1
|
Turrini L, Ricci P, Sorelli M, de Vito G, Marchetti M, Vanzi F, Pavone FS. Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity. Commun Biol 2024; 7:1261. [PMID: 39367042 PMCID: PMC11452506 DOI: 10.1038/s42003-024-06731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 10/06/2024] Open
Abstract
One of the most audacious goals of modern neuroscience is unraveling the complex web of causal relations underlying the activity of neuronal populations on a whole-brain scale. This endeavor, which was prohibitive only a couple of decades ago, has recently become within reach owing to the advancements in optical methods and the advent of genetically encoded indicators/actuators. These techniques, applied to the translucent larval zebrafish have enabled recording and manipulation of the activity of extensive neuronal populations spanning the entire vertebrate brain. Here, we present a custom two-photon optical system that couples light-sheet imaging and 3D excitation with acousto-optic deflectors for simultaneous high-speed volumetric recording and optogenetic stimulation. By employing a zebrafish line with pan-neuronal expression of both the calcium reporter GCaMP6s and the red-shifted opsin ReaChR, we implemented a crosstalk-free, noninvasive all-optical approach and applied it to reconstruct the functional and effective connectivity of the left habenula.
Collapse
Affiliation(s)
- Lapo Turrini
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Pietro Ricci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Liu Y, Chen Y, Duffy CR, VanLeuven AJ, Byers JB, Schriever HC, Ball RE, Carpenter JM, Gunderson CE, Filipov NM, Ma P, Kner PA, Lauderdale JD. Decreased GABA levels during development result in increased connectivity in the larval zebrafish tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612511. [PMID: 39314470 PMCID: PMC11419034 DOI: 10.1101/2024.09.11.612511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
γ-aminobutyric acid (GABA) is an abundant neurotransmitter that plays multiple roles in the vertebrate central nervous system (CNS). In the early developing CNS, GABAergic signaling acts to depolarize cells. It mediates several aspects of neural development, including cell proliferation, neuronal migration, neurite growth, and synapse formation, as well as the development of critical periods. Later in CNS development, GABAergic signaling acts in an inhibitory manner when it becomes the predominant inhibitory neurotransmitter in the brain. This behavior switch occurs due to changes in chloride/cation transporter expression. Abnormalities of GABAergic signaling appear to underlie several human neurological conditions, including seizure disorders. However, the impact of reduced GABAergic signaling on brain development has been challenging to study in mammals. Here we take advantage of zebrafish and light sheet imaging to assess the impact of reduced GABAergic signaling on the functional circuitry in the larval zebrafish optic tectum. Zebrafish have three gad genes: two gad1 paralogs known as gad1a and gad1b, and gad2. The gad1b and gad2 genes are expressed in the developing optic tectum. Null mutations in gad1b significantly reduce GABA levels in the brain and increase electrophysiological activity in the optic tectum. Fast light sheet imaging of genetically encoded calcium indicator (GCaMP)-expressing gab1b null larval zebrafish revealed patterns of neural activity that were different than either gad1b-normal larvae or gad1b-normal larvae acutely exposed to pentylenetetrazole (PTZ). These results demonstrate that reduced GABAergic signaling during development increases functional connectivity and concomitantly hyper-synchronization of neuronal networks.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yongkai Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Ariel J VanLeuven
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - John Branson Byers
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Hannah C Schriever
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca E Ball
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| | - Chelsea E Gunderson
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Peter A Kner
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Baier H, Scott EK. The Visual Systems of Zebrafish. Annu Rev Neurosci 2024; 47:255-276. [PMID: 38663429 DOI: 10.1146/annurev-neuro-111020-104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 12 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield-specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that-at least in the larva-resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.
Collapse
Affiliation(s)
- Herwig Baier
- Department of Genes-Circuits-Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany;
| | - Ethan K Scott
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Vohra SK, Harth P, Isoe Y, Bahl A, Fotowat H, Engert F, Hege HC, Baum D. A Visual Interface for Exploring Hypotheses About Neural Circuits. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:3945-3958. [PMID: 37022819 PMCID: PMC11252567 DOI: 10.1109/tvcg.2023.3243668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
One of the fundamental problems in neurobiological research is to understand how neural circuits generate behaviors in response to sensory stimuli. Elucidating such neural circuits requires anatomical and functional information about the neurons that are active during the processing of the sensory information and generation of the respective response, as well as an identification of the connections between these neurons. With modern imaging techniques, both morphological properties of individual neurons as well as functional information related to sensory processing, information integration and behavior can be obtained. Given the resulting information, neurobiologists are faced with the task of identifying the anatomical structures down to individual neurons that are linked to the studied behavior and the processing of the respective sensory stimuli. Here, we present a novel interactive tool that assists neurobiologists in the aforementioned tasks by allowing them to extract hypothetical neural circuits constrained by anatomical and functional data. Our approach is based on two types of structural data: brain regions that are anatomically or functionally defined, and morphologies of individual neurons. Both types of structural data are interlinked and augmented with additional information. The presented tool allows the expert user to identify neurons using Boolean queries. The interactive formulation of these queries is supported by linked views, using, among other things, two novel 2D abstractions of neural circuits. The approach was validated in two case studies investigating the neural basis of vision-based behavioral responses in zebrafish larvae. Despite this particular application, we believe that the presented tool will be of general interest for exploring hypotheses about neural circuits in other species, genera and taxa.
Collapse
|
5
|
Cisek P, Green AM. Toward a neuroscience of natural behavior. Curr Opin Neurobiol 2024; 86:102859. [PMID: 38583263 DOI: 10.1016/j.conb.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
One of the most exciting new developments in systems neuroscience is the progress being made toward neurophysiological experiments that move beyond simplified laboratory settings and address the richness of natural behavior. This is enabled by technological advances such as wireless recording in freely moving animals, automated quantification of behavior, and new methods for analyzing large data sets. Beyond new empirical methods and data, however, there is also a need for new theories and concepts to interpret that data. Such theories need to address the particular challenges of natural behavior, which often differ significantly from the scenarios studied in traditional laboratory settings. Here, we discuss some strategies for developing such novel theories and concepts and some example hypotheses being proposed.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| | - Andrea M Green
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Guadagno A, Triki Z. Executive functions and brain morphology of male and female dominant and subordinate cichlid fish. Brain Behav 2024; 14:e3484. [PMID: 38680075 PMCID: PMC11056711 DOI: 10.1002/brb3.3484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Living in a social dominance hierarchy presents different benefits and challenges for dominant and subordinate males and females, which might in turn affect their cognitive needs. Despite the extensive research on social dominance in group-living species, there is still a knowledge gap regarding how social status impacts brain morphology and cognitive abilities. METHODS Here, we tested male and female dominants and subordinates of Neolamprologus pulcher, a social cichlid fish species with size-based hierarchy. We ran three executive cognitive function tests for cognitive flexibility (reversal learning test), self-control (detour test), and working memory (object permanence test), followed by brain and brain region size measurements. RESULTS Performance was not influenced by social status or sex. However, dominants exhibited a brain-body slope that was relatively steeper than that of subordinates. Furthermore, individual performance in reversal learning and detour tests correlated with brain morphology, with some trade-offs among major brain regions like telencephalon, cerebellum, and optic tectum. CONCLUSION As individuals' brain growth strategies varied depending on social status without affecting executive functions, the different associated challenges might yield a potential effect on social cognition instead. Overall, the findings highlight the importance of studying the individual and not just species to understand better how the individual's ecology might shape its brain and cognition.
