1
|
Li J, Yang F, Tian Y, Wang Z, Qi D, Yang Z, Song J, Ding J, Wang X, Zhang Z. Lateral/caudal ganglionic eminence makes limited contribution to cortical oligodendrocytes. eLife 2024; 13:RP94317. [PMID: 39259197 PMCID: PMC11390106 DOI: 10.7554/elife.94317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The emergence of myelinating oligodendrocytes represents a pivotal developmental milestone in vertebrates, given their capacity to ensheath axons and facilitate the swift conduction of action potentials. It is widely accepted that cortical oligodendrocyte progenitor cells (OPCs) arise from medial ganglionic eminence (MGE), lateral/caudal ganglionic eminence (LGE/CGE), and cortical radial glial cells (RGCs). Here, we used two different fate mapping strategies to challenge the established notion that the LGE generates cortical OPCs. Furthermore, we used a Cre/loxP-dependent exclusion strategy to reveal that the LGE/CGE does not give rise to cortical OPCs. Additionally, we showed that specifically eliminating MGE-derived OPCs leads to a significant reduction of cortical OPCs. Together, our findings indicate that the LGE does not generate cortical OPCs, contrary to previous beliefs. These findings provide a new view of the developmental origins of cortical OPCs and a valuable foundation for future research on both normal development and oligodendrocyte-related disease.
Collapse
Affiliation(s)
- Jialin Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feihong Yang
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Tian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziwu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dashi Qi
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Terrinoni A, Micheloni G, Moretti V, Caporali S, Bernardini S, Minieri M, Pieri M, Giaroni C, Acquati F, Costantino L, Ferrara F, Valli R, Porta G. OTX Genes in Adult Tissues. Int J Mol Sci 2023; 24:16962. [PMID: 38069286 PMCID: PMC10707059 DOI: 10.3390/ijms242316962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
OTX homeobox genes have been extensively studied for their role in development, especially in neuroectoderm formation. Recently, their expression has also been reported in adult physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli. Reactivation of OTX genes in adult tissues supports the notion of the evolutionary amplification of functions of genes by varying their temporal expression, with the selection of homeobox genes from the "toolbox" to drive or contribute to different processes at different stages of life. OTX involvement in pathologies points toward these genes as potential diagnostic and/or prognostic markers as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giovanni Micheloni
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Vittoria Moretti
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cristina Giaroni
- Department of Medicina e Innovazione Tecnologica, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Francesco Acquati
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
- Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Lucy Costantino
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Fulvio Ferrara
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Roberto Valli
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Giovanni Porta
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| |
Collapse
|
3
|
Talley MJ, Nardini D, Ehrman LA, Lu QR, Waclaw RR. Distinct requirements for Tcf3 and Tcf12 during oligodendrocyte development in the mouse telencephalon. Neural Dev 2023; 18:5. [PMID: 37684687 PMCID: PMC10485956 DOI: 10.1186/s13064-023-00173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND E-proteins encoded by Tcf3, Tcf4, and Tcf12 are class I basic helix-loop-helix (bHLH) transcription factors (TFs) that are thought to be widely expressed during development. However, their function in the developing brain, specifically in the telencephalon remains an active area of research. Our study examines for the first time if combined loss of two E-proteins (Tcf3 and Tcf12) influence distinct cell fates and oligodendrocyte development in the mouse telencephalon. METHODS We generated Tcf3/12 double conditional knockouts (dcKOs) using Olig2Cre/+ or Olig1Cre/+ to overcome compensatory mechanisms between E-proteins and to understand the specific requirement for Tcf3 and Tcf12 in the ventral telencephalon and during oligodendrogenesis. We utilized a combination of in situ hybridization, immunohistochemistry, and immunofluorescence to address development of the telencephalon and oligodendrogenesis at embryonic and postnatal stages in Tcf3/12 dcKOs. RESULTS We show that the E-proteins Tcf3 and Tcf12 are expressed in progenitors of the embryonic telencephalon and throughout the oligodendrocyte lineage in the postnatal brain. Tcf3/12 dcKOs showed transient defects in progenitor cells with an enlarged medial ganglionic eminence (MGE) region which correlated with reduced generation of embryonic oligodendrocyte progenitor cells (OPCs) and increased expression of MGE interneuron genes. Postnatal Tcf3/12 dcKOs showed a recovery of OPCs but displayed a sustained reduction in mature oligodendrocytes (OLs). Interestingly, Tcf4 remained expressed in the dcKOs suggesting that it cannot compensate for the loss of Tcf3 and Tcf12. Generation of Tcf3/12 dcKOs with Olig1Cre/+ avoided the MGE morphology defect caused by Olig2Cre/+ but dcKOs still exhibited reduced embryonic OPCs and subsequent reduction in postnatal OLs. CONCLUSION Our data reveal that Tcf3 and Tcf12 play a role in controlling OPC versus cortical interneuron cell fate decisions in MGE progenitors in addition to playing roles in the generation of embryonic OPCs and differentiation of postnatal OLs in the oligodendrocyte lineage.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
4
|
Szu JI, Tsigelny IF, Wojcinski A, Kesari S. Biological functions of the Olig gene family in brain cancer and therapeutic targeting. Front Neurosci 2023; 17:1129434. [PMID: 37274223 PMCID: PMC10232966 DOI: 10.3389/fnins.2023.1129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and regulate cellular specification and differentiation. Over the past decade extensive studies have established functional roles of Olig1 and Olig2 in development as well as in cancer. Olig2 overexpression drives glioma proliferation and resistance to radiation and chemotherapy. In this review, we summarize the biological functions of the Olig family in brain cancer and how targeting Olig family genes may have therapeutic benefit.
Collapse
Affiliation(s)
- Jenny I. Szu
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, San Diego, CA, United States
- CureScience, San Diego, CA, United States
| | - Alexander Wojcinski
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| | - Santosh Kesari
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| |
Collapse
|
5
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
6
|
Price JD, Lindtner S, Ypsilanti A, Binyameen F, Johnson JR, Newton BW, Krogan NJ, Rubenstein JLR. DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression. Development 2022; 149:dev199508. [PMID: 35695185 PMCID: PMC9245191 DOI: 10.1242/dev.199508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/17/2022] [Indexed: 09/27/2023]
Abstract
In the developing subpallium, the fate decision between neurons and glia is driven by expression of Dlx1/2 or Olig1/2, respectively, two sets of transcription factors with a mutually repressive relationship. The mechanism by which Dlx1/2 repress progenitor and oligodendrocyte fate, while promoting transcription of genes needed for differentiation, is not fully understood. We identified a motif within DLX1 that binds RBBP4, a NuRD complex subunit. ChIP-seq studies of genomic occupancy of DLX1 and six different members of the NuRD complex show that DLX1 and NuRD colocalize to putative regulatory elements enriched near other transcription factor genes. Loss of Dlx1/2 leads to dysregulation of genome accessibility at putative regulatory elements near genes repressed by Dlx1/2, including Olig2. Consequently, heterozygosity of Dlx1/2 and Rbbp4 leads to an increase in the production of OLIG2+ cells. These findings highlight the importance of the interplay between transcription factors and chromatin remodelers in regulating cell-fate decisions.
Collapse
Affiliation(s)
- James D. Price
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Athena Ypsilanti
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Fadya Binyameen
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Billy W. Newton
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John L. R. Rubenstein
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Lepiemme F, Stoufflet J, Javier-Torrent M, Mazzucchelli G, Silva CG, Nguyen L. Oligodendrocyte precursors guide interneuron migration by unidirectional contact repulsion. Science 2022; 376:eabn6204. [PMID: 35587969 DOI: 10.1126/science.abn6204] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the forebrain, ventrally derived oligodendrocyte precursor cells (vOPCs) travel tangentially toward the cortex together with cortical interneurons. Here, we tested in the mouse whether these populations interact during embryogenesis while migrating. By coupling histological analysis of genetic models with live imaging, we show that although they are both attracted by the chemokine Cxcl12, vOPCs and cortical interneurons occupy mutually exclusive forebrain territories enriched in this chemokine. Moreover, first-wave vOPC depletion selectively disrupts the migration and distribution of cortical interneurons. At the cellular level, we found that by promoting unidirectional contact repulsion, first-wave vOPCs steered the migration of cortical interneurons away from the blood vessels to which they were both attracted, thereby allowing interneurons to reach their proper cortical territories.
