1
|
Jin T, Li SY, Zheng HL, Liu XD, Huang Y, Ma G, Zhao YX, Zhao XT, Yang L, Wang QH, Wang HJ, Gu C, Pan Z, Lin F. Gut microbes-spinal connection is required for itch sensation. Gut Microbes 2025; 17:2495859. [PMID: 40289281 PMCID: PMC12036491 DOI: 10.1080/19490976.2025.2495859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
The gut microbiota has been linked to a number of neurological disorders. However, it is unclear whether the gut microbiota is involved in the genesis of chronic itch, a refractory condition that afflicts patients both physically and mentally. Here, we report that depletion of gut microbiota enhances tolerance to itch in mice orally administered with antibiotics (ABX) and mice free of germ. Of note, oral gavage with Bacteroides fragilis (B. fragilis), a prominent species of the genus Bacteroides with most differential change, corrected the ABX-induced itch dysfunction through its driven metabolite acetyl-l-carnitine (ALC). Mechanistically, gut microbiota or B. fragilis depletion caused a decrease in RNA N6-methyladenosine (m6A) demethylase FTO expression in the dorsal horn and a consequent increase in RNA m6A sites in Mas-related G protein-coupled receptor F (MrgprF) mRNA, leading to decreased MRGPRF protein. The downregulation of FTO was triggered by inactivation of ETS proto-oncogene 1 (ETS1), a transcription factor that binds to the Fto promoter. These findings support a gut microbe - spinal connection in modulation of itch sensation in RNA m6A epigenetic-dependent manner and highlight a critical role of ALC in linking the altered B. fragilis and itch dysfunction.
Collapse
Affiliation(s)
- Tong Jin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Department of Pain, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Si-Yuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hong-Li Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Department of Pain, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Anesthesiology Department, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Xiao-Dan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yue Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Gan Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ya-Xuan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Tian Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Chengyong Gu
- Anesthesiology Department, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Fuqing Lin
- Department of Pain, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Papanikolaou M, Paul J, Nattkemper LA, Kirsner RS, Yosipovitch G. Prevalence and Mechanisms of Itch in Chronic Wounds: A Narrative Review. J Clin Med 2025; 14:2877. [PMID: 40363908 PMCID: PMC12072805 DOI: 10.3390/jcm14092877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Itch is a commonly experienced problem by individuals with chronic wounds and greatly compromises their quality of life. Scratching can further hinder the wound healing process. Despite this being a clinically recognized issue, our knowledge of its exact prevalence in chronic wounds of different types and the molecular mechanisms driving it is limited. The multifactorial nature of wound itch makes its characterization particularly challenging. The present review is based on a thorough PubMed search, and it aims to provide an overview of existing evidence on the epidemiology, impact, and pathophysiology of wound itch, along with general recommendations on its management. Importantly, our work highlights the merit of screening chronic wound patients for associated pruritus and incorporating anti-itch measures in mainstream wound care.
Collapse
Affiliation(s)
- Marieta Papanikolaou
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.A.N.); (G.Y.)
| | - Julia Paul
- School of Nursing, Oakland University, Rochester, MI 48309, USA;
| | - Leigh A. Nattkemper
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.A.N.); (G.Y.)
| | - Robert S. Kirsner
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Gil Yosipovitch
- Department of Dermatology, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.A.N.); (G.Y.)
| |
Collapse
|
3
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2025; 145:749-765.e8. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
4
|
Sun M, Chen ZR, Ding HJ, Feng J. Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets. Acta Pharmacol Sin 2025; 46:539-553. [PMID: 39424975 PMCID: PMC11845708 DOI: 10.1038/s41401-024-01400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Itch is an uncomfortable feeling that evokes a desire to scratch. This protective reflex can effectively eliminate parasites that invade the skin. When itchy skin becomes severe or lasts for more than six weeks, it has deleterious effects on both quality of life and productivity. Despite decades of research, the complete molecular and cellular coding of chronic itch remains elusive. This persistent condition often defies treatment, including with antihistamines, and poses a significant societal challenge. Obtaining pathophysiological insights into the generation of chronic itch is essential for understanding its mechanisms and the development of innovative anti-itch medications. In this review we provide a systematic overview of the recent advancement in itch research, alongside the progress made in drug discovery within this field. We have examined the diversity and complexity of the classification and mechanisms underlying the complex sensation of itch. We have also delved into recent advancements in the field of itch mechanism research and how these findings hold potential for the development of new itch treatment medications. But the treatment of clinical itch symptoms still faces significant challenges. Future research needs to continue to delve deeper, not only to discover more itch-related pathways but also to explore how to improve treatment efficacy through multitarget or combination therapy.
Collapse
Affiliation(s)
- Meng Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-Ru Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Afrooghe A, Ahmadi E, Babaei M, Soltani ZE, Elahi M, Shayan M, Jafari RM, Dehpour AR. Lasmiditan ameliorates serotonergic itch in mice: Possible involvement of 5-HT1F receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1535-1543. [PMID: 39115558 DOI: 10.1007/s00210-024-03329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/23/2024] [Indexed: 02/14/2025]
Abstract
Previously, some allergic conditions involving pruritus have been linked to migraine, raising the possibility that migraine and itching may be governed by similar underlying mechanisms. We aimed to investigate the efficacy of Lasmiditan, a highly selective agonist of the 5-hydroxytryptamine 1F (5-HT1F) receptor and a recently approved medication for the treatment of migraine headaches, in ameliorating serotonergic itching. Forty animals were employed in the present study (n = 40). Eight animals were randomly assigned to each of the following study groups (n = 8, in each group): (1) "Normal Saline": This group was given intradermal injections of normal saline (2) "5-HT": The animals were injected with intradermal 5-HT, which was used to induce itching. (3) "Lasmiditan 0.3", "Lasmiditan 1", and "Lasmiditan 3" groups: injected with 5-HT as well as intraperitoneal Lasmiditan at different dose levels (0.3, 1, and 3 mg/kg, respectively). Scratching behavior was recorded for 60 min, and the skin tissue of three mice was sampled at the end of the behavioral experiment to assess the levels of TLR-4, IL-31, 5-HT1F receptor, CGRP & TRPV4. In the present study, we found that Lasmiditan when administered at 1 mg/kg effectively reduced serotonin-induced itching compared to the "5-HT" group (P < 0.0001). Following the administration of Lasmiditan (1 mg/kg), the expression levels of the 5-HT1F receptor significantly increased (P < 0.01). Further, the levels of TLR-4, IL-31, CGRP & TRPV4 were substantially reduced upon the administration of Lasmiditan (1 mg/kg). We found that Lasmiditan is effective in reducing serotonergic itch in mice through its interaction with the 5-HT1F receptor in the skin tissue of mice.
Collapse
Affiliation(s)
- Arya Afrooghe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Ahmadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Babaei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Elahi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA, 02114, USA
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zeng H, Zhang Z, Zhou D, Wang R, Verkhratsky A, Nie H. Investigation of the anti-inflammatory, anti-pruritic, and analgesic effects of sophocarpine inhibiting TRP channels in a mouse model of inflammatory itch and pain. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118882. [PMID: 39366497 DOI: 10.1016/j.jep.2024.118882] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophocarpine is a bioactive compound extracted from the dried root of Sophorae Flavesentis Aiton, a plant that has been used for thousands of years for various conditions including skin itch and pain. Its antipruritic and analgesic effects are suggested in publications, while the molecular mechanisms underneath interacting with TRP channels are not understood. AIM OF THE STUDY We investigated the anti-inflammatory, antipruritic, and analgesic effects of sophocarpine in a murine inflammatory itch and pain model to elucidate the underlying mechanisms. MATERIALS AND METHODS We evaluated sophocarpine's anti-pruritic and analgesic effects by monitoring mice's scratching and wiping behaviors, and the anti-inflammatory effect by measuring psoriasis area and severity index (PASI) score. The mRNA and protein expression of TRPA1/TRPV1 was analyzed by real-time quantitative polymerase chain reaction and western blotting. We further investigated the relationship between sophocarpine and TRPA1/TRPV1 in mice administered allyl-isothiocyanate (AITC) or capsaicin and by molecular docking. RESULTS We found that sophocarpine decreased scratching bouts, wipes, and the PASI score, reduced the TNF-α and IL-1β in the skin and TRPA1 and TRPV1 in the trigeminal ganglion. Pretreatment of sophocarpine decreased AITC-induced scratching bouts and wipes and capsaicin-induced wipes. We also found potential competitive bindings between sophocarpine and AITC/capsaicin to TRPA1/TRPV1. CONCLUSIONS Sophocarpine is a potential competitive inhibitor of TRPA1 and TRPV1 channels eliciting strong anti-inflammatory, anti-pruritic, and analgesic effects, suggesting its significant therapeutic potential in treating diseases with inflammatory itch and pain.
