 10.1016/j.neuroimage.2023.120468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
When confronted with injustice, individuals often intervene as third parties to restore justice by either punishing the perpetrator or helping the victim, even at their own expense. However, little is known about how individual differences in third-party intervention propensity are related to inter-individual variability in intrinsic brain connectivity patterns and how these associations vary between help and punishment intervention. To address these questions, we employed a novel behavioral paradigm in combination with resting-state fMRI and inter-subject representational similarity analysis (IS-RSA). Participants acted as third-party bystanders and needed to decide whether to maintain the status quo or intervene by either helping the disadvantaged recipient (Help condition) or punishing the proposer (Punish condition) at a specific cost. Our analyses focused on three brain networks proposed in the third-party punishment (TPP) model: the salience (e.g., dorsal anterior cingulate cortex, dACC), central executive (e.g., dorsolateral prefrontal cortex, dlPFC), and default mode (e.g., dorsomedial prefrontal cortex, dmPFC; temporoparietal junction, TPJ) networks. IS-RSA showed that individual differences in resting-state functional connectivity (rs-FC) patterns within these networks were associated with the general third-party intervention propensity. Moreover, rs-FC patterns of the right dlPFC and right TPJ were more strongly associated with individual differences in the helping propensity rather than the punishment propensity, whereas the opposite pattern was observed for the dmPFC. Post-hoc predictive modeling confirmed the predictive power of rs-FC in these regions for intervention propensity across individuals. Collectively, these findings shed light on the shared and distinct roles of key regions in TPP brain networks at rest in accounting for individual variations in justice-restoring intervention behaviors.
Collapse
Affiliation(s)
- Yancheng Tang
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Yang Hu
- School of Psychology and Cognitive Science, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, East China Normal University, Shanghai, China.
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Chunliang Feng
- School of Psychology, Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiaolin Zhou
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; School of Psychology and Cognitive Science, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, East China Normal University, Shanghai, China.
| |
Collapse
|
16
|
Perl O, Duek O, Kulkarni KR, Gordon C, Krystal JH, Levy I, Harpaz-Rotem I, Schiller D. Neural patterns differentiate traumatic from sad autobiographical memories in PTSD. Nat Neurosci 2023; 26:2226-2236. [PMID: 38036701 DOI: 10.1038/s41593-023-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
For people with post-traumatic stress disorder (PTSD), recall of traumatic memories often displays as intrusions that differ profoundly from processing of 'regular' negative memories. These mnemonic features fueled theories speculating a unique cognitive state linked with traumatic memories. Yet, to date, little empirical evidence supports this view. Here we examined neural activity of patients with PTSD who were listening to narratives depicting their own memories. An intersubject representational similarity analysis of cross-subject semantic content and neural patterns revealed a differentiation in hippocampal representation by narrative type: semantically similar, sad autobiographical memories elicited similar neural representations across participants. By contrast, within the same individuals, semantically similar trauma memories were not represented similarly. Furthermore, we were able to decode memory type from hippocampal multivoxel patterns. Finally, individual symptom severity modulated semantic representation of the traumatic narratives in the posterior cingulate cortex. Taken together, these findings suggest that traumatic memories are an alternative cognitive entity that deviates from memory per se.
Collapse
Affiliation(s)
- Ofer Perl
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Or Duek
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Kaustubh R Kulkarni
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Daniela Schiller
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Cheong JH, Molani Z, Sadhukha S, Chang LJ. Synchronized affect in shared experiences strengthens social connection. Commun Biol 2023; 6:1099. [PMID: 37898664 PMCID: PMC10613250 DOI: 10.1038/s42003-023-05461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
People structure their days to experience events with others. We gather to eat meals, watch TV, and attend concerts together. What constitutes a shared experience and how does it manifest in dyadic behavior? The present study investigates how shared experiences-measured through emotional, motoric, physiological, and cognitive alignment-promote social bonding. We recorded the facial expressions and electrodermal activity (EDA) of participants as they watched four episodes of a TV show for a total of 4 h with another participant. Participants displayed temporally synchronized and spatially aligned emotional facial expressions and the degree of synchronization predicted the self-reported social connection ratings between viewing partners. We observed a similar pattern of results for dyadic physiological synchrony measured via EDA and their cognitive impressions of the characters. All four of these factors, temporal synchrony of positive facial expressions, spatial alignment of expressions, EDA synchrony, and character impression similarity, contributed to a latent factor of a shared experience that predicted social connection. Our findings suggest that the development of interpersonal affiliations in shared experiences emerges from shared affective experiences comprising synchronous processes and demonstrate that these complex interpersonal processes can be studied in a holistic and multi-modal framework leveraging naturalistic experimental designs.
Collapse
Affiliation(s)
- Jin Hyun Cheong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Zainab Molani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Sushmita Sadhukha
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Luke J Chang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
18
|
Lee Y, Seo Y, Lee Y, Lee D. Dimensional emotions are represented by distinct topographical brain networks. Int J Clin Health Psychol 2023; 23:100408. [PMID: 37663040 PMCID: PMC10472247 DOI: 10.1016/j.ijchp.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
The ability to recognize others' facial emotions has become increasingly important after the COVID-19 pandemic, which causes stressful situations in emotion regulation. Considering the importance of emotion in maintaining a social life, emotion knowledge to perceive and label emotions of oneself and others requires an understanding of affective dimensions, such as emotional valence and emotional arousal. However, limited information is available about whether the behavioral representation of affective dimensions is similar to their neural representation. To explore the relationship between the brain and behavior in the representational geometries of affective dimensions, we constructed a behavioral paradigm in which emotional faces were categorized into geometric spaces along the valence, arousal, and valence and arousal dimensions. Moreover, we compared such representations to neural representations of the faces acquired by functional magnetic resonance imaging. We found that affective dimensions were similarly represented in the behavior and brain. Specifically, behavioral and neural representations of valence were less similar to those of arousal. We also found that valence was represented in the dorsolateral prefrontal cortex, frontal eye fields, precuneus, and early visual cortex, whereas arousal was represented in the cingulate gyrus, middle frontal gyrus, orbitofrontal cortex, fusiform gyrus, and early visual cortex. In conclusion, the current study suggests that dimensional emotions are similarly represented in the behavior and brain and are presented with differential topographical organizations in the brain.
Collapse
Affiliation(s)
| | | | - Youngju Lee
- Cognitive Science Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| |
Collapse
|
19
|
Wu X, Wang X, Lu XJ, Kong YZ, Hu L. Enhanced neural synchrony associated with long-term ballroom dance training. Neuroimage 2023; 278:120301. [PMID: 37524169 DOI: 10.1016/j.neuroimage.2023.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Long-term dance training offers numerous benefits, including improvements in physical health, posture, body coordination, and mental health and well-being. Since dance is an art form of body-to-body communication, professional dancers may share feelings and thoughts on dance with their partners, owing to their shared training experiences. Considering this perspective, one may expect that professional dancers would demonstrate pronounced neural similarities when viewing dancing videos, which could be associated with their training duration. To test these hypotheses, we collected functional magnetic resonance imaging (fMRI) data while presenting ballroom dancing and neutral video clips with long durations (∼100 s each) to 41 professional ballroom dancers (19 pairs of dance partners) and 39 age- and sex-matched nondancers. Our findings revealed that dancers exhibited broader and stronger neural similarities across the whole brain when watching dancing video clips, as compared to the control group. These increased neural similarities could be interpreted in at least two distinct ways. First, neural similarities in certain brain regions within the motor control circuit (i.e., frontal cortical-basal ganglia-thalamic circuit) were significantly correlated with dance-related information (e.g., dance partners' cooperation duration), which reinforced the impact of long-term dance training on neural synchronization. Second, neural similarities in other brain regions (e.g., memory-related brain regions) were significantly correlated with subjects' impression of the viewed videos (i.e., whether they have watched before, familiarity, and liking), which may not necessarily be directly linked to long-term dance training. Altogether, our study provided solid evidence for synchronized neural mechanisms in professional dancers due to long-term dance training.
