1
|
Guo H, Han J, Xiao M, Chen H. Functional alterations in overweight/obesity: focusing on the reward and executive control network. Rev Neurosci 2024; 35:697-707. [PMID: 38738975 DOI: 10.1515/revneuro-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.
Collapse
Affiliation(s)
- Haoyu Guo
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Jinfeng Han
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Mingyue Xiao
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
- Research Center of Psychology and Social Development, 26463 Southwest University , Chongqing 400715, China
| |
Collapse
|
2
|
Jung WH. Functional brain network properties correlate with individual risk tolerance in young adults. Heliyon 2024; 10:e35873. [PMID: 39170166 PMCID: PMC11337038 DOI: 10.1016/j.heliyon.2024.e35873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Background Individuals differ substantially in their degree of acceptance of risks, referred to as risk tolerance, and these differences are associated with real-life outcomes such as risky health-related behaviors. While previous studies have identified brain regions that are functionally associated with individual risk tolerance, little is known about the relationship between individual risk tolerance and whole-brain functional organization. Methods This study investigated whether the topological properties of individual functional brain networks in healthy young adults (n = 67) are associated with individual risk tolerance using resting-state fMRI data in conjunction with a graph theoretical analysis approach. Results The analysis revealed that individual risk tolerance was positively associated with global topological properties, including the normalized clustering coefficient and small-worldness, which represent the degree of information segregation and the balance between information segregation and integration in a network, respectively. Additionally, individuals with higher risk tolerance exhibited greater centrality in the ventromedial prefrontal cortex (vmPFC), which is associated with the subjective value of the available options. Conclusion These results extend our understanding of how individual differences in risk tolerance, especially in young adults, are associated with functional brain organization, particularly regarding the balance between segregation and integration in functional networks, and highlight the important role of the connections between the vmPFC and the rest of the brain in the functional networks in relation to risk tolerance.
Collapse
Affiliation(s)
- Wi Hoon Jung
- Department of Psychology, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Gyeonggi-do, South Korea
| |
Collapse
|
3
|
Bergström F, Schu G, Lee S, Lerman C, Kable JW. Multivariate analysis of multimodal brain structure predicts individual differences in risk and intertemporal preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602046. [PMID: 39026787 PMCID: PMC11257450 DOI: 10.1101/2024.07.04.602046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Large changes to brain structure (e.g., from damage or disease) can explain alterations in behavior. It is therefore plausible that smaller structural differences in healthy samples can be used to better understand and predict individual differences in behavior. Despite the brain's multivariate and distributed structure-to-function mapping, most studies have used univariate analyses of individual structural brain measures. Here we used a multivariate approach in a multimodal data set composed of volumetric, surface-based, diffusion-based, and functional resting-state MRI measures to predict reliable individual differences in risk and intertemporal preferences. We show that combining twelve brain structure measures led to better predictions across tasks than using any individual measure, and by examining model coefficients, we visualize the relative contribution of different brain measures from different brain regions. Using a multivariate approach to brain structure-to-function mapping that combines across many brain structure properties, along with reliably measured behavior phenotypes, may increase out-of-sample prediction accuracies and insight into neural underpinnings. Furthermore, this methodological approach may be useful to improve predictions and neural insight across basic, translational, and clinical research fields.
Collapse
Affiliation(s)
- Fredrik Bergström
- Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
- Department of Psychology, University of Gothenburg, Sweden
| | - Guilherme Schu
- Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Sangil Lee
- Social Science Matrix, University of California, Berkeley, CA, USA
| | - Caryn Lerman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph W. Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Mortazavi L, MacNiven KH, Knutson B. Blunted Neurobehavioral Loss Anticipation Predicts Relapse to Stimulant Drug Use. Biol Psychiatry 2024; 95:256-265. [PMID: 37567334 PMCID: PMC10840879 DOI: 10.1016/j.biopsych.2023.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Patients with stimulant use disorder experience high rates of relapse. While neurobehavioral mechanisms involved in initiating drug use have been studied extensively, less research has focused on relapse. METHODS To assess motivational processes involved in relapse and diagnosis, we acquired functional magnetic resonance imaging responses to nondrug (monetary) gains and losses in detoxified patients with stimulant use disorder (n = 68) and community control participants (n = 42). In a prospective multimodal design, we combined imaging of brain function, brain structure, and behavior to longitudinally track subsequent risk for relapse. RESULTS At the 6-month follow-up assessment, 27 patients remained abstinent, but 33 had relapsed. Patients with blunted anterior insula (AIns) activity during loss anticipation were more likely to relapse, an association that remained robust after controlling for potential confounds (i.e., craving, negative mood, years of use, age, and gender). Lower AIns activity during loss anticipation was associated with lower self-reported negative arousal to loss cues and slower behavioral responses to avoid losses, which also independently predicted relapse. Furthermore, AIns activity during loss anticipation was associated with the structural coherence of a tract connecting the AIns and the nucleus accumbens, as was functional connectivity between the AIns and nucleus accumbens during loss processing. However, these neurobehavioral responses did not differ between patients and control participants. CONCLUSIONS Taken together, the results of the current study show that neurobehavioral markers predicted relapse above and beyond conventional self-report measures, with a cross-validated accuracy of 72.7%. These findings offer convergent multimodal evidence that implicates blunted avoidance motivation in relapse to stimulant use and may therefore guide interventions targeting individuals who are most vulnerable to relapse.
Collapse
Affiliation(s)
- Leili Mortazavi
- Department of Psychology, Stanford University, Palo Alto, California
| | - Kelly H MacNiven
- Department of Psychology, Stanford University, Palo Alto, California
| | - Brian Knutson
- Department of Psychology, Stanford University, Palo Alto, California.
| |
Collapse
|
5
|
Olson EA, Ahmad S, Granger SJ, Ashraf A, Pizzagalli DA, Rosso IM. Anhedonia and Delay Discounting: Differing Patterns of Brain-Behavior Relationships in Healthy Control Participants Versus Individuals With Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:80-90. [PMID: 37536568 PMCID: PMC10830883 DOI: 10.1016/j.bpsc.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Anhedonia may contribute to individual differences in delay discounting (DD). In prior work, we found that higher anhedonia was associated with shallower DD in healthy control (HC) participants but steeper DD in individuals with posttraumatic stress disorder (PTSD). In this study, we aimed to directly compare the relationship between anhedonia and DD across groups and to identify functional brain correlates of this interaction. METHODS Participants (HC group: n = 23, DSM-5 PTSD group: n = 23) completed a questionnaire assessing anhedonia (Snaith-Hamilton Pleasure Scale [SHAPS]), task-based functional magnetic resonance imaging of decision making including DD, and resting-state functional magnetic resonance imaging. Task-based activity and resting-state functional connectivity were evaluated in reward-related regions that have also been implicated in PTSD (nucleus accumbens [NAcc], right anterior insula). RESULTS Higher SHAPS scores were associated with steeper DD in PTSD, but there was no relationship between DD and SHAPS in the HC group. There was a significant group-by-SHAPS interaction for NAcc activity, t31 = 2.92, p = .007: Greater NAcc activity when immediate rewards were chosen was associated with higher SHAPS in the PTSD group but lower SHAPS in the HC group. In resting-state functional connectivity, there was a group-by-SHAPS interaction between the NAcc seed and right parietal and frontal pole clusters. CONCLUSIONS These results extend prior findings that anhedonia is associated with steeper DD in PTSD and demonstrate that this behavioral finding occurs in the context of NAcc hyperactivity to immediate rewards and hyperconnectivity in anhedonic individuals with PTSD.
Collapse
Affiliation(s)
- Elizabeth A Olson
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Subul Ahmad
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Steven J Granger
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Aseelah Ashraf
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Isabelle M Rosso
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Tisdall L, Mata R. Age differences in the neural basis of decision-making under uncertainty. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:788-808. [PMID: 36890341 PMCID: PMC10390623 DOI: 10.3758/s13415-022-01060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 03/10/2023]
Abstract
Humans globally are reaping the benefits of longer lives. Yet, longer life spans also require engaging with consequential but often uncertain decisions well into old age. Previous research has yielded mixed findings with regards to life span differences in how individuals make decisions under uncertainty. One factor contributing to the heterogeneity of findings is the diversity of paradigms that cover different aspects of uncertainty and tap into different cognitive and affective mechanisms. In this study, 175 participants (53.14% females, mean age = 44.9 years, SD = 19.0, age range = 16 to 81) completed functional neuroimaging versions of two prominent paradigms in this area, the Balloon Analogue Risk Task and the Delay Discounting Task. Guided by neurobiological accounts of age-related changes in decision-making under uncertainty, we examined age effects on neural activation differences in decision-relevant brain structures, and compared these across multiple contrasts for the two paradigms using specification curve analysis. In line with theoretical predictions, we find age differences in nucleus accumbens, anterior insula, and medial prefrontal cortex, but the results vary across paradigm and contrasts. Our results are in line with existing theories of age differences in decision making and their neural substrates, yet also suggest the need for a broader research agenda that considers how both individual and task characteristics determine the way humans deal with uncertainty.
Collapse
Affiliation(s)
- Loreen Tisdall
- Center for Cognitive and Decision Sciences, University of Basel, Missionsstrasse 60-62, 4055, Basel, Switzerland.
| | - Rui Mata
- Center for Cognitive and Decision Sciences, University of Basel, Missionsstrasse 60-62, 4055, Basel, Switzerland
| |
Collapse
|
7
|
Wu F, Dong P, Wu G, Deng J, Gao X, Song X, Yuan J, Sun H. The disruption of white matter integrity of systemic striatal circuits in alcohol-dependent males with physiological cue reactivity. Addict Biol 2023; 28:e13273. [PMID: 37016754 DOI: 10.1111/adb.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 04/06/2023]
Abstract
Alcohol dependence (AD) is a chronic and relapsing disorder. Conditioned cues associated with the rewarding properties of drugs could trigger motivational/physiological reactions and render subjects vulnerable to relapse. Striatal circuit dysfunction has been implicated in alcohol addiction behaviours. However, little is known about the striatal tracts structural connectivity changes underlying cue induced reactivity in AD. In our present study, we recruited 51 patients with AD; 31 individuals had physiological response. We used seed-based classification by probabilistic tractography with nine target masks to explore the white matter integrity of striatal circuits in physiological responders (N = 31), non-responders (N = 20), and healthy controls (N = 27). Compared with healthy controls, physiological responders showed lower fractional anisotropy (FA) and/or higher mean diffusivity in the striatum-dorsolateral prefrontal cortex (dlPFC), striatum-ventral lateral prefrontal cortex, striatum-supplementary motor area (SMA), and striatum-insular. Considering age and smoking are potential nuisances to diffusion parameters, an analysis of covariance also was conducted and similar results were found. We also found the cue-induced physiological response was negatively associated with the FA of the striatum-SMA (r = -0.287; p = 0.045) and left striatum-dlPFC (r = -0.253; p = 0.079) in AD. In our study, we found abnormal integrity of striatal circuit structural connectivity in AD with physiological cue reactivity, especially trajectory from prefrontal cortex and insular. We also found the FA of striatal tracks was negatively associated with the degree of cue reactivity. Our findings provide further evidence for reduced white matter integrity of striatal circuits for cue reactivity in male individuals with AD.