Collapse
Affiliation(s)
- Hekun Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhe Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dan Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Ranjing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
7
|
Izuhara K, Nunomura S, Nanri Y, Honda Y. [Mechanism of transduction of itch and strategy of treatment for itch]. Nihon Yakurigaku Zasshi 2025; 160:79-85. [PMID: 40024709 DOI: 10.1254/fpj.24080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Itch is an unpleasant sense to evoke desire to scratch skin. Itch not only disturbs daily lives, but also exacerbates inflammation in case of atopic dermatitis (AD). It had been thought that both itch and pain are transduced by the same neurons; however, it is now known that neutrons transducing either itch or pain are distinct. Moreover, TRP channels, a family of calcium channels, play an important role for transducing itch as well as pain, temperature, and pressure. Development of neuroscience and molecular biology has dramatically advanced our understanding of how itch is transduced in recent years. On the other hand, development of immunology has revealed that there exist several immune types in our host defense mechanism and that type 2 immune reaction is dominant in the pathogenesis of allergic diseases including AD. Although it had been already known that type 2 cytokines contribute to the pathogenesis of AD by binding to their receptors on both immune cells and tissue resident cells, it has been recently found that several type 2 cytokines directly transduce the itch signals by binding to peripheral nerves. Due to this discovery, we can understand more deeply the itch mechanism of AD and can develop molecularly targeted drugs for AD targeting type 2 cytokines, which has dramatically changed the treatment of AD. In this review article, we describe the progress of our recent understanding of the itch mechanism and the strategy of treatment against it.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Allergy, Department of Biomolecular Sciences, Saga Medical School
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| | - Yuko Honda
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| |
Collapse
|
8
|
Yassky D, Kim BS. Mouse Models of Itch. J Invest Dermatol 2024:S0022-202X(24)02087-6. [PMID: 39320301 DOI: 10.1016/j.jid.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024]
Abstract
Murine models are vital preclinical and biological tools for studying itch. In this paper, we explore how these models have enhanced our understanding of the mechanisms underlying itch through both acute and chronic itch models. We provide detailed protocols and recommend experimental setups for specific models to guide researchers in conducting itch research. We distinguish between what constitutes a bona fide pruritogen versus a stimulus that causes pruritogen release, an acute itch model versus a chronic itch model, and how murine models can capture aspects of pruritus in human disease. Finally, we highlight how mouse models of itch have transformed our understanding and development of therapeutics for chronic pruritus in patients.
Collapse
Affiliation(s)
- Daniel Yassky
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Allen Discovery Center for Neuroimmune Interactions, New York, New York, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Allen Discovery Center for Neuroimmune Interactions, New York, New York, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
9
|
Ebrahim Soltani Z, Elahi M, Askari Rad M, Farsio S, Dehpour AR. "Niclosamide: A potential antipruritic agent by modulating serotonin pathway through metabotropic glutamate receptors (mGluRs)". Heliyon 2024; 10:e33050. [PMID: 38994087 PMCID: PMC11238049 DOI: 10.1016/j.heliyon.2024.e33050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Pruritus is an uncomfortable sensation induced by various pruritogens, including serotonin. Serotonin, acting as an inflammatory mediator, can activate a histamine-independent pathway. Consequently, many anti-pruritus medications, such as antihistamines, are not effective in adequately relieving patient symptoms. Niclosamide, an anthelmintic drug, has recently demonstrated an affinity for Metabotropic glutamate receptors (mGluRs). mGluRs are a group of receptors activated by glutamate, and they are involved in regulating neuronal excitability. In this study, we utilized mouse models of serotonergic itch and administered different doses of Niclosamide to examine the expression of mGluR1, mGluR5, and 5-HT2. The administration of 5 mg/kg Niclosamide successfully suppressed pruritus in the mice. Additionally, the levels of mGluR1, mGluR5, 5-HT2, and TRPV1 were significantly reduced. These findings suggest that Niclosamide holds promise as a potential antipruritic drug.
Collapse
Affiliation(s)
- Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University Medical Science, Tehran, Iran
| | - Mohammad Elahi
- Center for Orthopedic Trans-disciplinary Applied Research, Tehran University of Medical Science, Tehran, Iran
| | - Maziyar Askari Rad
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, School of Medicine, Tehran University Medical Science, Tehran, Iran
| | - Sara Farsio
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University Medical Science, Tehran, Iran
| |
Collapse
|
10
|
Dong ZS, Zhang XR, Xue DZ, Liu JH, Yi F, Zhang YY, Xian FY, Qiao RY, Liu BY, Zhang HL, Wang C. FGF13 enhances the function of TRPV1 by stabilizing microtubules and regulates acute and chronic itch. FASEB J 2024; 38:e23661. [PMID: 38733310 DOI: 10.1096/fj.202400096r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.
Collapse
Affiliation(s)
- Zi-Shan Dong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Xue-Rou Zhang
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Da-Zhong Xue
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Jia-Hui Liu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Fan Yi
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Yi-Yi Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Fu-Yu Xian
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Ruo-Yang Qiao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bo-Yi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Hai-Lin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Kim H, Roh D, Oh SB. EGFR Tyrosine Kinase Inhibitor Lazertinib Activates a Subset of Mouse Sensory Neurons Via TRPA1. THE JOURNAL OF PAIN 2024; 25:104435. [PMID: 38008390 DOI: 10.1016/j.jpain.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Lazertinib (JNJ-73841937, YH25448) is a mutant-selective irreversible epidermal growth factor receptor tyrosine kinase inhibitor targeting both the T790M and activating mutation while sparing wild-type epidermal growth factor receptor. Paresthesia is one of the most common adverse events seen with lazertinib treatment, suggesting that lazertinib could affect the sensory nervous system. However, the mechanism of action for this paresthesia remains unclear. In this study, we investigated whether and how lazertinib affects peripheral sensory neurons. Through Fura-2-based calcium imaging and whole-cell patch clamp recording in primary-cultured dorsal root ganglion (DRG) neurons from adult mice, we found that application of lazertinib elicits spontaneous calcium responses in a subset of small-to-medium-sized neurons. Moreover, lazertinib induced spontaneous firings and hyperexcitability in a subset of transient receptor potential vanilloid 1-lineage DRG neurons and sensitized transient receptor potential ankyrin 1 (TRPA1) response, while sparing transient receptor potential vanilloid 1 response. Lazertinib-responsive neurons were also responsive to capsaicin, further supporting that lazertinib selectively activates nociceptive neurons. Lazertinib-induced calcium responses were pharmacologically blocked with HC-030031 (TRPA1 antagonist) and MDL-12330A (adenylyl cyclase inhibitor), suggesting that lazertinib activates sensory neurons through indirect activation of TRPA1. However, unlike vincristine which produces peripheral neuropathy by axonal degeneration, lazertinib did not cause neurite fragmentation in cultured DRG neurons. Finally, intraplantar injection of lazertinib induced TRPA1-dependent pain-like behaviors in vivo. Collectively, our data suggest a direct effect of lazertinib on nociceptive sensory neurons via TRPA1 selective mechanisms, which could be a putative mechanism of lazertinib-induced sensory abnormalities in clinical patients. PERSPECTIVE: This article presents a TRPA1-dependent, lazertinib-induced activation of mouse sensory neurons in vitro and lazertinib-induced pain-like behaviors in vivo. The same mechanisms may underlie the clinical condition, suggesting that TRPA1 could be a potential therapeutic target to manage lazertinib-induced paresthesia.