Collapse
Affiliation(s)
- Xiao Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Wang
- School of Art, Beijing Sport University, Beijing 100084, China
| | - Xue-Jing Lu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Zhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Kirk PA, Holmes AJ, Robinson OJ. Anxiety Shapes Amygdala-Prefrontal Dynamics During Movie Watching. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:409-417. [PMID: 37519469 PMCID: PMC10382705 DOI: 10.1016/j.bpsgos.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022] Open
Abstract
Background A well-characterized amygdala-dorsomedial prefrontal circuit is thought to be crucial for threat vigilance during anxiety. However, engagement of this circuitry within relatively naturalistic paradigms remains unresolved. Methods Using an open functional magnetic resonance imaging dataset (Cambridge Centre for Ageing Neuroscience; n = 630), we sought to investigate whether anxiety correlates with dynamic connectivity between the amygdala and dorsomedial prefrontal cortex during movie watching. Results Using an intersubject representational similarity approach, we saw no effect of anxiety when comparing pairwise similarities of dynamic connectivity across the entire movie. However, preregistered analyses demonstrated a relationship between anxiety, amygdala-prefrontal dynamics, and anxiogenic features of the movie (canonical suspense ratings). Our results indicated that amygdala-prefrontal circuitry was modulated by suspense in low-anxiety individuals but was less sensitive to suspense in high-anxiety individuals. We suggest that this could also be related to slowed habituation or amplified anticipation. Moreover, a measure of threat-relevant attentional bias (accuracy/reaction time to fearful faces) demonstrated an association with connectivity and suspense. Conclusions Overall, this study demonstrated the presence of anxiety-relevant differences in connectivity during movie watching, varying with anxiogenic features of the movie. Mechanistically, exactly how and when these differences arise remains an opportunity for future research.
Collapse
Affiliation(s)
- Peter A. Kirk
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Experimental Psychology, University College London, London, United Kingdom
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
| | - Avram J. Holmes
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
| | - Oliver J. Robinson
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Schmälzle R, Huskey R. Integrating media content analysis, reception analysis, and media effects studies. Front Neurosci 2023; 17:1155750. [PMID: 37179563 PMCID: PMC10173883 DOI: 10.3389/fnins.2023.1155750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023] Open
Abstract
Every day, the world of media is at our fingertips, whether it is watching movies, listening to the radio, or browsing online media. On average, people spend over 8 h per day consuming messages from the mass media, amounting to a total lifetime dose of more than 20 years in which conceptual content stimulates our brains. Effects from this flood of information range from short-term attention bursts (e.g., by breaking news features or viral 'memes') to life-long memories (e.g., of one's favorite childhood movie), and from micro-level impacts on an individual's memory, attitudes, and behaviors to macro-level effects on nations or generations. The modern study of media's influence on society dates back to the 1940s. This body of mass communication scholarship has largely asked, "what is media's effect on the individual?" Around the time of the cognitive revolution, media psychologists began to ask, "what cognitive processes are involved in media processing?" More recently, neuroimaging researchers started using real-life media as stimuli to examine perception and cognition under more natural conditions. Such research asks: "what can media tell us about brain function?" With some exceptions, these bodies of scholarship often talk past each other. An integration offers new insights into the neurocognitive mechanisms through which media affect single individuals and entire audiences. However, this endeavor faces the same challenges as all interdisciplinary approaches: Researchers with different backgrounds have different levels of expertise, goals, and foci. For instance, neuroimaging researchers label media stimuli as "naturalistic" although they are in many ways rather artificial. Similarly, media experts are typically unfamiliar with the brain. Neither media creators nor neuroscientifically oriented researchers approach media effects from a social scientific perspective, which is the domain of yet another species. In this article, we provide an overview of approaches and traditions to studying media, and we review the emerging literature that aims to connect these streams. We introduce an organizing scheme that connects the causal paths from media content → brain responses → media effects and discuss network control theory as a promising framework to integrate media content, reception, and effects analyses.
Collapse
Affiliation(s)
- Ralf Schmälzle
- Department of Communication, Michigan State University, East Lansing, MI, United States
| | - Richard Huskey
- Department of Communication, University of California, Davis, Davis, CA, United States
- Cognitive Science Program, University of California, Davis, Davis, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Li Z, Dong Q, Hu B, Wu H. Every individual makes a difference: A trinity derived from linking individual brain morphometry, connectivity and mentalising ability. Hum Brain Mapp 2023; 44:3343-3358. [PMID: 37051692 PMCID: PMC10171537 DOI: 10.1002/hbm.26285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Mentalising ability, indexed as the ability to understand others' beliefs, feelings, intentions, thoughts and traits, is a pivotal and fundamental component of human social cognition. However, considering the multifaceted nature of mentalising ability, little research has focused on characterising individual differences in different mentalising components. And even less research has been devoted to investigating how the variance in the structural and functional patterns of the amygdala and hippocampus, two vital subcortical regions of the "social brain", are related to inter-individual variability in mentalising ability. Here, as a first step toward filling these gaps, we exploited inter-subject representational similarity analysis (IS-RSA) to assess relationships between amygdala and hippocampal morphometry (surface-based multivariate morphometry statistics, MMS), connectivity (resting-state functional connectivity, rs-FC) and mentalising ability (interactive mentalisation questionnaire [IMQ] scores) across the participants ( N = 24 $$ N=24 $$ ). In IS-RSA, we proposed a novel pipeline, that is, computing patching and pooling operations-based surface distance (CPP-SD), to obtain a decent representation for high-dimensional MMS data. On this basis, we found significant correlations (i.e., second-order isomorphisms) between these three distinct modalities, indicating that a trinity existed in idiosyncratic patterns of brain morphometry, connectivity and mentalising ability. Notably, a region-related mentalising specificity emerged from these associations: self-self and self-other mentalisation are more related to the hippocampus, while other-self mentalisation shows a closer link with the amygdala. Furthermore, by utilising the dyadic regression analysis, we observed significant interactions such that subject pairs with similar morphometry had even greater mentalising similarity if they were also similar in rs-FC. Altogether, we demonstrated the feasibility and illustrated the promise of using IS-RSA to study individual differences, deepening our understanding of how individual brains give rise to their mentalising abilities.