Collapse
Affiliation(s)
- Fei Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Ping Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Guowei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Junliang Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| |
Collapse
|
8
|
Lieberman JM, Rabellino D, Densmore M, Frewen PA, Steyrl D, Scharnowski F, Théberge J, Neufeld RWJ, Schmahl C, Jetly R, Narikuzhy S, Lanius RA, Nicholson AA. Posterior cingulate cortex targeted real-time fMRI neurofeedback recalibrates functional connectivity with the amygdala, posterior insula, and default-mode network in PTSD. Brain Behav 2023; 13:e2883. [PMID: 36791212 PMCID: PMC10013955 DOI: 10.1002/brb3.2883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Alterations within large-scale brain networks-namely, the default mode (DMN) and salience networks (SN)-are present among individuals with posttraumatic stress disorder (PTSD). Previous real-time functional magnetic resonance imaging (fMRI) and electroencephalography neurofeedback studies suggest that regulating posterior cingulate cortex (PCC; the primary hub of the posterior DMN) activity may reduce PTSD symptoms and recalibrate altered network dynamics. However, PCC connectivity to the DMN and SN during PCC-targeted fMRI neurofeedback remains unexamined and may help to elucidate neurophysiological mechanisms through which these symptom improvements may occur. METHODS Using a trauma/emotion provocation paradigm, we investigated psychophysiological interactions over a single session of neurofeedback among PTSD (n = 14) and healthy control (n = 15) participants. We compared PCC functional connectivity between regulate (in which participants downregulated PCC activity) and view (in which participants did not exert regulatory control) conditions across the whole-brain as well as in a priori specified regions-of-interest. RESULTS During regulate as compared to view conditions, only the PTSD group showed significant PCC connectivity with anterior DMN (dmPFC, vmPFC) and SN (posterior insula) regions, whereas both groups displayed PCC connectivity with other posterior DMN areas (precuneus/cuneus). Additionally, as compared with controls, the PTSD group showed significantly greater PCC connectivity with the SN (amygdala) during regulate as compared to view conditions. Moreover, linear regression analyses revealed that during regulate as compared to view conditions, PCC connectivity to DMN and SN regions was positively correlated to psychiatric symptoms across all participants. CONCLUSION In summary, observations of PCC connectivity to the DMN and SN provide emerging evidence of neural mechanisms underlying PCC-targeted fMRI neurofeedback among individuals with PTSD. This supports the use of PCC-targeted neurofeedback as a means by which to recalibrate PTSD-associated alterations in neural connectivity within the DMN and SN, which together, may help to facilitate improved emotion regulation abilities in PTSD.
Collapse
Affiliation(s)
- Jonathan M. Lieberman
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
| | - Daniela Rabellino
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
- Department of NeuroscienceWestern UniversityLondonOntarioCanada
| | - Maria Densmore
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
| | - Paul A. Frewen
- Department of NeuroscienceWestern UniversityLondonOntarioCanada
- Department of PsychologyWestern UniversityLondonOntarioCanada
| | - David Steyrl
- Department of Cognition, Emotion, and Methods in PsychologyUniversity of ViennaViennaAustria
| | - Frank Scharnowski
- Department of Cognition, Emotion, and Methods in PsychologyUniversity of ViennaViennaAustria
| | - Jean Théberge
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Department of Diagnostic ImagingSt. Joseph's HealthcareLondonOntarioCanada
| | - Richard W. J. Neufeld
- Department of NeuroscienceWestern UniversityLondonOntarioCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
- Department of PsychologyWestern UniversityLondonOntarioCanada
- Department of PsychologyUniversity of British Columbia, OkanaganKelownaBritish ColumbiaCanada
| | - Christian Schmahl
- Department of Psychosomatic Medicine and PsychotherapyCentral Institute of Mental Health MannheimHeidelberg UniversityHeidelbergGermany
| | - Rakesh Jetly
- The Institute of Mental Health ResearchUniversity of Ottawa, Royal Ottawa HospitalOntarioCanada
| | - Sandhya Narikuzhy
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Ruth A. Lanius
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
- Department of NeuroscienceWestern UniversityLondonOntarioCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
- Homewood Research InstituteGuelphOntarioCanada
| | - Andrew A. Nicholson
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
- Department of Cognition, Emotion, and Methods in PsychologyUniversity of ViennaViennaAustria
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- The Institute of Mental Health ResearchUniversity of Ottawa, Royal Ottawa HospitalOntarioCanada
- Homewood Research InstituteGuelphOntarioCanada
- Atlas Institute for Veterans and FamiliesOttawaOntarioCanada
- School of PsychologyUniversity of OttawaOttawaCanada
| |
Collapse
|
9
|
Wang J, Ji G, Li G, Hu Y, Zhang W, Ji W, Tan Z, Li H, Jiang F, Zhang Y, Wu F, von Deneen KM, Yu J, Han Y, Cui G, Manza P, Tomasi D, Volkow ND, Nie Y, Zhang Y, Wang GJ. Habenular connectivity predict weight loss and negative emotional-related eating behavior after laparoscopic sleeve gastrectomy. Cereb Cortex 2023; 33:2037-2047. [PMID: 35580853 PMCID: PMC10365841 DOI: 10.1093/cercor/bhac191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Habenular (Hb) processes negative emotions that may drive compulsive food-intake. Its functional changes were reported following laparoscopic-sleeve-gastrectomy (LSG). However, structural connectivity (SC) of Hb-homeostatic/hedonic circuits after LSG remains unclear. We selected regions implicated in homeostatic/hedonic regulation that have anatomical connections with Hb as regions-of-interest (ROIs), and used diffusion-tensor-imaging with probabilistic tractography to calculate SC between Hb and these ROIs in 30 obese participants before LSG (PreLSG) and at 12-month post-LSG (PostLSG12) and 30 normal-weight controls. Three-factor-eating-questionnaire (TFEQ) and Dutch-eating-behavior-questionnaire (DEBQ) were used to assess eating behaviors. LSG significantly decreased weight, negative emotion, and improved self-reported eating behavior. LSG increased SC between the Hb and homeostatic/hedonic regions including hypothalamus (Hy), bilateral superior frontal gyri (SFG), left amygdala (AMY), and orbitofrontal cortex (OFC). TFEQ-hunger negatively correlated with SC of Hb-Hy at PostLSG12; and increased SC of Hb-Hy correlated with reduced depression and DEBQ-external eating. TFEQ-disinhibition negatively correlated with SC of Hb-bilateral SFG at PreLSG. Increased SC of Hb-left AMY correlated with reduced DEBQ-emotional eating. Higher percentage of total weight-loss negatively correlated with SC of Hb-left OFC at PreLSG. Enhanced SC of Hb-homeostatic/hedonic regulatory regions post-LSG may contribute to its beneficial effects in improving eating behaviors including negative emotional eating, and long-term weight-loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Yu Q, Yin D, Kaiser M, Xu G, Guo M, Liu F, Li J, Fan M. Pathway-Specific Mediation Effect Between Structure, Function, and Motor Impairment After Subcortical Stroke. Neurology 2023; 100:e616-e626. [PMID: 36307219 PMCID: PMC9946180 DOI: 10.1212/wnl.0000000000201495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE To investigate the pathway-specific correspondence between structural and functional changes resulting from focal subcortical stroke and their causal influence on clinical symptom. METHODS In this retrospective, cross-sectional study, we mainly focused on patients with unilateral subcortical chronic stroke with moderate-severe motor impairment assessed by Fugl-Meyer Assessment (upper extremity) and healthy controls. All participants underwent both resting-state fMRI and diffusion tensor imaging. To parse the pathway-specific structure-function covariation, we performed association analyses between the fine-grained corticospinal tracts (CSTs) originating from 6 subareas of the sensorimotor cortex and functional connectivity (FC) of the corresponding subarea, along with the refined corpus callosum (CC) sections and interhemispheric FC. A mediation analysis with FC as the mediator was used to further assess the pathway-specific effects of structural damage on motor impairment. RESULTS Thirty-five patients (mean age 52.7 ± 10.2 years, 27 men) and 43 healthy controls (mean age 56.2 ± 9.3 years, 21 men) were enrolled. Among the 6 CSTs, we identified 9 structurally and functionally covaried pathways, originating from the ipsilesional primary motor area (M1), dorsal premotor area (PMd), and primary somatosensory cortex (p < 0.05, corrected). FC for the bilateral M1, PMd, and ventral premotor cortex covaried with secondary degeneration of the corresponding CC sections (p < 0.05, corrected). Moreover, these covarying structures and functions were significantly correlated with the Fugl-Meyer Assessment (upper extremity) scores (p < 0.05, uncorrected). In particular, FC between the ipsilesional PMd and contralesional cerebellum (β = -0.141, p < 0.05, CI = [-0.319 to -0.015]) and interhemispheric FC of the PMd (β = 0.169, p < 0.05, CI = [0.015-0.391]) showed significant mediation effects in the prediction of motor impairment with structural damage of the CST and CC. DISCUSSIONS This study reveals causal influence of structural and functional pathways on motor impairment after subcortical stroke and provides a promising way to investigate pathway-specific structure-function coupling. Clinically, our findings may offer a circuit-based evidence for the PMd as a critical neuromodulation target in more impaired patients with stroke and also suggest the cerebellum as a potential target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxia Fan
- From the Shanghai Key Laboratory of Magnetic Resonance (Q.Y., G.X., M.G., F.L., J.L., M.F.), School of Physics and Electronic Science, East China Normal University; Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education) (D.Y.), School of Psychology and Cognitive Science, East China Normal University; Shanghai Changning Mental Health Center (D.Y.); Precision Imaging Beacon (M.K.), School of Medicine, University of Nottingham, United Kingdom; and School of Medicine (M.K.), Shanghai Jiao Tong University, China.
| |
Collapse
|
11
|
Lu L, Yang W, Zhao D, Wen X, Liu J, Liu J, Yuan K. Brain recovery of the NAc fibers and prediction of craving changes in person with heroin addiction: A longitudinal study. Drug Alcohol Depend 2023; 243:109749. [PMID: 36565569 DOI: 10.1016/j.drugalcdep.2022.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Progress have been made in brain function recovery after long-term abstinence in person with heroin addiction (PHA). However, less is known about whether the nucleus accumbens (NAc) white matter pathways can recover in PHA by prolonged abstinence. METHODS Forty-two PHA and Thirty-nine age- and gender- matched healthy controls (HCs) were recruited. Two MRI scans were obtained at baseline (PHA1) and 8-month follow-up (PHA2). We employed tractography atlas-based analysis (TABS) method to investigate fractional anisotropy (FA) changes in NAc fiber tracts (i.e., Insula-NAc, ventral tegmental area (VTA)-NAc, medial prefrontal cortex (MPFC)-NAc) in PHA. A partial least square regression (PLSR) analysis was carried to explore whether FA of NAc fiber tracts can predict longitudinal craving changes. RESULTS Relative to HCs, lower FA was found in the right Insula-NAc and VTA-NAc fiber tracts in PHA1, and PHA2 showed increased FA values in these tracts compared with PHA1. Furthermore, changes of FA of NAc fiber tracts can predict longitudinal craving changes (r = 0.51). Additionally, craving changes can also be predicted from FA changes in the left Insula-NAc (r = 0.601) and VTA-NAc (r = 0.384) fiber alone. CONCLUSIONS Results indicated that the right Insula-NAc and VTA-NAc fiber tracts are potential biomarkers for brain recovery. Prediction of craving changes highlighted the utility of structural markers to inform clinical decision-making of treatment for PHA.
Collapse
Affiliation(s)
- Ling Lu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Desheng Zhao
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Xinwen Wen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China.
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, China.
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China.
| |
Collapse
|
12
|
Tisdall L, MacNiven KH, Padula CB, Leong JK, Knutson B. Brain tract structure predicts relapse to stimulant drug use. Proc Natl Acad Sci U S A 2022; 119:e2116703119. [PMID: 35727973 PMCID: PMC9245633 DOI: 10.1073/pnas.2116703119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diffusion tractography allows identification and measurement of structural tracts in the human brain previously associated with motivated behavior in animal models. Recent findings indicate that the structural properties of a tract connecting the midbrain to nucleus accumbens (NAcc) are associated with a diagnosis of stimulant use disorder (SUD), but not relapse. In this preregistered study, we used diffusion tractography in a sample of patients treated for SUD (n = 60) to determine whether qualities of tracts projecting from medial prefrontal, anterior insular, and amygdalar cortices to NAcc might instead foreshadow relapse. As predicted, reduced diffusion metrics of a tract projecting from the right anterior insula to the NAcc were associated with subsequent relapse to stimulant use, but not with previous diagnosis. These findings highlight a structural target for predicting relapse to stimulant use and further suggest that distinct connections to the NAcc may confer risk for relapse versus diagnosis.