Collapse
Affiliation(s)
- Angelo Guadagno
- Behavioural Ecology Division, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Zegni Triki
- Behavioural Ecology Division, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
7
|
Tanimoto Y, Kakinuma H, Aoki R, Shiraki T, Higashijima SI, Okamoto H. Transgenic tools targeting the basal ganglia reveal both evolutionary conservation and specialization of neural circuits in zebrafish. Cell Rep 2024; 43:113916. [PMID: 38484735 DOI: 10.1016/j.celrep.2024.113916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/18/2024] [Accepted: 02/17/2024] [Indexed: 04/02/2024] Open
Abstract
The cortico-basal ganglia circuit mediates decision making. Here, we generated transgenic tools for adult zebrafish targeting specific subpopulations of the components of this circuit and utilized them to identify evolutionary homologs of the mammalian direct- and indirect-pathway striatal neurons, which respectively project to the homologs of the internal and external segment of the globus pallidus (dorsal entopeduncular nucleus [dEN] and lateral nucleus of the ventral telencephalic area [Vl]) as in mammals. Unlike in mammals, the Vl mainly projects to the dEN directly, not by way of the subthalamic nucleus. Further single-cell RNA sequencing analysis reveals two pallidal output pathways: a major shortcut pathway directly connecting the dEN with the pallium and the evolutionarily conserved closed loop by way of the thalamus. Our resources and circuit map provide the common basis for the functional study of the basal ganglia in a small and optically tractable zebrafish brain for the comprehensive mechanistic understanding of the cortico-basal ganglia circuit.
Collapse
Affiliation(s)
- Yuki Tanimoto
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hisaya Kakinuma
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Ryo Aoki
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Toshiyuki Shiraki
- Research Resources Division, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Shin-Ichi Higashijima
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi 444-8787, Japan; National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan.
| |
Collapse
|
8
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
9
|
Uribe-Arias A, Rozenblat R, Vinepinsky E, Marachlian E, Kulkarni A, Zada D, Privat M, Topsakalian D, Charpy S, Candat V, Nourin S, Appelbaum L, Sumbre G. Radial astrocyte synchronization modulates the visual system during behavioral-state transitions. Neuron 2023; 111:4040-4057.e6. [PMID: 37863038 PMCID: PMC10783638 DOI: 10.1016/j.neuron.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Glial cells support the function of neurons. Recent evidence shows that astrocytes are also involved in brain computations. To explore whether and how their excitable nature affects brain computations and motor behaviors, we used two-photon Ca2+ imaging of zebrafish larvae expressing GCaMP in both neurons and radial astrocytes (RAs). We found that in the optic tectum, RAs synchronize their Ca2+ transients immediately after the end of an escape behavior. Using optogenetics, ablations, and a genetically encoded norepinephrine sensor, we observed that RA synchronous Ca2+ events are mediated by the locus coeruleus (LC)-norepinephrine circuit. RA synchronization did not induce direct excitation or inhibition of tectal neurons. Nevertheless, it modulated the direction selectivity and the long-distance functional correlations among neurons. This mechanism supports freezing behavior following a switch to an alerted state. These results show that LC-mediated neuro-glial interactions modulate the visual system during transitions between behavioral states.
Collapse
Affiliation(s)
- Alejandro Uribe-Arias
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Rotem Rozenblat
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ehud Vinepinsky
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emiliano Marachlian
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Anirudh Kulkarni
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David Zada
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Diego Topsakalian
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sarah Charpy
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Virginie Candat
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sarah Nourin
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Germán Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
10
|
Brehm N, Wenke N, Glessner K, Haehnel-Taguchi M. Physiological responses of mechanosensory systems in the head of larval zebrafish ( Danio rerio). Front Robot AI 2023; 10:1212626. [PMID: 37583713 PMCID: PMC10423815 DOI: 10.3389/frobt.2023.1212626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
The lateral line system of zebrafish consists of the anterior lateral line, with neuromasts distributed on the head, and the posterior lateral line, with neuromasts distributed on the trunk. The sensory afferent neurons are contained in the anterior and posterior lateral line ganglia, respectively. So far, the vast majority of physiological and developmental studies have focused on the posterior lateral line. However, studies that focus on the anterior lateral line, especially on its physiology, are very rare. The anterior lateral line involves different neuromast patterning processes, specific distribution of synapses, and a unique role in behavior. Here, we report our observations regarding the development of the lateral line and analyze the physiological responses of the anterior lateral line to mechanical and water jet stimuli. Sensing in the fish head may be crucial to avoid obstacles, catch prey, and orient in water current, especially in the absence of visual cues. Alongside the lateral line, the trigeminal system, with its fine nerve endings innervating the skin, could contribute to perceiving mechanosensory stimulation. Therefore, we compare the physiological responses of the lateral line afferent neurons to responses of trigeminal neurons and responsiveness of auditory neurons. We show that anterior lateral line neurons are tuned to the velocity of mechanosensory ramp stimulation, while trigeminal neurons either only respond to mechanical step stimuli or fast ramp and step stimuli. Auditory neurons did not respond to mechanical or water jet stimuli. These results may prove to be essential in designing underwater robots and artificial lateral lines, with respect to the spectra of stimuli that the different mechanosensory systems in the larval head are tuned to, and underline the importance and functionality of the anterior lateral line system in the larval fish head.
Collapse
Affiliation(s)
- Nils Brehm
- Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Freiburg, Germany
| | | | | | - Melanie Haehnel-Taguchi
- Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Pluimer BR, Harrison DL, Boonyavairoje C, Prinssen EP, Rogers-Evans M, Peterson RT, Thyme SB, Nath AK. Behavioral analysis through the lifespan of disc1 mutant zebrafish identifies defects in sensorimotor transformation. iScience 2023; 26:107099. [PMID: 37416451 PMCID: PMC10320522 DOI: 10.1016/j.isci.2023.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
DISC1 is a genetic risk factor for multiple psychiatric disorders. Compared to the dozens of murine Disc1 models, there is a paucity of zebrafish disc1 models-an organism amenable to high-throughput experimentation. We conducted the longitudinal neurobehavioral analysis of disc1 mutant zebrafish across key stages of life. During early developmental stages, disc1 mutants exhibited abrogated behavioral responses to sensory stimuli across multiple testing platforms. Moreover, during exposure to an acoustic sensory stimulus, loss of disc1 resulted in the abnormal activation of neurons in the pallium, cerebellum, and tectum-anatomical sites involved in the integration of sensory perception and motor control. In adulthood, disc1 mutants exhibited sexually dimorphic reduction in anxiogenic behavior in novel paradigms. Together, these findings implicate disc1 in sensorimotor processes and the genesis of anxiogenic behaviors, which could be exploited for the development of novel treatments in addition to investigating the biology of sensorimotor transformation in the context of disc1 deletion.
Collapse
Affiliation(s)
- Brock R. Pluimer
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Devin L. Harrison
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Chanon Boonyavairoje
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric P. Prinssen
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mark Rogers-Evans
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Randall T. Peterson
- Deparment of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Summer B. Thyme
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Anjali K. Nath
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Wu Q, Zhang Y. Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats. Neurosci Bull 2023; 39:994-1008. [PMID: 36694085 PMCID: PMC10264346 DOI: 10.1007/s12264-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/30/2022] [Indexed: 01/26/2023] Open
Abstract
Evading or escaping from predators is one of the most crucial issues for survival across the animal kingdom. The timely detection of predators and the initiation of appropriate fight-or-flight responses are innate capabilities of the nervous system. Here we review recent progress in our understanding of innate visually-triggered defensive behaviors and the underlying neural circuit mechanisms, and a comparison among vinegar flies, zebrafish, and mice is included. This overview covers the anatomical and functional aspects of the neural circuits involved in this process, including visual threat processing and identification, the selection of appropriate behavioral responses, and the initiation of these innate defensive behaviors. The emphasis of this review is on the early stages of this pathway, namely, threat identification from complex visual inputs and how behavioral choices are influenced by differences in visual threats. We also briefly cover how the innate defensive response is processed centrally. Based on these summaries, we discuss coding strategies for visual threats and propose a common prototypical pathway for rapid innate defensive responses.