Collapse
Affiliation(s)
- Zhaoning Li
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| | - Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| |
Collapse
|
23
|
Social navigation modulates the anterior and posterior hippocampal circuits in the resting brain. Brain Struct Funct 2023; 228:799-813. [PMID: 36813907 DOI: 10.1007/s00429-023-02622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Social navigation is a dynamic and complex process that requires the collaboration of multiple brain regions. However, the neural networks for navigation in a social space remain largely unknown. This study aimed to investigate the role of hippocampal circuit in social navigation from a resting-state fMRI data. Here, resting-state fMRI data were acquired before and after participants performed a social navigation task. By taking the anterior and posterior hippocampus (HPC) as the seeds, we calculated their connectivity with the whole brain using the seed-based static functional connectivity (sFC) and dynamic FC (dFC) approaches. We found that the sFC and dFC between the anterior HPC and supramarginal gyrus, sFC or dFC between posterior HPC and middle cingulate cortex, inferior parietal gyrus, angular gyrus, posterior cerebellum, medial superior frontal gyrus were increased after the social navigation task. These alterations were related to social cognition of tracking location in the social navigation. Moreover, participants who had more social support or less neuroticism showed a greater increase in hippocampal connectivity. These findings may highlight a more important role of the posterior hippocampal circuit in the social navigation, which is crucial for social cognition.
Collapse
|
24
|
Zhou S, Xu X, He X, Zhou F, Zhai Y, Chen J, Long Y, Zheng L, Lu C. Biasing the neurocognitive processing of videos with the presence of a real cultural other. Cereb Cortex 2023; 33:1090-1103. [PMID: 35348645 DOI: 10.1093/cercor/bhac122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
In the digital age, while short videos present vital events with powerful information, the presence of cultural cues may bias our processing of videos of foreign cultures. However, the underlying neurocognitive processes remain unclear. In this study, we hypothesized that cultural cues might bias video processing by either enhancing cultural perspective-taking or shifting cultural self-schema. To test these hypotheses, we used a novel paradigm in which the cultural cue was a real cultural other (the priming participants) who watched American/Chinese videos together with the primed participants. The results showed that when the cue was present, the right temporoparietal junction (rTPJ) response to videos with other cultural content was shifted, showing a priming effect. Moreover, the activity pattern in the rTPJ was more congruent with the primed culture than with the original culture, reflecting a neural biasing effect. Finally, intersubject representational similarity analysis indicated that the neural biasing effect in the rTPJ was more closely associated with cultural perspective-taking than with cultural self-schema. In summary, these findings support the perspective-taking hypothesis, suggesting that cultural cues can significantly bias our cultural mindset by altering cultural perspective-taking when we are exposed to culture-relevant naturalistic stimuli.
Collapse
Affiliation(s)
- Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Xinran Xu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Xiangyu He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Faxin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Jinglu Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China.,Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, No19. Xinjiekouwai Street, Beijing 100875, PR China
| | - Lifen Zheng
- Center for Teacher Education Research, Faculty of Education, Beijing Normal University, No19. Xinjiekouwai Street, Beijing 100875, PR China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, PR China
| |
Collapse
|
25
|
Liu D, Hao L, Han L, Zhou Y, Qin S, Niki K, Shen W, Shi B, Luo J. The optimal balance of controlled and spontaneous processing in insight problem solving: fMRI evidence from Chinese idiom guessing. Psychophysiology 2023:e14240. [PMID: 36651323 DOI: 10.1111/psyp.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/19/2023]
Abstract
Cognitive control is a key factor in insight generation. However, the neurocognitive mechanisms underlying the generation of insight for different cognitive control remain poorly understood. This study developed a parametric fMRI design, wherein hints for solving Chinese idiom riddles were gradually provided in a stepwise manner (from the first hint, H1, to the final hint, H4). By classifying the step-specific items solved in different hint-uncovering steps/conditions, we could identify insightful responses for different levels of spontaneous or controlled processing. At the behavioral level, the number of insightful problem solving trials reached the maximum at a intermediate level of the cognitively controlled processing and the spontaneously idea generating in H3, while the bilateral insular cortex and thalamus showed the robust engagement, implying the function of these regions in making the optimal balance between external hint processing and internal generated ideas. In addition, we identified brain areas, including the dorsolateral prefrontal cortex (dlPFC), angular gyrus (AG), dorsal anterior cingulate cortex (dACC), and precuneus (PreC), whose activities were parametrically increased with the levels of controlled (from H1 to H4) insightful processing which were increasingly produced by the sequentially revealed hints. Further representational similarity analysis (RSA) found that spontaneous processing in insight featured greater within-condition representational variabilities in widely distributed regions in the executive, salience, and default networks. Altogether, the present study provided new evidence for the relationship between the process of cognitive control and that of spontaneous idea generation in insight problem solving and demystified the function of the insula and thalamus as an interactive interface for the optimal balance of these two processes.
Collapse
Affiliation(s)
- Di Liu
- Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China
| | - Lei Hao
- College of Teacher Education, Southwest University, Chongqing, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Lei Han
- School of Psychology, Shandong Normal University, Jinan, China
| | - Ying Zhou
- Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Kazuhisa Niki
- Human Informatics Research Institute, Advanced Industrial Science and Technology, Tsukuba, Japan.,Keio University Graduate School of Human Relations, Keio University, Tokyo, Japan
| | - Wangbing Shen
- School of Public Administration and Institute of Applied Psychology, Hohai University, Nanjing, China
| | - Baoguo Shi
- Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China.,College of Teacher Education, Southwest University, Chongqing, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China.,Department of Psychology, Shaoxing University, Shaoxing, China
| |
Collapse
|
26
|
Liang Q, Liao J, Li J, Zheng S, Jiang X, Huang R. The role of the parahippocampal cortex in landmark-based distance estimation based on the contextual hypothesis. Hum Brain Mapp 2023; 44:131-141. [PMID: 36066186 PMCID: PMC9783420 DOI: 10.1002/hbm.26069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 02/05/2023] Open
Abstract
Parahippocampal cortex (PHC) is a vital neural bases in spatial navigation. However, its functional role is still unclear. "Contextual hypothesis," which assumes that the PHC participates in processing the spatial association between the landmark and destination, provides a potential answer to the question. Nevertheless, the hypothesis was previously tested using the picture categorization task, which is indirectly related to spatial navigation. By now, study is still needed for testing the hypothesis with a navigation-related paradigm. In the current study, we tested the hypothesis by an fMRI experiment in which participants performed a distance estimation task in a virtual environment under three different conditions: landmark free (LF), stable landmark (SL), and ambiguous landmark (AL). By analyzing the behavioral data, we found that the presence of an SL improved the participants' performance in distance estimation. Comparing the brain activity in SL-versus-LF contrast as well as AL-versus-LF contrast, we found that the PHC was activated by the SL rather than by AL when encoding the distance. This indicates that the PHC is elicited by strongly associated context and encodes the landmark reference for distance perception. Furthermore, accessing the representational similarity with the activity of the PHC across conditions, we observed a high similarity within the same condition but low similarity between conditions. This result indicated that the PHC sustains the contextual information for discriminating between scenes. Our findings provided insights into the neural correlates of the landmark information processing from the perspective of contextual hypothesis.