Collapse
Affiliation(s)
- Loreen Tisdall
- Center for Cognitive and Decision Sciences, University of Basel, 4055 Basel, Switzerland
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| | - Kelly H. MacNiven
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| | | | - Josiah K. Leong
- Department of Psychological Science, University of Arkansas, Fayetteville, AR 72701
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| |
Collapse
|
13
|
Kennedy BV, Hanson JL, Buser NJ, van den Bos W, Rudolph KD, Davidson RJ, Pollak SD. Accumbofrontal tract integrity is related to early life adversity and feedback learning. Neuropsychopharmacology 2021; 46:2288-2294. [PMID: 34561607 PMCID: PMC8581005 DOI: 10.1038/s41386-021-01129-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Abuse, neglect, exposure to violence, and other forms of early life adversity (ELA) are incredibly common and significantly impact physical and mental development. While important progress has been made in understanding the impacts of ELA on behavior and the brain, the preponderance of past work has primarily centered on threat processing and vigilance while ignoring other potentially critical neurobehavioral processes, such as reward-responsiveness and learning. To advance our understanding of potential mechanisms linking ELA and poor mental health, we center in on structural connectivity of the corticostriatal circuit, specifically accumbofrontal white matter tracts. Here, in a sample of 77 youth (Mean age = 181 months), we leveraged rigorous measures of ELA, strong diffusion neuroimaging methodology, and computational modeling of reward learning. Linking these different forms of data, we hypothesized that higher ELA would be related to lower quantitative anisotropy in accumbofrontal white matter. Furthermore, we predicted that lower accumbofrontal quantitative anisotropy would be related to differences in reward learning. Our primary predictions were confirmed, but similar patterns were not seen in control white matter tracts outside of the corticostriatal circuit. Examined collectively, our work is one of the first projects to connect ELA to neural and behavioral alterations in reward-learning, a critical potential mechanism linking adversity to later developmental challenges. This could potentially provide windows of opportunity to address the effects of ELA through interventions and preventative programming.
Collapse
|
14
|
Bai Y, Zhang L, Liu C, Cui X, Li D, Yin H. Association of white matter volume with sleep quality: a voxel-based morphometry study. Brain Imaging Behav 2021; 16:1163-1175. [PMID: 34846693 DOI: 10.1007/s11682-021-00569-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 01/13/2023]
Abstract
Many studies have focused on the gray matter volume associated with sleep quality, little is known about the relationship between white matter volume and sleep quality. Brain white structure is a crucial component in the structural neuroanatomy. Therefore, in this study, we investigated the association between white matter volume and sleep quality. Data were collected using the Pittsburgh Sleep Quality Index and voxel-based morphometry among 352 college students. Results showed that the global PSQI score was negatively associated with the white matter volume, including in the right middle occipital gyrus, the left superior temporal gyrus, the right the precentral gyrus, the left supramarginal gyrus, the left middle frontal gyrus, the left precunes, and the right superior frontal gyrus. Results also indicated that the white matter volume in specific regions negatively associated with the factor of PSQI. These specific brain regions may be replicated in brain areas related to sleep quality. In summary, we suggested that exploring brain white structure are related to sleep could help to expound the mechanisms by which sleep quality are associated with brain function, behavior and cognition, as well as potentially the networks and systems responsible for variations in sleep themselves.
Collapse
Affiliation(s)
- Youling Bai
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Li Zhang
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Chengwei Liu
- Department of Psychology, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaobing Cui
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Dan Li
- School of Education Science, Hunan Normal University, Changsha, 410081, China. .,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China.
| | - Huazhan Yin
- School of Education Science, Hunan Normal University, Changsha, 410081, China. .,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
15
|
Zhuang Q, Xu L, Zhou F, Yao S, Zheng X, Zhou X, Li J, Xu X, Fu M, Li K, Vatansever D, Kendrick KM, Becker B. Segregating domain-general from emotional context-specific inhibitory control systems - ventral striatum and orbitofrontal cortex serve as emotion-cognition integration hubs. Neuroimage 2021; 238:118269. [PMID: 34139360 DOI: 10.1016/j.neuroimage.2021.118269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022] Open
Abstract
Inhibitory control hierarchically regulates cognitive and emotional systems in the service of adaptive goal-directed behavior across changing task demands and environments. While previous studies convergently determined the contribution of prefrontal-striatal systems to general inhibitory control, findings on the specific circuits that mediate emotional context-specific impact on inhibitory control remained inconclusive. Against this background we combined an evaluated emotional Go/No Go task with fMRI in a large cohort of subjects (N=250) to segregate brain systems and circuits that mediate domain-general from emotion-specific inhibitory control. Particularly during a positive emotional context, behavioral results showed a lower accuracy for No Go trials and a faster response time for Go trials. While the dorsal striatum and lateral frontal regions were involved in inhibitory control irrespective of emotional context, activity in the ventral striatum (VS) and medial orbitofrontal cortex (mOFC) varied as a function of emotional context. On the voxel-wise whole-brain network level, limbic and striatal systems generally exhibited highest changes in global brain connectivity during inhibitory control, while global brain connectivity of the left mOFC was less decreased during emotional contexts. Functional connectivity analyses moreover revealed that negative coupling between the VS with inferior frontal gyrus (IFG)/insula and mOFC varied as a function of emotional context. Together these findings indicate separable domain- general as well as emotional context-specific inhibitory brain systems which specifically encompass the VS and its connections with frontal regions.
Collapse
Affiliation(s)
- Qian Zhuang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiao Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Meina Fu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China; Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
16
|
Brain Activity Foreshadows Stock Price Dynamics. J Neurosci 2021; 41:3266-3274. [PMID: 33685944 PMCID: PMC8026346 DOI: 10.1523/jneurosci.1727-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/21/2022] Open
Abstract
Successful investing is challenging since stock prices are difficult to consistently forecast. Recent neuroimaging evidence suggests, however, that activity in brain regions associated with anticipatory affect may not only predict individual choice, but also forecast aggregate behavior out-of-sample. Thus, in two experiments, we specifically tested whether anticipatory affective brain activity in healthy humans could forecast aggregate changes in stock prices. Using functional magnetic resonance imaging, we found in a first experiment (n = 34, 6 females; 140 trials/subject) that nucleus accumbens activity forecast stock price direction, whereas anterior insula (AIns) activity forecast stock price inflections. In a second preregistered replication experiment (n = 39, 7 females) that included different subjects and stocks, AIns activity still forecast stock price inflections. Importantly, AIns activity forecast stock price movement even when choice behavior and conventional stock indicators did not (e.g., previous stock price movements), and classifier analysis indicated that forecasts based on brain activity should generalize to other markets. By demonstrating that AIns activity might serve as a leading indicator of stock price inflections, these findings imply that neural activity associated with anticipatory affect may extend to forecasting aggregate choice in dynamic and competitive environments such as stock markets.SIGNIFICANCE STATEMENT Many try but fail to consistently forecast changes in stock prices. New evidence, however, suggests that anticipatory affective brain activity may not only predict individual choice, but also may forecast aggregate choice. Assuming that stock prices index collective choice, we tested whether brain activity sampled during the assessment of stock prices could forecast subsequent changes in the prices of those stocks. In two neuroimaging experiments, a combination of previous stock price movements and brain activity in a region implicated in processing uncertainty and arousal forecast next-day stock price changes-even when behavior did not. These findings challenge traditional assumptions of market efficiency by implying that neuroimaging data might reveal "hidden information" capable of foreshadowing stock price dynamics.
Collapse
|
17
|
Wang Y, Wang Q, Xie J, Zhu Y, Zhang D, Li G, Zhu X, Li Y. Mediation on the Association Between Stressful Life Events and Depression by Abnormal White Matter Microstructures. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:162-170. [PMID: 33775928 DOI: 10.1016/j.bpsc.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Stressful life events (SLEs) are an important causal factor in depression; however, the mechanism by which SLEs cause depression remains unclear. Recent studies suggested that white matter (WM) microstructures might be a potential mediator between SLEs and depression. Hence, we aimed to investigate the concrete correspondence among them using mediation effect models. METHODS In participants (N = 194) with SLEs experience prospectively recruited from six residential communities, WM microstructures were detected with diffusion tensor imaging. The interrelationship among SLEs, WM microstructures, and depression was explored with multiple linear regression models and logistic regression models. Furthermore, the influence of WM microstructures on the association between SLEs and depression was tested with mediation effect models. RESULTS Successfully established mediation effect models showed the specific influence of fractional anisotropy of the corpus callosum and left uncinate fasciculus on the association between SLEs and depression onset (ab path = 0.032; ab path = 0.026, respectively) and between SLEs and depressive severity (ab path = 0.052; ab path = 0.067, respectively). In addition, significant total mediation effects on the association between SLEs and depression onset (ab path = 0.031) and severity (ab path = 0.075) through fractional anisotropy of the corpus callosum and left uncinate fasciculus were noted. CONCLUSIONS WM microstructure alterations impose a substantial mediation effect on the association between SLEs and depression, which suggest that changes in WM microstructure integrity might increase the risk of depression onset and unfavorable disease courses induced by the SLEs.
Collapse
Affiliation(s)
- Yun Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Qi Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Xie
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Danwei Zhang
- Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Guohai Li
- Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China.
| | - Xiaolan Zhu
- Department of Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China.
| |
Collapse
|
18
|
Peng Z, Xu C, Ma N, Yang Q, Ren P, Wen R, Jin L, Chen J, Wei Z, Verguts T, Chen Q. White Matter Alterations of the Goal-Directed System in Patients With Obsessive-Compulsive Disorder and Their Unaffected First-Degree Relatives. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:992-1001. [PMID: 33674244 DOI: 10.1016/j.bpsc.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND It has been postulated that the neurobiological mechanism responsible for the onset of symptoms of obsessive-compulsive disorder (OCD), especially compulsive behavior, is related to alterations of the goal-directed and habitual learning systems. However, little is known about whether changes in these learning systems co-occur with changes in the white matter structure of patients with OCD and their unaffected first-degree relatives (UFDRs). METHODS Diffusion tensor imaging data were acquired from 32 patients with OCD (21 male), 32 UFDRs (16 male), and 32 healthy control subjects (16 male). White matter tracts in the goal-directed and habitual networks were reconstructed with seed-based probabilistic tractography. Partial least squares path modeling was used to measure the covariation between white matter connectivity, psychiatric symptoms, and cognitive flexibility. RESULTS Patients with OCD showed reduced connectivity in the fiber tracts within the goal-directed but not within the habitual network compared with healthy control subjects. Using partial least squares path modeling, patients' symptoms were negatively associated with connectivity within the goal-directed but not within the habitual network. Cognitive flexibility was correlated negatively with caudate-dorsolateral prefrontal cortex tracts in patients with OCD. UFDRs also exhibited reduced white matter connectivity in the goal-directed network. CONCLUSIONS These findings suggest that the balance of learning systems in OCD may be disrupted, mainly impairing white matter in the goal-directed network. Alterations of the goal-directed network could explain overt symptoms and impaired cognitive flexibility in patients with OCD. Similar alterations in the goal-directed network are present in UFDRs. The impaired goal-directed system may be an endophenotype of OCD.