Collapse
Affiliation(s)
- Fanny Lepiemme
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Julie Stoufflet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Míriam Javier-Torrent
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, MolSys Research Unit, Liege University, Liege, Belgium
| | - Carla G Silva
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
8
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
11
|
Yousefi S, Deng R, Lanko K, Salsench EM, Nikoncuk A, van der Linde HC, Perenthaler E, van Ham TJ, Mulugeta E, Barakat TS. Comprehensive multi-omics integration identifies differentially active enhancers during human brain development with clinical relevance. Genome Med 2021; 13:162. [PMID: 34663447 PMCID: PMC8524963 DOI: 10.1186/s13073-021-00980-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-coding regulatory elements (NCREs), such as enhancers, play a crucial role in gene regulation, and genetic aberrations in NCREs can lead to human disease, including brain disorders. The human brain is a complex organ that is susceptible to numerous disorders; many of these are caused by genetic changes, but a multitude remain currently unexplained. Understanding NCREs acting during brain development has the potential to shed light on previously unrecognized genetic causes of human brain disease. Despite immense community-wide efforts to understand the role of the non-coding genome and NCREs, annotating functional NCREs remains challenging. METHODS Here we performed an integrative computational analysis of virtually all currently available epigenome data sets related to human fetal brain. RESULTS Our in-depth analysis unravels 39,709 differentially active enhancers (DAEs) that show dynamic epigenomic rearrangement during early stages of human brain development, indicating likely biological function. Many of these DAEs are linked to clinically relevant genes, and functional validation of selected DAEs in cell models and zebrafish confirms their role in gene regulation. Compared to enhancers without dynamic epigenomic rearrangement, DAEs are subjected to higher sequence constraints in humans, have distinct sequence characteristics and are bound by a distinct transcription factor landscape. DAEs are enriched for GWAS loci for brain-related traits and for genetic variation found in individuals with neurodevelopmental disorders, including autism. CONCLUSION This compendium of high-confidence enhancers will assist in deciphering the mechanism behind developmental genetics of human brain and will be relevant to uncover missing heritability in human genetic brain disorders.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva Medico Salsench
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Abbas E, Hassan MA, Sokpor G, Kiszka K, Pham L, Kerimoglu C, Fischer A, Nguyen HP, Staiger JF, Tuoc T. Conditional Loss of BAF (mSWI/SNF) Scaffolding Subunits Affects Specification and Proliferation of Oligodendrocyte Precursors in Developing Mouse Forebrain. Front Cell Dev Biol 2021; 9:619538. [PMID: 34336815 PMCID: PMC8320002 DOI: 10.3389/fcell.2021.619538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Oligodendrocytes are responsible for axon myelination in the brain and spinal cord. Generation of oligodendrocytes entails highly regulated multistage neurodevelopmental events, including proliferation, differentiation and maturation. The chromatin remodeling BAF (mSWI/SNF) complex is a notable regulator of neural development. In our previous studies, we determined the indispensability of the BAF complex scaffolding subunits BAF155 and BAF170 for neurogenesis, whereas their role in gliogenesis is unknown. Here, we show that the expression of BAF155 and BAF170 is essential for the genesis of oligodendrocytes during brain development. We report that the ablation of BAF155 and BAF170 in the dorsal telencephalic (dTel) neural progenitors or in oligodendrocyte-producing progenitors in the ventral telencephalon (vTel) in double-conditional knockout (dcKO) mouse mutants, perturbed the process of oligodendrogenesis. Molecular marker and cell cycle analyses revealed impairment of oligodendrocyte precursor specification and proliferation, as well as overt depletion of oligodendrocytes pool in dcKO mutants. Our findings unveil a central role of BAF155 and BAF170 in oligodendrogenesis, and thus substantiate the involvement of the BAF complex in the production of oligodendrocytes in the forebrain.
Collapse
Affiliation(s)
- Eman Abbas
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Kamila Kiszka
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Huu Phuc Nguyen
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
13
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
14
|
Szu J, Wojcinski A, Jiang P, Kesari S. Impact of the Olig Family on Neurodevelopmental Disorders. Front Neurosci 2021; 15:659601. [PMID: 33859549 PMCID: PMC8042229 DOI: 10.3389/fnins.2021.659601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and strictly regulate cellular specification and differentiation. Extensive studies have established functional roles of Olig1 and Olig2 in directing neuronal and glial formation during different stages in development. Recently, Olig2 overexpression was implicated in neurodevelopmental disorders down syndrome (DS) and autism spectrum disorder (ASD) but its influence on cognitive and intellectual defects remains unknown. In this review, we summarize the biological functions of the Olig family and how it uniquely promotes cellular diversity in the CNS. This is followed up with a discussion on how abnormal Olig2 expression impacts brain development and function in DS and ASD. Collectively, the studies described here emphasize vital features of the Olig members and their distinctive potential roles in neurodevelopmental disease states.
Collapse
Affiliation(s)
- Jenny Szu
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Alexandre Wojcinski
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| |
Collapse
|
15
|
Yanar K, Molbay M, Özaydın-Goksu E, Unek G, Cetindağ E, Unal A, Korgun ET. Contribution of Human Trophoblast Progenitor Cells to Neurogenesis in Rat Focal Cerebral Ischemia Model. Brain Inj 2021; 35:850-862. [PMID: 33780298 DOI: 10.1080/02699052.2021.1906948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE : A decrease in the blood flow below a current level in the brain results in ischemia. Studies demonstrated that human trophoblast progenitor cells (hTPCs) contribute to the treatment of many diseases. Therefore, hTPCs might be a promising source to repair ischemia in cerebral ischemia models. For this purpose, we evaluated the expression of many neurogenesis markers by performing hTPC transplantation after focal cerebral ischemia in rats. METHODS : hTPCs, isolated from the term placentae, were characterized by immunofluorescent staining and differentiated into neuron-like cells. Differentiation was confirmed with immunostaining of GFAP and NeuN proteins. Cerebral ischemia models were generated in rats via middle cerebral artery occlusion and, after 24 hours, hTPCs were injected via the tail vein. Animals were sacrificed on day 3 or day 11. Immunohistochemical analysis was performed with proteins associated with neurogenesis and neuronal development, such as DLX2, DLX5, LHX6, NGN1, and NGN2, Olig1, Olig2, and PDGFRα. RESULTS : According to our results, hTPCs may alleviate ischemic damage in the brain and contribute to the neurogenesis after ischemia. CONCLUSIONS : Based on our findings, this topic should be further investigated as the hTPC-based therapies may be a reliable source that can be used in the treatment of stroke and ischemia.
Collapse
Affiliation(s)
- Kerem Yanar
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Muge Molbay
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Eylem Özaydın-Goksu
- Department of Neurology, Antalya Research and Training Hospital, Neurology Clinic, Antalya, Turkey
| | - Gozde Unek
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Emre Cetindağ
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Ali Unal
- Department of Neurology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
16
|
Abstract
Mouse cortical radial glial cells (RGCs) are primary neural stem cells that give rise to cortical oligodendrocytes, astrocytes, and olfactory bulb (OB) GABAergic interneurons in late embryogenesis. There are fundamental gaps in understanding how these diverse cell subtypes are generated. Here, by combining single-cell RNA-Seq with intersectional lineage analyses, we show that beginning at around E16.5, neocortical RGCs start to generate ASCL1+EGFR+ apical multipotent intermediate progenitors (MIPCs), which then differentiate into basal MIPCs that express ASCL1, EGFR, OLIG2, and MKI67. These basal MIPCs undergo several rounds of divisions to generate most of the cortical oligodendrocytes and astrocytes and a subpopulation of OB interneurons. Finally, single-cell ATAC-Seq supported our model for the genetic logic underlying the specification and differentiation of cortical glial cells and OB interneurons. Taken together, this work reveals the process of cortical radial glial cell lineage progression and the developmental origins of cortical astrocytes and oligodendrocytes.