Collapse
Affiliation(s)
- Qunjun Liang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Jiajun Liao
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Jinhui Li
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Senning Zheng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Xiaoqian Jiang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| |
Collapse
|
27
|
Luo S, Li LMW, Espina E, Bond MH, Lun VM, Huang L, Duan Q, Liu JH. Individual uniqueness in trust profiles and well‐being: Understanding the role of cultural tightness–looseness from a representation similarity perspective. BRITISH JOURNAL OF SOCIAL PSYCHOLOGY 2022; 62:825-844. [PMID: 36357990 DOI: 10.1111/bjso.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
This paper provides a unique perspective for understanding cultural differences: representation similarity-a computational technique that uses pairwise comparisons of units to reveal their representation in higher-order space. By combining individual-level measures of trust across domains and well-being from 13,823 participants across 15 nations with a measure of society-level tightness-looseness, we found that any two countries with more similar tightness-looseness tendencies exhibit higher degrees of representation similarity in national interpersonal trust profiles. Although each individual's trust profile is generally similar to their nation's trust profile, the greater similarity between an individual's and their society's trust profile predicted a higher level of individual life satisfaction only in loose cultures but not in tight cultures. Using the framework of representation similarity to explore cross-cultural differences from a multidimensional, multi-national perspective provide a comprehensive picture of how culture is related to the human activities.
Collapse
Affiliation(s)
- Siyang Luo
- Department of Psychology, Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease Sun Yat‐Sen University Guangzhou China
| | - Liman Man Wai Li
- Department of Psychology and Centre for Psychosocial Health The Education University of Hong Kong Hong Kong China
| | - Ervina Espina
- Divisont of Social Sciences UP Visayas Tacloban College Tacloban City Leyte Philippines
| | - Michael Harris Bond
- Department of Management and Marketing, Faculty of Business Hong Kong Polytechnic University Hong Kong China
| | | | - Liqin Huang
- Department of Psychology, Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease Sun Yat‐Sen University Guangzhou China
| | - Qin Duan
- Department of Psychology, Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease Sun Yat‐Sen University Guangzhou China
| | - James H. Liu
- School of Psychology Massey University Auckland New Zealand
| |
Collapse
|
28
|
Morphological similarity of amygdala-ventral prefrontal pathways represents trait anxiety in younger and older adults. Proc Natl Acad Sci U S A 2022; 119:e2205162119. [PMID: 36215497 PMCID: PMC9586323 DOI: 10.1073/pnas.2205162119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stronger amygdala-ventral prefrontal white matter connectivity has been associated with lower trait anxiety, possibly reflecting an increased capacity for efficient communication between the two regions. However, there are also reports arguing against this brain-anxiety association. To address these inconsistencies in the literature, we tested the possibility that idiosyncratic tract morphology may account for meaningful individual differences in trait anxiety, even among those with comparable microstructural integrity. Here, we adopted intersubject representational similarity analysis, an analytic framework that captures multivariate patterns of similarity, to analyze the morphological similarity of amygdala-ventral prefrontal pathways. Data drawn from the Leipzig Study for Mind-Body-Emotion Interactions dataset showed that younger adults (20 to 35 y of age) with low trait anxiety, in contrast to trait-anxious individuals, had consistently similar morphological configurations in their left amygdala-ventral prefrontal pathways. Additional tests on an independent sample of older adults (60 to 75 y of age) validated this finding. Our study reveals a generalizable pattern of brain-anxiety association that is embedded within the shared geometries between fiber tract morphology and trait anxiety data.
Collapse
|
29
|
Fernandez Z, Scheel N, Baker JH, Zhu DC. Functional connectivity of cortical resting-state networks is differentially affected by rest conditions. Brain Res 2022; 1796:148081. [PMID: 36100086 DOI: 10.1016/j.brainres.2022.148081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Optimal conditions for resting-state functional magnetic resonance imaging (rs-fMRI) are still highly debated. Here, we comprehensively assessed the effects of various rest conditions on all cortical resting-state networks (RSNs) defined by an established atlas. Twenty-two healthy college students (22 ± 4 years old, 12 females) were scanned on a GE 3T MRI scanner. Rs-fMRI datasets were collected under four different conditions for each subject: (1) eyes open in dim light (Eyes-Open), (2) eyes closed and awake (Eyes-Closed), (3) eyes closed while remembering four numbers through the scan session (Eyes-Closed-Number) and (4) asked to watch a movie (Movie). We completed a thorough examination of the 17 functional RSNs defined by Yeo and colleagues. Importantly, the movie led to changes in global connectivity and should be avoided as a rest condition. Conversely, there were no significant connectivity differences between conditions within the frontoparietal control and limbic networks and the following subnetworks as defined by Yeo et al.: default-B, dorsal-attention-B and salience/ventral-attention-B. These were not even significant when compared to the highly stimulative Movie condition. A significant difference was not found between Eyes-Closed and Eyes-Closed-Number conditions in whole-brain, within-network and between-network comparisons. When considering other rest conditions, however, we observed connectivity changes in some subnetworks, including those of the default-mode network. Overall, we found conditions with more external stimulation led to more changes in functional connectivity during rs-fMRI. In conclusion, the comprehensive results of our study can aid in choosing rest conditions for the study of overall and specific functional networks.
Collapse
Affiliation(s)
- Zachary Fernandez
- Department of Radiology, Michigan State University, USA; Neuroscience Program, Michigan State University, USA; Cognitive Imaging Research Center, Michigan State University, USA
| | - Norman Scheel
- Department of Radiology, Michigan State University, USA; Cognitive Imaging Research Center, Michigan State University, USA
| | - Joshua H Baker
- Department of Radiology, Michigan State University, USA; Neuroscience Program, Michigan State University, USA; College of Osteopathic Medicine, Michigan State University, USA; Cognitive Imaging Research Center, Michigan State University, USA
| | - David C Zhu
- Department of Radiology, Michigan State University, USA; Neuroscience Program, Michigan State University, USA; Cognitive Imaging Research Center, Michigan State University, USA.
| |
Collapse
|
30
|
Wang R, Yu R, Tian Y, Wu H. Individual variation in the neurophysiological representation of negative emotions in virtual reality is shaped by sociability. Neuroimage 2022; 263:119596. [PMID: 36041644 DOI: 10.1016/j.neuroimage.2022.119596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Negative emotions play a dominant role in daily human life, and mentalizing and empathy are also basic sociability in social life. However, little is known regards the neurophysiological pattern of negative experiences in immersive environments and how people with different sociabilities respond to the negative emotional stimuli at behavioral and neural levels. The present study investigated the neurophysiological representation of negative affective experiences and whether such variations are associated with one's sociability. To address this question, we examined four types of negative emotions that frequently occurred in real life: angry, anxious, fearful, and helpless. We combined naturalistic neuroimaging under virtual reality, multimodal neurophysiological recording, and behavioral measures. Inter-subject representational similarity analysis was conducted to capture the individual differences in the neurophysiological representations of negative emotional experiences. The behavioral and neurophysiological indices revealed that although the emotion ratings were uniquely different, a similar electroencephalography response pattern across these negative emotions was found over the parieto-occipital electrodes. Furthermore, the neurophysiological representations indeed reflected interpersonal variations regarding mentalizing and empathic abilities. Our findings yielded a common pattern of neurophysiological responses toward different negative affective experiences in VR. Moreover, the current results indicate the potential of taking a sociability perspective for understanding the interpersonal variations in the neurophysiological representation of emotion.