Collapse
Affiliation(s)
- Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Chuanyong Xu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Ning Ma
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Qiong Yang
- Southern Medical University, Guangzhou, China; Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Rongzhen Wen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Lili Jin
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
19
|
Disrupted frontostriatal connectivity in primary insomnia: a DTI study. Brain Imaging Behav 2021; 15:2524-2531. [PMID: 33651331 DOI: 10.1007/s11682-021-00454-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 12/20/2022]
Abstract
Dysfunction of the sleep-wake transition is considered to be associated with the pathology of patients with primary insomnia (PI). Previous animal study had reported that brain circuits between the striatum and cortex can regulate sleep-wake transitions. So far, few studies have systematically explored the structural connectivity of the striatum-centered circuits and their potential roles in patients with PI. In this study, we chosen the striatum as the seed and 10 priori target regions as masks to assess the structural connectivity by using seed-based classification with a diffusion tensor imaging (DTI) probabilistic tractography method. Track strengths of the striatum-centered circuits were compared between 22 patients with PI (41.27 ± 9.21 years) and 30 healthy controls (HC) (35.2 ± 8.14 years). Pittsburgh Sleep Quality Index (PSQI) was used to measure the sleep quality in all participants. Lower track strengths (left striatum- anterior cingulate cortex (ACC), left striatum- dorsal anterior cingulate cortex (dACC), left striatum-Hippocampus, and right striatum-Hippocampus) were observed in patients with PI compared to HC. Additionally, the lower track strengths of brain circuits mentioned above were negatively correlated with PSQI. Taken together, our findings revealed the lower tract strength of frontostriatal circuits in patients with PI and HC, which provided the implications of the system-level structural connections of frontostriatal circuits in the pathology of PI. We suggested that the track strengths of the frontostriatal circuits calculated from DTI can be the potential neuroimaging biomarkers of the sleep quality in patients with PI.
Collapse
|
20
|
Flook EA, Luchsinger JR, Silveri MM, Winder DG, Benningfield MM, Blackford JU. Anxiety during abstinence from alcohol: A systematic review of rodent and human evidence for the anterior insula's role in the abstinence network. Addict Biol 2021; 26:e12861. [PMID: 31991531 PMCID: PMC7384950 DOI: 10.1111/adb.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 12/30/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing disease that impacts almost a third of Americans. Despite effective treatments for attaining sobriety, the majority of patients relapse within a year, making relapse a substantial barrier to long-term treatment success. A major factor contributing to relapse is heightened negative affect that results from the combination of abstinence-related increases in stress-reactivity and decreases in reward sensitivity. Substantial research has contributed to the understanding of reward-related changes in AUD. However, less is known about anxiety during abstinence, a critical component of understanding addiction as anxiety during abstinence can trigger relapse. Most of what we know about abstinence-related negative affect comes from rodent studies which have identified key brain regions responsible for abstinence-related behaviors. This abstinence network is composed of brain regions that make up the extended amygdala: the nucleus accumbens (NAcc), the central nucleus of the amygdala (CeA), and the bed nucleus of the stria terminalis (BNST). More recently, emerging evidence from rodent and human studies suggests a fourth brain region, the anterior insula, might be part of the abstinence network. Here, we review current rodent and human literature on the extended amygdala's role in alcohol abstinence and anxiety, present evidence for the anterior insula's role in the abstinence network, and provide future directions for research to further elucidate the neural underpinnings of abstinence in humans. A better understanding of the abstinence network is critical toward understanding and possibly preventing relapse in AUD.
Collapse
Affiliation(s)
- Elizabeth A. Flook
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph R. Luchsinger
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marisa M. Silveri
- Neurodevelopmental Laboratory on Addictions and Mental
Health, Brain Imaging Center, McLean Hospital
- Department of Psychiatry, Harvard Medical School
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M. Benningfield
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Vanderbilt Center for Addiction Research, Vanderbilt
University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human
Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Research Health Scientist, Research and Development,
Department of Veterans Affairs Medical Center, Nashville, TN
| |
Collapse
|
21
|
Yang W, Wang S, Shao Z, Yang R, Tang F, Luo J, Yan C, Zhang J, Chen J, Liu J, Yuan K. Novel circuit biomarker of impulsivity and craving in male heroin-dependent individuals. Drug Alcohol Depend 2021; 219:108485. [PMID: 33360853 DOI: 10.1016/j.drugalcdep.2020.108485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The striatum mediates reward processing in addiction, and previous fMRI (functional Magnetic Resonance Imaging) studies have revealed abnormal striatofrontal functional connectivity in heroin addiction. However, little is known about whether there is abnormal structural connectivity of the striatal circuit in heroin addiction. This study investigated the structural connectivity of striatal circuits in abstinent heroin-dependent individuals (HDIs) without methadone treatment. METHODS Forty-three (age: 38.8 ± 7.1) male HDIs and twenty-one (age: 42.4 ± 7.9) matched healthy controls underwent high-resolution T1 and whole-brain diffusion tensor imaging (64 directions) magnetic resonance imaging. Connectivity-based seed classification probabilistic tractography was used to detect the tract strengths of striatal circuits with 10 a priori target masks. Tract strengths were compared between groups and correlated with impulsivity behavior, evaluated using the Barratt Impulsivity Scale (BIS), and craving, measured on visual analogue scale (VAS). RESULTS HDIs showed significantly weaker tract strength of the left striatum-medial orbitofrontal cortex (mOFC) (Bonferroni corrected, p < 0.05/20 = 0.0025) and significantly higher BIS total, attention, motor, and non-planning scores (Bonferroni corrected, p < 0.05/4 = 0.0125) than controls. In HDIs, negative correlations were observed between the left striatum- mOFC tract strengths and the BIS total, attention and non-planning scores (r1=-0.410, p1 = 0.005; r2=-0.432, p2 = 0.003; r3=-0.506, p3<0.001) and between the right striatum-posterior cingulate cortex (PCC) tract strengths and craving scores (r=-0.433, p = 0.009) in HDIs. CONCLUSION HDIs displayed decreased structural connectivity of the striatum-mOFC circuit and higher impulsivity. Higher impulsive behavior was associated with decreased left striatal circuit connectivity. These findings suggest that the striatal circuit tract strengths might be a novel potential biomarker in heroin and, potentially, general opioid addiction.
Collapse
Affiliation(s)
- Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Shicong Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Ziqiang Shao
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Ru Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Fei Tang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Cui Yan
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jiyuan Chen
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China.
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China.
| |
Collapse
|
22
|
Leong JK, Ho TC, Colich NL, Sisk L, Knutson B, Gotlib IH. White-matter tract connecting anterior insula to nucleus accumbens predicts greater future motivation in adolescents. Dev Cogn Neurosci 2021; 47:100881. [PMID: 33373886 PMCID: PMC7776926 DOI: 10.1016/j.dcn.2020.100881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
The motivation to approach or avoid incentives can change during adolescence. Advances in neuroimaging allow researchers to characterize specific brain circuits that underlie these developmental changes. Whereas activity in the nucleus accumbens (NAcc) can predict approach toward incentive gain, activity in anterior insula (AIns) is associated with avoidance of incentive loss. Recent research characterized the structural white-matter tract connecting the two brain regions, but the tract has neither been characterized in adolescence nor linked to functional activity during incentive anticipation. In this study, we collected diffusion MRI and characterized the tract connecting the AIns to the NAcc for the first time in early adolescents. We then measured NAcc functional activity during a monetary incentive delay task and found that structural coherence of the AIns-NAcc tract is correlated with decreased functional activity at the NAcc terminal of the tract during anticipation of no incentives. In adolescents who completed an assessment 2 years later, we found that AIns-NAcc tract coherence could predict greater future self-reported motivation, and that NAcc functional activity could statistically mediate this association. Together, the findings establish links from brain structure to function to future motivation and provide targets to study the reciprocal development of brain structure and function.
Collapse
Affiliation(s)
- Josiah K Leong
- University of Arkansas, Department of Psychological Science, Fayetteville, AR, United States; Indiana University, Department of Psychological and Brain Sciences, Bloomington, IN, United States.
| | - Tiffany C Ho
- Stanford University, Department of Psychology, Stanford, CA, United States; University of California, San Francisco, Department of Psychology & Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Natalie L Colich
- University of Washington, Department of Psychology, Seattle, WA, United States
| | - Lucinda Sisk
- Yale University, Department of Psychology, New Haven, CT, United States
| | - Brian Knutson
- Stanford University, Department of Psychology, Stanford, CA, United States; Stanford University, Wu Tsai Neurosciences Institute, Stanford, CA, United States
| | - Ian H Gotlib
- Stanford University, Department of Psychology, Stanford, CA, United States; Stanford University, Wu Tsai Neurosciences Institute, Stanford, CA, United States
| |
Collapse
|
23
|
Wang C, Wang S, Huang P, Shen Z, Qian W, Luo X, Li K, Zeng Q, Gu Q, Yu H, Yang Y, Zhang M. Abnormal white matter tracts of insula in smokers. Brain Imaging Behav 2020; 15:1955-1965. [PMID: 32974850 DOI: 10.1007/s11682-020-00389-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 11/26/2022]
Abstract
Nicotine addiction is characterized as a neural circuit dysfunction, particularly with regard to the alterations in central reward pathways. The insula, a cortical region that is thought to play a central role in this reward circuitry, has been implicated in the maintenance of nicotine addiction. However, it remains largely unclear about the white matter (WM) microstructural alterations of insula in nicotine addiction and whether the WM alterations of insula could predict smoking cessation outcomes. In this study, 58 male nicotine-dependent smokers and 34 matched male nonsmoking controls were recruited. After a 12-week smoking cessation treatment with varenicline, 38 smokers relapsed, and 20 did not relapse. Diffusion tensor imaging and probabilistic tractography were used to investigate the differences of WM tracts of insula between smokers and nonsmokers. Relative to nonsmokers, in the left hemisphere, smokers showed lower fractional anisotropy (FA) in the fiber tracts of anterior insula cortex-to-nucleus accumbens and posterior insula cortex-to-nucleus accumbens; in the right hemisphere, smokers showed higher FA, and lower axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) in the fiber tracts of anterior insula cortex-to-medial orbitofrontal cortex, posterior insula cortex-to-medial orbitofrontal cortex, and posterior insula cortex-to-nucleus accumbens. However, there were no differences of WM diffusion properties between relapsers and nonrelapsers. This study is the first using probabilistic tractography to exclusively clarify the precise roles of insular WM tracts in smokers, which may provide new insights into the underlying neurobiology of nicotine addiction.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shuyue Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhujing Shen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hualiang Yu
- Department of Psychiatry, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
MacNiven KH, Leong JK, Knutson B. Medial forebrain bundle structure is linked to human impulsivity. SCIENCE ADVANCES 2020; 6:6/38/eaba4788. [PMID: 32938676 PMCID: PMC7494337 DOI: 10.1126/sciadv.aba4788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/29/2020] [Indexed: 05/13/2023]
Abstract
Comparative research indicates that projections from midbrain dopamine nuclei [including the ventral tegmental area (VTA)] to the ventral striatum [including the nucleus accumbens (NAcc)] critically support motivated behavior. Using diffusion-weighted imaging and probabilistic tractography in humans, we characterized the trajectory and structure of two tracts connecting the VTA and NAcc, as well as others connecting the substantia nigra and dorsal striatum. Decreased structural coherence of an inferior VTA-NAcc tract was primarily and replicably associated with increased trait impulsivity and also distinguished individuals with a stimulant use disorder from healthy controls. These findings suggest that decreased coherence of the inferior VTA-NAcc tract is associated with increased impulsivity in humans and identify a previously uncharacterized structural target for diagnosing disorders marked by impulsivity.