Collapse
Affiliation(s)
- Hayun Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | - Dahee Roh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Seog Bae Oh
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea; Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
12
|
Gairola A, Wetten A, Dyson J. Sodium/bile acid co-transporter inhibitors currently in preclinical or early clinical development for the treatment of primary biliary cholangitis. Expert Opin Investig Drugs 2024; 33:485-495. [PMID: 38613839 DOI: 10.1080/13543784.2024.2343789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Pruritus is common and often undertreated in patients with primary biliary cholangitis (PBC). Existing treatments largely have an aging and low-quality evidence base, and studies included only small numbers of patients. More recent data that has added to our understanding of pruritus treatments has often come from clinical trials where itching was a secondary outcome measure in a trial designed primarily to assess disease-modifying agents. This area represents an unmet clinical need in the management of PBC. AREAS COVERED In this manuscript, we first summarize the proposed mechanisms for PBC-related pruritus and the current treatment paradigm. We then present an appraisal of the existing pre-clinical and clinical evidence for the use of ileal bile acid transporter inhibitors (IBATis) for this indication in PBC patients. EXPERT OPINION Evidence for the efficacy of IBATis is promising but limited by the currently available volume of data. Furthermore, larger clinical trials with long-term data on efficacy, safety and tolerability are needed to confirm the role of using IBATis in clinical practice and their place on the itch treatment ladder. Additional focus should also be given to exploring the disease-modifying potential of IBATis in PBC.
Collapse
Affiliation(s)
- Abhishek Gairola
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Aaron Wetten
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Jessica Dyson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
13
|
Yin C, Liu B, Dong Z, Shi S, Peng C, Pan Y, Bi X, Nie H, Zhang Y, Tai Y, Hu Q, Wang X, Shao X, An H, Fang J, Wang C, Liu B. CXCL5 activates CXCR2 in nociceptive sensory neurons to drive joint pain and inflammation in experimental gouty arthritis. Nat Commun 2024; 15:3263. [PMID: 38627393 PMCID: PMC11021482 DOI: 10.1038/s41467-024-47640-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Gouty arthritis evokes joint pain and inflammation. Mechanisms driving gout pain and inflammation remain incompletely understood. Here we show that CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to drive gout pain and inflammation. CXCL5 expression was increased in ankle joints of gout arthritis model mice, whereas CXCR2 showed expression in joint-innervating sensory neurons. CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to trigger TRPA1 activation, resulting in hyperexcitability and pain. Neuronal CXCR2 coordinates with neutrophilic CXCR2 to contribute to CXCL5-induced neutrophil chemotaxis via triggering CGRP- and substance P-mediated vasodilation and plasma extravasation. Neuronal Cxcr2 deletion ameliorates joint pain, neutrophil infiltration and gait impairment in model mice. We confirmed CXCR2 expression in human dorsal root ganglion neurons and CXCL5 level upregulation in serum from male patients with gouty arthritis. Our study demonstrates CXCL5-neuronal CXCR2-TRPA1 axis contributes to gouty arthritis pain, neutrophil influx and inflammation that expands our knowledge of immunomodulation capability of nociceptive sensory neurons.
Collapse
Affiliation(s)
- Chengyu Yin
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zishan Dong
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Sai Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Chenxing Peng
- Department of Immunology and Rheumatology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yushuang Pan
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaochen Bi
- Department of Human Anatomy, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huimin Nie
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunwen Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qimiao Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Wang
- Diagnostic Center of Infections, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
14
|
Qu B, Zhang XE, Feng H, Yan B, Bai Y, Liu S, He Y. Microbial perspective on the skin-gut axis and atopic dermatitis. Open Life Sci 2024; 19:20220782. [PMID: 38623584 PMCID: PMC11017189 DOI: 10.1515/biol-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 04/17/2024] Open
Abstract
Atopic dermatitis (AD) is a relapsing inflammatory skin condition that has become a global health issue with complex etiology and mounting prevalence. The association of AD with skin and gut microbiota has been revealed by virtue of the continuous development of sequencing technology and genomics analysis. Also, the gut-brain-skin axis and its mutual crosstalk mechanisms have been gradually verified. Accordingly, the microbiota-skin-gut axis also plays an important role in allergic skin inflammation. Herein, we reviewed the relationship between the microbiota-skin-gut axis and AD, explored the underlying signaling molecules and potential pathways, and focused on the potential mechanisms of probiotics, antimicrobial peptides (AMPs), coagulase-negative staphylococci transplantation, fecal microbiota transplantation, AMPs, and addition of essential fatty acids in alleviating AD, with the aim to provide a new perspective for targeting microbiota in the treatment of allergic skin inflammation.
Collapse
Affiliation(s)
- Bo Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Xue-er Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Bonan Yan
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yingchun Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Shanlin Liu
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yuhua He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| |
Collapse
|
15
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu IM, Ginty DD, Sharma N. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 2024; 187:1508-1526.e16. [PMID: 38442711 PMCID: PMC10947841 DOI: 10.1016/j.cell.2024.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Pawlak
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
16
|
Kaneko T, Oura A, Imai Y, Kusumoto-Yoshida I, Kanekura T, Okuno H, Kuwaki T, Kashiwadani H. Orexin neurons play contrasting roles in itch and pain neural processing via projecting to the periaqueductal gray. Commun Biol 2024; 7:290. [PMID: 38459114 PMCID: PMC10923787 DOI: 10.1038/s42003-024-05997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Pain and itch are recognized as antagonistically regulated sensations; pain suppresses itch, whilst pain inhibition enhances itch. The neural mechanisms at the central nervous system (CNS) underlying these pain-itch interactions still need to be explored. Here, we revealed the contrasting role of orexin-producing neurons (ORX neurons) in the lateral hypothalamus (LH), which suppresses pain while enhancing itch neural processing, by applying optogenetics to the acute pruritus and pain model. We also revealed that the circuit of ORX neurons from LH to periaqueductal gray regions served in the contrasting modulation of itch and pain processing using optogenetic terminal inhibition techniques. Additionally, by using an atopic dermatitis model, we confirmed the involvement of ORX neurons in regulating chronic itch processing, which could lead to a novel therapeutic target for persistent pruritus in clinical settings. Our findings provide new insight into the mechanism of antagonistic regulation between pain and itch in the CNS.
Collapse
Affiliation(s)
- Tatsuroh Kaneko
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Asuka Oura
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiki Imai
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuro Kanekura
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Okuno
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
17
|
Wang X, Fu SQ, Yuan X, Yu F, Ji Q, Tang HW, Li RK, Huang S, Huang PQ, Qin WT, Zuo H, Du C, Yao LL, Li H, Li J, Li DX, Yang Y, Xiao SY, Tulamaiti A, Wang XF, Dai CH, Zhang X, Jiang SH, Hu LP, Zhang XL, Zhang ZG. A GAPDH serotonylation system couples CD8 + T cell glycolytic metabolism to antitumor immunity. Mol Cell 2024; 84:760-775.e7. [PMID: 38215751 DOI: 10.1016/j.molcel.2023.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/04/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.
Collapse
Affiliation(s)
- Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China.
| | - Sheng-Qiao Fu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Qian Ji
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Hao-Wen Tang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Rong-Kun Li
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Shan Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Pei-Qi Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wei-Ting Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Hao Zuo
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Chang Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Lin-Li Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Hui Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Dong-Xue Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shu-Yu Xiao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Aziguli Tulamaiti
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xue-Feng Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Chun-Hua Dai
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Li-Peng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Xue-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| |
Collapse
|
18
|
Okutani H, Lo Vecchio S, Arendt-Nielsen L. Mechanisms and treatment of opioid-induced pruritus: Peripheral and central pathways. Eur J Pain 2024; 28:214-230. [PMID: 37650457 DOI: 10.1002/ejp.2180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Pruritus (also known as itch) is defined as an unpleasant and irritating sensation of the skin that provokes an urge to scratch or rub. It is well known that opioid administration can cause pruritus, which is paradoxical as itch and pain share overlapping sensory pathways. Because opioids inhibit pain but can cause itching. Significant progress has been made to improve our understanding of the fundamental neurobiology of itch; however, much remains unknown about the mechanisms of opioid-induced pruritus. The prevention and treatment of opioid-induced pruritus remains a challenge in the field of pain management. The objective of this narrative review is to present and discuss the current body of literature and summarize the current understanding of the mechanisms underlying opioid-induced pruritus, and its relationship to analgesia, and possible treatment options. RESULTS The incidence of opioid-induced pruritus differs with different opioids and routes of administration, and the various mechanisms can be broadly divided into peripheral and central. Especially central mechanisms are intricate, even at the level of the spinal dorsal horn. There is evidence that opioid receptor antagonists and mixed agonist and antagonists, especially μ-opioid antagonists and κ-opioid agonists, are effective in relieving opioid-induced pruritus. Various treatments have been used for opioid-induced pruritus; however, most of them are controversial and have conflicting results. CONCLUSION The use of a multimodal analgesic treatment regimen combined with a mixed antagonist and κ agonists, especially μ-opioid antagonists, and κ-opioid agonists, seems to be the current best treatment modality for the management of opioid-induced pruritus and pain. SIGNIFICANCE Opioids remain the gold standard for the treatment of moderate to severe acute pain as well as cancer pain. It is well known that opioid-induced pruritus often does not respond to regular antipruritic treatment, thereby posing a challenge to clinicians in the field of pain management. We believe that our review makes a significant contribution to the literature, as studies on the mechanisms of opioid-induced pruritus and effective management strategies are crucial for the management of these patients.