Collapse
|
17
|
Boshans LL, Soh H, Wood WM, Nolan TM, Mandoiu II, Yanagawa Y, Tzingounis AV, Nishiyama A. Direct reprogramming of oligodendrocyte precursor cells into GABAergic inhibitory neurons by a single homeodomain transcription factor Dlx2. Sci Rep 2021; 11:3552. [PMID: 33574458 PMCID: PMC7878775 DOI: 10.1038/s41598-021-82931-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocyte precursor cells (NG2 glia) are uniformly distributed proliferative cells in the mammalian central nervous system and generate myelinating oligodendrocytes throughout life. A subpopulation of OPCs in the neocortex arises from progenitor cells in the embryonic ganglionic eminences that also produce inhibitory neurons. The neuronal fate of some progenitor cells is sealed before birth as they become committed to the oligodendrocyte lineage, marked by sustained expression of the oligodendrocyte transcription factor Olig2, which represses the interneuron transcription factor Dlx2. Here we show that misexpression of Dlx2 alone in postnatal mouse OPCs caused them to switch their fate to GABAergic neurons within 2 days by downregulating Olig2 and upregulating a network of inhibitory neuron transcripts. After two weeks, some OPC-derived neurons generated trains of action potentials and formed clusters of GABAergic synaptic proteins. Our study revealed that the developmental molecular logic can be applied to promote neuronal reprogramming from OPCs.
Collapse
Affiliation(s)
- Linda L Boshans
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Timothy M Nolan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
18
|
Ghosh A, Chakrabarti R, Shukla PC. Inadvertent nucleotide sequence alterations during mutagenesis: highlighting the vulnerabilities in mouse transgenic technology. J Genet Eng Biotechnol 2021; 19:30. [PMID: 33570721 PMCID: PMC7877310 DOI: 10.1186/s43141-021-00130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
In the last three decades, researchers have utilized genome engineering to alter the DNA sequence in the living cells of a plethora of organisms, ranging from plants, fishes, mice, to even humans. This has been conventionally achieved by using methodologies such as single nucleotide insertion/deletion in coding sequences, exon(s) deletion, mutations in the promoter region, introducing stop codon for protein truncation, and addition of foreign DNA for functional elucidation of genes. However, recent years have witnessed the advent of novel techniques that use programmable site-specific nucleases like CRISPR/Cas9, TALENs, ZFNs, Cre/loxP system, and gene trapping. These have revolutionized the field of experimental transgenesis as well as contributed to the existing knowledge base of classical genetics and gene mapping. Yet there are certain experimental/technological barriers that we have been unable to cross while creating genetically modified organisms. Firstly, while interfering with coding strands, we inadvertently change introns, antisense strands, and other non-coding elements of the gene and genome that play integral roles in the determination of cellular phenotype. These unintended modifications become critical because introns and other non-coding elements, although traditionally regarded as “junk DNA,” have been found to play a major regulatory role in genetic pathways of several crucial cellular processes, development, homeostasis, and diseases. Secondly, post-insertion of transgene, non-coding RNAs are generated by host organism against the inserted foreign DNA or from the inserted transgene/construct against the host genes. The potential contribution of these non-coding RNAs to the resulting phenotype has not been considered. We aim to draw attention to these inherent flaws in the transgenic technology being employed to generate mutant mice and other model organisms. By overlooking these aspects of the whole gene and genetic makeup, perhaps our current understanding of gene function remains incomplete. Thus, it becomes important that, while using genetic engineering techniques to generate a mutant organism for a particular gene, we should carefully consider all the possible elements that may play a potential role in the resulting phenotype. This perspective highlights the commonly used mouse strains and the most probable associated complexities that have not been considered previously, resulting in possible limitations in the currently utilized transgenic technology. This work also warrants the use of already established mouse lines in further research.
Collapse
Affiliation(s)
- Anuran Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rituparna Chakrabarti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
19
|
Kim DW, Liu K, Wang ZQ, Zhang YS, Bathini A, Brown MP, Lin SH, Washington PW, Sun C, Lindtner S, Lee B, Wang H, Shimogori T, Rubenstein JLR, Blackshaw S. Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Commun Biol 2021; 4:95. [PMID: 33479483 PMCID: PMC7820013 DOI: 10.1038/s42003-020-01616-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
GABAergic neurons of the hypothalamus regulate many innate behaviors, but little is known about the mechanisms that control their development. We previously identified hypothalamic neurons that express the LIM homeodomain transcription factor Lhx6, a master regulator of cortical interneuron development, as sleep-promoting. In contrast to telencephalic interneurons, hypothalamic Lhx6 neurons do not undergo long-distance tangential migration and do not express cortical interneuronal markers such as Pvalb. Here, we show that Lhx6 is necessary for the survival of hypothalamic neurons. Dlx1/2, Nkx2-2, and Nkx2-1 are each required for specification of spatially distinct subsets of hypothalamic Lhx6 neurons, and that Nkx2-2+/Lhx6+ neurons of the zona incerta are responsive to sleep pressure. We further identify multiple neuropeptides that are enriched in spatially segregated subsets of hypothalamic Lhx6 neurons, and that are distinct from those seen in cortical neurons. These findings identify common and divergent molecular mechanisms by which Lhx6 controls the development of GABAergic neurons in the hypothalamus.
Collapse
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kai Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - Zoe Qianyi Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yi Stephanie Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Abhijith Bathini
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Matthew P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sonia Hao Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Parris Whitney Washington
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Changyu Sun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Bora Lee
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Hong Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tomomi Shimogori
- RIKEN Center for Brain Science, Laboratory for Molecular Mechanisms of Brain Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Chavali M, Ulloa-Navas MJ, Pérez-Borredá P, Garcia-Verdugo JM, McQuillen PS, Huang EJ, Rowitch DH. Wnt-Dependent Oligodendroglial-Endothelial Interactions Regulate White Matter Vascularization and Attenuate Injury. Neuron 2020; 108:1130-1145.e5. [PMID: 33086038 DOI: 10.1016/j.neuron.2020.09.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Recent studies have indicated oligodendroglial-vascular crosstalk during brain development, but the underlying mechanisms are incompletely understood. We report that oligodendrocyte precursor cells (OPCs) contact sprouting endothelial tip cells in mouse, ferret, and human neonatal white matter. Using transgenic mice, we show that increased or decreased OPC density results in cognate changes in white matter vascular investment. Hypoxia induced increases in OPC numbers, vessel density and endothelial cell expression of the Wnt pathway targets Apcdd1 and Axin2 in white matter, suggesting paracrine OPC-endothelial signaling. Conditional knockout of OPC Wntless resulted in diminished white matter vascular growth in normoxia, whereas loss of Wnt7a/b function blunted the angiogenic response to hypoxia, resulting in severe white matter damage. These findings indicate that OPC-endothelial cell interactions regulate neonatal white matter vascular development in a Wnt-dependent manner and further suggest this mechanism is important in attenuating hypoxic injury.