Collapse
Affiliation(s)
- Kelly H MacNiven
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Josiah K Leong
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47405, USA
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Kurzawski JW, Mikellidou K, Morrone MC, Pestilli F. The visual white matter connecting human area prostriata and the thalamus is retinotopically organized. Brain Struct Funct 2020; 225:1839-1853. [PMID: 32535840 PMCID: PMC7321903 DOI: 10.1007/s00429-020-02096-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
The human visual system is capable of processing visual information from fovea to the far peripheral visual field. Recent fMRI studies have shown a full and detailed retinotopic map in area prostriata, located ventro-dorsally and anterior to the calcarine sulcus along the parieto-occipital sulcus with strong preference for peripheral and wide-field stimulation. Here, we report the anatomical pattern of white matter connections between area prostriata and the thalamus encompassing the lateral geniculate nucleus (LGN). To this end, we developed and utilized an automated pipeline comprising a series of Apps that run openly on the cloud computing platform brainlife.io to analyse 139 subjects of the Human Connectome Project (HCP). We observe a continuous and extended bundle of white matter fibers from which two subcomponents can be extracted: one passing ventrally parallel to the optic radiations (OR) and another passing dorsally circumventing the lateral ventricle. Interestingly, the loop travelling dorsally connects the thalamus with the central visual field representation of prostriata located anteriorly, while the other loop travelling more ventrally connects the LGN with the more peripheral visual field representation located posteriorly. We then analyse an additional cohort of 10 HCP subjects using a manual plane extraction method outside brainlife.io to study the relationship between the two extracted white matter subcomponents and eccentricity, myelin and cortical thickness gradients within prostriata. Our results are consistent with a retinotopic segregation recently demonstrated in the OR, connecting the LGN and V1 in humans and reveal for the first time a retinotopic segregation regarding the trajectory of a fiber bundle between the thalamus and an associative visual area.
Collapse
Affiliation(s)
| | - Kyriaki Mikellidou
- Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Maria Concetta Morrone
- IRCCS Stella Maris, Viale del Tirreno, 331, Pisa, Italy.,Department of Translational Research On New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Program in Neuroscience and Program in Cognitive Science, Indiana University, 1101 E 10th Street, Bloomington, IN, 47401, USA.
| |
Collapse
|
26
|
Bach P, Frischknecht U, Klinkowski S, Bungert M, Karl D, Vollmert C, Vollstädt-Klein S, Lis S, Kiefer F, Hermann D. Higher Social Rejection Sensitivity in Opioid-Dependent Patients Is Related to Smaller Insula Gray Matter Volume: A Voxel-Based Morphometric Study. Soc Cogn Affect Neurosci 2020; 14:1187-1195. [PMID: 31820807 PMCID: PMC7057285 DOI: 10.1093/scan/nsz094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 12/05/2022] Open
Abstract
Opioid-dependent patients are highly sensitized to negative social feedback, and increased social rejection sensitivity was linked to adverse treatment outcome, but its neurobiological underpinnings have not been understood yet. The present study investigated gray matter (GM) volume differences between 19 opioid maintenance treatment (OMT) patients and 20 healthy controls using magnetic resonance imaging and voxel-based morphometry. Associations of GM volumes with subjective feelings of exclusion and inclusion during a social ostracism (Cyberball) paradigm, with rejection sensitivity, social interaction anxiety and social phobia were explored. OMT patients displayed smaller GM volume in the bilateral insula and inferior frontal gyri. Psychometric and task data showed that patients reported significantly higher rejection sensitivity, social anxiety and social phobia scores and felt more excluded and less included during the social ostracism paradigm. Smaller GM volume in the insula was associated with higher subjective exclusion, lower subjective inclusion and higher rejection sensitivity, social anxiety and social phobia scores. Findings indicate that structural deficits in emotion- and anxiety-processing brain regions in OMT patients are associated with increased social rejection sensitivity. As social rejection is a potential trigger for relapse, patients might benefit from therapeutic strategies that promote social integration.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Ulrich Frischknecht
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Svenja Klinkowski
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Melanie Bungert
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Damian Karl
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Christian Vollmert
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Stefanie Lis
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Derik Hermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| |
Collapse
|
27
|
Ho TC, Colich NL, Sisk LM, Oskirko K, Jo B, Gotlib IH. Sex differences in the effects of gonadal hormones on white matter microstructure development in adolescence. Dev Cogn Neurosci 2020; 42:100773. [PMID: 32452463 PMCID: PMC7058897 DOI: 10.1016/j.dcn.2020.100773] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022] Open
Abstract
Adolescence is characterized by rapid brain development in white matter (WM) that is attributed in part to surges in gonadal hormones. To date, however, there have been few longitudinal investigations relating changes in gonadal hormones and WM development in adolescents. We acquired diffusion-weighted MRI to estimate mean fractional anisotropy (FA) from 10 WM tracts and salivary testosterone from 51 females and 29 males (ages 9-14 years) who were matched on pubertal stage and followed, on average, for 2 years. We tested whether interactions between sex and changes in testosterone levels significantly explained changes in FA. We found positive associations between changes in testosterone and changes in FA within the corpus callosum, cingulum cingulate, and corticospinal tract in females (all ps<0.05, corrected) and non-significant associations in males. We also collected salivary estradiol from females and found that increases in estradiol were associated with increases in FA in the left uncinate fasciculus (p = 0.04, uncorrected); however, this effect was no longer significant after accounting for changes in testosterone. Our findings indicate there are sex differences in how changes in testosterone relate to changes in WM microstructure of tracts that support impulse control and emotion regulation across the pubertal transition.
Collapse
Affiliation(s)
- Tiffany C Ho
- Stanford University, Department of Psychology, Stanford, CA, United States; Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States; University of California, San Francisco, Department of Psychiatry & Weill Institute for Neurosciences, San Francisco, CA, United States.
| | - Natalie L Colich
- University of Washington, Department of Psychology, Seattle, WA, United States
| | - Lucinda M Sisk
- Stanford University, Department of Psychology, Stanford, CA, United States; Yale University, Department of Psychology, New Haven, CT, United States
| | - Kira Oskirko
- Stanford University, Department of Psychology, Stanford, CA, United States
| | - Booil Jo
- Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States
| | - Ian H Gotlib
- Stanford University, Department of Psychology, Stanford, CA, United States
| |
Collapse
|
28
|
Rooks B, Anthony M, Chen Q, Lin Y, Baran T, Zhang Z, Lichtenberg PA, Lin F. A generic brain connectome map linked to different types of everyday decision-making in old age. Brain Struct Funct 2019; 225:1389-1400. [PMID: 31858236 DOI: 10.1007/s00429-019-02013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Making reasonable decisions related to financial and health scenarios is a crucial capacity that can be difficult for older adults to maintain as they age, yet few studies examine neurocognitive factors that are generalizable to different types of everyday decision-making capacity. Here we propose an innovative approach, based on individual risk-taking preference, to identify neural profiles that may help predict older adults' everyday decision-making capacity. Using performance and cognitive arousal information from two gambling tasks, we identified three decision-making preference groups: ambiguity problem-solvers (A), risk-seekers (R), and a control group without strong risk-taking preferences (C). Comparisons of the number of connections within white matter tracts between A vs. C and R vs. C groups resulted in features consistent with the theory of dual neural functional systems involved in decision-making. Unique tracts from the A vs. C contrast were primarily centered in dorsal frontal regions/reflective system; unique tracts from the R vs. C contrast were centered in the ventral frontal regions/impulsive system; and shared tracts from both contrasts were centered in the basal ganglia, coordinating the switch between the two types of decision-making preference. Number of connections from the tracts differentiating A vs. C significantly predicted financial and health/safety decision-making capacity, and the association remained significant after controlling for multiple socioeconomic and cognitive factors. The connectome identified may provide insight into a generic white matter mechanism related to everyday decision-making capacity in older age.
Collapse
Affiliation(s)
- Brian Rooks
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA. .,Elaine C. Hubbard Center for Nursing Research On Aging, School of Nursing, University of Rochester Medical Center, Rochester, NY, USA.
| | - Mia Anthony
- Elaine C. Hubbard Center for Nursing Research On Aging, School of Nursing, University of Rochester Medical Center, Rochester, NY, USA.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA
| | - Quanjing Chen
- Elaine C. Hubbard Center for Nursing Research On Aging, School of Nursing, University of Rochester Medical Center, Rochester, NY, USA.,Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA
| | - Ying Lin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA
| | - Timothy Baran
- Department of Imaging Science, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, USA
| | - Zhengwu Zhang
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA.,Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA
| | | | - Feng Lin
- Elaine C. Hubbard Center for Nursing Research On Aging, School of Nursing, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA. .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA. .,Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA. .,Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA.
| |
Collapse
|
29
|
Takemura H, Pestilli F, Weiner KS. Comparative neuroanatomy: Integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci Res 2019; 146:1-12. [PMID: 30389574 PMCID: PMC6491271 DOI: 10.1016/j.neures.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Comparative neuroanatomy studies improve understanding of brain structure and function and provide insight regarding brain development, evolution, and also what features of the brain are uniquely human. With modern methods such as diffusion MRI (dMRI) and quantitative MRI (qMRI), we are able to measure structural features of the brain with the same methods across human and non-human primates. In this review article, we discuss how recent dMRI measurements of vertical occipital connections in humans and macaques can be compared with previous findings from invasive anatomical studies that examined connectivity, including relatively forgotten classic strychnine neuronography studies. We then review recent progress in understanding the neuroanatomy of vertical connections within the occipitotemporal cortex by combining modern quantitative MRI and classical histological measurements in human and macaque. Finally, we a) discuss current limitations of dMRI and tractography and b) consider potential paths for future investigations using dMRI and tractography for comparative neuroanatomical studies of white matter tracts between species. While we focus on vertical association connections in visual cortex in the present paper, this same approach can be applied to other white matter tracts. Similar efforts are likely to continue to advance our understanding of the neuroanatomical features of the brain that are shared across species, as well as to distinguish the features that are uniquely human.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Franco Pestilli
- Departments of Psychological and Brain Sciences, Computer Science and Intelligent Systems Engineering, Programs in Neuroscience and Cognitive Science, School of Optometry, Indiana University, Bloomington, IN, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
30
|
Cartmell SC, Tian Q, Thio BJ, Leuze C, Ye L, Williams NR, Yang G, Ben-Dor G, Deisseroth K, Grill WM, McNab JA, Halpern CH. Multimodal characterization of the human nucleus accumbens. Neuroimage 2019; 198:137-149. [PMID: 31077843 PMCID: PMC7341972 DOI: 10.1016/j.neuroimage.2019.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
Dysregulation of the nucleus accumbens (NAc) is implicated in numerous neuropsychiatric disorders. Treatments targeting this area directly (e.g. deep brain stimulation) demonstrate variable efficacy, perhaps owing to non-specific targeting of a functionally heterogeneous nucleus. Here we provide support for this notion, first observing disparate behavioral effects in response to direct simulation of different locations within the NAc in a human patient. These observations motivate a segmentation of the NAc into subregions, which we produce from a diffusion-tractography based analysis of 245 young, unrelated healthy subjects. We further explore the mechanism of these stimulation-induced behavioral responses by identifying the most probable subset of axons activated using a patient-specific computational model. We validate our diffusion-based segmentation using evidence from several modalities, including MRI-based measures of function and microstructure, human post-mortem immunohistochemical staining, and cross-species comparison of cortical-NAc projections that are known to be conserved. Finally, we visualize the passage of individual axon bundles through one NAc subregion in a post-mortem human sample using CLARITY 3D histology corroborated by 7T tractography. Collectively, these findings extensively characterize human NAc subregions and provide insight into their structural and functional distinctions with implications for stereotactic treatments targeting this region.