Collapse
Affiliation(s)
- Hiroai Okutani
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
- Department of Anesthesiology and Pain Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Silvia Lo Vecchio
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
19
|
Bhat L, Bhat SR, Ramakrishnan A, Amirthalingam M. Brilaroxazine lipogel displays antipsoriatic activity in imiquimod-induced mouse model. Skin Res Technol 2024; 30:e13606. [PMID: 38363081 PMCID: PMC10870799 DOI: 10.1111/srt.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Dopamine (D) and serotonin (5-HT) pathways contribute to psoriasis pathobiology. Disruptions incite increased inflammatory mediators, keratinocyte activation and deterioration, and worsening symptoms. Brilaroxazine (RP5063), which displays potent high binding affinity to D2/3/4 and 5-HT1A/2A/2B/7 receptors and a moderate affinity to serotonin transporter (SERT), may affect the underlying psoriasis pathology. METHODS An imiquimod-induced psoriatic mouse model (BALB/c) evaluated brilaroxazine's activity in a topical liposomal-aqueous gel (Lipogel) formulation. Two of the three groups (n = 6 per) underwent induction with 5% imiquimod, and one group received topical brilaroxazine Lipogel (Days 1-11). Assessments included (1) Psoriasis Area and Severity Index (PASI) scores (Days 1-12), skin histology for Baker score based on H&E stained tissue (Day 12), and serum blood collection for serum cytokine analysis (Day 12). One-way ANOVA followed by post hoc Dunnett's t-test evaluated significance (p < 0.05). RESULTS Imiquimod-induced animal Baker scores were higher versus Sham non-induced control's results (p < 0.001). Brilaroxazine Lipogel had significantly (p = 0.003) lower Baker scores versus the induced Psoriasis group. Brilaroxazine PASI scores were lower (p = 0.03) versus the induced Psoriasis group (Days 3-12), with the greatest effect in the last 3 days. The induced Psoriasis group showed higher Ki-67 and TGF-β levels versus non-induced Sham controls (p = 0.001). The brilaroxazine Lipogel group displayed lower levels of these cytokines versus the induced Psoriasis group, Ki-67 (p = 0.001) and TGF-β (p = 0.008), and no difference in TNF-α levels versus Sham non-induced controls. CONCLUSION Brilaroxazine Lipogel displayed significant activity in imiquimod-induced psoriatic animals, offering a novel therapeutic strategy.
Collapse
|
20
|
Go EJ, Lee JY, Kim YH, Park CK. Site-Specific Transient Receptor Potential Channel Mechanisms and Their Characteristics for Targeted Chronic Itch Treatment. Biomolecules 2024; 14:107. [PMID: 38254707 PMCID: PMC10813675 DOI: 10.3390/biom14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic itch is a debilitating condition with limited treatment options, severely affecting quality of life. The identification of pruriceptors has sparked a growing interest in the therapeutic potential of TRP channels in the context of itch. In this regard, we provided a comprehensive overview of the site-specific expression of TRP channels and their associated functions in response to a range of pruritogens. Although several potent antipruritic compounds that target specific TRP channels have been developed and have demonstrated efficacy in various chronic itch conditions through experimental means, a more thorough understanding of the potential for adverse effects or interactions with other TRP channels or GPCRs is necessary to develop novel and selective therapeutics that target TRP channels for treating chronic itch. This review focuses on the mechanism of itch associated with TRP channels at specific sites, from the skin to the sensory neuron, with the aim of suggesting specific therapeutic targets for treating this condition.
Collapse
Affiliation(s)
- Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea;
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| |
Collapse
|
21
|
Yang H, Liu YR, Song ZX, Tang ZS, Jia AL, Wang MG, Duan JA. Study on the underlying mechanism of Poria in intervention of arrhythmia zebrafish by integrating metabolomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155143. [PMID: 37890443 DOI: 10.1016/j.phymed.2023.155143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Poria is an herb with both medicinal and dietary application. It has been used in various traditional Chinese patent medicines and medicinal decoctions for the treatment of arrhythmia. However, the specific mechanisms involved in the antiarrhythmic effects of Poria have, until now, remained unknown. PURPOSE This present study sought to explore the potential compounds and mechanisms by which Poria ameliorates BaCl2-induced arrhythmia. METHOD We initiated by using network pharmacology to predict probable components, targets, and associated signaling pathways before optimizing the extraction process of Poria. We then applied Poria extract to a zebrafish model of BaCl2-induced arrhythmia. We combined network pharmacology and untargeted metabolomic analysis to predict the likely signaling and metabolic pathways governed by Poria. Finally, we verified putative mRNA and metabolite targets of Poria involved in the intervention of arrhythmia by PCR, molecular docking, enzymatic inhibition and targeted metabolomics. RESULTS We found that triterpenoids may be the main components of Poria responsible for its effects on arrhythmia, and that the optimal extraction process for its water extract is 9 volumes of water with the 7.5 h first extraction period, and the second extraction period of 1.5 h. Through experimentation, we have found that the water extract of Poria can interfere with BaCl2 induced arrhythmia in zebrafish by significantly increasing the heart rate, reducing the SV-BA distance, and pericardial area, and the degree of cardiomyocyte apoptosis in zebrafish. In addition, PCR validation revealed that Poria can regulate the calcium signaling pathway by upregulating the gene expression levels of ADRB1, HTR7, CALMB1, and PPP3CA. Meanwhile, through molecular docking and enzyme activity inhibition, it was found that the compounds in Poria can bind to ADRB1, HTR7, CALMB1, and PPP3CA, respectively. Targeted metabolism confirmed that Poria can downregulate the synthesis of cAMP in the calcium signaling pathway, as well as the synthesis of valine and isoleucine in valine, leucine, and isoleucine biosynthesis. CONCLUSION Overall, our study indicates that Poria exerts its antiarrhythmic effect through regulating the calcium signaling pathway and valine, leucine, and isoleucine biosynthesis. Our findings not only establish a mechanistic framework for elucidating the antiarrhythmic effects of Chinese patent medicine containing Poria, but also provide a medicinal basis for the study of its dual use as medicine and food.
Collapse
Affiliation(s)
- Hui Yang
- Changchun University of Chinese Medicine, Changchun 130117, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Yan-Ru Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Zhong-Xing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Zhi-Shu Tang
- Changchun University of Chinese Medicine, Changchun 130117, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China; China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Ai-Ling Jia
- Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Ming-Geng Wang
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong 274000, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
22
|
Yadav AS, Singh S, Randhawa J, Akuma CM, Akuma O, Chaudhry HA. Desvenlafaxine-Triggered Acneiform Eruptions on the Hand: A Compelling Case Report. Cureus 2024; 16:e52185. [PMID: 38347994 PMCID: PMC10859240 DOI: 10.7759/cureus.52185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
A 45-year-old male developed a skin eruption after starting Desvenlafaxine for depressive symptoms associated with schizophreniform disorder. The patient developed a rash on the hand, hyperpigmentation, and itching, which resolved after discontinuing the medication. The Naranjo score suggested a probable link between desvenlafaxine and the skin reaction. Stable vital signs and normal labs supported this conclusion. The case underscores the importance of recognizing and reporting adverse drug reactions, even with generally safe medications like desvenlafaxine. Further research with larger samples is needed to explore this relationship in more depth.