Collapse
Affiliation(s)
- Qiwen Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
13
|
Coombs S. A multisensory perspective on near-field detection and localization of hydroacoustic sourcesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2545. [PMID: 37130204 DOI: 10.1121/10.0017926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/04/2023]
Abstract
This paper gives a brief synopsis of the research career of S.C. in fish bioacoustics with an emphasis on dipole near fields. The hydroacoustic nature of the dipole near field and the effective stimuli to lateral line and auditory systems combine to produce a multisensory, range-fractionated region that is critically important to many fish behaviors. The mottled sculpin and goldfish lateral lines encode the spatial complexities of the near field as spatial excitation patterns along the body surface to provide instantaneous snapshots of various source features such as distance, orientation, and direction of movement. In contrast, the pressure-sensitive channel of the goldfish auditory system [the anterior swim bladder (SB)-saccule complex] encodes the spatial complexities in a temporal fashion whenever the position or orientation of the source changes with respect to the anterior SB. A full appreciation for how these somatotopic and egocentric representations guide fish behavior requires an understanding of how multisensory information, including vision, is combined in sensorimotor regions of the brain to effect behavior. A brief overview of vertebrate brain organization indicates that behaviors directed to or away from hydroacoustic sources likely involve a variety of mechanisms, behavioral strategies, and brain regions.
Collapse
Affiliation(s)
- Sheryl Coombs
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43402, USA
| |
Collapse
|
14
|
Coomer C, Naumova D, Talay M, Zolyomi B, Snell N, Sorkac A, Chanchu JM, Cheng J, Roman I, Li J, Robson D, Barnea G, Halpern ME. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535421. [PMID: 37066422 PMCID: PMC10103993 DOI: 10.1101/2023.04.03.535421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function is a central goal of neuroscience research. The trans-Tango genetic approach, initially developed for anterograde transsynaptic tracing in Drosophila, can be used to map connections between presynaptic and postsynaptic partners and to drive gene expression in target neurons. Here, we describe the successful adaptation of trans-Tango to visualize neural connections in a living vertebrate nervous system, that of the zebrafish. Connections were validated between synaptic partners in the larval retina and brain. Results were corroborated by functional experiments in which optogenetic activation of retinal ganglion cells elicited responses in neurons of the optic tectum, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator. Transsynaptic signaling through trans-Tango reveals predicted as well as previously undescribed synaptic connections, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.
Collapse
|
15
|
Zylbertal A, Bianco IH. Recurrent network interactions explain tectal response variability and experience-dependent behavior. eLife 2023; 12:78381. [PMID: 36943029 PMCID: PMC10030118 DOI: 10.7554/elife.78381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Response variability is an essential and universal feature of sensory processing and behavior. It arises from fluctuations in the internal state of the brain, which modulate how sensory information is represented and transformed to guide behavioral actions. In part, brain state is shaped by recent network activity, fed back through recurrent connections to modulate neuronal excitability. However, the degree to which these interactions influence response variability and the spatial and temporal scales across which they operate, are poorly understood. Here, we combined population recordings and modeling to gain insights into how neuronal activity modulates network state and thereby impacts visually evoked activity and behavior. First, we performed cellular-resolution calcium imaging of the optic tectum to monitor ongoing activity, the pattern of which is both a cause and consequence of changes in network state. We developed a minimal network model incorporating fast, short range, recurrent excitation and long-lasting, activity-dependent suppression that reproduced a hallmark property of tectal activity - intermittent bursting. We next used the model to estimate the excitability state of tectal neurons based on recent activity history and found that this explained a portion of the trial-to-trial variability in visually evoked responses, as well as spatially selective response adaptation. Moreover, these dynamics also predicted behavioral trends such as selective habituation of visually evoked prey-catching. Overall, we demonstrate that a simple recurrent interaction motif can be used to estimate the effect of activity upon the incidental state of a neural network and account for experience-dependent effects on sensory encoding and visually guided behavior.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Fotowat H, Engert F. Neural circuits underlying habituation of visually evoked escape behaviors in larval zebrafish. eLife 2023; 12:82916. [PMID: 36916795 PMCID: PMC10014075 DOI: 10.7554/elife.82916] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Larval zebrafish that are exposed repeatedly to dark looming stimuli will quickly habituate to these aversive signals and cease to respond with their stereotypical escape swims. A dark looming stimulus can be separated into two independent components: one that is characterized by an overall spatial expansion, where overall luminance is maintained at the same level, and a second, that represents an overall dimming within the whole visual field in the absence of any motion energy. Using specific stimulation patterns that isolate these independent components, we first extracted the behavioral algorithms that dictate how these separate information channels interact with each other and across the two eyes during the habituation process. Concurrent brain wide imaging experiments then permitted the construction of circuit models that suggest the existence of two separate neural pathways. The first is a looming channel which responds specifically to expanding edges presented to the contralateral eye and relays that information to the brain stem escape network to generate directed escapes. The second is a dimming-specific channel that could be either monocular or binocularly responsive, and that appears to specifically inhibit escape response when activated. We propose that this second channel is under strong contextual modulation and that it is primarily responsible for the incremental silencing of successive dark looming-evoked escapes.
Collapse
Affiliation(s)
- Haleh Fotowat
- Wyss Institute for Biologically Inspired Engineering, Harvard UniversityBostonUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
17
|
Rial RV, Akaârir M, Canellas F, Barceló P, Rubiño JA, Martín-Reina A, Gamundí A, Nicolau MC. Mammalian NREM and REM sleep: Why, when and how. Neurosci Biobehav Rev 2023; 146:105041. [PMID: 36646258 DOI: 10.1016/j.neubiorev.2023.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
This report proposes that fish use the spinal-rhombencephalic regions of their brain to support their activities while awake. Instead, the brainstem-diencephalic regions support the wakefulness in amphibians and reptiles. Lastly, mammals developed the telencephalic cortex to attain the highest degree of wakefulness, the cortical wakefulness. However, a paralyzed form of spinal-rhombencephalic wakefulness remains in mammals in the form of REMS, whose phasic signs are highly efficient in promoting maternal care to mammalian litter. Therefore, the phasic REMS is highly adaptive. However, their importance is low for singletons, in which it is a neutral trait, devoid of adaptive value for adults, and is mal-adaptive for marine mammals. Therefore, they lost it. The spinal-rhombencephalic and cortical wakeful states disregard the homeostasis: animals only attend their most immediate needs: foraging defense and reproduction. However, these activities generate allostatic loads that must be recovered during NREMS, that is a paralyzed form of the amphibian-reptilian subcortical wakefulness. Regarding the regulation of tonic REMS, it depends on a hypothalamic switch. Instead, the phasic REMS depends on an independent proportional pontine control.
Collapse
Affiliation(s)
- Rubén V Rial
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Mourad Akaârir
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Francesca Canellas
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Pere Barceló
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - José A Rubiño
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Aida Martín-Reina
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Antoni Gamundí
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - M Cristina Nicolau
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| |
Collapse
|
18
|
Zhu SI, Goodhill GJ. From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish. Front Neural Circuits 2023; 17:1087993. [PMID: 36817645 PMCID: PMC9928868 DOI: 10.3389/fncir.2023.1087993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
A key challenge for neural systems is to extract relevant information from the environment and make appropriate behavioral responses. The larval zebrafish offers an exciting opportunity for studying these sensing processes and sensory-motor transformations. Prey hunting is an instinctual behavior of zebrafish that requires the brain to extract and combine different attributes of the sensory input and form appropriate motor outputs. Due to its small size and transparency the larval zebrafish brain allows optical recording of whole-brain activity to reveal the neural mechanisms involved in prey hunting and capture. In this review we discuss how the larval zebrafish brain processes visual information to identify and locate prey, the neural circuits governing the generation of motor commands in response to prey, how hunting behavior can be modulated by internal states and experience, and some outstanding questions for the field.