Collapse
Affiliation(s)
- Samuel Cd Cartmell
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Qiyuan Tian
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Brandon J Thio
- Department of Biomedical Engineering, Duke University, Stanford University, Stanford, CA, 94305, USA
| | - Christoph Leuze
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Li Ye
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nolan R Williams
- Department of Psychiatry, Stanford University, Stanford, CA, 94305, USA
| | - Grant Yang
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gabriel Ben-Dor
- Department of Psychiatry, Stanford University, Stanford, CA, 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Psychiatry, Stanford University, Stanford, CA, 94305, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Stanford University, Stanford, CA, 94305, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Fujimoto A, Minamimoto T. Trait and State-Dependent Risk Attitude of Monkeys Measured in a Single-Option Response Task. Front Neurosci 2019; 13:816. [PMID: 31447636 PMCID: PMC6692444 DOI: 10.3389/fnins.2019.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
Humans and animals show diverse preferences for risks (“trait-like” risk attitude) and shift their preference depending on the state or current needs (“state-dependent” risk attitude). For a better understanding of the neural mechanisms underlying risk-sensitive decisions, useful animal models have been required. Here we examined the risk attitude of three male monkeys in a single-option response task, in which an instrumental lever-release was required to obtain a chance of reward. In each trial, reward condition, either deterministic (100% of 1, 2, 3, and 4 drops of juice) or probabilistic (25, 50, 75, and 100% of 4-drop juice) was randomly selected and assigned by a unique visual cue, allowing the monkeys to evaluate the forthcoming reward. The subjective value of the reward was inferred from their performance. Model-based analysis incorporating known economic models revealed non-linear probability distortion in monkeys; unlike previous studies, they showed a simple convex or concave probability distortion curve. The direction of risk preference was consistent between early and late phases of the testing period, suggesting that our observation reflected the trait-like risk attitude of monkeys, at least under the current experimental setting. Regardless of the baseline risk preference, all monkeys showed an enhancement of risk preference in a session according to the satiation level (i.e., state-dependent risk attitude). Our results suggest that, without choice or cognitive demand, monkeys show naturalistic risk attitude – diverse and flexible like humans. Our novel approach may provide a useful animal model of risk-sensitive decisions, facilitating the investigation of the neural mechanisms of decision-making under risk.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
32
|
Kircanski K, Sisk LM, Ho TC, Humphreys KL, King LS, Colich NL, Ordaz SJ, Gotlib IH. Early life stress, cortisol, frontolimbic connectivity, and depressive symptoms during puberty. Dev Psychopathol 2019; 31:1011-1022. [PMID: 31064568 PMCID: PMC6688476 DOI: 10.1017/s0954579419000555] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Early life stress (ELS) is a risk factor for the development of depression in adolescence; the mediating neurobiological mechanisms, however, are unknown. In this study, we examined in early pubertal youth the associations among ELS, cortisol stress responsivity, and white matter microstructure of the uncinate fasciculus and the fornix, two key frontolimbic tracts; we also tested whether and how these variables predicted depressive symptoms in later puberty. A total of 208 participants (117 females; M age = 11.37 years; M Tanner stage = 2.03) provided data across two or more assessment modalities: ELS; salivary cortisol levels during a psychosocial stress task; diffusion magnetic resonance imaging; and depressive symptoms. In early puberty there were significant associations between higher ELS and decreased cortisol production, and between decreased cortisol production and increased fractional anisotropy in the uncinate fasciculus. Further, increased fractional anisotropy in the uncinate fasciculus predicted higher depressive symptoms in later puberty, above and beyond earlier symptoms. In post hoc analyses, we found that sex moderated several additional associations. We discuss these findings within a broader conceptual model linking ELS, emotion dysregulation, and depression across the transition through puberty, and contend that brain circuits implicated in the control of hypothalamic-pituitary-adrenal axis function should be a focus of continued research.
Collapse
Affiliation(s)
- Katharina Kircanski
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Lucinda M. Sisk
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Tiffany C. Ho
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Kathryn L. Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Lucy S. King
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Natalie L. Colich
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Sarah J. Ordaz
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Abstract
Gambling disorder is characterized by a persistent, recurrent pattern of gambling that is associated with substantial distress or impairment. The prevalence of gambling disorder has been estimated at 0.5% of the adult population in the United States, with comparable or slightly higher estimates in other countries. The aetiology of gambling disorder is complex, with implicated genetic and environmental factors. Neurobiological studies have implicated cortico-striato-limbic structures and circuits in the pathophysiology of this disorder. Individuals with gambling disorder often go unrecognized and untreated, including within clinical settings. Gambling disorder frequently co-occurs with other conditions, particularly other psychiatric disorders. Behavioural interventions, particularly cognitive-behavioural therapy but also motivational interviewing and Gamblers Anonymous, are supported in the treatment of gambling disorder. No pharmacological therapy has a formal indication for the treatment of gambling disorder, although placebo-controlled trials suggest that some medications, such as opioid-receptor antagonists, may be helpful. Given the associations with poor quality of life and suicide, improved identification, prevention, policy and treatment efforts are needed to help people with gambling disorder.
Collapse
|
34
|
Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct 2019; 224:2631-2660. [DOI: 10.1007/s00429-019-01907-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
|
35
|
Jiang Y, Tian Y, Wang Z. Age-Related Structural Alterations in Human Amygdala Networks: Reflections on Correlations Between White Matter Structure and Effective Connectivity. Front Hum Neurosci 2019; 13:214. [PMID: 31333430 PMCID: PMC6624785 DOI: 10.3389/fnhum.2019.00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
The amygdala, which is involved in human social information processing and socio-emotional response neuronal circuits, is segmented into three subregions that are responsible for perception, affiliation, and aversion. Though there is different functional and effective connectivity (EC) among these networks, age-related structural changes and associations between structure and function within the amygdala remain unclear. Here, we used diffusion tensor imaging (DTI) data (106 participants) to investigate age-related structural changes in fractional anisotropy (FA) of amygdalar subregions. We also examined the relationship between FA and EC within the subregions. We found that the FA of the amygdalar subregions exhibited inverted-U-shape trends with age. Moreover, over the human lifespan, there were negative correlations between the FA of the right ventrolateral amygdala (VLA.R) and the Granger-based EC (GC) of VLA.R → perception network (PerN), the FA of the VLA.R and the GC of the net flow from VLA.R → PerN, and the FA of the left dorsal amygdala (DorA.L) and the GC of the aversion network (AveN). Conversely, there was a positive correlation between the FA of the DorA.L and the GC of the net flow from DorA.L → AveN. Our results suggest that age-related changes in the function of the brain are constrained by the underlying white matter architectures, while the functional information flow changes influence white matter structure. This work increases our understanding of the neuronal mechanisms in the maturation and aging process.
Collapse
Affiliation(s)
- Yuhao Jiang
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| | - Yin Tian
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| | - Zhongyan Wang
- Bio-information College, ChongQing University of Posts and Telecommunications, ChongQing, China
| |
Collapse
|
36
|
Avesani P, McPherson B, Hayashi S, Caiafa CF, Henschel R, Garyfallidis E, Kitchell L, Bullock D, Patterson A, Olivetti E, Sporns O, Saykin AJ, Wang L, Dinov I, Hancock D, Caron B, Qian Y, Pestilli F. The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci Data 2019; 6:69. [PMID: 31123325 PMCID: PMC6533280 DOI: 10.1038/s41597-019-0073-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
We describe the Open Diffusion Data Derivatives (O3D) repository: an integrated collection of preserved brain data derivatives and processing pipelines, published together using a single digital-object-identifier. The data derivatives were generated using modern diffusion-weighted magnetic resonance imaging data (dMRI) with diverse properties of resolution and signal-to-noise ratio. In addition to the data, we publish all processing pipelines (also referred to as open cloud services). The pipelines utilize modern methods for neuroimaging data processing (diffusion-signal modelling, fiber tracking, tractography evaluation, white matter segmentation, and structural connectome construction). The O3D open services can allow cognitive and clinical neuroscientists to run the connectome mapping algorithms on new, user-uploaded, data. Open source code implementing all O3D services is also provided to allow computational and computer scientists to reuse and extend the processing methods. Publishing both data-derivatives and integrated processing pipeline promotes practices for scientific reproducibility and data upcycling by providing open access to the research assets for utilization by multiple scientific communities.
Collapse
Affiliation(s)
- Paolo Avesani
- Neuroinformatics Laboratory, Center for Information Technology, Fondazione Bruno Kessler, via Sommarive 18, 38123, Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, via Delle Regole 101, 38123, Trento, Italy
| | - Brent McPherson
- Pestilli Lab. Department of Psychological and Brain Sciences, Program in Cognitive Science, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Soichi Hayashi
- Department of Psychological and Brain Sciences and Pervasive Technology Institute, University Information Technology Services, Indiana University, 1101 E 10th Street, Bloomington, IN, 47405, USA
| | - Cesar F Caiafa
- Pestilli Lab. Department of Psychological and Brain Sciences, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
- Instituto Argentino de Radioastronomía (CCT-La Plata, CONICET; CICPBA), CC5 V, Elisa, 1894, Argentina
- Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, C1063ACV, Argentina
| | - Robert Henschel
- Pervasive Technology Institute, Indiana University Bloomington, 2709 E 10th Street, Bloomington, IN, 47408, USA
| | - Eleftherios Garyfallidis
- Department of Intelligent Systems Engineering, Programs in Neuroscience and Cognitive Science, Indiana University Bloomington, 700N Woodlawn Ave, Bloomington, Indiana, 47408, USA
| | - Lindsey Kitchell
- Pestilli Lab. Department of Psychological and Brain Sciences, Program in Cognitive Science, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Daniel Bullock
- Pestilli Lab. Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Andrew Patterson
- Pestilli Lab. Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Emanuele Olivetti
- Neuroinformatics Laboratory, Center for Information Technology, Fondazione Bruno Kessler, via Sommarive 18, 38123, Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, via Delle Regole 101, 38123, Trento, Italy
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, and Indiana Network Science Institute, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Andrew J Saykin
- Indiana University School of Medicine, Departments of Radiology and Imaging Sciences and Medical and Molecular Genetics, and the Indiana Alzheimer Disease Center, Indiana University, 355 W 16th St., Indianapolis, Indiana, 46202, USA
| | - Lei Wang
- Departments of Psychiatry and Behavioral Sciences and Radiology, Northwestern University Feinberg School of Medicine, 710N. Lake Shore Drive, Abbott Hall 1322, Chicago, IL, 60611, USA
| | - Ivo Dinov
- Statistics Online Computational Resource (SOCR), Center for Complexity of Self-Management in Chronic Disease (CSCD), Health Behavior and Biological Sciences, Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI, 49109, USA
| | - David Hancock
- Pervasive Technology Institute, Indiana University Bloomington, 2709 E 10th Street, Bloomington, IN, 47408, USA
| | - Bradley Caron
- Pestilli Lab. Indiana University School of Optometry and Program in Neuroscience, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, USA
| | - Yiming Qian
- Pestilli Lab. Department of Psychological and Brain Sciences, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Franco Pestilli
- Pestilli Lab. Department of Psychological and Brain Sciences, Engineering, Computer Science, Programs in Neuroscience and Cognitive Science, School of Optometry, and Indiana Network Science Institute, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA.
| |
Collapse
|
37
|
Doñamayor N, Baek K, Voon V. Distal Functional Connectivity of Known and Emerging Cortical Targets for Therapeutic Noninvasive Stimulation. Cereb Cortex 2019; 28:791-804. [PMID: 29207006 DOI: 10.1093/cercor/bhx331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Noninvasive stimulation is an emerging modality for the treatment of psychiatric disorders, including addiction. A crucial element in effective cortical target selection is its distal influence. We approached this question by examining resting-state functional connectivity patterns in known and potential stimulation targets in 145 healthy adults. We compared connectivity patterns with distant regions of particular relevance in the development and maintenance of addiction. We used stringent Bonferroni-correction for multiple comparisons. We show how the anterior insula, dorsal anterior cingulate, and ventromedial prefrontal cortex had opposing functional connectivity with striatum compared to the dorsomedial prefrontal cortex. However, the dorsolateral prefrontal cortex, the currently preferred target, and the presupplementary motor area had strongest negative connections to amygdala and hippocampus. Our findings highlight differential and opposing influences as a function of cortical site, underscoring the relevance of careful cortical target selection dependent on the desired effect on subcortical structures. We show the relevance of dorsal anterior cingulate and ventromedial prefrontal cortex as emerging cortical targets, and further emphasize the anterior insula as a potential promising target in addiction treatment, given its strong connections to ventral striatum, putamen, and substantia nigra.