Collapse
Affiliation(s)
- Anupam S Yadav
- Psychiatry, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, IND
| | - Sonali Singh
- Pediatric, King George's Medical University, Lucknow, IND
| | - Jaismeen Randhawa
- Psychiatry, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, IND
| | - Chinaza M Akuma
- Public Health, Chamberlain University, College of Health Professions, Chicago, USA
| | - Ogbonnaya Akuma
- Internal Medicine, Ebonyi State University, Abakaliki Nigeria, Abakaliki, NGA
| | - Hassan A Chaudhry
- Biological Sciences, Temple University, Philadelphia, USA
- Medicine, Medical University of Lublin, Lublin, POL
- Interdisciplinary Medicine, Independent Research Scholar, Philadelphia, USA
| |
Collapse
|
23
|
Prajapati JN, Reddy P, Barik A. Neural pathways that compel us to scratch an itch. J Biosci 2024; 49:70. [PMID: 38973668 PMCID: PMC7617712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Itch is a unique sensory experience that is responded to by scratching. How pruritogens, which are mechanical and chemical stimuli with the potential to cause itch, engage specific pathways in the peripheral and central nervous system has been a topic of intense investigation over the last few years. Studies employing recently developed molecular, physiological, and behavioral techniques have delineated the dedicated mechanisms that transmit itch information to the brain. This review outlines the genetically defined and evolutionary conserved circuits for itch ranging from the skin-innervating peripheral neurons to the cortical neurons that drive scratching. Moreover, scratch suppression of itch is attributed to the concurrent activation of pain and itch pathways. Hence, we discuss the similarities between circuits driving pain and itch.
Collapse
Affiliation(s)
| | - Prannay Reddy
- Center for Neuroscience, Indian Institute of Science, Bengaluru560012, India
| | - Arnab Barik
- Center for Neuroscience, Indian Institute of Science, Bengaluru560012, India
| |
Collapse
|
24
|
Tsagareli MG, Follansbee T, Iodi Carstens M, Carstens E. Targeting Transient Receptor Potential (TRP) Channels, Mas-Related G-Protein-Coupled Receptors (Mrgprs), and Protease-Activated Receptors (PARs) to Relieve Itch. Pharmaceuticals (Basel) 2023; 16:1707. [PMID: 38139833 PMCID: PMC10748146 DOI: 10.3390/ph16121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Itch (pruritus) is a sensation in the skin that provokes the desire to scratch. The sensation of itch is mediated through a subclass of primary afferent sensory neurons, termed pruriceptors, which express molecular receptors that are activated by itch-evoking ligands. Also expressed in pruriceptors are several types of Transient Receptor Potential (TRP) channels. TRP channels are a diverse class of cation channels that are responsive to various somatosensory stimuli like touch, pain, itch, and temperature. In pruriceptors, TRP channels can be activated through intracellular signaling cascades initiated by pruritogen receptors and underly neuronal activation. In this review, we discuss the role of TRP channels TRPA1, TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPC3/4 in acute and chronic pruritus. Since these channels often mediate itch in association with pruritogen receptors, we also discuss Mas-related G-protein-coupled receptors (Mrgprs) and protease-activated receptors (PARs). Additionally, we cover the exciting therapeutic targets amongst the TRP family, as well as Mrgprs and PARs for the treatment of pruritus.
Collapse
Affiliation(s)
- Merab G. Tsagareli
- Laboratory of Pain and Analgesia, Ivane Beritashvili Center for Experimental Biomedicine, 0160 Tbilisi, Georgia;
| | - Taylor Follansbee
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| |
Collapse
|
25
|
Xu ZH, Zhang JC, Chen K, Liu X, Li XZ, Yuan M, Wang Y, Tian JY. Mechanisms of the PD-1/PD-L1 pathway in itch: From acute itch model establishment to the role in chronic itch in mouse. Eur J Pharmacol 2023; 960:176128. [PMID: 37866747 DOI: 10.1016/j.ejphar.2023.176128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death receptor/ligand 1 (PD-1/PD-L1) blockade therapy for various cancers induces itch. However, few studies have evaluated the mechanism underlying PD-1/PD-L1 inhibitor-induced itch. This study aimed to establish and evaluate a mouse model of acute itch induced by PD-1/PD-L1 inhibitors and to explore the role of the PD-1/PD-L1 pathway in chronic itch. The intradermal injection of the PD-1/PD-L1 small molecule inhibitors, or anti-PD-1/PD-L1 antibodies in the nape of the neck in the mice elicited intense spontaneous scratches. The model was evaluated using pharmacological methods. The number of scratches was reduced by naloxone but not by antihistamines or the transient receptor potential (TRP) channel inhibitor. Moreover, the PD-1 receptor was detected in the spinal cord of the mouse models of chronic itch that exhibited acetone, diethyl ether, and water (AEW)-induced dry skin, imiquimod-induced psoriasis, and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced allergic contact dermatitis. Intrathecal PD-L1 (1 μg, 4 times a week for 1 week) suppressed the activation of the microglia in the spinal dorsal horn to relieve the chronic itch that was elicited by imiquimod-induced psoriasis and DNFB-induced allergic contact dermatitis. Although the activation of the microglia in the spinal dorsal horn was not detected in the AEW-treated mice, intrathecal PD-L1 still reduced the number of scratches that were elicited by AEW. Our findings suggest that histamine receptor inhibitors or TRP channel inhibitors have limited effects on PD-1/PD-L1 inhibitor-induced itch and that spinal PD-1 is important for the spinal activation of the microglia, which may underlie chronic itch.
Collapse
Affiliation(s)
- Zhe-Hao Xu
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China.
| | - Jing-Cheng Zhang
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, China
| | - Ke Chen
- Department of General Surgery, The Frist Affiliated of Anhui Medical University, China
| | - Xuan Liu
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Xian-Zhi Li
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Ming Yuan
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Jing-Yu Tian
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Liu X, Zheng Y, Wang Q, Zhao L, Zhang Z, Wang H, Yang Y, Song N, Xiang J, Shen Y, Fan S. Artificially reprogrammed stem cells deliver transcytosable nanocomplexes for improved spinal cord repair. J Control Release 2023; 364:601-617. [PMID: 37926244 DOI: 10.1016/j.jconrel.2023.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Stem cell transplantation holds great promise for restoring function after spinal cord injury (SCI), but its therapeutic efficacy heavily depends on the innate capabilities of the cells and the microenvironment at the lesion site. Herein, a potent cell therapeutic (NCs@SCs) is engineered by artificially reprogramming bone marrow mesenchymal stem cells (BMSCs) with oxidation-responsive transcytosable gene-delivery nanocomplexes (NCs), which endows cells with robust oxidative stress resistance and improved cytokine secretion. NCs@SCs can accumulate in the injured spinal cord after intravenous administration via chemotaxis and boost successive transcytosis to deliver NCs to neurons, augmenting ciliary neurotrophic factor (CNTF) production in both BMSCs and neurons in response to elevated ROS levels. Furthermore, NCs@SCs can actively sense and eliminate ROS and re-educate recruited M1-like macrophages into the anti-inflammatory M2 phenotype via a paracrine pathway, ultimately reshaping the inflammatory microenvironment. Synergistically, NCs@SCs exhibit durable survival and provide neuroprotection against secondary damage, enabling significant locomotor function recovery in SCI rats. Transcriptome analysis reveals that regulation of the ROS/MAPK signaling pathway is involved in SCI therapy by NCs@SCs. This study presents a nanomaterial-mediated cell-reprogramming approach for developing live cell therapeutics, showing significant potential in the treatment of SCI and other neuro-injury disorders.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yufei Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Lan Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaowei Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Nan Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China.
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
27
|
Yang YY, Du LX, Zhu JY, Yi T, Yang YC, Qiao Z, Maoying QL, Chu YX, Wang YQ, Mi WL. Antipruritic effects of geraniol on acute and chronic itch via modulating spinal GABA/GRPR signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154969. [PMID: 37516088 DOI: 10.1016/j.phymed.2023.154969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND PURPOSE Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.