Collapse
Affiliation(s)
- Manideep Chavali
- Department of Pediatrics, UCSF, San Francisco, CA, USA; Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, UCSF, San Francisco, CA, USA; New Born Brain Research Institute, UCSF, San Francisco, CA, USA
| | - Maria José Ulloa-Navas
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, TERCEL, Paterna 46980, Spain
| | - Pedro Pérez-Borredá
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, TERCEL, Paterna 46980, Spain
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, TERCEL, Paterna 46980, Spain
| | | | - Eric J Huang
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - David H Rowitch
- Department of Pediatrics, UCSF, San Francisco, CA, USA; Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, UCSF, San Francisco, CA, USA; New Born Brain Research Institute, UCSF, San Francisco, CA, USA; Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, UK.
| |
Collapse
|
21
|
Du X, Zhang Z, Zhou H, Zhou J. Differential Modulators of NG2-Glia Differentiation into Neurons and Glia and Their Crosstalk. Cell Mol Neurobiol 2020; 41:1-15. [PMID: 32285247 DOI: 10.1007/s10571-020-00843-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
As the fifth main cell population in the brain, NG2-glia are also known as oligodendrocyte precursor cells. NG2-glia express receptors and ion channels for fast modulation of neuronal activities and signaling with neuronal synapses, which are of functional significance in both physiological and pathological states. NG2-glia also participate in fast signaling with peripheral neurons via direct synaptic contacts in the brain. These distinctive glia have the unique capability of proliferating and differentiating into oligodendrocytes, which are critical for axonal myelination in the early developing brain. In neurodegenerative diseases, NG2-glia play an important role and undergo morphological modification, adapt the expression of their membrane receptors and ion channels, and display gene-modulated cell reprogramming and excitotoxicity-caused cell death. These modifications directly and indirectly influence populations of neurons and other glial cells. NG2-glia regulate their action and dynamics in response to neuronal behavior and disease, indicating a critical function to preserve and remodel myelin in physiological states and to repair it in pathological states. Here, we review in detail the differential modulators of NG2-glia into neurons and astrocytes, as well as interactions of NG2-glia with neurons, astrocytes, and microglia. We will also summarize a future potential exploitation of NG2-glia.
Collapse
Affiliation(s)
- Xiaohuang Du
- Department of Scientific Research, Army Medical University, Chongqing, 400037, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
22
|
Yang Q, Wu J, Zhao J, Xu T, Han P, Song X. The Expression Profiles of lncRNAs and Their Regulatory Network During Smek1/2 Knockout Mouse Neural Stem Cells Differentiation. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190308160507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Previous studies indicated that the cell fate of neural stem cells (NSCs)
after differentiation is determined by Smek1, one isoform of suppressor of Mek null (Smek). Smek
deficiency prevents NSCs from differentiation, thus affects the development of nervous system. In
recent years, lncRNAs have been found to participate in numerous developmental and biological
pathways. However, the effects of knocking out Smek on the expression profiles of lncRNAs
during the differentiation remain unknown.
Objective:
This study is to explore the expression profiles of lncRNAs and their possible function
during the differentiation from Smek1/2 knockout NSCs.
Methods:
We obtained NSCs from the C57BL/6J mouse fetal cerebral cortex. One group of NSCs
was from wildtype mouse (WT group), while another group was from knocked out Smek1/2 (KO
group).
Results:
By analyzing the RNA-Seq data, we found that after knocking out Smek1/2, the
expression profiles of mRNAs and lncRNAs revealed significant changes. Analyses indicated that
these affected mRNAs have connections with the pathway network for the differentiation and
proliferation of NSCs. Furthermore, we performed a co-expression network analysis on the
differentially expressed mRNAs and lncRNAs, which helped reveal the possible regulatory rules
of lncRNAs during the differentiation after knocking out Smek1/2.
Conclusion:
By comparing group WT with KO, we found 366 differentially expressed mRNAs
and 12 lncRNAs. GO and KEGG enrichment analysis on these mRNAs suggested their
relationships with differentiation and proliferation of NSCs. Some of these mRNAs and lncRNAs
have been verified to play regulatory roles in nervous system. Analyses on the co-expression
network also indicated the possible functions of affected mRNAs and lncRNAs during NSCs
differentiation after knocking out Smek1/2.
Collapse
Affiliation(s)
- Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Jing Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Ping Han
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210019, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| |
Collapse
|
23
|
Guo T, Liu G, Du H, Wen Y, Wei S, Li Z, Tao G, Shang Z, Song X, Zhang Z, Xu Z, You Y, Chen B, Rubenstein JL, Yang Z. Dlx1/2 are Central and Essential Components in the Transcriptional Code for Generating Olfactory Bulb Interneurons. Cereb Cortex 2019; 29:4831-4849. [PMID: 30796806 PMCID: PMC6917526 DOI: 10.1093/cercor/bhz018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/03/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022] Open
Abstract
Generation of olfactory bulb (OB) interneurons requires neural stem/progenitor cell specification, proliferation, differentiation, and young interneuron migration and maturation. Here, we show that the homeobox transcription factors Dlx1/2 are central and essential components in the transcriptional code for generating OB interneurons. In Dlx1/2 constitutive null mutants, the differentiation of GSX2+ and ASCL1+ neural stem/progenitor cells in the dorsal lateral ganglionic eminence is blocked, resulting in a failure of OB interneuron generation. In Dlx1/2 conditional mutants (hGFAP-Cre; Dlx1/2F/- mice), GSX2+ and ASCL1+ neural stem/progenitor cells in the postnatal subventricular zone also fail to differentiate into OB interneurons. In contrast, overexpression of Dlx1&2 in embryonic mouse cortex led to ectopic production of OB-like interneurons that expressed Gad1, Sp8, Sp9, Arx, Pbx3, Etv1, Tshz1, and Prokr2. Pax6 mutants generate cortical ectopia with OB-like interneurons, but do not do so in compound Pax6; Dlx1/2 mutants. We propose that DLX1/2 promote OB interneuron development mainly through activating the expression of Sp8/9, which further promote Tshz1 and Prokr2 expression. Based on this study, in combination with earlier ones, we propose a transcriptional network for the process of OB interneuron development.
Collapse
Affiliation(s)
- Teng Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Heng Du
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yan Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Song Wei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zicong Shang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiaolei Song
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - John L Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
24
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Boshans LL, Factor DC, Singh V, Liu J, Zhao C, Mandoiu I, Lu QR, Casaccia P, Tesar PJ, Nishiyama A. The Chromatin Environment Around Interneuron Genes in Oligodendrocyte Precursor Cells and Their Potential for Interneuron Reprograming. Front Neurosci 2019; 13:829. [PMID: 31440130 PMCID: PMC6694778 DOI: 10.3389/fnins.2019.00829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs), also known as NG2 glia, arise from neural progenitor cells in the embryonic ganglionic eminences that also generate inhibitory neurons. They are ubiquitously distributed in the central nervous system, remain proliferative through life, and generate oligodendrocytes in both gray and white matter. OPCs exhibit some lineage plasticity, and attempts have been made to reprogram them into neurons, with varying degrees of success. However, little is known about how epigenetic mechanisms affect the ability of OPCs to undergo fate switch and whether OPCs have a unique chromatin environment around neuronal genes that might contribute to their lineage plasticity. Our bioinformatic analysis of histone posttranslational modifications at interneuron genes in OPCs revealed that OPCs had significantly fewer bivalent and repressive histone marks at interneuron genes compared to astrocytes or fibroblasts. Conversely, OPCs had a greater degree of deposition of active histone modifications at bivalently marked interneuron genes than other cell types, and this was correlated with higher expression levels of these genes in OPCs. Furthermore, a significantly higher proportion of interneuron genes in OPCs than in other cell types lacked the histone posttranslational modifications examined. These genes had a moderately high level of expression, suggesting that the "no mark" interneuron genes could be in a transcriptionally "poised" or "transitional" state. Thus, our findings suggest that OPCs have a unique histone code at their interneuron genes that may obviate the need for erasure of repressive marks during their fate switch to inhibitory neurons.
Collapse
Affiliation(s)
- Linda L. Boshans
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Daniel C. Factor
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Vijender Singh
- Computational Biology Core, University of Connecticut, Storrs, CT, United States
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, The City University of New York, New York, NY, United States
| | - Chuntao Zhao
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Ion Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | - Q. Richard Lu
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, The City University of New York, New York, NY, United States
| | - Paul J. Tesar
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
26
|
Xu R, Brawner AT, Li S, Liu JJ, Kim H, Xue H, Pang ZP, Kim WY, Hart RP, Liu Y, Jiang P. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell 2019; 24:908-926.e8. [PMID: 31130512 DOI: 10.1016/j.stem.2019.04.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/05/2018] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is a common neurodevelopmental disorder, and cognitive defects in DS patients may arise from imbalances in excitatory and inhibitory neurotransmission. Understanding the mechanisms underlying such imbalances may provide opportunities for therapeutic intervention. Here, we show that human induced pluripotent stem cells (hiPSCs) derived from DS patients overproduce OLIG2+ ventral forebrain neural progenitors. As a result, DS hiPSC-derived cerebral organoids excessively produce specific subclasses of GABAergic interneurons and cause impaired recognition memory in neuronal chimeric mice. Increased OLIG2 expression in DS cells directly upregulates interneuron lineage-determining transcription factors. shRNA-mediated knockdown of OLIG2 largely reverses abnormal gene expression in early-stage DS neural progenitors, reduces interneuron production in DS organoids and chimeric mouse brains, and improves behavioral deficits in DS chimeric mice. Thus, altered OLIG2 expression may underlie neurodevelopmental abnormalities and cognitive defects in DS patients.