Collapse
Affiliation(s)
- Nuria Doñamayor
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Kwangyeol Baek
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK.,Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 3EB, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK.,NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
38
|
Frazier I, Lighthall NR, Horta M, Perez E, Ebner NC. CISDA: Changes in Integration for Social Decisions in Aging. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2019; 10:e1490. [PMID: 30605250 PMCID: PMC8142223 DOI: 10.1002/wcs.1490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 11/10/2022]
Abstract
The aging of our population has been accompanied by increasing concerns about older adults' vulnerability to violations of trust and a growing interest in normative age-related changes to decision making involving social partners. This intersection has spurred research on age-related neurocognitive and affective changes underlying social decision making. Based on our review and synthesis of this literature, we propose a specification that targets social decision making in aging to the recently proposed Affect-Integration-Motivation (AIM) framework. Our framework specification, Changes in Integration for Social Decisions in Aging (CISDA), emphasizes three key components of value integration with particular relevance for social decisions in aging: theory of mind, emotion regulation, and memory for past experience. CISDA builds on converging research from economic decision making, cognitive neuroscience, and lifespan development to outline how age-related changes to neurocognition and behavior impact social decision making. We conclude with recommendations for future research based on CISDA's predictions, including implications for the development of interventions to enhance social decision outcomes in older adults. This article is categorized under: Economics > Individual Decision Making Psychology > Reasoning and Decision Making Psychology > Development and Aging Neuroscience > Cognition.
Collapse
Affiliation(s)
- Ian Frazier
- Department of Psychology, University of Florida, Gainesville, Florida
| | | | - Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Eliany Perez
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Natalie C. Ebner
- Department of Psychology, University of Florida, Gainesville, Florida
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, Florida
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
- Florida Institute for Cybersecurity Research, University of Florida, Gainesville, Florida
| |
Collapse
|
39
|
Kube J, Mathar D, Horstmann A, Kotz SA, Villringer A, Neumann J. Altered monetary loss processing and reinforcement-based learning in individuals with obesity. Brain Imaging Behav 2019; 12:1431-1449. [PMID: 29285721 PMCID: PMC6290732 DOI: 10.1007/s11682-017-9786-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Individuals with obesity are often characterized by alterations in reward processing. This may affect how new information is used to update stimulus values during reinforcement-based learning. Here, we investigated obesity-related changes in non-food reinforcement processing, their impact on learning performance as well as the neural underpinnings of reinforcement-based learning in obesity. Nineteen individuals with obesity (BMI > = 30 kg/m2, 10 female) and 23 lean control participants (BMI 18.5–24.9 kg/m2, 11 female) performed a probabilistic learning task during functional magnetic resonance imaging (fMRI), in which they learned to choose between advantageous and disadvantageous choice options in separate monetary gain, loss, and neutral conditions. During learning individuals with obesity made a significantly lower number of correct choices and accumulated a significantly lower overall monetary outcome than lean control participants. FMRI analyses revealed aberrant medial prefrontal cortex responses to monetary losses in individuals with obesity. There were no significant group differences in the regional representation of prediction errors. However, we found evidence for increased functional connectivity between the ventral striatum and insula in individuals with obesity. The present results suggest that obesity is associated with aberrant value representations for monetary losses, alterations in functional connectivity during the processing of learning outcomes, as well as a decresased reinforcement-based learning performance. This may affect how new information is incorporated to adjust dysfunctional behavior and could be a factor contributing to the maintenance of dysfunctional eating behavior in obesity.
Collapse
Affiliation(s)
- Jana Kube
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany. .,IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany. .,Faculty 5 - Business, Law and Social Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany.
| | - David Mathar
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,Department of Psychology, University of Cologne, Cologne, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Sonja A Kotz
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.,Clinic of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany.,Mind & Brain Institute, Berlin School of Mind and Brain, Humboldt-University, Berlin, Germany
| | - Jane Neumann
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.,Department of Medical Engineering and Biotechnology, University of Applied Sciences, Jena, Germany
| |
Collapse
|
40
|
Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev 2019; 97:10-33. [DOI: 10.1016/j.neubiorev.2018.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/31/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
|
41
|
Abstract
Acute pain has an evolutionary role in the detection of physical harm and the response to it. In some cases, however, acute pain can impair function and lead to other morbidities. Chronic pain, meanwhile, can present as a psychopathological condition that significantly interferes with daily living. Most basic and translational pain research has focused on the molecular and cellular mechanisms in the spinal and peripheral nervous systems. In contrast, the brain plays a key role in the affective manifestation and cognitive control of pain. In particular, several cortical regions, such as the somatosensory cortex, prefrontal cortex, insular, and anterior cingulate cortex, are well known to be activated by acute pain signals, and neurons in these regions have been demonstrated to undergo changes in response to chronic pain. Furthermore, these cortical regions can project to a number of forebrain and limbic structures to exert powerful top-down control of not only sensory pain transmission but also affective pain expression, and such cortical regulatory mechanisms are particularly relevant in chronic pain states. Newer techniques have emerged that allow for detailed studies of central pain circuits in animal models, as well as how such circuits are modified by the presence of chronic pain and other predisposing psychosomatic factors. These mechanistic approaches can complement imaging in human studies. At the therapeutic level, a number of pharmacological and nonpharmacological interventions have recently been shown to engage these top-down control systems to provide analgesia. In this review, we will discuss how pain signals reach important cortical regions and how these regions in turn project to subcortical areas of the brain to exert profound modulation of the pain experience. In addition, we will discuss the clinical relevance of such top-down pain regulation mechanisms.
Collapse
|
42
|
Sharkey RJ, Bourque J, Larcher K, Mišić B, Zhang Y, Altınkaya A, Sadikot A, Conrod P, Evans AC, Garavan H, Leyton M, Séguin JR, Pihl R, Dagher A. Mesolimbic connectivity signatures of impulsivity and BMI in early adolescence. Appetite 2019; 132:25-36. [PMID: 30273626 DOI: 10.1016/j.appet.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
Across age groups, differences in connectivity of the mesolimbic and the prefrontal cortex co-vary with trait impulsivity and sensation-seeking. Impulsivity and sensation-seeking are also known to increase during early adolescence as maturation of subcortical structures outpaces that of the prefrontal cortex. While an imbalance between the striatum and prefrontal cortex is considered a normal developmental process, higher levels of adolescent impulsivity and sensation-seeking are associated with an increased risk for diverse problems, including obesity. To determine how the relationship between sensation-seeking, impulsivity and body mass index (BMI) is related to shared neural correlates we measured their relationships with the connectivity of nuclei in the striatum and dopaminergic midbrain in young adolescents. Data were collected from 116 children between the ages of 12 and 14, and included resting state functional magnetic resonance imaging, personality measures from the Substance Use Risk Profile Scale, and BMI Z-score for age. The shared variance for the connectivity of regions of interest in the substantia nigra, ventral tegmental area, ventral striatum and sub-thalamic nucleus, personality measures and BMI Z-score for age, were analyzed using partial least squares correlation. This analysis identified a single significant striato-limbic network that was connected with the substantia nigra, ventral tegmental area and sub-thalamic nuclei (p = 0.002). Connectivity within this network which included the hippocampi, amygdalae, parahippocampal gyri and the regions of interest, correlated positively with impulsivity and BMI Z-score for age and negatively with sensation-seeking. Together, these findings emphasize that, in addition to the well-established role that frontostriatal circuits play in the development of adolescent personality traits, connectivity of limbic regions with the striatum and midbrain also impact impulsivity, sensation-seeking and BMI Z-score in adolescents.
Collapse
Affiliation(s)
- Rachel J Sharkey
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Josiane Bourque
- CHU Hospital Ste-Justine, Université de Montreal, Montreal, QC, Canada
| | - Kevin Larcher
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Mišić
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yu Zhang
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ayça Altınkaya
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Abbas Sadikot
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Patricia Conrod
- CHU Hospital Ste-Justine, Université de Montreal, Montreal, QC, Canada; Institute of Psychiatry, Psychology and Neuroscience, Kings College, London, United Kingdom
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jean R Séguin
- CHU Hospital Ste-Justine, Université de Montreal, Montreal, QC, Canada
| | - Robert Pihl
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Randall PA, Vetreno RP, Makhijani VH, Crews FT, Besheer J. The Toll-Like Receptor 3 Agonist Poly(I:C) Induces Rapid and Lasting Changes in Gene Expression Related to Glutamatergic Function and Increases Ethanol Self-Administration in Rats. Alcohol Clin Exp Res 2018; 43:48-60. [PMID: 30403408 DOI: 10.1111/acer.13919] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Growing evidence suggests that neuroimmune signaling via Toll-like receptors (TLRs) alters brain circuitry related to alcohol use disorders. Both ethanol (EtOH) exposure and the TLR3 agonist, poly(I:C), increase brain TLR3 expression in neurons and glia. Furthermore, previous studies have shown that cortical TLR3 expression is correlated with lifetime EtOH intake in humans. METHODS The current experiments investigated the consequences of poly(I:C) treatment on gene expression in 2 brain regions contributing to alcohol reinforcement, the insular cortex (IC) and nucleus accumbens (Acb) and on operant EtOH self-administration, in Long Evans rats. RESULTS TLR3 activation increased mRNA levels of neuroimmune genes (TLR3, COX2), glutamatergic genes (mGluR2, mGluR3, GLT1), and the trophic factor BDNF in Acb and IC. Furthermore, increases in each of these genes were correlated with increases in TLR3 mRNA, suggesting that TLR3 induction of these genes may impact excitatory transmission in IC and Acb. TLR3 activation also increased EtOH self-administration 18 days postinjection and enhanced the effects of the mGluR2/3 agonist LY379268 to reduce EtOH self-administration following poly(I:C). CONCLUSIONS Together, these findings suggest lasting consequences of TLR3 activation on gene expression including increases in Group II mGluRs in the Acb. Furthermore, we show an important role for TLR3 signaling in EtOH intake, and a functional involvement of Group II mGluRs.
Collapse
Affiliation(s)
- Patrick A Randall
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Viren H Makhijani
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Chen X, Stuphorn V. Inactivation of Medial Frontal Cortex Changes Risk Preference. Curr Biol 2018; 28:3114-3122.e4. [PMID: 30245108 PMCID: PMC6177298 DOI: 10.1016/j.cub.2018.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 07/13/2018] [Indexed: 12/23/2022]
Abstract
Humans and other animals need to make decisions under varying degrees of uncertainty. These decisions are strongly influenced by an individual's risk preference; however, the neuronal circuitry by which risk preference shapes choice is still unclear [1]. Supplementary eye field (SEF), an oculomotor area within primate medial frontal cortex, is thought to be an essential part of the neuronal circuit underlying oculomotor decision making, including decisions under risk [2-5]. Consistent with this view, risk-related action value and monitoring signals have been observed in SEF [6-8]. However, such activity has also been observed in other frontal areas, including orbitofrontal [9-11], cingulate [12-14], and dorsal-lateral frontal cortex [15]. It is thus unknown whether the activity in SEF causally contributes to risky decisions, or whether it is merely a reflection of neural processes in other cortical regions. Here, we tested a causal role of SEF in risky oculomotor choices. We found that SEF inactivation strongly reduced the frequency of risky choices. This reduction was largely due to a reduced attraction to reward uncertainty and high reward gain, but not due to changes in the subjective estimation of reward probability or average expected reward. Moreover, SEF inactivation also led to increased sensitivity to differences between expected and actual reward during free choice. Nevertheless, it did not affect adjustments of decisions based on reward history.