Collapse
Affiliation(s)
- Ya-Yue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Xia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Yu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Yi
- Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ya-Chen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Maoying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Zhong H, Wang Y, Wang Y, Li H. Effects of 0.15% ropivacaine alone and combination with sufentanil on epidural labor analgesia and adverse reactions. Afr Health Sci 2023; 23:569-575. [PMID: 38357150 PMCID: PMC10862613 DOI: 10.4314/ahs.v23i3.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Objective The aim of this study was to compare the impacts of 0.15% ropivacaine alone and 0.15% ropivacaine combined with sufentanil on epidural labor analgesia. Methods A total of 297 eligible primiparae were randomly divided into group A (n=149, 0.15% ropivacaine + sufentanil) and group B (n=148, 0.15% ropivacaine). Visual analogue scale (VAS) scores prior to analgesia and 20 min following epidural medication, the maximum VAS score during labor, dosage of analgesic drugs, modified Bromage score, satisfaction degree, labor duration, delivery mode, 1-min and 5-min Apgar scores of newborns, adverse reactions during analgesia, and fever during labor were recorded. Results Group A and B had similar VAS scores 20 min following epidural medication and maximum score during labor (P>0.05), which significantly fell compared with those before labor analgesia (P<0.05). The occurrence rates of nausea and vomiting were of significant difference (P<0.05). Conclusion 0.15% ropivacaine alone achieves a comparable epidural labor analgesia effect to that of 0.15% ropivacaine + 0.05 µg/mL sufentanil on primiparae.
Collapse
Affiliation(s)
- Huanhui Zhong
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, Hunan Province, China
| | - Yongdong Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, Hunan Province, China
| | - Yiqun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, Hunan Province, China
| | - Heng Li
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, Hunan Province, China
| |
Collapse
|
29
|
Ren X, Liu S, Virlogeux A, Kang SJ, Brusch J, Liu Y, Dymecki SM, Han S, Goulding M, Acton D. Identification of an essential spinoparabrachial pathway for mechanical itch. Neuron 2023; 111:1812-1829.e6. [PMID: 37023756 PMCID: PMC10446756 DOI: 10.1016/j.neuron.2023.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/31/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.
Collapse
Affiliation(s)
- Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Shijia Liu
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Amandine Virlogeux
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jeremy Brusch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Yuanyuan Liu
- NIDCR, National Institute of Health, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Dai HD, Qiu F, Jackson K, Fruttiger M, Rizzo WB. Untargeted Metabolomic Analysis of Sjögren-Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites 2023; 13:682. [PMID: 37367841 DOI: 10.3390/metabo13060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inherited neurocutaneous disease characterized by ichthyosis, spastic diplegia or tetraplegia, intellectual disability and a distinctive retinopathy. SLS is caused by bi-allelic mutations in ALDH3A2, which codes for fatty aldehyde dehydrogenase (FALDH) and results in abnormal lipid metabolism. The biochemical abnormalities in SLS are not completely known, and the pathogenic mechanisms leading to symptoms are still unclear. To search for pathways that are perturbed in SLS, we performed untargeted metabolomic screening in 20 SLS subjects along with age- and sex-matched controls. Of 823 identified metabolites in plasma, 121 (14.7%) quantitatively differed in the overall SLS cohort from controls; 77 metabolites were decreased and 44 increased. Pathway analysis pointed to disrupted metabolism of sphingolipids, sterols, bile acids, glycogen, purines and certain amino acids such as tryptophan, aspartate and phenylalanine. Random forest analysis identified a unique metabolomic profile that had a predictive accuracy of 100% for discriminating SLS from controls. These results provide new insight into the abnormal biochemical pathways that likely contribute to disease in SLS and may constitute a biomarker panel for diagnosis and future therapeutic studies.
Collapse
Affiliation(s)
- Hongying Daisy Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Children's Hospital & Medical Center, Omaha, NE 68114, USA
| |
Collapse
|
31
|
Ueda Y, Uta D, Furue H, Ohtubo Y. An electrophysiological method for evaluation of topical antipruritic drugs on itch-related neuronal activities in the spinal cord in hairless mice. Eur J Pharmacol 2023; 952:175798. [PMID: 37207968 DOI: 10.1016/j.ejphar.2023.175798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
To evaluate the effects of antipruritic drugs, it is important to determine whether the neural responses induced by physiological itch stimuli are suppressed. Although there are several behavioral assessments for topical antipruritic drugs applied to the skin, there are few established methods at neuronal levels using in vivo electrophysiological recordings for predicting local efficacy of antipruritic drugs for cutaneous application. To establish an assessment of topical antipruritic drugs applied to skin using in vivo extracellular recording from neurons in the superficial dorsal horn, we examined the relationships between itch-related biting behavior and spinal neuronal responses elicited by intradermal injection of pruritogen serotonin (5-HT) in hairless mice. The efficacy of topical occlusive application of local anesthetics was also evaluated by an in vivo electrophysiological method. 5-HT significantly increased the firing frequency in spinal neurons. The spinal firing frequency time course was similar to that of the biting behavior after the 5-HT injections. The 5-HT-induced spinal responses were significantly decreased by topical occlusive application of lidocaine or a Nav 1.7 channel blocker to the calf. The intradermal 5-HT injection-induced spinal neuronal responses appeared to be suppressed by topical occlusive application of lidocaine or a Nav1.7 channel blocker. The electrophysiological method for evaluating topical antipruritic drugs may be beneficial in assessing local effects on the skin.
Collapse
Affiliation(s)
- Yuhki Ueda
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan; Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Yoshitaka Ohtubo
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan.
| |
Collapse
|
32
|
Zhang TT, Guo SS, Wang HY, Jing Q, Yi X, Hu ZH, Yu XR, Xu TL, Liu MG, Zhao X. An Anterior Cingulate Cortex-to-Midbrain Projection Controls Chronic Itch in Mice. Neurosci Bull 2023; 39:793-807. [PMID: 36528690 PMCID: PMC10169993 DOI: 10.1007/s12264-022-00996-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/26/2022] [Indexed: 12/23/2022] Open
Abstract
Itch is an unpleasant sensation that provokes the desire to scratch. While acute itch serves as a protective system to warn the body of external irritating agents, chronic itch is a debilitating but poorly-treated clinical disease leading to repetitive scratching and skin lesions. However, the neural mechanisms underlying the pathophysiology of chronic itch remain mysterious. Here, we identified a cell type-dependent role of the anterior cingulate cortex (ACC) in controlling chronic itch-related excessive scratching behaviors in mice. Moreover, we delineated a neural circuit originating from excitatory neurons of the ACC to the ventral tegmental area (VTA) that was critically involved in chronic itch. Furthermore, we demonstrate that the ACC→VTA circuit also selectively modulated histaminergic acute itch. Finally, the ACC neurons were shown to predominantly innervate the non-dopaminergic neurons of the VTA. Taken together, our findings uncover a cortex-midbrain circuit for chronic itch-evoked scratching behaviors and shed novel insights on therapeutic intervention.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Su-Shan Guo
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui-Ying Wang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Qi Jing
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xin Yi
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zi-Han Hu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xin-Ren Yu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tian-Le Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming-Gang Liu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
33
|
Liu AW, Gillis JE, Sumpter TL, Kaplan DH. Neuroimmune interactions in atopic and allergic contact dermatitis. J Allergy Clin Immunol 2023; 151:1169-1177. [PMID: 37149370 PMCID: PMC10167546 DOI: 10.1016/j.jaci.2023.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
The skin is a barrier organ populated by many types of skin-resident immune cells and sensory neurons. It has become increasingly appreciated that neuroimmune interactions are an important component of inflammatory diseases such as atopic dermatitis and allergic contact dermatitis. Neuropeptides secreted from nerve terminals play an important role in mediating cutaneous immune cell function, and soluble mediators derived from immune cells interact with neurons to induce itch. In this review article, we will explore emerging research describing neuronal effector functions on skin immune cells in mouse models of atopic and contact dermatitis. We will also discuss the contributions of both specific neuronal subsets and secreted immune factors to itch induction and the associated inflammatory processes. Finally, we will explore how treatment strategies have emerged around these findings and discuss the relationship between scratching and dermatitis.
Collapse
Affiliation(s)
- Andrew W Liu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Jacob E Gillis
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
34
|
Lu P, Zhao Y, Xie Z, Zhou H, Dong X, Wu GF, Kim BS, Feng J, Hu H. MrgprA3-expressing pruriceptors drive pruritogen-induced alloknesis through mechanosensitive Piezo2 channel. Cell Rep 2023; 42:112283. [PMID: 36961815 PMCID: PMC10514240 DOI: 10.1016/j.celrep.2023.112283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/29/2023] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
Although touch and itch are coded by distinct neuronal populations, light touch also provokes itch in the presence of exogenous pruritogens, resulting in a phenomenon called alloknesis. However, the cellular and molecular mechanisms underlying the initiation of pruritogen-induced mechanical itch sensitization are poorly understood. Here, we show that intradermal injections of histamine or chloroquine (CQ) provoke alloknesis through activation of TRPV1- and MrgprA3-expressing prurioceptors, and functional ablation of these neurons reverses pruritogen-induced alloknesis. Moreover, genetic ablation of mechanosensitive Piezo2 channel function from MrgprA3-expressing prurioceptors also dampens pruritogen-induced alloknesis. Mechanistically, histamine and CQ sensitize Piezo2 channel function, at least in part, through activation of the phospholipase C (PLC) and protein kinase C-δ (PKCδ) signaling. Collectively, our data find a TRPV1+/MrgprA3+ prurioceptor-Piezo2 signaling axis in the initiation of pruritogen-induced mechanical itch sensitization in the skin.