Collapse
Affiliation(s)
- Ruien Wang
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, Macau SAR, China
| | - Runquan Yu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, Macau SAR, China
| | - Yan Tian
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, Macau SAR, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
31
|
Tan C, Liu X, Zhang G. Inferring Brain State Dynamics Underlying Naturalistic Stimuli Evoked Emotion Changes With dHA-HMM. Neuroinformatics 2022; 20:737-753. [PMID: 35244856 DOI: 10.1007/s12021-022-09568-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
Abstract
The brain functional mechanisms underlying emotional changes have been primarily studied based on the traditional task design with discrete and simple stimuli. However, the brain state transitions when exposed to continuous and naturalistic stimuli with rich affection variations remain poorly understood. This study proposes a dynamic hyperalignment algorithm (dHA) to functionally align the inter-subject neural activity. The hidden Markov model (HMM) was used to study how the brain dynamics responds to emotion during long-time movie-viewing activity. The results showed that dHA significantly improved inter-subject consistency and allowed more consistent temporal HMM states across participants. Afterward, grouping the emotions in a clustering dendrogram revealed a hierarchical grouping of the HMM states. Further emotional sensitivity and specificity analyses of ordered states revealed the most significant differences in happiness and sadness. We then compared the activation map in HMM states during happiness and sadness and found significant differences in the whole brain, but strong activation was observed during both in the superior temporal gyrus, which is related to the early process of emotional prosody processing. A comparison of the inter-network functional connections indicates unique functional connections of the memory retrieval and cognitive network with the cerebellum network during happiness. Moreover, the persistent bilateral connections among salience, cognitive, and sensorimotor networks during sadness may reflect the interaction between high-level cognitive networks and low-level sensory networks. The main results were verified by the second session of the dataset. All these findings enrich our understanding of the brain states related to emotional variation during naturalistic stimuli.
Collapse
Affiliation(s)
- Chenhao Tan
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China
| | - Xin Liu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China
| | - Gaoyan Zhang
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
32
|
Liu M, Amey RC, Backer RA, Simon JP, Forbes CE. Behavioral Studies Using Large-Scale Brain Networks – Methods and Validations. Front Hum Neurosci 2022; 16:875201. [PMID: 35782044 PMCID: PMC9244405 DOI: 10.3389/fnhum.2022.875201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mapping human behaviors to brain activity has become a key focus in modern cognitive neuroscience. As methods such as functional MRI (fMRI) advance cognitive scientists show an increasing interest in investigating neural activity in terms of functional connectivity and brain networks, rather than activation in a single brain region. Due to the noisy nature of neural activity, determining how behaviors are associated with specific neural signals is not well-established. Previous research has suggested graph theory techniques as a solution. Graph theory provides an opportunity to interpret human behaviors in terms of the topological organization of brain network architecture. Graph theory-based approaches, however, only scratch the surface of what neural connections relate to human behavior. Recently, the development of data-driven methods, e.g., machine learning and deep learning approaches, provide a new perspective to study the relationship between brain networks and human behaviors across the whole brain, expanding upon past literatures. In this review, we sought to revisit these data-driven approaches to facilitate our understanding of neural mechanisms and build models of human behaviors. We start with the popular graph theory approach and then discuss other data-driven approaches such as connectome-based predictive modeling, multivariate pattern analysis, network dynamic modeling, and deep learning techniques that quantify meaningful networks and connectivity related to cognition and behaviors. Importantly, for each topic, we discuss the pros and cons of the methods in addition to providing examples using our own data for each technique to describe how these methods can be applied to real-world neuroimaging data.
Collapse
Affiliation(s)
- Mengting Liu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
- Mengting Liu,
| | - Rachel C. Amey
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Rachel C. Amey,
| | - Robert A. Backer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Julia P. Simon
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chad E. Forbes
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
33
|
Musz E, Chen J. Neural signatures associated with temporal compression in the verbal retelling of past events. Commun Biol 2022; 5:489. [PMID: 35606497 PMCID: PMC9126919 DOI: 10.1038/s42003-022-03418-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
When we retell our past experiences, we aim to reproduce some version of the original events; this reproduced version is often temporally compressed relative to the original. However, it is currently unclear how this compression manifests in brain activity. One possibility is that a compressed retrieved memory manifests as a neural pattern which is more dissimilar to the original, relative to a more detailed or vivid memory. However, we argue that measuring raw dissimilarity alone is insufficient, as it confuses a variety of interesting and uninteresting changes. To address this problem, we examine brain pattern changes that are consistent across people. We show that temporal compression in individuals’ retelling of past events predicts systematic encoding-to-recall transformations in several higher associative regions. These findings elucidate how neural representations are not simply reactivated, but can also be transformed due to temporal compression during a universal form of human memory expression: verbal retelling. Brain patterns measured while participants first watched a movie in the fMRI scanner, then recalled the movie’s key narrative features, demonstrate that temporal compression in individuals’ retelling of past events predicts encoding-to-recall transformations.
Collapse
Affiliation(s)
- Elizabeth Musz
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
34
|
van Baar JM, FeldmanHall O. The polarized mind in context: Interdisciplinary approaches to the psychology of political polarization. AMERICAN PSYCHOLOGIST 2022; 77:394-408. [PMID: 34060885 PMCID: PMC8630091 DOI: 10.1037/amp0000814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Existing research into the psychological roots of political polarization centers around two main approaches: one studying cognitive traits that predict susceptibility to holding polarized beliefs and one studying contextual influences that spread and reinforce polarized attitudes. Although both accounts have made valuable progress, political polarization is neither a purely cognitive trait nor a contextual issue. We argue that a new approach aiming to uncover interactions between cognition and context will be fruitful for understanding how polarization arises. Furthermore, recent developments in neuroimaging methods can overcome long-standing issues of measurement and ecological validity to critically help identify in which psychological processing steps-e.g., attention, semantic understanding, emotion-polarization takes hold. This interdisciplinary research agenda can thereby provide new avenues for interventions against the political polarization that plagues democracies around the world. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Jeroen M. van Baar
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer St, Providence, RI 02912, United States
| | - Oriel FeldmanHall
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer St, Providence, RI 02912, United States
- Carney Institute for Brain Science, Brown University, 164 Angell Street, Providence, RI 02912, United States
| |
Collapse
|
35
|
Kirk PA, Robinson OJ, Skipper JI. Anxiety and amygdala connectivity during movie-watching. Neuropsychologia 2022; 169:108194. [PMID: 35245529 PMCID: PMC8987737 DOI: 10.1016/j.neuropsychologia.2022.108194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/08/2021] [Accepted: 02/27/2022] [Indexed: 12/13/2022]
Abstract
Rodent and human studies have implicated an amygdala-prefrontal circuit during threat processing. One possibility is that while amygdala activity underlies core features of anxiety (e.g. detection of salient information), prefrontal cortices (i.e. dorsomedial prefrontal/anterior cingulate cortex) entrain its responsiveness. To date, this has been established in tightly controlled paradigms (predominantly using static face perception tasks) but has not been extended to more naturalistic settings. Consequently, using ‘movie fMRI’—in which participants watch ecologically-rich movie stimuli rather than constrained cognitive tasks—we sought to test whether individual differences in anxiety correlate with the degree of face-dependent amygdala-prefrontal coupling in two independent samples. Analyses suggested increased face-dependent superior parietal activation and decreased speech-dependent auditory cortex activation as a function of anxiety. However, we failed to find evidence for anxiety-dependent connectivity, neither in our stimulus-dependent or -independent analyses. Our findings suggest that work using experimentally constrained tasks may not replicate in more ecologically valid settings and, moreover, highlight the importance of testing the generalizability of neuroimaging findings outside of the original context. Using ‘movie fMRI’, we tested whether trait anxiety correlates with face-dependent amygdala-prefrontal coupling. We observed altered superior parietal activation to faces and auditory cortex activation to speech as a function of anxiety. We failed to find evidence for anxiety-dependent amygdala-dmPFC connectivity in stimulus-dependent or -independent analyses. Our findings highlight the importance of testing the generalizability of neuroimaging findings outside of the original context.