Collapse
Affiliation(s)
- Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
19
|
Dombrovski M, Peek MY, Park JY, Vaccari A, Sumathipala M, Morrow C, Breads P, Zhao A, Kurmangaliyev YZ, Sanfilippo P, Rehan A, Polsky J, Alghailani S, Tenshaw E, Namiki S, Zipursky SL, Card GM. Synaptic gradients transform object location to action. Nature 2023; 613:534-542. [PMID: 36599984 PMCID: PMC9849133 DOI: 10.1038/s41586-022-05562-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023]
Abstract
To survive, animals must convert sensory information into appropriate behaviours1,2. Vision is a common sense for locating ethologically relevant stimuli and guiding motor responses3-5. How circuitry converts object location in retinal coordinates to movement direction in body coordinates remains largely unknown. Here we show through behaviour, physiology, anatomy and connectomics in Drosophila that visuomotor transformation occurs by conversion of topographic maps formed by the dendrites of feature-detecting visual projection neurons (VPNs)6,7 into synaptic weight gradients of VPN outputs onto central brain neurons. We demonstrate how this gradient motif transforms the anteroposterior location of a visual looming stimulus into the fly's directional escape. Specifically, we discover that two neurons postsynaptic to a looming-responsive VPN type promote opposite takeoff directions. Opposite synaptic weight gradients onto these neurons from looming VPNs in different visual field regions convert localized looming threats into correctly oriented escapes. For a second looming-responsive VPN type, we demonstrate graded responses along the dorsoventral axis. We show that this synaptic gradient motif generalizes across all 20 primary VPN cell types and most often arises without VPN axon topography. Synaptic gradients may thus be a general mechanism for conveying spatial features of sensory information into directed motor outputs.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin Y Peek
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jin-Yong Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrea Vaccari
- Department of Computer Science, Middlebury College, Middlebury, VT, USA
| | | | - Carmen Morrow
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Patrick Breads
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Piero Sanfilippo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aadil Rehan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Polsky
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shada Alghailani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.,Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. .,Department of Neuroscience, Howard Hughes Medical Institute, The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Tomsic D, Theobald J. A neural strategy for directional behaviour. Nature 2023; 613:442-443. [PMID: 36599995 DOI: 10.1038/d41586-022-04494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Blevins AS, Bassett DS, Scott EK, Vanwalleghem GC. From calcium imaging to graph topology. Netw Neurosci 2022; 6:1125-1147. [PMID: 38800465 PMCID: PMC11117109 DOI: 10.1162/netn_a_00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 05/29/2024] Open
Abstract
Systems neuroscience is facing an ever-growing mountain of data. Recent advances in protein engineering and microscopy have together led to a paradigm shift in neuroscience; using fluorescence, we can now image the activity of every neuron through the whole brain of behaving animals. Even in larger organisms, the number of neurons that we can record simultaneously is increasing exponentially with time. This increase in the dimensionality of the data is being met with an explosion of computational and mathematical methods, each using disparate terminology, distinct approaches, and diverse mathematical concepts. Here we collect, organize, and explain multiple data analysis techniques that have been, or could be, applied to whole-brain imaging, using larval zebrafish as an example model. We begin with methods such as linear regression that are designed to detect relations between two variables. Next, we progress through network science and applied topological methods, which focus on the patterns of relations among many variables. Finally, we highlight the potential of generative models that could provide testable hypotheses on wiring rules and network progression through time, or disease progression. While we use examples of imaging from larval zebrafish, these approaches are suitable for any population-scale neural network modeling, and indeed, to applications beyond systems neuroscience. Computational approaches from network science and applied topology are not limited to larval zebrafish, or even to systems neuroscience, and we therefore conclude with a discussion of how such methods can be applied to diverse problems across the biological sciences.
Collapse
Affiliation(s)
- Ann S. Blevins
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Ethan K. Scott
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, Australia
| | - Gilles C. Vanwalleghem
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Lloyd E, McDole B, Privat M, Jaggard JB, Duboué ER, Sumbre G, Keene AC. Blind cavefish retain functional connectivity in the tectum despite loss of retinal input. Curr Biol 2022; 32:3720-3730.e3. [PMID: 35926509 DOI: 10.1016/j.cub.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Sensory systems display remarkable plasticity and are under strong evolutionary selection. The Mexican cavefish, Astyanax mexicanus, consists of eyed river-dwelling surface populations and multiple independent cave populations that have converged on eye loss, providing the opportunity to examine the evolution of sensory circuits in response to environmental perturbation. Functional analysis across multiple transgenic populations expressing GCaMP6s showed that functional connectivity of the optic tectum largely did not differ between populations, except for the selective loss of negatively correlated activity within the cavefish tectum, suggesting positively correlated neural activity is resistant to an evolved loss of input from the retina. Furthermore, analysis of surface-cave hybrid fish reveals that changes in the tectum are genetically distinct from those encoding eye loss. Together, these findings uncover the independent evolution of multiple components of the visual system and establish the use of functional imaging in A. mexicanus to study neural circuit evolution.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA; Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brittnee McDole
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - James B Jaggard
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik R Duboué
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - German Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
23
|
Miri A, Bhasin BJ, Aksay ERF, Tank DW, Goldman MS. Oculomotor plant and neural dynamics suggest gaze control requires integration on distributed timescales. J Physiol 2022; 600:3837-3863. [PMID: 35789005 PMCID: PMC10010930 DOI: 10.1113/jp282496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
A fundamental principle of biological motor control is that the neural commands driving movement must conform to the response properties of the motor plants they control. In the oculomotor system, characterizations of oculomotor plant dynamics traditionally supported models in which the plant responds to neural drive to extraocular muscles on exclusively short, subsecond timescales. These models predict that the stabilization of gaze during fixations between saccades requires neural drive that approximates eye position on longer timescales and is generated through the temporal integration of brief eye velocity-encoding signals that cause saccades. However, recent measurements of oculomotor plant behaviour have revealed responses on longer timescales. Furthermore, measurements of firing patterns in the oculomotor integrator have revealed a more complex encoding of eye movement dynamics. Yet, the link between these observations has remained unclear. Here we use measurements from the larval zebrafish to link dynamics in the oculomotor plant to dynamics in the neural integrator. The oculomotor plant in both anaesthetized and awake larval zebrafish was characterized by a broad distribution of response timescales, including those much longer than 1 s. Analysis of the firing patterns of oculomotor integrator neurons, which exhibited a broadly distributed range of decay time constants, demonstrates the sufficiency of this activity for stabilizing gaze given an oculomotor plant with distributed response timescales. This work suggests that leaky integration on multiple, distributed timescales by the oculomotor integrator reflects an inverse model for generating oculomotor commands, and that multi-timescale dynamics may be a general feature of motor circuitry. KEY POINTS: Recent observations of oculomotor plant response properties and neural activity across the oculomotor system have called into question classical formulations of both the oculomotor plant and the oculomotor integrator. Here we use measurements from new and published experiments in the larval zebrafish together with modelling to reconcile recent oculomotor plant observations with oculomotor integrator function. We developed computational techniques to characterize oculomotor plant responses over several seconds in awake animals, demonstrating that long timescale responses seen in anaesthetized animals extend to the awake state. Analysis of firing patterns of oculomotor integrator neurons demonstrates the sufficiency of this activity for stabilizing gaze given an oculomotor plant with multiple, distributed response timescales. Our results support a formulation of gaze stabilization by the oculomotor system in which commands for stabilizing gaze are generated through integration on multiple, distributed timescales.