Collapse
Affiliation(s)
- Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew T Brawner
- Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shenglan Li
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing-Jing Liu
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hyosung Kim
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Liu
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
27
|
Abstract
Cell-type-specific gene targeting with the Cre/loxP system has become an indispensable technique in experimental neuroscience, particularly for the study of late-born glial cells that make myelin. A plethora of conditional mutants and Cre-expressing mouse lines is now available to the research community that allows laboratories to readily engage in in vivo analyses of oligodendrocytes and their precursor cells. This chapter summarizes concepts and strategies in targeting myelinating glial cells in mice for mutagenesis or imaging, and provides an overview of the most important Cre driver lines successfully used in this rapidly growing field.
Collapse
Affiliation(s)
- Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
28
|
Jeong H, Moye LS, Southey BR, Hernandez AG, Dripps I, Romanova EV, Rubakhin SS, Sweedler JV, Pradhan AA, Rodriguez-Zas SL. Gene Network Dysregulation in the Trigeminal Ganglia and Nucleus Accumbens of a Model of Chronic Migraine-Associated Hyperalgesia. Front Syst Neurosci 2018; 12:63. [PMID: 30618656 PMCID: PMC6305622 DOI: 10.3389/fnsys.2018.00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The pharmacological agent nitroglycerin (NTG) elicits hyperalgesia and allodynia in mice. This model has been used to study the neurological disorder of trigeminovascular pain or migraine, a debilitating form of hyperalgesia. The present study validates hyperalgesia in an established mouse model of chronic migraine triggered by NTG and advances the understanding of the associated molecular mechanisms. The RNA-seq profiles of two nervous system regions associated with pain, the trigeminal ganglia (TG) and the nucleus accumbens (NAc), were compared in mice receiving chronic NTG treatment relative to control (CON) mice. Among the 109 genes that exhibited an NTG treatment-by-region interaction, solute carrier family 32 (GABA vesicular transporter) member 1 (Slc32a1) and preproenkephalin (Penk) exhibited reversal of expression patterns between the NTG and CON groups. Erb-b2 receptor tyrosine kinase 4 (Erbb4) and solute carrier family 1 (glial high affinity glutamate transporter) member 2 (Slc1a2) exhibited consistent differential expression between treatments across regions albeit at different magnitude. Period circadian clock 1 (Per1) was among the 165 genes that exhibited significant NTG treatment effect. Biological processes disrupted by NTG in a region-specific manner included adaptive and innate immune responses; whereas glutamatergic and dopaminergic synapses and rhythmic process were disrupted in both regions. Regulatory network reconstruction highlighted the widespread role of several transcription factors (including Snrnp70, Smad1, Pax6, Cebpa, and Smpx) among the NTG-disrupted target genes. These results advance the understanding of the molecular mechanisms of hyperalgesia that can be applied to therapies to ameliorate chronic pain and migraine.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laura S. Moye
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
29
|
Pla R, Stanco A, Howard MA, Rubin AN, Vogt D, Mortimer N, Cobos I, Potter GB, Lindtner S, Price JD, Nord AS, Visel A, Schreiner CE, Baraban SC, Rowitch DH, Rubenstein JLR. Dlx1 and Dlx2 Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis. Cereb Cortex 2018; 28:3797-3815. [PMID: 29028947 PMCID: PMC6188538 DOI: 10.1093/cercor/bhx241] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs. We provide evidence that DLX2 directly drives Gad1, Gad2, and Vgat expression, and show that mutants had reduced mIPSC amplitude. In addition, the mutants formed fewer GABAergic synapses on excitatory neurons and had reduced mIPSC frequency. Furthermore, Dlx1/2 CKO had hypoplastic dendrites, fewer excitatory synapses, and reduced excitatory input. We provide evidence that some of these phenotypes were due to reduced expression of GRIN2B (a subunit of the NMDA receptor), a high confidence Autism gene. Thus, Dlx1&2 coordinate key components of CIN postnatal development by promoting their excitability, inhibitory output, and survival.
Collapse
Affiliation(s)
- Ramon Pla
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Amelia Stanco
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - MacKenzie A Howard
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anna N Rubin
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Niall Mortimer
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Inma Cobos
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Gregory Brian Potter
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - James D Price
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Alex S Nord
- Departments of Neurobiology, Physiology, and Behavior and Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Christoph E Schreiner
- Department of Otolaryngology and Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Scott C Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David H Rowitch
- Departments of Pediatrics and Neurological Surgery, Eli and Edyth Broad Institute for Stem Cell Research and Regenerative Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
30
|
Lee B, Kim J, An T, Kim S, Patel EM, Raber J, Lee SK, Lee S, Lee JW. Dlx1/2 and Otp coordinate the production of hypothalamic GHRH- and AgRP-neurons. Nat Commun 2018; 9:2026. [PMID: 29795232 PMCID: PMC5966420 DOI: 10.1038/s41467-018-04377-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/23/2018] [Indexed: 01/07/2023] Open
Abstract
Despite critical roles of the hypothalamic arcuate neurons in controlling the growth and energy homeostasis, the gene regulatory network directing their development remains unclear. Here we report that the transcription factors Dlx1/2 and Otp coordinate the balanced generation of the two functionally related neurons in the hypothalamic arcuate nucleus, GHRH-neurons promoting the growth and AgRP-neurons controlling the feeding and energy expenditure. Dlx1/2-deficient mice show a loss-of-GHRH-neurons and an increase of AgRP-neurons, and consistently develop dwarfism and consume less energy. These results indicate that Dlx1/2 are crucial for specifying the GHRH-neuronal identity and, simultaneously, for suppressing AgRP-neuronal fate. We further show that Otp is required for the generation of AgRP-neurons and that Dlx1/2 repress the expression of Otp by directly binding the Otp gene. Together, our study demonstrates that the identity of GHRH- and AgRP-neurons is synchronously specified and segregated by the Dlx1/2-Otp gene regulatory axis.
Collapse
Affiliation(s)
- Bora Lee
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Janghyun Kim
- Neuroscience Section, Papé Family Pediatrics Research Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Taekyeong An
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 06978, Korea
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 06978, Korea
| | - Esha M Patel
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
- Departments of Neurology and Radiation Medicine, and Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatrics Research Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Jae W Lee
- Neuroscience Section, Papé Family Pediatrics Research Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
31
|
Hu JS, Vogt D, Sandberg M, Rubenstein JL. Cortical interneuron development: a tale of time and space. Development 2017; 144:3867-3878. [PMID: 29089360 DOI: 10.1242/dev.132852] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cortical interneurons are a diverse group of neurons that project locally and are crucial for regulating information processing and flow throughout the cortex. Recent studies in mice have advanced our understanding of how these neurons are specified, migrate and mature. Here, we evaluate new findings that provide insights into the development of cortical interneurons and that shed light on when their fate is determined, on the influence that regional domains have on their development, and on the role that key transcription factors and other crucial regulatory genes play in these events. We focus on cortical interneurons that are derived from the medial ganglionic eminence, as most studies have examined this interneuron population. We also assess how these data inform our understanding of neuropsychiatric disease and discuss the potential role of cortical interneurons in cell-based therapies.