Collapse
Affiliation(s)
- Peter A Kirk
- UCL Institute of Cognitive Neuroscience, UK; UCL Experimental Psychology, UK.
| | - Oliver J Robinson
- UCL Institute of Cognitive Neuroscience, UK; UCL Clinical, Educational and Health Psychology, UK
| | | |
Collapse
|
36
|
Functional selectivity for social interaction perception in the human superior temporal sulcus during natural viewing. Neuroimage 2021; 245:118741. [PMID: 34800663 DOI: 10.1016/j.neuroimage.2021.118741] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022] Open
Abstract
Recognizing others' social interactions is a crucial human ability. Using simple stimuli, previous studies have shown that social interactions are selectively processed in the superior temporal sulcus (STS), but prior work with movies has suggested that social interactions are processed in the medial prefrontal cortex (mPFC), part of the theory of mind network. It remains unknown to what extent social interaction selectivity is observed in real world stimuli when controlling for other covarying perceptual and social information, such as faces, voices, and theory of mind. The current study utilizes a functional magnetic resonance imaging (fMRI) movie paradigm and advanced machine learning methods to uncover the brain mechanisms uniquely underlying naturalistic social interaction perception. We analyzed two publicly available fMRI datasets, collected while both male and female human participants (n = 17 and 18) watched two different commercial movies in the MRI scanner. By performing voxel-wise encoding and variance partitioning analyses, we found that broad social-affective features predict neural responses in social brain regions, including the STS and mPFC. However, only the STS showed robust and unique selectivity specifically to social interactions, independent from other covarying features. This selectivity was observed across two separate fMRI datasets. These findings suggest that naturalistic social interaction perception recruits dedicated neural circuity in the STS, separate from the theory of mind network, and is a critical dimension of human social understanding.
Collapse
|
37
|
Finn ES, Glerean E, Hasson U, Vanderwal T. Naturalistic imaging: The use of ecologically valid conditions to study brain function. Neuroimage 2021; 247:118776. [PMID: 34864153 DOI: 10.1016/j.neuroimage.2021.118776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Hilger K, Markett S. Personality network neuroscience: Promises and challenges on the way toward a unifying framework of individual variability. Netw Neurosci 2021; 5:631-645. [PMID: 34746620 PMCID: PMC8567832 DOI: 10.1162/netn_a_00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
We propose that the application of network theory to established psychological personality conceptions has great potential to advance a biologically plausible model of human personality. Stable behavioral tendencies are conceived as personality “traits.” Such traits demonstrate considerable variability between individuals, and extreme expressions represent risk factors for psychological disorders. Although the psychometric assessment of personality has more than hundred years tradition, it is not yet clear whether traits indeed represent “biophysical entities” with specific and dissociable neural substrates. For instance, it is an open question whether there exists a correspondence between the multilayer structure of psychometrically derived personality factors and the organizational properties of traitlike brain systems. After a short introduction into fundamental personality conceptions, this article will point out how network neuroscience can enhance our understanding about human personality. We will examine the importance of intrinsic (task-independent) brain connectivity networks and show means to link brain features to stable behavioral tendencies. Questions and challenges arising from each discipline itself and their combination are discussed and potential solutions are developed. We close by outlining future trends and by discussing how further developments of network neuroscience can be applied to personality research.
Collapse
Affiliation(s)
- Kirsten Hilger
- Department of Psychology I, Julius-Maximilians University Würzburg, Würzburg, Germany
| | | |
Collapse
|
39
|
Chen PHA, Qu Y. Taking a Computational Cultural Neuroscience Approach to Study Parent-Child Similarities in Diverse Cultural Contexts. Front Hum Neurosci 2021; 15:703999. [PMID: 34512293 PMCID: PMC8426574 DOI: 10.3389/fnhum.2021.703999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Parent-child similarities and discrepancies at multiple levels provide a window to understand the cultural transmission process. Although prior research has examined parent-child similarities at the belief, behavioral, and physiological levels across cultures, little is known about parent-child similarities at the neural level. The current review introduces an interdisciplinary computational cultural neuroscience approach, which utilizes computational methods to understand neural and psychological processes being involved during parent-child interactions at intra- and inter-personal level. This review provides three examples, including the application of intersubject representational similarity analysis to analyze naturalistic neuroimaging data, the usage of computer vision to capture non-verbal social signals during parent-child interactions, and unraveling the psychological complexities involved during real-time parent-child interactions based on their simultaneous recorded brain response patterns. We hope that this computational cultural neuroscience approach can provide researchers an alternative way to examine parent-child similarities and discrepancies across different cultural contexts and gain a better understanding of cultural transmission processes.
Collapse
Affiliation(s)
- Pin-Hao A. Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
| | - Yang Qu
- School of Education and Social Policy, Northwestern University, Evanston, IL, United States
| |
Collapse
|
40
|
Russ BE, Petkov CI, Kwok SC, Zhu Q, Belin P, Vanduffel W, Hamed SB. Common functional localizers to enhance NHP & cross-species neuroscience imaging research. Neuroimage 2021; 237:118203. [PMID: 34048898 PMCID: PMC8529529 DOI: 10.1016/j.neuroimage.2021.118203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Functional localizers are invaluable as they can help define regions of interest, provide cross-study comparisons, and most importantly, allow for the aggregation and meta-analyses of data across studies and laboratories. To achieve these goals within the non-human primate (NHP) imaging community, there is a pressing need for the use of standardized and validated localizers that can be readily implemented across different groups. The goal of this paper is to provide an overview of the value of localizer protocols to imaging research and we describe a number of commonly used or novel localizers within NHPs, and keys to implement them across studies. As has been shown with the aggregation of resting-state imaging data in the original PRIME-DE submissions, we believe that the field is ready to apply the same initiative for task-based functional localizers in NHP imaging. By coming together to collect large datasets across research group, implementing the same functional localizers, and sharing the localizers and data via PRIME-DE, it is now possible to fully test their robustness, selectivity and specificity. To do this, we reviewed a number of common localizers and we created a repository of well-established localizer that are easily accessible and implemented through the PRIME-RE platform.