Collapse
Affiliation(s)
- Andrew Miri
- Princeton Neuroscience Institute, Bezos Center for Neural Circuit Dynamics, and the Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon J Bhasin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David W Tank
- Princeton Neuroscience Institute, Bezos Center for Neural Circuit Dynamics, and the Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Mark S Goldman
- Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA, USA
| |
Collapse
|
24
|
Flaive A, Ryczko D. From retina to motoneurons: A substrate for visuomotor transformation in salamanders. J Comp Neurol 2022; 530:2518-2536. [PMID: 35662021 PMCID: PMC9545292 DOI: 10.1002/cne.25348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
The transformation of visual input into motor output is essential to approach a target or avoid a predator. In salamanders, visually guided orientation behaviors have been extensively studied during prey capture. However, the neural circuitry involved is not resolved. Using salamander brain preparations, calcium imaging and tracing experiments, we describe a neural substrate through which retinal input is transformed into spinal motor output. We found that retina stimulation evoked responses in reticulospinal neurons of the middle reticular nucleus, known to control steering movements in salamanders. Microinjection of glutamatergic antagonists in the optic tectum (superior colliculus in mammals) decreased the reticulospinal responses. Using tracing, we found that retina projected to the dorsal layers of the contralateral tectum, where the dendrites of neurons projecting to the middle reticular nucleus were located. In slices, stimulation of the tectal dorsal layers evoked glutamatergic responses in deep tectal neurons retrogradely labeled from the middle reticular nucleus. We then examined how tectum activation translated into spinal motor output. Tectum stimulation evoked motoneuronal responses, which were decreased by microinjections of glutamatergic antagonists in the contralateral middle reticular nucleus. Reticulospinal fibers anterogradely labeled from tracer injection in the middle reticular nucleus were preferentially distributed in proximity with the dendrites of ipsilateral motoneurons. Our work establishes a neural substrate linking visual and motor centers in salamanders. This retino‐tecto‐reticulo‐spinal circuitry is well positioned to control orienting behaviors. Our study bridges the gap between the behavioral studies and the neural mechanisms involved in the transformation of visual input into motor output in salamanders.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
25
|
Ecological decision-making: From circuit elements to emerging principles. Curr Opin Neurobiol 2022; 74:102551. [DOI: 10.1016/j.conb.2022.102551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
|
26
|
Zanon M, Zanini D, Haase A. All-optical manipulation of the Drosophila olfactory system. Sci Rep 2022; 12:8506. [PMID: 35595846 PMCID: PMC9123005 DOI: 10.1038/s41598-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Thanks to its well-known neuroanatomy, limited brain size, complex behaviour, and the extensive genetic methods, Drosophila has become an indispensable model in neuroscience. A vast number of studies have focused on its olfactory system and the processing of odour information. Optogenetics is one of the recently developed genetic tools that significantly advance this field of research, allowing to replace odour stimuli by direct neuronal activation with light. This becomes a universal all-optical toolkit when spatially selective optogenetic activation is combined with calcium imaging to read out neuronal responses. Initial experiments showed a successful implementation to study the olfactory system in fish and mice, but the olfactory system of Drosophila has been so far precluded from an application. To fill this gap, we present here optogenetic tools to selectively stimulate functional units in the Drosophila olfactory system, combined with two-photon calcium imaging to read out the activity patterns elicited by these stimuli at different levels of the brain. This method allows to study the spatial and temporal features of the information flow and reveals the functional connectivity in the olfactory network.
Collapse
Affiliation(s)
- Mirko Zanon
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| | - Damiano Zanini
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
27
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Marquez-Legorreta E, Constantin L, Piber M, Favre-Bulle IA, Taylor MA, Blevins AS, Giacomotto J, Bassett DS, Vanwalleghem GC, Scott EK. Brain-wide visual habituation networks in wild type and fmr1 zebrafish. Nat Commun 2022; 13:895. [PMID: 35173170 PMCID: PMC8850451 DOI: 10.1038/s41467-022-28299-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Habituation is a form of learning during which animals stop responding to repetitive stimuli, and deficits in habituation are characteristic of several psychiatric disorders. Due to technical challenges, the brain-wide networks mediating habituation are poorly understood. Here we report brain-wide calcium imaging during larval zebrafish habituation to repeated visual looming stimuli. We show that different functional categories of loom-sensitive neurons are located in characteristic locations throughout the brain, and that both the functional properties of their networks and the resulting behavior can be modulated by stimulus saliency and timing. Using graph theory, we identify a visual circuit that habituates minimally, a moderately habituating midbrain population proposed to mediate the sensorimotor transformation, and downstream circuit elements responsible for higher order representations and the delivery of behavior. Zebrafish larvae carrying a mutation in the fmr1 gene have a systematic shift toward sustained premotor activity in this network, and show slower behavioral habituation.
Collapse
Affiliation(s)
- Emmanuel Marquez-Legorreta
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Marielle Piber
- School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Itia A Favre-Bulle
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.,School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Michael A Taylor
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ann S Blevins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Giacomotto
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, Wacol, QLD, 4076, Australia.,Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.,Discovery Biology, Griffith University, Brisbane, QLD, 4111, Australia
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Departments of Electrical & Systems Engineering, Physics & Astronomy, Neurology, Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Gilles C Vanwalleghem
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
29
|
Cisek P. Evolution of behavioural control from chordates to primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200522. [PMID: 34957850 PMCID: PMC8710891 DOI: 10.1098/rstb.2020.0522] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates. This includes midbrain control of approach versus escape actions, telencephalic control of local versus long-range foraging, detection of affordances by the dorsal pallium, diversified control of nocturnal foraging in the mammalian neocortex and expansion of primate frontal, temporal and parietal cortex to support a wide variety of primate-specific behavioural strategies. The result is a proposed functional architecture consisting of parallel control systems, each dedicated to specifying the affordances for guiding particular species-typical actions, which compete against each other through a hierarchy of selection mechanisms. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montreal CP 6123 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
30
|
Tesmer AL, Fields NP, Robles E. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum. BMC Biol 2022; 20:24. [PMID: 35073895 PMCID: PMC8788132 DOI: 10.1186/s12915-021-01222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background A continued effort in neuroscience aims to understand the way brain circuits consisting of diverse neuronal types generate complex behavior following sensory input. A common feature of vertebrate visual systems is that lower-order and higher-order visual areas are reciprocally connected. Feedforward projections confer visual responsiveness to higher-order visual neurons while feedback projections likely serve to modulate responses of lower-order visual neurons in a context-dependent manner. Optic tectum is the largest first-order visual brain area in zebrafish and is reciprocally connected with the torus longitudinalis (TL), a second-order visual brain area that does not receive retinal input. A functional role for feedback projections from TL to tectum has not been identified. Here we aim to understand how this feedback contributes to visual processing. Results In this study, we demonstrate that TL feedback projections to tectum drive binocular integration and spatial summation in a defined tectal circuit. We performed genetically targeted, cell type-specific functional imaging in tectal pyramidal neurons (PyrNs) and their two input neuron populations: retinal ganglion cells (RGCs) and neurons in TL. We find that PyrNs encode gradual changes in scene luminance using a complement of three distinct response classes that encode different light intensity ranges. Functional imaging of RGC inputs to tectum suggest that these response classes originate in the retina and RGC input specifies PyrN functional classes. In contrast, TL input serves to endow PyrNs with large, compound receptive fields that span both retinal hemifields. Conclusions These findings reveal a novel role for the zebrafish TL in driving binocular integration and spatial summation in tectal PyrNs. The neural circuit we describe generates a population of tectal neurons with large receptive fields tailored for detecting changes in the visual scene. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01222-x.