Collapse
Affiliation(s)
- Jia Sheng Hu
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA.,Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA.,Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - Magnus Sandberg
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA.,Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA .,Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
32
|
Duan Y, Peng L, Shi H, Jiang Y. The effects of lead on GABAergic interneurons in rodents. Toxicol Ind Health 2017; 33:867-875. [PMID: 29056070 DOI: 10.1177/0748233717732902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lead is a heavy metal that affects various systems and organs in the body, especially the nervous system. In this study, the in vivo and in vitro effects of lead on neurons were analyzed. We divided mouse pups into three groups based on the concentration of lead exposure: the control group, the low-dose group, and the high-dose group. Changes in behavior (measured by an open-field test and a tail suspension test), blood lead levels (measured by atomic absorption spectrophotometry), the number of GABAergic interneurons (measured by immunohistochemistry), gene expression (measured by qRT-PCR), and DNA methylation (measured by pyrosequencing) were determined in the three groups. The lead-exposed pups showed significantly higher blood lead levels ( p < 0.001). Lead exposure caused hyperactivity and reduced the body weight of the exposed mice compared with that of the controls. The lead-exposed groups showed significantly lower numbers of parvalbumin and neuropeptide Y interneurons and lower expression levels of distal-less homeobox ( Dlx) 1, 2, 5, and 6 genes in the cerebral cortex. To further clarify the mechanism of Dlx gene downregulation, we selected the GE6 cell line, which can differentiate into various subtypes of GABAergic interneurons, for in vitro experiments. We found that high levels of lead also inhibited the expression of Dlx 1/ 2/ 5/ 6 in vitro, but DNA methylation levels were not changed in the GE6 cell line. Furthermore, lead exposure significantly decreased the expression of Olig1 and Ki67 and increased that of Tubb3 in vitro. The present study revealed that lead exposure can alter behaviors, reduce the number of GABAergic interneurons, and change the expression of some important genes in neuronal cells.
Collapse
Affiliation(s)
- Yifei Duan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Sichuan Province, China
| | - Leiwen Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Sichuan Province, China
| | - Hua Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Sichuan Province, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Sichuan Province, China
| |
Collapse
|
33
|
Subpallial Enhancer Transgenic Lines: a Data and Tool Resource to Study Transcriptional Regulation of GABAergic Cell Fate. Neuron 2017; 92:59-74. [PMID: 27710791 DOI: 10.1016/j.neuron.2016.09.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/22/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023]
Abstract
Elucidating the transcriptional circuitry controlling forebrain development requires an understanding of enhancer activity and regulation. We generated stable transgenic mouse lines that express CreERT2 and GFP from ten different enhancer elements with activity in distinct domains within the embryonic basal ganglia. We used these unique tools to generate a comprehensive regional fate map of the mouse subpallium, including sources for specific subtypes of amygdala neurons. We then focused on deciphering transcriptional mechanisms that control enhancer activity. Using machine-learning computations, in vivo chromosomal occupancy of 13 transcription factors that regulate subpallial patterning and differentiation and analysis of enhancer activity in Dlx1/2 and Lhx6 mutants, we elucidated novel molecular mechanisms that regulate region-specific enhancer activity in the developing brain. Thus, these subpallial enhancer transgenic lines are data and tool resources to study transcriptional regulation of GABAergic cell fate.
Collapse
|
34
|
Vermunt MW, Creyghton MP. Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration. Curr Neurol Neurosci Rep 2017; 16:94. [PMID: 27628759 PMCID: PMC5023742 DOI: 10.1007/s11910-016-0689-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Driven by the development of numerous techniques, many of these elements are now identified in multiple tissues and cell types, and their characteristics as well as importance in development and disease are becoming increasingly clear. Here, we provide an overview of the insights that were gained from the analysis of noncoding gene regulatory elements in the brain and describe their potential contribution to cell type specialization, brain function and neurodegenerative disease.
Collapse
Affiliation(s)
- Marit W Vermunt
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Menno P Creyghton
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci 2017; 37:397-412. [PMID: 28077718 DOI: 10.1523/jneurosci.2113-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 01/29/2023] Open
Abstract
During development, oligodendrocytes are initially specified, after which oligodendrocyte precursor cells (OPCs) migrate and proliferate before differentiating into myelinating cells. Lineage-specific programming of oligodendrocytes results from sensing environmental cues through membrane-bound receptors and related intracellular signaling molecules. Integrin-linked kinase (ILK) is an important protein that is expressed at the inner margins of the plasma membrane and can mediate some of these signals. The current studies demonstrate that ILK deletion reduces the proliferation and differentiation of OPCs in the developing CNS. There was a significant decrease in the number of OPCs and mature oligodendrocytes throughout postnatal development in Olig1Cre+/- × ILKfl/fl mice. These changes were accompanied by reduced numbers of myelinated axons. Key proteins involved in cell cycle regulation were dysregulated. Cyclin D1/D3 and cyclin-dependent kinase 2/4 (cdc2/cdc4) were downregulated and the cell cycle inhibitor protein p27 Kip1 was upregulated. Therefore, ILK deletion impaired the developmental profile, proliferation, and differentiation of OPCs by altering the expression of regulatory cytoplasmic and nuclear factors. SIGNIFICANCE STATEMENT Integrin-linked kinase (ILK) is a scaffolding protein involved in integrating signals from the extracellular environment and communicating those signals to downstream effectors within cells. It has been proposed to regulate aspects of oligodendrocyte process extension and thereby myelination. However, the current studies demonstrate that it has an earlier impact on cells in this lineage. Knocking down ILK in Olig1-Cre-expressing cells reduces the pool of oligodendrocyte progenitor cells (OPCs). This smaller pool of OPCs results from altered cell cycle and reduced cell proliferation. These cells myelinate fewer axons than in wild-type mice and, in corpus callosum, the myelin is thinner than in controls. Interestingly, the smaller pool of spinal cord oligodendrocytes generates myelin that is of normal thickness.
Collapse
|
36
|
Sabo JK, Heine V, Silbereis JC, Schirmer L, Levison SW, Rowitch DH. Olig1 is required for noggin-induced neonatal myelin repair. Ann Neurol 2017; 81:560-571. [PMID: 28253550 DOI: 10.1002/ana.24907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 02/06/2017] [Accepted: 02/26/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neonatal white matter injury (NWMI) is a lesion found in preterm infants that can lead to cerebral palsy. Although antagonists of bone morphogenetic protein (BMP) signaling, such as Noggin, promote oligodendrocyte precursor cell (OPC) production after hypoxic-ischemic (HI) injury, the downstream functional targets are poorly understood. The basic helix-loop-helix protein, oligodendrocyte transcription factor 1 (Olig1), promotes oligodendrocyte (OL) development and is essential during remyelination in adult mice. Here, we investigated whether Olig1 function is required downstream of BMP antagonism for response to injury in the neonatal brain. METHODS We used wild-type and Olig1-null mice subjected to neonatal stroke and postnatal neural progenitor cultures, and we analyzed Olig1 expression in human postmortem samples from neonates that suffered HI encephalopathy (HIE). RESULTS Olig1-null neonatal mice showed significant hypomyelination after moderate neonatal stroke. Surprisingly, damaged white matter tracts in Olig1-null mice lacked Olig2+ OPCs, and instead proliferating neuronal precursors and GABAergic interneurons were present. We demonstrate that Noggin-induced OPC production requires Olig1 function. In postnatal neural progenitors, Noggin governs production of OLs versus interneurons through Olig1-mediated repression of Dlx1/2 transcription factors. Additionally, we observed that Olig1 and the BMP signaling effector, phosphorylated SMADs (Sma- and Mad-related proteins) 1, 5, and 8, were elevated in the subventricular zone of human infants with HIE compared to controls. INTERPRETATION These findings indicate that Olig1 has a critical function in regulation of postnatal neural progenitor cell production in response to Noggin. Ann Neurol 2017;81:560-571.