Collapse
Affiliation(s)
- Ping Lu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Huan Zhou
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu I, Ginty DD, Sharma N. A DRG genetic toolkit reveals molecular, morphological, and functional diversity of somatosensory neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537932. [PMID: 37131664 PMCID: PMC10153270 DOI: 10.1101/2023.04.22.537932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| |
Collapse
|
36
|
Koumaki D, Gregoriou S, Evangelou G, Krasagakis K. Pruritogenic Mediators and New Antipruritic Drugs in Atopic Dermatitis. J Clin Med 2023; 12:2091. [PMID: 36983094 PMCID: PMC10054239 DOI: 10.3390/jcm12062091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Atopic dermatitis (AD) is a common highly pruritic chronic inflammatory skin disorder affecting 5-20% of children worldwide, while the prevalence in adults varies from 7 to 10%. Patients with AD experience intense pruritus that could lead to sleep disturbance and impaired quality of life. Here, we analyze the pathophysiology of itchiness in AD. We extensively review the histamine-dependent and histamine-independent pruritogens. Several receptors, substance P, secreted molecules, chemokines, and cytokines are involved as mediators in chronic itch. We also, summarize the new emerging antipruritic drugs in atopic dermatitis.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stamatios Gregoriou
- Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School of Athens, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - George Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | |
Collapse
|
37
|
Bardoni R. Serotonergic 5-HT 7 Receptors as Modulators of the Nociceptive System. Curr Neuropharmacol 2023; 21:1548-1557. [PMID: 36453491 PMCID: PMC10472814 DOI: 10.2174/1570159x21666221129101800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022] Open
Abstract
The biogenic amine serotonin modulates pain perception by activating several types of serotonergic receptors, including the 5-HT7 type. These receptors are widely expressed along the pain axis, both peripherally, on primary nociceptors, and centrally, in the spinal cord and the brain. The role of 5-HT7 receptors in modulating pain has been explored in vivo in different models of inflammatory and neuropathic pain. While most studies have reported an antinociceptive effect of 5-HT7 receptor activation, some authors have suggested a pronociceptive action. Differences in pain models, animal species and gender, receptor types, agonists, and route of administration could explain these discrepancies. In this mini-review, some of the main findings concerning the function of 5-HT7 receptors in the pain system have been presented. The expression patterns of the receptors at the different levels of the pain axis, along with the cellular mechanisms involved in their activity, have been described. Alterations in receptor expression and/or function in different pain models and the role of 5-HT7 receptors in controlling pain transmission have also been discussed. Finally, some of the future perspectives in this field have been outlined.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena, and Reggio Emilia, Modena, Italy
| |
Collapse
|
38
|
Ahmad MZ, Mohammed AA, Algahtani MS, Mishra A, Ahmad J. Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope. J Funct Biomater 2022; 14:jfb14010019. [PMID: 36662067 PMCID: PMC9867016 DOI: 10.3390/jfb14010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a typical dermal condition that has been anticipated since prehistoric times when it was mistakenly implicit in being a variant of leprosy. It is an atypical organ-specific autoimmune disorder, which is triggered by the activation of T-cells and/or B-cells. Until now, the pathophysiology of this disease is not completely explicated and still, many research investigations are ongoing. Different approaches have been investigated to treat this dreadful skin disease using various anti-psoriatic drugs of different modes of action through smart drug-delivery systems. Nevertheless, there is no ideal therapy for a complete cure of psoriasis owing to the dearth of an ideal drug-delivery system for anti-psoriatic drugs. The conventional pharmacotherapy approaches for the treatment of psoriasis demand various classes of anti-psoriatic drugs with optimum benefit/risk ratio and insignificant untoward effects. The advancement in nanoscale drug delivery had a great impact on the establishment of a nanomedicine-based therapy for better management of psoriasis in recent times. Nanodrug carriers are exploited to design and develop nanomedicine-based therapy for psoriasis. It has a promising future in the improvement of the therapeutic efficacy of conventional anti-psoriatic drugs. The present manuscript aims to discuss the pathophysiology, conventional pharmacotherapy, and contemporary research in the area of nanoscale topical drug delivery systems for better management of psoriasis including the significance of targeted pharmacotherapy in psoriasis.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
- Correspondence: or
| |
Collapse
|
39
|
Transient Receptor Potential Channels and Itch. Int J Mol Sci 2022; 24:ijms24010420. [PMID: 36613861 PMCID: PMC9820407 DOI: 10.3390/ijms24010420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Transient Receptor Potential (TRP) channels are multifunctional sensory molecules that are abundant in the skin and are involved in the sensory pathways of itch, pain, and inflammation. In this review article, we explore the complex physiology of different TRP channels, their role in modulating itch sensation, and their contributions to the pathophysiology of acute and chronic itch conditions. We also cover small molecule and topical TRP channel agents that are emerging as potential anti-pruritic treatments; some of which have shown great promise, with a few treatments advancing into clinical trials-namely, TRPV1, TRPV3, TRPA1, and TRPM8 targets. Lastly, we touch on possible ethnic differences in TRP channel genetic polymorphisms and how this may affect treatment response to TRP channel targets. Further controlled studies on the safety and efficacy of these emerging treatments is needed before clinical use.
Collapse
|
40
|
Swindell WR, Bojanowski K, Chaudhuri RK. Isosorbide Fatty Acid Diesters Have Synergistic Anti-Inflammatory Effects in Cytokine-Induced Tissue Culture Models of Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms232214307. [PMID: 36430783 PMCID: PMC9696169 DOI: 10.3390/ijms232214307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic disease in which epidermal barrier disruption triggers Th2-mediated eruption of eczematous lesions. Topical emollients are a cornerstone of chronic management. This study evaluated efficacy of two plant-derived oil derivatives, isosorbide di-(linoleate/oleate) (IDL) and isosorbide dicaprylate (IDC), using AD-like tissue culture models. Treatment of reconstituted human epidermis with cytokine cocktail (IL-4 + IL-13 + TNF-α + IL-31) compromised the epidermal barrier, but this was prevented by co-treatment with IDL and IDC. Cytokine stimulation also dysregulated expression of keratinocyte (KC) differentiation genes whereas treatment with IDC or IDL + IDC up-regulated genes associated with early (but not late) KC differentiation. Although neither IDL nor IDC inhibited Th2 cytokine responses, both compounds repressed TNF-α-induced genes and IDL + IDC led to synergistic down-regulation of inflammatory (IL1B, ITGA5) and neurogenic pruritus (TRPA1) mediators. Treatment of cytokine-stimulated skin explants with IDC decreased lactate dehydrogenase (LDH) secretion by more than 50% (more than observed with cyclosporine) and in vitro LDH activity was inhibited by IDL and IDC. These results demonstrate anti-inflammatory mechanisms of isosorbide fatty acid diesters in AD-like skin models. Our findings highlight the multifunctional potential of plant oil derivatives as topical ingredients and support studies of IDL and IDC as therapeutic candidates.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| | | | | |
Collapse
|
41
|
Mießner H, Seidel J, Smith ESJ. In vitro models for investigating itch. Front Mol Neurosci 2022; 15:984126. [PMID: 36385768 PMCID: PMC9644192 DOI: 10.3389/fnmol.2022.984126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from in vivo animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human in vivo experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most in vitro models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic in vitro models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, in vitro models offer a chance to investigate otherwise inaccessible specific cell–cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As in vitro models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current in vitro models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.