Collapse
|
31
|
Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci 2022; 12:brainsci12020134. [PMID: 35203898 PMCID: PMC8870555 DOI: 10.3390/brainsci12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 11/30/2022] Open
Abstract
The locus coeruleus (LC) is a vertebrate-specific nucleus and the primary source of norepinephrine (NE) in the brain. This nucleus has conserved properties across species: highly homogeneous cell types, a small number of cells but extensive axonal projections, and potent influence on brain states. Comparative studies on LC benefit greatly from its homogeneity in cell types and modularity in projection patterns, and thoroughly understanding the LC-NE system could shed new light on the organization principles of other more complex modulatory systems. Although studies on LC are mainly focused on mammals, many of the fundamental properties and functions of LC are readily observable in other vertebrate models and could inform mammalian studies. Here, we summarize anatomical and functional studies of LC in non-mammalian vertebrate classes, fish, amphibians, reptiles, and birds, on topics including axonal projections, gene expressions, homeostatic control, and modulation of sensorimotor transformation. Thus, this review complements mammalian studies on the role of LC in the brain.
Collapse
|
32
|
Zada D, Sela Y, Matosevich N, Monsonego A, Lerer-Goldshtein T, Nir Y, Appelbaum L. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 2021; 81:4979-4993.e7. [PMID: 34798058 PMCID: PMC8688325 DOI: 10.1016/j.molcel.2021.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
The characteristics of the sleep drivers and the mechanisms through which sleep relieves the cellular homeostatic pressure are unclear. In flies, zebrafish, mice, and humans, DNA damage levels increase during wakefulness and decrease during sleep. Here, we show that 6 h of consolidated sleep is sufficient to reduce DNA damage in the zebrafish dorsal pallium. Induction of DNA damage by neuronal activity and mutagens triggered sleep and DNA repair. The activity of the DNA damage response (DDR) proteins Rad52 and Ku80 increased during sleep, and chromosome dynamics enhanced Rad52 activity. The activity of the DDR initiator poly(ADP-ribose) polymerase 1 (Parp1) increased following sleep deprivation. In both larva zebrafish and adult mice, Parp1 promoted sleep. Inhibition of Parp1 activity reduced sleep-dependent chromosome dynamics and repair. These results demonstrate that DNA damage is a homeostatic driver for sleep, and Parp1 pathways can sense this cellular pressure and facilitate sleep and repair activity.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Noa Matosevich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Adir Monsonego
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
33
|
Messina A, Potrich D, Schiona I, Sovrano VA, Vallortigara G. The Sense of Number in Fish, with Particular Reference to Its Neurobiological Bases. Animals (Basel) 2021; 11:ani11113072. [PMID: 34827804 PMCID: PMC8614421 DOI: 10.3390/ani11113072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary The ability to deal with quantity, both discrete (numerosities) and continuous (spatial or temporal extent) developed from an evolutionarily conserved system for approximating numerical magnitude. Non-symbolic number cognition based on an approximate sense of magnitude has been documented in a variety of vertebrate species, including fish. Fish, in particular zebrafish, are widely used as models for the investigation of the genetics and molecular mechanisms of behavior, and thus may be instrumental to development of a neurobiology of number cognition. We review here the behavioural studies that have permitted to identify numerical abilities in fish, and the current status of the research related to the neurobiological bases of these abilities with special reference to zebrafish. Combining behavioural tasks with molecular genetics, molecular biology and confocal microscopy, a role of the retina and optic tectum in the encoding of continuous magnitude in larval zebrafish has been reported, while the thalamus and the dorso-central subdivision of pallium in the encoding of discrete magnitude (number) has been documented in adult zebrafish. Research in fish, in particular zebrafish, may reveal instrumental for identifying and characterizing the molecular signature of neurons involved in quantity discrimination processes of all vertebrates, including humans. Abstract It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Ilaria Schiona
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| |
Collapse
|
34
|
Mancienne T, Marquez-Legorreta E, Wilde M, Piber M, Favre-Bulle I, Vanwalleghem G, Scott EK. Contributions of Luminance and Motion to Visual Escape and Habituation in Larval Zebrafish. Front Neural Circuits 2021; 15:748535. [PMID: 34744637 PMCID: PMC8568047 DOI: 10.3389/fncir.2021.748535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animals from insects to humans perform visual escape behavior in response to looming stimuli, and these responses habituate if looms are presented repeatedly without consequence. While the basic visual processing and motor pathways involved in this behavior have been described, many of the nuances of predator perception and sensorimotor gating have not. Here, we have performed both behavioral analyses and brain-wide cellular-resolution calcium imaging in larval zebrafish while presenting them with visual loom stimuli or stimuli that selectively deliver either the movement or the dimming properties of full loom stimuli. Behaviorally, we find that, while responses to repeated loom stimuli habituate, no such habituation occurs when repeated movement stimuli (in the absence of luminance changes) are presented. Dim stimuli seldom elicit escape responses, and therefore cannot habituate. Neither repeated movement stimuli nor repeated dimming stimuli habituate the responses to subsequent full loom stimuli, suggesting that full looms are required for habituation. Our calcium imaging reveals that motion-sensitive neurons are abundant in the brain, that dim-sensitive neurons are present but more rare, and that neurons responsive to both stimuli (and to full loom stimuli) are concentrated in the tectum. Neurons selective to full loom stimuli (but not to movement or dimming) were not evident. Finally, we explored whether movement- or dim-sensitive neurons have characteristic response profiles during habituation to full looms. Such functional links between baseline responsiveness and habituation rate could suggest a specific role in the brain-wide habituation network, but no such relationships were found in our data. Overall, our results suggest that, while both movement- and dim-sensitive neurons contribute to predator escape behavior, neither plays a specific role in brain-wide visual habituation networks or in behavioral habituation.
Collapse
Affiliation(s)
- Tessa Mancienne
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | | | - Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Marielle Piber
- School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Itia Favre-Bulle
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
- School of Mathematics and Physics, The University of Queensland, Saint Lucia, QLD, Australia
| | - Gilles Vanwalleghem
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| | - Ethan K. Scott
- The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
35
|
Rodríguez F, Quintero B, Amores L, Madrid D, Salas-Peña C, Salas C. Spatial Cognition in Teleost Fish: Strategies and Mechanisms. Animals (Basel) 2021; 11:2271. [PMID: 34438729 PMCID: PMC8388456 DOI: 10.3390/ani11082271] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023] Open
Abstract
Teleost fish have been traditionally considered primitive vertebrates compared to mammals and birds in regard to brain complexity and behavioral functions. However, an increasing amount of evidence suggests that teleosts show advanced cognitive capabilities including spatial navigation skills that parallel those of land vertebrates. Teleost fish rely on a multiplicity of sensory cues and can use a variety of spatial strategies for navigation, ranging from relatively simple body-centered orientation responses to allocentric or "external world-centered" navigation, likely based on map-like relational memory representations of the environment. These distinct spatial strategies are based on separate brain mechanisms. For example, a crucial brain center for egocentric orientation in teleost fish is the optic tectum, which can be considered an essential hub in a wider brain network responsible for the generation of egocentrically referenced actions in space. In contrast, other brain centers, such as the dorsolateral telencephalic pallium of teleost fish, considered homologue to the hippocampal pallium of land vertebrates, seem to be crucial for allocentric navigation based on map-like spatial memory. Such hypothetical relational memory representations endow fish's spatial behavior with considerable navigational flexibility, allowing them, for example, to perform shortcuts and detours.