Collapse
Affiliation(s)
- Jennifer K Sabo
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - Vivi Heine
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - John C Silbereis
- Department of Neuroscience, University of California San Francisco, San Francisco, CA
| | - Lucas Schirmer
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steven W Levison
- Department of Neurology and Neuroscience, New Jersey Medical School, Rutgers University-New Jersey Medical School, Newark, NJ
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Paediatrics, Wellcome Trust-MRC Stem Cell Institute, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
37
|
Hu JS, Vogt D, Lindtner S, Sandberg M, Silberberg SN, Rubenstein JLR. Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons. Development 2017; 144:2837-2851. [PMID: 28694260 DOI: 10.1242/dev.150664] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Distinct cortical interneuron (CIN) subtypes have unique circuit functions; dysfunction in specific subtypes is implicated in neuropsychiatric disorders. Somatostatin- and parvalbumin-expressing (SST+ and PV+) interneurons are the two major subtypes generated by medial ganglionic eminence (MGE) progenitors. Spatial and temporal mechanisms governing their cell-fate specification and differential integration into cortical layers are largely unknown. We provide evidence that Coup-TF1 and Coup-TF2 (Nr2f1 and Nr2f2) transcription factor expression in an arc-shaped progenitor domain within the MGE promotes time-dependent survival of this neuroepithelium and the time-dependent specification of layer V SST+ CINs. Coup-TF1 and Coup-TF2 autonomously repress PV+ fate in MGE progenitors, in part through directly driving Sox6 expression. These results have identified, in mouse, a transcriptional pathway that controls SST-PV fate.
Collapse
Affiliation(s)
- Jia Sheng Hu
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Magnus Sandberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Shanni N Silberberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
38
|
Calvigioni D, Máté Z, Fuzik J, Girach F, Zhang MD, Varro A, Beiersdorf J, Schwindling C, Yanagawa Y, Dockray GJ, McBain CJ, Hökfelt T, Szabó G, Keimpema E, Harkany T. Functional Differentiation of Cholecystokinin-Containing Interneurons Destined for the Cerebral Cortex. Cereb Cortex 2017; 27:2453-2468. [PMID: 27102657 DOI: 10.1093/cercor/bhw094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although extensively studied postnatally, the functional differentiation of cholecystokinin (CCK)-containing interneurons en route towards the cerebral cortex during fetal development is incompletely understood. Here, we used CCKBAC/DsRed mice encoding a CCK promoter-driven red fluorescent protein to analyze the temporal dynamics of DsRed expression, neuronal identity, and positioning through high-resolution developmental neuroanatomy. Additionally, we developed a dual reporter mouse line (CCKBAC/DsRed::GAD67gfp/+) to differentiate CCK-containing interneurons from DsRed+ principal cells during prenatal development. We show that DsRed is upregulated in interneurons once they exit their proliferative niche in the ganglionic eminence and remains stably expressed throughout their long-distance migration towards the cerebrum, particularly in the hippocampus. DsRed+ interneurons, including a cohort coexpressing calretinin, accumulated at the palliosubpallial boundary by embryonic day 12.5. Pioneer DsRed+ interneurons already reached deep hippocampal layers by embryonic day 14.5 and were morphologically differentiated by birth. Furthermore, we probed migrating interneurons entering and traversing the cortical plate, as well as stationary cells in the hippocampus by patch-clamp electrophysiology to show the first signs of Na+ and K+ channel activity by embryonic day 12.5 and reliable adult-like excitability by embryonic day 18.5. Cumulatively, this study defines key positional, molecular, and biophysical properties of CCK+ interneurons in the prenatal brain.
Collapse
Affiliation(s)
- Daniela Calvigioni
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083 Budapest, Hungary
| | - János Fuzik
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Fatima Girach
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Ming-Dong Zhang
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, L69 3BX Liverpool, UK
| | - Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Christian Schwindling
- Microscopy Labs Munich, Global Sales Support-Life Sciences, Carl Zeiss Microscopy GmbH, Kistlerhofstrasse 75, D-81379 Munich, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Graham J Dockray
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083 Budapest, Hungary
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
39
|
Abstract
The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation.
Collapse
|
40
|
Qi Q, Zhang Y, Shen L, Wang R, Zhou J, Lü H, Hu J. Olig1 expression pattern in neural cells during rat spinal cord development. Neuropsychiatr Dis Treat 2016; 12:909-16. [PMID: 27143892 PMCID: PMC4841409 DOI: 10.2147/ndt.s99257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Our purpose was to systematically investigate the expression pattern and role of Olig1 in neural cells during rat spinal cord development. ANIMALS AND METHODS Spinal cord tissues were dissected from Sprague-Dawley rats at embryonic day 14.5 (E14.5) and E18.5, postnatal day 0 (P0), P3, P7, postnatal 2 weeks (P2W), P4W, and adults (more than 2 months after birth), respectively. The expression of Olig1 was determined by Western blot and immunostaining. To observe expression of Olig1 in different neural cell types, a double immunohistochemical staining was performed using antibodies against Olig1 with O4, β-tubulin, glial fibrillary acidic protein (GFAP), and myelin basic protein, respectively. RESULTS The expression of Olig1 protein shows a significant level change in rat spinal cord at different developmental time points. Starting with E14.5, the expression gradually increased and peaked at E18.5. Olig1 decreased gradually from P3 and reached its lowest level on P7. However, interestingly, the Olig1 expression increased again from P2W, until adulthood. Olig1 was coexpressed with O4-positive oligodendrocyte progenitor cells (OPCs) and β-tubulin-positive neurons at all time points during development. Olig1 was also coexpressed transiently with GFAP-positive astrocytes at only E14.5. Olig1 was localized in the cytoplasm of O4- and β-tubulin-positive cells during the period from E14.5 to adult. CONCLUSION The expression of Olig1 in OPCs and neurons at all time points during development and in astrocytes at E14.5 suggests that Olig1 may play an important role in the generation and maturation of specific neural cells during development of spinal cord. Our results contribute to understanding the mechanism underlying developmental regulation of neural cells by Olig1.
Collapse
Affiliation(s)
- Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China; Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yuxin Zhang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jiansheng Zhou
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Hezuo Lü
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China; Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China; Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| |
Collapse
|
41
|
Li H, Richardson WD. Evolution of the CNS myelin gene regulatory program. Brain Res 2015; 1641:111-121. [PMID: 26474911 DOI: 10.1016/j.brainres.2015.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
42
|
Lineage, fate, and fate potential of NG2-glia. Brain Res 2015; 1638:116-128. [PMID: 26301825 DOI: 10.1016/j.brainres.2015.08.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/20/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
NG2 cells represent a fourth major glial cell population in the mammalian central nervous system (CNS). They arise from discrete germinal zones in mid-gestation embryos and expand to occupy the entire CNS parenchyma. Genetic fate mapping studies have shown that oligodendrocytes and a subpopulation of ventral protoplasmic astrocytes arise from NG2 cells. This review describes recent findings on the fate and fate potential of NG2 cells under physiological and pathological conditions. We discuss age-dependent changes in the fate and fate potential of NG2 cells and possible mechanisms that could be involved in restricting their oligodendrocyte differentiation or fate plasticity. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
|
43
|
Küspert M, Wegner M. SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors. Brain Res 2015; 1638:167-182. [PMID: 26232072 DOI: 10.1016/j.brainres.2015.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 12/26/2022]
Abstract
Glial cells that express the chondroitin sulfate proteoglycan NG2 represent an inherently heterogeneous population. These so-called NG2-glia are present during development and in the adult CNS, where they are referred to as embryonic oligodendrocyte precursors and adult NG2-glia, respectively. They give rise to myelinating oligodendrocytes at all times of life. Over the years much has been learnt about the transcriptional network in embryonic oligodendrocyte precursors, and several transcription factors from the HLH, HMG-domain, zinc finger and homeodomain protein families have been identified as main constituents. Much less is known about the corresponding network in adult NG2-glia. Here we summarize and discuss current knowledge on functions of each of these transcription factor families in NG2-glia, and where possible compare transcriptional regulation in embryonic oligodendrocyte precursors and adult NG2-glia. This article is part of a Special Issue entitled SI:NG2-glia (Invited only).