Collapse
Affiliation(s)
- Brian E Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Department of Psychiatry, New York University at Langone, New York City, NY, United States.
| | - Christopher I Petkov
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Qi Zhu
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium
| | - Pascal Belin
- Institut de Neurosciences de La Timone, Aix-Marseille Université et CNRS, Marseille, 13005, France
| | - Wim Vanduffel
- Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States; Department of Radiology, Harvard Medical School, Boston, MA 02144, United States.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France.
| |
Collapse
|
41
|
Saarimäki H. Naturalistic Stimuli in Affective Neuroimaging: A Review. Front Hum Neurosci 2021; 15:675068. [PMID: 34220474 PMCID: PMC8245682 DOI: 10.3389/fnhum.2021.675068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Naturalistic stimuli such as movies, music, and spoken and written stories elicit strong emotions and allow brain imaging of emotions in close-to-real-life conditions. Emotions are multi-component phenomena: relevant stimuli lead to automatic changes in multiple functional components including perception, physiology, behavior, and conscious experiences. Brain activity during naturalistic stimuli reflects all these changes, suggesting that parsing emotion-related processing during such complex stimulation is not a straightforward task. Here, I review affective neuroimaging studies that have employed naturalistic stimuli to study emotional processing, focusing especially on experienced emotions. I argue that to investigate emotions with naturalistic stimuli, we need to define and extract emotion features from both the stimulus and the observer.
Collapse
Affiliation(s)
- Heini Saarimäki
- Human Information Processing Laboratory, Faculty of Social Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
42
|
Finn ES, Bandettini PA. Movie-watching outperforms rest for functional connectivity-based prediction of behavior. Neuroimage 2021; 235:117963. [PMID: 33813007 PMCID: PMC8204673 DOI: 10.1016/j.neuroimage.2021.117963] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
A major goal of human neuroscience is to relate differences in brain function to differences in behavior across people. Recent work has established that whole-brain functional connectivity patterns are relatively stable within individuals and unique across individuals, and that features of these patterns predict various traits. However, while functional connectivity is most often measured at rest, certain tasks may enhance individual signals and improve sensitivity to behavior differences. Here, we show that compared to the resting state, functional connectivity measured during naturalistic viewing—i.e., movie watching—yields more accurate predictions of trait-like phenotypes in the domains of both cognition and emotion. Traits could be predicted using less than three minutes of data from single video clips, and clips with highly social content gave the most accurate predictions. Results suggest that naturalistic stimuli amplify individual differences in behaviorally relevant brain networks.
Collapse
Affiliation(s)
- Emily S Finn
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, United States; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States.
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
43
|
Chang LJ, Jolly E, Cheong JH, Rapuano KM, Greenstein N, Chen PHA, Manning JR. Endogenous variation in ventromedial prefrontal cortex state dynamics during naturalistic viewing reflects affective experience. SCIENCE ADVANCES 2021; 7:eabf7129. [PMID: 33893106 PMCID: PMC8064646 DOI: 10.1126/sciadv.abf7129] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
How we process ongoing experiences is shaped by our personal history, current needs, and future goals. Consequently, ventromedial prefrontal cortex (vmPFC) activity involved in processing these subjective appraisals appears to be highly idiosyncratic across individuals. To elucidate the role of the vmPFC in processing our ongoing experiences, we developed a computational framework and analysis pipeline to characterize the spatiotemporal dynamics of individual vmPFC responses as participants viewed a 45-minute television drama. Through a combination of functional magnetic resonance imaging, facial expression tracking, and self-reported emotional experiences across four studies, our data suggest that the vmPFC slowly transitions through a series of discretized states that broadly map onto affective experiences. Although these transitions typically occur at idiosyncratic times across people, participants exhibited a marked increase in state alignment during high affectively valenced events in the show. Our work suggests that the vmPFC ascribes affective meaning to our ongoing experiences.
Collapse
Affiliation(s)
- Luke J Chang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Eshin Jolly
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jin Hyun Cheong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | - Nathan Greenstein
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Pin-Hao A Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Jeremy R Manning
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
44
|
Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 2021; 22:181-192. [PMID: 33483717 PMCID: PMC7959111 DOI: 10.1038/s41583-020-00420-w] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
The default mode network (DMN) is classically considered an 'intrinsic' system, specializing in internally oriented cognitive processes such as daydreaming, reminiscing and future planning. In this Perspective, we suggest that the DMN is an active and dynamic 'sense-making' network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time. We review studies that relied on naturalistic stimuli, such as stories and movies, to demonstrate how an individual's DMN neural responses are influenced both by external information accumulated as events unfold over time and by the individual's idiosyncratic past memories and knowledge. The integration of extrinsic and intrinsic information over long timescales provides a space for negotiating a shared neural code, which is necessary for establishing shared meaning, shared communication tools, shared narratives and, above all, shared communities and social networks.
Collapse
Affiliation(s)
- Yaara Yeshurun
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Mai Nguyen
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Uri Hasson
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
45
|
Lin FH, Lee HJ, Kuo WJ, Jääskeläinen IP. Multivariate Identification of Functional Neural Networks Underpinning Humorous Movie Viewing. Front Psychol 2021; 11:547353. [PMID: 33633619 PMCID: PMC7901965 DOI: 10.3389/fpsyg.2020.547353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/22/2020] [Indexed: 11/14/2022] Open
Abstract
While univariate functional magnetic resonance imaging (fMRI) data analysis methods have been utilized successfully to map brain areas associated with cognitive and emotional functions during viewing of naturalistic stimuli such as movies, multivariate methods might provide the means to study how brain structures act in concert as networks during free viewing of movie clips. Here, to achieve this, we generalized the partial least squares (PLS) analysis, based on correlations between voxels, experimental conditions, and behavioral measures, to identify large-scale neuronal networks activated during the first time and repeated watching of three ∼5-min comedy clips. We identified networks that were similarly activated across subjects during free viewing of the movies, including the ones associated with self-rated experienced humorousness that were composed of the frontal, parietal, and temporal areas acting in concert. In conclusion, the PLS method seems to be well suited for the joint analysis of multi-subject neuroimaging and behavioral data to quantify a functionally relevant brain network activity without the need for explicit temporal models.
Collapse
Affiliation(s)
- Fa-Hsuan Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Hsin-Ju Lee
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Iiro P Jääskeläinen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,International Laboratory of Social Neurobiology, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
46
|
Jolly E, Chang LJ. Multivariate spatial feature selection in fMRI. Soc Cogn Affect Neurosci 2021; 16:795-806. [PMID: 33501987 PMCID: PMC8343556 DOI: 10.1093/scan/nsab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 01/20/2023] Open
Abstract
Multivariate neuroimaging analyses constitute a powerful class of techniques to identify psychological representations. However, not all psychological processes are represented at the same spatial scale throughout the brain. This heterogeneity is apparent when comparing hierarchically organized local representations of perceptual processes to flexible transmodal representations of more abstract cognitive processes such as social and affective operations. An open question is how the spatial scale of analytic approaches interacts with the spatial scale of the representations under investigation. In this article, we describe how multivariate analyses can be viewed as existing on a spatial spectrum, anchored by searchlights used to identify locally distributed patterns of information on one end, whole brain approach used to identify diffuse neural representations at the other and region-based approaches in between. We describe how these distinctions are an important and often overlooked analytic consideration and provide heuristics to compare these different techniques to choose based on the analyst’s inferential goals.