Collapse
Affiliation(s)
| | | | | | | | | | - Cosme Salas
- Laboratorio de Psicobiología, Universidad de Sevilla, 41018 Sevilla, Spain; (F.R.); (B.Q.); (L.A.); (D.M.); (C.S.-P.)
| |
Collapse
|
36
|
Xie Z, Wang M, Liu Z, Shang C, Zhang C, Sun L, Gu H, Ran G, Pei Q, Ma Q, Huang M, Zhang J, Lin R, Zhou Y, Zhang J, Zhao M, Luo M, Wu Q, Cao P, Wang X. Transcriptomic encoding of sensorimotor transformation in the midbrain. eLife 2021; 10:e69825. [PMID: 34318750 PMCID: PMC8341986 DOI: 10.7554/elife.69825] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022] Open
Abstract
Sensorimotor transformation, a process that converts sensory stimuli into motor actions, is critical for the brain to initiate behaviors. Although the circuitry involved in sensorimotor transformation has been well delineated, the molecular logic behind this process remains poorly understood. Here, we performed high-throughput and circuit-specific single-cell transcriptomic analyses of neurons in the superior colliculus (SC), a midbrain structure implicated in early sensorimotor transformation. We found that SC neurons in distinct laminae expressed discrete marker genes. Of particular interest, Cbln2 and Pitx2 were key markers that define glutamatergic projection neurons in the optic nerve (Op) and intermediate gray (InG) layers, respectively. The Cbln2+ neurons responded to visual stimuli mimicking cruising predators, while the Pitx2+ neurons encoded prey-derived vibrissal tactile cues. By forming distinct input and output connections with other brain areas, these neuronal subtypes independently mediated behaviors of predator avoidance and prey capture. Our results reveal that, in the midbrain, sensorimotor transformation for different behaviors may be performed by separate circuit modules that are molecularly defined by distinct transcriptomic codes.
Collapse
Affiliation(s)
- Zhiyong Xie
- National Institute of Biological SciencesBeijingChina
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Congping Shang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Le Sun
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
| | - Huating Gu
- National Institute of Biological SciencesBeijingChina
| | - Gengxin Ran
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Pei
- National Institute of Biological SciencesBeijingChina
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meizhu Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
| | - Rui Lin
- National Institute of Biological SciencesBeijingChina
| | - Youtong Zhou
- National Institute of Biological SciencesBeijingChina
| | - Jiyao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
| | - Miao Zhao
- National Institute of Biological SciencesBeijingChina
| | - Minmin Luo
- National Institute of Biological SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
| | - Peng Cao
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical UniversityBeijingChina
| |
Collapse
|
37
|
Baier H, Wullimann MF. Anatomy and function of retinorecipient arborization fields in zebrafish. J Comp Neurol 2021; 529:3454-3476. [PMID: 34180059 DOI: 10.1002/cne.25204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
In 1994, Burrill and Easter described the retinal projections in embryonic and larval zebrafish, introducing the term "arborization fields" (AFs) for the retinorecipient areas. AFs were numbered from 1 to 10 according to their positions along the optic tract. With the exception of AF10 (neuropil of the optic tectum), annotations of AFs remained tentative. Here we offer an update on the likely identities and functions of zebrafish AFs after successfully matching classical neuroanatomy to the digital Max Planck Zebrafish Brain Atlas. In our system, individual AFs are neuropil areas associated with the following nuclei: AF1 with the suprachiasmatic nucleus; AF2 with the posterior parvocellular preoptic nucleus; AF3 and AF4 with the ventrolateral thalamic nucleus; AF4 with the anterior and intermediate thalamic nuclei; AF5 with the dorsal accessory optic nucleus; AF7 with the parvocellular superficial pretectal nucleus; AF8 with the central pretectal nucleus; and AF9d and AF9v with the dorsal and ventral periventricular pretectal nuclei. AF6 is probably part of the accessory optic system. Imaging, ablation, and activation experiments showed contributions of AF5 and potentially AF6 to optokinetic and optomotor reflexes, AF4 to phototaxis, and AF7 to prey detection. AF6, AF8 and AF9v respond to dimming, and AF4 and AF9d to brightening. While few annotations remain tentative, it is apparent that the larval zebrafish visual system is anatomically and functionally continuous with its adult successor and fits the general cyprinid pattern. This study illustrates the synergy created by merging classical neuroanatomy with a cellular-resolution digital brain atlas resource and functional imaging in larval zebrafish.
Collapse
Affiliation(s)
- Herwig Baier
- Max Planck Institute of Neurobiology, Genes-Circuits-Behavior, Martinsried, Germany
| | - Mario F Wullimann
- Max Planck Institute of Neurobiology, Genes-Circuits-Behavior, Martinsried, Germany.,Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| |
Collapse
|
38
|
Cooper B, McPeek RM. Role of the Superior Colliculus in Guiding Movements Not Made by the Eyes. Annu Rev Vis Sci 2021; 7:279-300. [PMID: 34102067 DOI: 10.1146/annurev-vision-012521-102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superior colliculus (SC) has long been associated with the neural control of eye movements. Over seventy years ago, the orderly topography of saccade vectors and corresponding visual field locations was discovered in the cat SC. Since then, numerous high-impact studies have investigated and manipulated the relationship between visuotopic space and saccade vector across this topography to better understand the physiological underpinnings of the sensorimotor signal transformation. However, less attention has been paid to the other motor responses that may be associated with SC activity, ranging in complexity from concerted movements of skeletomotor muscle groups, such as arm-reaching movements, to behaviors that involve whole-body movement sequences, such as fight-or-flight responses in murine models. This review surveys these more complex movements associated with SC (optic tectum in nonmammalian species) activity and, where possible, provides phylogenetic and ethological perspective. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Bonnie Cooper
- Graduate Center for Vision Research, SUNY College of Optometry, New York, New York 10036, USA; ,
| | - Robert M McPeek
- Graduate Center for Vision Research, SUNY College of Optometry, New York, New York 10036, USA; ,
| |
Collapse
|
39
|
Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021; 31:R741-R762. [PMID: 34102128 DOI: 10.1016/j.cub.2021.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
40
|
Friedrich RW, Wanner AA. Dense Circuit Reconstruction to Understand Neuronal Computation: Focus on Zebrafish. Annu Rev Neurosci 2021; 44:275-293. [PMID: 33730512 DOI: 10.1146/annurev-neuro-110220-013050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dense reconstruction of neuronal wiring diagrams from volumetric electron microscopy data has the potential to generate fundamentally new insights into mechanisms of information processing and storage in neuronal circuits. Zebrafish provide unique opportunities for dynamical connectomics approaches that combine reconstructions of wiring diagrams with measurements of neuronal population activity and behavior. Such approaches have the power to reveal higher-order structure in wiring diagrams that cannot be detected by sparse sampling of connectivity and that is essential for neuronal computations. In the brain stem, recurrently connected neuronal modules were identified that can account for slow, low-dimensional dynamics in an integrator circuit. In the spinal cord, connectivity specifies functional differences between premotor interneurons. In the olfactory bulb, tuning-dependent connectivity implements a whitening transformation that is based on the selective suppression of responses to overrepresented stimulus features. These findings illustrate the potential of dynamical connectomics in zebrafish to analyze the circuit mechanisms underlying higher-order neuronal computations.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; .,Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland
| | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
41
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
42
|
Kölsch Y, Hahn J, Sappington A, Stemmer M, Fernandes AM, Helmbrecht TO, Lele S, Butrus S, Laurell E, Arnold-Ammer I, Shekhar K, Sanes JR, Baier H. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 2021; 109:645-662.e9. [PMID: 33357413 PMCID: PMC7897282 DOI: 10.1016/j.neuron.2020.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs) form an array of feature detectors, which convey visual information to central brain regions. Characterizing RGC diversity is required to understand the logic of the underlying functional segregation. Using single-cell transcriptomics, we systematically classified RGCs in adult and larval zebrafish, thereby identifying marker genes for >30 mature types and several developmental intermediates. We used this dataset to engineer transgenic driver lines, enabling specific experimental access to a subset of RGC types. Expression of one or few transcription factors often predicts dendrite morphologies and axonal projections to specific tectal layers and extratectal targets. In vivo calcium imaging revealed that molecularly defined RGCs exhibit specific functional tuning. Finally, chemogenetic ablation of eomesa+ RGCs, which comprise melanopsin-expressing types with projections to a small subset of central targets, selectively impaired phototaxis. Together, our study establishes a framework for systematically studying the functional architecture of the visual system.