Collapse
Affiliation(s)
- Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| |
Collapse
|
44
|
Hoch RV, Lindtner S, Price JD, Rubenstein JLR. OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum. Cell Rep 2015; 12:482-94. [PMID: 26166575 DOI: 10.1016/j.celrep.2015.06.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/27/2015] [Accepted: 06/14/2015] [Indexed: 11/27/2022] Open
Abstract
The Otx2 homeodomain transcription factor is essential for gastrulation and early neural development. We generated Otx2 conditional knockout (cKO) mice to investigate its roles in telencephalon development after neurulation (approximately embryonic day 9.0). We conducted transcriptional profiling and in situ hybridization to identify genes de-regulated in Otx2 cKO ventral forebrain. In parallel, we used chromatin immunoprecipitation sequencing to identify enhancer elements, the OTX2 binding motif, and de-regulated genes that are likely direct targets of OTX2 transcriptional regulation. We found that Otx2 was essential in septum specification, regulation of Fgf signaling in the rostral telencephalon, and medial ganglionic eminence (MGE) patterning, neurogenesis, and oligodendrogenesis. Within the MGE, Otx2 was required for ventral, but not dorsal, identity, thus controlling the production of specific MGE derivatives.
Collapse
Affiliation(s)
- Renée V Hoch
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James D Price
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Abstract
Oligodendrocyte differentiation and myelination are tightly regulated processes orchestrated by a complex transcriptional network. Two bHLH transcription factors in this network, Olig1 and Olig2, are expressed exclusively by oligodendrocytes after late embryonic development. Although the role of Olig2 in the lineage is well established, the role of Olig1 is still unclear. The current studies analyzed the function of Olig1 in oligodendrocyte differentiation and developmental myelination in brain. Both oligodendrocyte progenitor cell commitment and oligodendrocyte differentiation were impaired in the corpus callosum of Olig1-null mice, resulting in hypomyelination throughout adulthood in the brain. As seen in previous studies with this mouse line, although there was an early myelination deficit in the spinal cord, essentially full recovery with normal spinal cord myelination was seen. Intriguingly, this regional difference may be partially attributed to compensatory upregulation of Olig2 protein expression in the spinal cord after Olig1 deletion, which is not seen in brain. The current study demonstrates a unique role for Olig1 in promoting oligodendrocyte progenitor cell commitment, differentiation, and subsequent myelination primarily in brain, but not spinal cord.
Collapse
|
46
|
Vogt D, Cho KKA, Lee AT, Sohal VS, Rubenstein JLR. The parvalbumin/somatostatin ratio is increased in Pten mutant mice and by human PTEN ASD alleles. Cell Rep 2015; 11:944-956. [PMID: 25937288 DOI: 10.1016/j.celrep.2015.04.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/22/2015] [Accepted: 04/08/2015] [Indexed: 01/10/2023] Open
Abstract
Mutations in the phosphatase PTEN are strongly implicated in autism spectrum disorder (ASD). Here, we investigate the function of Pten in cortical GABAergic neurons using conditional mutagenesis in mice. Loss of Pten results in a preferential loss of SST(+) interneurons, which increases the ratio of parvalbumin/somatostatin (PV/SST) interneurons, ectopic PV(+) projections in layer I, and inhibition onto glutamatergic cortical neurons. Pten mutant mice exhibit deficits in social behavior and changes in electroencephalogram (EEG) power. Using medial ganglionic eminence (MGE) transplantation, we test for cell-autonomous functional differences between human PTEN wild-type (WT) and ASD alleles. The PTEN ASD alleles are hypomorphic in regulating cell size and the PV/SST ratio in comparison to WT PTEN. This MGE transplantation/complementation assay is efficient and is generally applicable for functional testing of ASD alleles in vivo.
Collapse
Affiliation(s)
- Daniel Vogt
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Kathleen K A Cho
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anthony T Lee
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikaas S Sohal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA; Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
47
|
Shibata M, Gulden FO, Sestan N. From trans to cis: transcriptional regulatory networks in neocortical development. Trends Genet 2015; 31:77-87. [PMID: 25624274 DOI: 10.1016/j.tig.2014.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Transcriptional mechanisms mediated by the binding of transcription factors (TFs) to cis-acting regulatory elements (CREs) in DNA play crucial roles in directing gene expression. While TFs have been extensively studied, less effort has gone towards the identification and functional characterization of CREs and associated epigenetic modulation. However, owing to methodological and analytical advances, more comprehensive studies of regulatory elements and mechanisms are now possible. We summarize recent progress in integrative analyses of these regulatory components in the development of the cerebral neocortex, the part of the brain involved in cognition and complex behavior. These studies are uncovering not only the underlying transcriptional regulatory networks, but also how these networks are altered across species and in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mikihito Shibata
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
48
|
Nord AS, Pattabiraman K, Visel A, Rubenstein JLR. Genomic perspectives of transcriptional regulation in forebrain development. Neuron 2015; 85:27-47. [PMID: 25569346 PMCID: PMC4438709 DOI: 10.1016/j.neuron.2014.11.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. Recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Herein, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution of the human brain.
Collapse
Affiliation(s)
- Alex S Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA.
| | - Kartik Pattabiraman
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - John L R Rubenstein
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| |
Collapse
|
49
|
Stanco A, Pla R, Vogt D, Chen Y, Mandal S, Walker J, Hunt RF, Lindtner S, Erdman CA, Pieper AA, Hamilton SP, Xu D, Baraban SC, Rubenstein JLR. NPAS1 represses the generation of specific subtypes of cortical interneurons. Neuron 2014; 84:940-53. [PMID: 25467980 PMCID: PMC4258152 DOI: 10.1016/j.neuron.2014.10.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 11/29/2022]
Abstract
Little is known about genetic mechanisms that regulate the ratio of cortical excitatory and inhibitory neurons. We show that NPAS1 and NPAS3 transcription factors (TFs) are expressed in progenitor domains of the mouse basal ganglia (subpallium, MGE, and CGE). NPAS1(-/-) mutants had increased proliferation, ERK signaling, and expression of Arx in the MGE and CGE. NPAS1(-/-) mutants also had increased neocortical inhibition (sIPSC and mIPSC) and generated an excess of somatostatin(+) (SST) (MGE-derived) and vasoactive intestinal polypeptide(+) (VIP) (CGE-derived) neocortical interneurons, but had a normal density of parvalbumin(+) (PV) (MGE-derived) interneurons. In contrast, NPAS3(-/-) mutants showed decreased proliferation and ERK signaling in progenitors of the ganglionic eminences and had fewer SST(+) and VIP(+) interneurons. NPAS1 repressed activity of an Arx enhancer, and Arx overexpression resulted in increased proliferation of CGE progenitors. These results provide insights into genetic regulation of cortical interneuron numbers and cortical inhibitory tone.
Collapse
Affiliation(s)
- Amelia Stanco
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA.
| | - Ramón Pla
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Yiran Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shyamali Mandal
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Jamie Walker
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert F Hunt
- Department of Neurological Surgery, Neuroscience Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Carolyn A Erdman
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Andrew A Pieper
- Department of Psychiatry and Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven P Hamilton
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery, Neuroscience Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA.
| |
Collapse
|
50
|
Adefuin AMD, Kimura A, Noguchi H, Nakashima K, Namihira M. Epigenetic mechanisms regulating differentiation of neural stem/precursor cells. Epigenomics 2014; 6:637-49. [DOI: 10.2217/epi.14.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Differentiation of neural stem/precursor cells (NS/PCs) into neurons, astrocytes and oligodendrocytes during mammalian brain development is a carefully controlled and timed event. Increasing evidences suggest that epigenetic regulation is necessary to drive this. Here, we provide an overview of the epigenetic mechanisms involved in the developing mammalian embryonic forebrain. Histone methylation is a key factor but other epigenetic factors such as DNA methylation and noncoding RNAs also partake during fate determination. As numerous epigenetic modifications have been identified, future studies on timing and regional specificity of these modifications will further deepen our understanding of how intrinsic and extrinsic mechanisms participate together to precisely control brain development.
Collapse
Affiliation(s)
- Aliya Mari D Adefuin
- Department of Stem Cell Biology & Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Ayaka Kimura
- Department of Stem Cell Biology & Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Hirofumi Noguchi
- Department of Stem Cell Biology & Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science & Technology, Ikoma Ciy, Nara, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology & Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Group, Biomedical Research Institute, AIST, Tsukuba City, Ibaraki, Japan
| |
Collapse
|