Collapse
Affiliation(s)
- Xiaomo Chen
- Department of Neuroscience, Johns Hopkins University School of Medicine and Zanvyl Krieger Mind/Brain Institute, 3400 North Charles Street, Baltimore, MD 21218-2685, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Veit Stuphorn
- Department of Neuroscience, Johns Hopkins University School of Medicine and Zanvyl Krieger Mind/Brain Institute, 3400 North Charles Street, Baltimore, MD 21218-2685, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
45
|
Jaramillo AA, Agan VE, Makhijani VH, Pedroza S, McElligott ZA, Besheer J. Functional role for suppression of the insular-striatal circuit in modulating interoceptive effects of alcohol. Addict Biol 2018; 23:1020-1031. [PMID: 28960802 DOI: 10.1111/adb.12551] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022]
Abstract
The insular cortex (IC) is a region proposed to modulate, in part, interoceptive states and motivated behavior. Interestingly, IC dysfunction and deficits in interoceptive processing are often found among individuals with substance-use disorders. Furthermore, the IC projects to the nucleus accumbens core (AcbC), a region known to modulate the discriminative stimulus/interoceptive effects of alcohol and other drug-related behaviors. Therefore, the goal of the present work was to investigate the possible role of the IC ➔ AcbC circuit in modulating the interoceptive effects of alcohol. Thus, we utilized a chemogenetic technique (hM4Di designer receptor activation by designer drugs) to silence neuronal activity in the IC of rats trained to discriminate alcohol (1 g/kg, IG) versus water using an operant or Pavlovian alcohol discrimination procedure. Chemogenetic silencing of the IC or IC ➔ AcbC neuronal projections resulted in potentiated sensitivity to the interoceptive effects of alcohol in both the operant and Pavlovian tasks. Together, these data provide critical evidence for the nature of the complex IC circuitry and, specifically, suppression of the insular-striatal circuit in modulating behavior under a drug stimulus control.
Collapse
Affiliation(s)
- Anel A. Jaramillo
- Bowles Center for Alcohol Studies; Chapel Hill NC USA
- Neuroscience Curriculum; Chapel Hill NC USA
| | - Verda E. Agan
- Bowles Center for Alcohol Studies; Chapel Hill NC USA
| | - Viren H. Makhijani
- Bowles Center for Alcohol Studies; Chapel Hill NC USA
- Neuroscience Curriculum; Chapel Hill NC USA
| | | | - Zoe A. McElligott
- Bowles Center for Alcohol Studies; Chapel Hill NC USA
- Neuroscience Curriculum; Chapel Hill NC USA
- Department of Psychiatry; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies; Chapel Hill NC USA
- Neuroscience Curriculum; Chapel Hill NC USA
- Department of Psychiatry; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
46
|
Yuan K, Yu D, Zhao M, Li M, Wang R, Li Y, Manza P, Shokri-Kojori E, Wiers CE, Wang GJ, Tian J. Abnormal frontostriatal tracts in young male tobacco smokers. Neuroimage 2018; 183:346-355. [PMID: 30130644 DOI: 10.1016/j.neuroimage.2018.08.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Dysfunctions in frontostriatal circuits have been associated with craving and cognitive control in smokers. However, the relevance of white matter (WM) diffusion properties of the ventral and dorsal frontostriatal tracts for behaviors associated with smoking remains relatively unknown, especially in young adulthood, a critical time period for the development and maintenance of addiction. Here, diffusion tensor imaging (DTI) and probabilistic tractography were used to investigate the WM tracts of the ventral and dorsal frontostriatal circuits in two independent studies (Study1: 36 male smokers (21.3 ± 1.3 years) vs. 35 male nonsmokers (21.2 ± 1.3 years); Study2: 29 male smokers (21.4 ± 1.1 years) vs. 25 male nonsmokers (21.0 ± 1.4 years)). Subjective craving was measured by the Questionnaire on Smoking Urges (QSU) and cognitive control ability was assessed with the Stroop task. In both studies, smokers committed more response errors than nonsmokers during the incongruent condition of the Stroop task. Relative to controls, smokers showed lower fractional anisotropy (FA) and higher radial diffusivity in left medial orbitofrontal cortex-to-nucleus accumbens fiber tracts (ventral frontostriatal path) and also lower FA in right dorsolateral prefrontal cortex-to-caudate fiber tracts (dorsal frontostriatal path). The FA values of the right dorsal fibers were negatively correlated with incongruent response Stroop errors in smokers, whereas the mean diffusivity values of the left ventral fibers were positively correlated with craving in smokers. Thus, WM diffusion properties of the dorsal and ventral frontostriatal tracts were associated with cognitive control and craving, respectively, in young male tobacco smokers. These data highlight the importance of studying WM in relation to neuropsychological changes underlying smoking.
Collapse
Affiliation(s)
- Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China; Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, PR China; Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, Guangxi, 541004, PR China.
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, PR China
| | - Meng Zhao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China
| | - Min Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China
| | - Ruonan Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China
| | - Yangding Li
- Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, Guangxi, 541004, PR China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China; Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
47
|
Wang R, Li M, Zhao M, Yu D, Hu Y, Wiers CE, Wang GJ, Volkow ND, Yuan K. Internet gaming disorder: deficits in functional and structural connectivity in the ventral tegmental area-Accumbens pathway. Brain Imaging Behav 2018; 13:1172-1181. [DOI: 10.1007/s11682-018-9929-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Häusler AN, Kuhnen CM, Rudorf S, Weber B. Preferences and beliefs about financial risk taking mediate the association between anterior insula activation and self-reported real-life stock trading. Sci Rep 2018; 8:11207. [PMID: 30046095 PMCID: PMC6060130 DOI: 10.1038/s41598-018-29670-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022] Open
Abstract
People differ greatly in their financial risk taking behaviour. This heterogeneity has been associated with differences in brain activity, but only in laboratory settings using constrained behaviours. However, it is important to understand how these measures transfer to real life conditions, because the willingness to invest in riskier assets has a direct and considerable effect on long-term wealth accumulation. In a large fMRI study of 157 working age men (39.0 ± 6.4 SD years), we first show that activity in the anterior insula during the assessment of risky vs. safe choices in an investing task is associated with self-reported real-life active stock trading. We then show that this association remains intact when we control for financial constraints, education, the understanding of financial matters, and cognitive abilities. Finally, we use comprehensive measures of preferences and beliefs about risk taking to show that these two channels mediate the association between brain activation in the anterior insula and real-life active stock trading.
Collapse
Affiliation(s)
- Alexander N Häusler
- Center for Economics and Neuroscience, University of Bonn, Nachtigallenweg 86, 53127, Bonn, Germany.
- Department of Epileptology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
- Department of NeuroCognition/Imaging, Life&Brain Research Center, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Camelia M Kuhnen
- Kenan-Flagler Business School, University of North Carolina, 300 Kenan Center Drive, Chapel Hill, NC, 27599, USA
| | - Sarah Rudorf
- Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Nachtigallenweg 86, 53127, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
- Department of NeuroCognition/Imaging, Life&Brain Research Center, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| |
Collapse
|
49
|
Ren P, Chapman B, Zhang Z, Schifitto G, Lin F. Functional and structural connectivity of the amygdala underpins locus of control in mild cognitive impairment. NEUROIMAGE-CLINICAL 2018; 20:297-304. [PMID: 30101061 PMCID: PMC6083450 DOI: 10.1016/j.nicl.2018.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Locus of control (LOC) is an important personality trait. LOC over cognitive competency reflects an individual's perceived control of desired cognitive outcomes, which is critical for maintaining successful cognitive aging. It is important to understand the neural substrates of LOC over cognitive competency in older adults, especially for individuals at high risk of dementia. Here, we characterized a cohesive functional and structural connectivity profile underlying LOC among 55 older adults with amnestic mild cognitive impairment (aMCI), combining resting-state functional magnetic resonance imaging and diffusion tensor imaging. The results showed that both functional and structural connectivity between the medial prefrontal cortex and amygdala were significantly correlated with external LOC. The functional connectivity mediated the correlation between structural connectivity and external LOC. In addition, aging-associated neurodegeneration moderated the relationship between structural connectivity and external LOC, showing that the structural connectivity was positively correlated with external LOC in low, but not high neurodegeneration. Our results suggest a critical role of the functional amygdala-frontal network, which may serve as a bridge between its white matter tract and LOC over cognitive competency in groups at high risk for dementia.
Collapse
Key Words
- AD, Alzheimer's disease
- ADSCT, Alzheimer's disease signature cortical thickness
- Alzheimer's disease signature cortical thickness
- Amnestic mild cognitive impairment
- Amygdala
- D, mean diffusivity
- DTI, Diffusion tensor imaging
- Diffusion tensor imaging
- FA, fractional anisotropy
- LOC, locus of control
- Locus of control
- MPFC, medial prefrontal cortex
- NV, number of voxels
- PIC, Intellectual Aging Contexts
- Resting-state fMRI
- VBM, Voxel-based morphometry
- aMCI, amnestic mild cognitive impairment
- fMRI, functional magnetic resonance imaging
Collapse
Affiliation(s)
- Ping Ren
- School of Nursing, University of Rochester Medical Center, Rochester, NY, United States.
| | - Benjamin Chapman
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| | - Zhengwu Zhang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Feng Lin
- School of Nursing, University of Rochester Medical Center, Rochester, NY, United States; Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States; Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States; Department of Brain and Cognitive Science, University of Rochester, Rochester, NY, United States
| |
Collapse
|
50
|
Grodin EN, Sussman L, Sundby K, Brennan GM, Diazgranados N, Heilig M, Momenan R. Neural Correlates of Compulsive Alcohol Seeking in Heavy Drinkers. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:1022-1031. [PMID: 30143454 DOI: 10.1016/j.bpsc.2018.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Compulsive alcohol use, the tendency to continue alcohol seeking and taking despite negative consequences, is a hallmark of alcohol use disorder. Preclinical rodent studies have suggested a role for the medial prefrontal cortex, anterior insula, and nucleus accumbens in compulsive alcohol seeking. It is presently unknown whether these findings translate to humans. We used a novel functional magnetic resonance imaging paradigm and tested the hypothesis that heavy drinkers would compulsively seek alcohol despite the risk of an aversive consequence, and that this behavior would be associated with the activity of frontostriatal circuitry. METHODS Non-treatment-seeking heavy and light drinkers (n = 21 per group) completed a functional magnetic resonance imaging paradigm in which they could earn alcohol or food points at various threat levels (i.e., various probabilities of incurring an aversive consequence). Brain function was evaluated when individuals had the opportunity to earn reward points at the risk of an aversive consequence, an electric shock on the wrist. RESULTS Compared with light drinkers, heavy drinkers attempted to earn more aversion-paired alcohol points. Frontostriatal circuitry, including the medial prefrontal cortex, anterior insula, and striatum, was more active in this group when viewing threat-predictive alcohol cues. Heavy drinkers had increased connectivity between the anterior insula and the nucleus accumbens. Greater connectivity was associated with more attempts to earn aversion-paired alcohol points and self-reported compulsive alcohol use scores. CONCLUSIONS Higher activation of frontostriatal circuitry in heavy drinkers may contribute to compulsive alcohol seeking. Treatments that disrupt this circuitry may result in a decrease in compulsive alcohol use.
Collapse
Affiliation(s)
- Erica N Grodin
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Department of Neuroscience, Brown University, Providence, Rhode Island.
| | - Lauren Sussman
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Kelsey Sundby
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Grace M Brennan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Nancy Diazgranados
- Office of the Clinical Directory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|