Collapse
Affiliation(s)
- E Jolly
- Computational Social Affective Neuroscience Laboratory, Department of Psychological and Brain Science, Dartmouth College, Hanover, NH 03755, USA
| | - L J Chang
- Computational Social Affective Neuroscience Laboratory, Department of Psychological and Brain Science, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
47
|
Dieffenbach MC, Gillespie GSR, Burns SM, McCulloh IA, Ames DL, Dagher MM, Falk EB, Lieberman MD. Neural reference groups: a synchrony-based classification approach for predicting attitudes using fNIRS. Soc Cogn Affect Neurosci 2021; 16:117-128. [PMID: 33025001 PMCID: PMC7812626 DOI: 10.1093/scan/nsaa115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Social neuroscience research has demonstrated that those who are like-minded are also 'like-brained.' Studies have shown that people who share similar viewpoints have greater neural synchrony with one another, and less synchrony with people who 'see things differently.' Although these effects have been demonstrated at the 'group level,' little work has been done to predict the viewpoints of specific 'individuals' using neural synchrony measures. Furthermore, the studies that have made predictions using synchrony-based classification at the individual level used expensive and immobile neuroimaging equipment (e.g. functional magnetic resonance imaging) in highly controlled laboratory settings, which may not generalize to real-world contexts. Thus, this study uses a simple synchrony-based classification method, which we refer to as the 'neural reference groups' approach, to predict individuals' dispositional attitudes from data collected in a mobile 'pop-up neuroscience' lab. Using functional near-infrared spectroscopy data, we predicted individuals' partisan stances on a sociopolitical issue by comparing their neural timecourses to data from two partisan neural reference groups. We found that partisan stance could be identified at above-chance levels using data from dorsomedial prefrontal cortex. These results indicate that the neural reference groups approach can be used to investigate naturally occurring, dispositional differences anywhere in the world.
Collapse
Affiliation(s)
- Macrina C Dieffenbach
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, Philadelphia, PA 19104, USA
| | - Grace S R Gillespie
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, Philadelphia, PA 19104, USA
| | - Shannon M Burns
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, Philadelphia, PA 19104, USA
| | - Ian A McCulloh
- Accenture Federal Services, 800 N Glebe Rd, Arlington, VA 22203
| | - Daniel L Ames
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, Philadelphia, PA 19104, USA
| | - Munqith M Dagher
- Independent Institute & Administration Civil Society Studies (IIACSS) Research Group, Al Hussam Center 2 270 Arar Mustafa Wahbii Al Tal, Amman, Jordan
| | - Emily B Falk
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA, Wharton Marketing Department, University of Pennsylvania, Philadelphia, PA 19104, USA, University of Pennsylvania
| | - Matthew D Lieberman
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Huskey R, Turner BO, Weber R. Individual Differences in Brain Responses: New Opportunities for Tailoring Health Communication Campaigns. Front Hum Neurosci 2020; 14:565973. [PMID: 33343317 PMCID: PMC7744697 DOI: 10.3389/fnhum.2020.565973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Prevention neuroscience investigates the brain basis of attitude and behavior change. Over the years, an increasingly structurally and functionally resolved "persuasion network" has emerged. However, current studies have only identified a small handful of neural structures that are commonly recruited during persuasive message processing, and the extent to which these (and other) structures are sensitive to numerous individual difference factors remains largely unknown. In this project we apply a multi-dimensional similarity-based individual differences analysis to explore which individual factors-including characteristics of messages and target audiences-drive patterns of brain activity to be more or less similar across individuals encountering the same anti-drug public service announcements (PSAs). We demonstrate that several ensembles of brain regions show response patterns that are driven by a variety of unique factors. These results are discussed in terms of their implications for neural models of persuasion, prevention neuroscience and message tailoring, and methodological implications for future research.
Collapse
Affiliation(s)
- Richard Huskey
- Cognitive Communication Science Lab – C Lab, Center for Mind and Brain, Department of Communication, University of California, Davis, Davis, CA, United States
| | - Benjamin O. Turner
- Wee Kim Wee School of Communication and Information, Nanyang Technological University, Singapore, Singapore
| | - René Weber
- Media Neuroscience Lab, Department of Communication, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
49
|
Mapping neural activity patterns to contextualized fearful facial expressions onto callous-unemotional (CU) traits: intersubject representational similarity analysis reveals less variation among high-CU adolescents. PERSONALITY NEUROSCIENCE 2020; 3:e12. [PMID: 33283146 PMCID: PMC7681174 DOI: 10.1017/pen.2020.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Callous-unemotional (CU) traits are early-emerging personality features characterized by deficits in empathy, concern for others, and remorse following social transgressions. One of the interpersonal deficits most consistently associated with CU traits is impaired behavioral and neurophysiological responsiveness to fearful facial expressions. However, the facial expression paradigms traditionally employed in neuroimaging are often ambiguous with respect to the nature of threat (i.e., is the perceiver the threat, or is something else in the environment?). In the present study, 30 adolescents with varying CU traits viewed fearful facial expressions cued to three different contexts ("afraid for you," "afraid of you," "afraid for self") while undergoing functional magnetic resonance imaging (fMRI). Univariate analyses found that mean right amygdala activity during the "afraid for self" context was negatively associated with CU traits. With the goal of disentangling idiosyncratic stimulus-driven neural responses, we employed intersubject representational similarity analysis to link intersubject similarities in multivoxel neural response patterns to contextualized fearful expressions with differential intersubject models of CU traits. Among low-CU adolescents, neural response patterns while viewing fearful faces were most consistently similar early in the visual processing stream and among regions implicated in affective responding, but were more idiosyncratic as emotional face information moved up the cortical processing hierarchy. By contrast, high-CU adolescents' neural response patterns consistently aligned along the entire cortical hierarchy (but diverged among low-CU youths). Observed patterns varied across contexts, suggesting that interpretations of fearful expressions depend to an extent on neural response patterns and are further shaped by levels of CU traits.
Collapse
|
50
|
Zhang A, Farivar R. Intersubject Spatial Pattern Correlations During Movie Viewing Are Stimulus-Driven and Nonuniform Across the Cortex. Cereb Cortex Commun 2020; 1:tgaa076. [PMID: 33251511 PMCID: PMC7679429 DOI: 10.1093/texcom/tgaa076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
A fundamental step to predicting brain activity in healthy and diseased populations is characterizing the common spatio-temporal response to a shared experience. Multivoxel pattern analysis allows us to investigate information encoding through these patterns; however, we have yet to explore local, stimulus-driven, patterns of cortical activity during naturalistic stimulation. We sought to examine these patterns with minimum interpolation—excluding functional alignment—to characterize the most basic degree of shared response between subjects. We used an unbiased analytic approach, combined with rich, naturalistic, and nonsemantic stimulation to estimate shared spatial patterns in functional magnetic resonance imaging responses across a large group. We found that meso-scale spatial patterns were shared nonuniformly across the visual cortex and represent information distinct from the shared temporal response. Shared spatial patterns were stimulus-driven, modulated by pattern size, and more sensitive to the contrast of 3D versus 2D stimulus differences than the temporal signals. Although the grand functional structure of the brain is understood to be common, these results suggest that even at a meso-scale, we share common spatial structures with anatomical alignment alone. The strength of this similarity varies across the cortex, suggesting some spatial structures are innately organized, whereas others are shaped by factors such as learning and plasticity.
Collapse
Affiliation(s)
- Angela Zhang
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal H3G 1A4, Canada
| | - Reza Farivar
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal H3G 1A4, Canada
| |
Collapse
|