Collapse
Affiliation(s)
- Hendrik Mießner
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Judith Seidel
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Ewan St. John Smith,
| |
Collapse
|
42
|
Zhang Q, Li T, Niu J, Xiao J, Zhang M, Zhang R, Chen D, Shi Y, Zhang X, Hu X, Yu B, Feng J, Fang Q. Inhibitory effects of antibiotic-induced gut microbiota depletion on acute itch behavior in mice. Brain Res Bull 2022; 190:50-61. [PMID: 36126873 DOI: 10.1016/j.brainresbull.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The gut microbiota is known to be associated with the regulation of many neurological diseases and behaviors, including chronic pain. However, it is unclear whether the gut microbiota is critical to the itch sensation. In this study, we investigated the effects of gut microbiota depletion on acute itch. METHODS First, an antibiotic cocktail was orally administered to deplete the gut microbiota in male C57BL/6 mice. Then, pruritogens were intradermally injected to induce acute itch behavior. In addition, antibiotic-treated mice received transplantation of fecal microbiota from untreated mice, followed by tests for acute itch. The changes in c-Fos expression in trigeminal ganglia (TG) neurons were also investigated by immunofluorescence staining. RESULTS Our results indicated that chronic antibiotic treatment significantly reduced the diversity and richness of the gut microbiota of mice. Compared to vehicle-treated mice, antibiotic-treated mice showed reductions in acute itch behavior induced by compound 48/80, chloroquine (CQ), and serotonin (5-HT), respectively. Moreover, repositioning of microbiota reversed the reductions in acute itch behavior in antibiotic-treated mice. In addition, immunofluorescence staining revealed that antibiotic-treated mice displayed decreased c-Fos expression in ipsilateral TG compared to controls. CONCLUSIONS Our study, for the first time, discovered that antibiotic-induced gut microbiota depletion could reduce acute itch behavior, which may be connected with decreased TG neuronal activity.
Collapse
Affiliation(s)
- Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Tingting Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Xiaodi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Xuanran Hu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Bowen Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Jie Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China.
| |
Collapse
|
43
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|
44
|
Adula KP, Shorey M, Chauhan V, Nassman K, Chen SF, Rolls MM, Sagasti A. The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons. J Neurosci 2022; 42:6195-6210. [PMID: 35840323 PMCID: PMC9374156 DOI: 10.1523/jneurosci.1395-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAP3Ks) dual leucine kinase (DLK) and leucine zipper kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MNs) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate in larvae, before sex is apparent in zebrafish. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs but not in larval Rohon-Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in dlk lzk double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that these MAP3Ks are general inhibitors of sensory axon growth. These results demonstrate that zebrafish DLK and LZK promote diverse injury responses, depending on the neuronal cell identity and type of axonal injury.SIGNIFICANCE STATEMENT The MAP3Ks DLK and LZK are damage sensors that promote diverse outcomes to neuronal injury, including axon regeneration. Understanding their context-specific functions is a prerequisite to considering these kinases as therapeutic targets. To investigate DLK and LZK cell-type-specific functions, we created zebrafish mutants in each gene. Using mosaic cell labeling and precise laser injury we found that both proteins were required for axon regeneration in motor neurons but, unexpectedly, were not required for axon regeneration in Rohon-Beard or DRG sensory neurons and negatively regulated sprouting in the spared axons of touch-sensing neurons. These findings emphasize that animals have evolved distinct mechanisms to regulate injury site regeneration and collateral sprouting, and identify differential roles for DLK and LZK in these processes.
Collapse
Affiliation(s)
- Kadidia Pemba Adula
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Khaled Nassman
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Shu-Fan Chen
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
45
|
Abstract
Itch triggers scratching, a behavioural defence mechanism that aids in the removal of harmful irritants and parasites1. Chemical itch is triggered by many endogenous and exogenous cues, such as pro-inflammatory histamine, which is released during an allergic reaction1. Mechanical itch can be triggered by light sensations such as wool fibres or a crawling insect2. In contrast to chemical itch pathways, which have been extensively studied, the mechanisms that underlie the transduction of mechanical itch are largely unknown. Here we show that the mechanically activated ion channel PIEZO1 (ref. 3) is selectively expressed by itch-specific sensory neurons and is required for their mechanically activated currents. Loss of PIEZO1 function in peripheral neurons greatly reduces mechanically evoked scratching behaviours and both acute and chronic itch-evoked sensitization. Finally, mice expressing a gain-of-function Piezo1 allele4 exhibit enhanced mechanical itch behaviours. Our studies reveal the polymodal nature of itch sensory neurons and identify a role for PIEZO1 in the sensation of itch. Experiments in mice show that the mechanically activated ion channel PIEZO1 is expressed in itch-specific sensory neurons and has a role in transducing mechanical itch.
Collapse
|
46
|
Gao Y, Ma R, Weng W, Zhang H, Wang Y, Guo R, Gu X, Yang Y, Yang F, Zhou A, Cheng J, Chen ZY, Zhu MX, Li Y. TRPV1 SUMOylation suppresses itch by inhibiting TRPV1 interaction with H1 receptors. Cell Rep 2022; 39:110972. [PMID: 35705043 DOI: 10.1016/j.celrep.2022.110972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanism underlying the functional interaction between H1R and TRPV1 remains unclear. We show here that H1R directly binds to the carboxy-terminal region of TRPV1 at residues 715-725 and 736-749. Cell-penetrating peptides containing these sequences suppress histamine-induced scratching behavior in a cheek injection model. The H1R-TRPV1 binding is kept at a minimum at rest in mouse trigeminal neurons due to TRPV1 SUMOylation and it is enhanced upon histamine treatment through a transient TRPV1 deSUMOylation. The knockin of the SUMOylation-deficient TRPV1K823R mutant in mice leads to constitutive enhancement of H1R-TRPV1 binding, which exacerbates scratching behaviors induced by histamine. Conversely, SENP1 conditional knockout in sensory neurons enhances TRPV1 SUMOylation and suppresses the histamine-induced scratching response. In addition to interfering with binding, TRPV1 SUMOylation promotes H1R degradation through ubiquitination. Our work unveils the molecular mechanism of histaminergic itch by which H1R directly binds to deSUMOylated TRPV1 to facilitate the transduction of the pruritogen signal to the scratching response.
Collapse
Affiliation(s)
- Yingwei Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruining Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiji Weng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Heng Zhang
- Department of Biophysics and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yingping Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rongjun Guo
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaokun Gu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhe-Yu Chen
- Institute of Brain Science, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Yong Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
47
|
Tominaga M, Takamori K. Peripheral itch sensitization in atopic dermatitis. Allergol Int 2022; 71:265-277. [PMID: 35624035 DOI: 10.1016/j.alit.2022.04.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis is a skin disorder caused by skin dryness and barrier dysfunction, resulting in skin inflammation and chronic itch (or pruritus). The pathogenesis of atopic dermatitis is thought to be initiated by a lowering of the itch threshold due to dry skin. This lowering of the itch threshold is at least partially due to the increase in intraepidermal nerve fibers and sensitization of sensory nerves by interleukin (IL)-33 produced and secreted by keratinocytes. Such skin is easily prone to itch due to mechanical stimuli, such as rubbing of clothing and chemical stimuli from itch mediators. In patients with atopic dermatitis, once itch occurs, further itch is induced by scratching, and the associated scratching breaks down the skin barrier. Disruption of the skin barrier allows entry into the epidermis of external foreign substances, such as allergens derived from house dust mites, leading to an increased induction of type 2 inflammatory responses. As a result, type 2 cytokines IL-4, IL-13, and IL-31 are mainly secreted by Th2 cells, and their action on sensory nerve fibers causes further itch sensitization. These sequences of events are thought to occur simultaneously in patients with atopic dermatitis, leading to a vicious itch-scratch cycle. This vicious cycle becomes a negative spiral that leads to disease burden. Therefore, controlling itch is essential for the treatment of atopic dermatitis. In this review, we summarize and discuss advances in the mechanisms of peripheral itch sensitization in atopic dermatitis, focusing on skin barrier-neuro-immune triadic connectivity.
Collapse
|
48
|
Zhu Y, Duan S, Wang M, Deng Z, Li J. Neuroimmune Interaction: A Widespread Mutual Regulation and the Weapons for Barrier Organs. Front Cell Dev Biol 2022; 10:906755. [PMID: 35646918 PMCID: PMC9130600 DOI: 10.3389/fcell.2022.906755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Since the embryo, the nervous system and immune system have been interacting to regulate each other’s development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Shixin Duan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| |
Collapse
|
49
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
50
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|