Collapse
Affiliation(s)
- Yvonne Kölsch
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Martinsried, Germany
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Anna Sappington
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Manuel Stemmer
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - António M Fernandes
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Thomas O Helmbrecht
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Shriya Lele
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Eva Laurell
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Irene Arnold-Ammer
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences, QB3, Center for Computational Biology, UC Berkeley, Berkeley, CA 94720, USA.
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cell Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, 82152 Martinsried, Germany.
| |
Collapse
|
43
|
Fernandes AM, Mearns DS, Donovan JC, Larsch J, Helmbrecht TO, Kölsch Y, Laurell E, Kawakami K, Dal Maschio M, Baier H. Neural circuitry for stimulus selection in the zebrafish visual system. Neuron 2020; 109:805-822.e6. [PMID: 33357384 DOI: 10.1016/j.neuron.2020.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
When navigating the environment, animals need to prioritize responses to the most relevant stimuli. Although a theoretical framework for selective visual attention exists, its circuit implementation has remained obscure. Here we investigated how larval zebrafish select between simultaneously presented visual stimuli. We found that a mix of winner-take-all (WTA) and averaging strategies best simulates behavioral responses. We identified two circuits whose activity patterns predict the relative saliencies of competing visual objects. Stimuli presented to only one eye are selected by WTA computation in the inner retina. Binocularly presented stimuli, on the other hand, are processed by reciprocal, bilateral connections between the nucleus isthmi (NI) and the tectum. This interhemispheric computation leads to WTA or averaging responses. Optogenetic stimulation and laser ablation of NI neurons disrupt stimulus selection and behavioral action selection. Thus, depending on the relative locations of competing stimuli, a combination of retinotectal and isthmotectal circuits enables selective visual attention.
Collapse
Affiliation(s)
- António M Fernandes
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Duncan S Mearns
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Joseph C Donovan
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Johannes Larsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Thomas O Helmbrecht
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Yvonne Kölsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Gradute School of Systemic Neurosciences, LMU BioCenter, Grosshaderner Strasse 2, 82152 Martinsried, Germany
| | - Eva Laurell
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Marco Dal Maschio
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| |
Collapse
|
44
|
Barker AJ, Helmbrecht TO, Grob AA, Baier H. Functional, molecular and morphological heterogeneity of superficial interneurons in the larval zebrafish tectum. J Comp Neurol 2020; 529:2159-2175. [PMID: 33278028 DOI: 10.1002/cne.25082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Abstract
The superficial interneurons, SINs, of the zebrafish tectum, have been implicated in a range of visual functions, including size discrimination, directional selectivity, and looming-evoked escape. This raises the question if SIN subpopulations, despite their morphological similarities and shared anatomical position in the retinotectal processing stream, carry out diverse, task-specific functions in visual processing, or if they have simple tuning properties in common. Here we have further characterized the SINs through functional imaging, electrophysiological recordings, and neurotransmitter typing in two transgenic lines, the widely used Gal4s1156t and the recently reported LCRRH2-RH2-2:GFP. We found that about a third of the SINs strongly responded to changes in whole-field light levels, with a strong preference for OFF over ON stimuli. Interestingly, individual SINs were selectively tuned to a diverse range of narrow luminance decrements. Overall responses to whole-field luminance steps did not vary with the position of the SIN cell body along the depth of the tectal neuropil or with the orientation of its neurites. We ruled out the possibility that intrinsic photosensitivity of Gal4s1156t+ SINs contribute to the measured visual responses. We found that, while most SINs express GABAergic markers, a substantial minority express an excitatory neuronal marker, the vesicular glutamate transporter, expanding the possible roles of SIN function in the tectal circuitry. In conclusion, SINs represent a molecularly, morphologically, and functionally heterogeneous class of interneurons, with subpopulations that detect a range of specific visual features, to which we have now added narrow luminance decrements.
Collapse
Affiliation(s)
- Alison J Barker
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Thomas O Helmbrecht
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Aurélien A Grob
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| |
Collapse
|
45
|
Triplett MA, Pujic Z, Sun B, Avitan L, Goodhill GJ. Model-based decoupling of evoked and spontaneous neural activity in calcium imaging data. PLoS Comput Biol 2020; 16:e1008330. [PMID: 33253161 PMCID: PMC7728401 DOI: 10.1371/journal.pcbi.1008330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/10/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022] Open
Abstract
The pattern of neural activity evoked by a stimulus can be substantially affected by ongoing spontaneous activity. Separating these two types of activity is particularly important for calcium imaging data given the slow temporal dynamics of calcium indicators. Here we present a statistical model that decouples stimulus-driven activity from low dimensional spontaneous activity in this case. The model identifies hidden factors giving rise to spontaneous activity while jointly estimating stimulus tuning properties that account for the confounding effects that these factors introduce. By applying our model to data from zebrafish optic tectum and mouse visual cortex, we obtain quantitative measurements of the extent that neurons in each case are driven by evoked activity, spontaneous activity, and their interaction. By not averaging away potentially important information encoded in spontaneous activity, this broadly applicable model brings new insight into population-level neural activity within single trials.
Collapse
Affiliation(s)
- Marcus A. Triplett
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Australia
| | - Zac Pujic
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Biao Sun
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Lilach Avitan
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Geoffrey J. Goodhill
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Australia
| |
Collapse
|
46
|
Wallace MT, Recktenwald E, Dudkin EA, Gruberg ER. A visual lamina in the medulla oblongata of the frog, Rana pipiens. Neurosci Lett 2020; 737:135280. [PMID: 32853719 DOI: 10.1016/j.neulet.2020.135280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
We have discovered a lamina of visually responsive units in the medulla oblongata of the frog. It spans the entire medial aspect of the rostrocaudal length of the medulla and extends dorsoventrally from the cell-dense dorsal zone into the cell-sparse ventral zone. Most visual units within this lamina have large receptive fields, with the majority extending bilaterally in the frontal visual field. Most of these neurons are binocular, have no apparent directional preference, respond equally well to stimuli of a variety of shapes and sizes, and exhibit strong habituation. More medial locations in the visual lamina represent ipsilateral visual space while more lateral locations within the lamina represent contralateral visual space. Many units in the caudal aspect of the visual lamina are bimodal, responding to both visual and somatosensory stimuli. HRP tracing reveals inputs to the lamina from many primary and secondary visual areas in the midbrain and diencephalon. There is no area-by-area segregation of the projections to the visual lamina. For example, most parts of the tectum project across the visual lamina. The only spatial order in the visual lamina is that at more medial sites there tends to be more input from contralateral tectum; and at more lateral sites there tends to be more input from ipsilateral tectum. There is bilateral input to the visual lamina from tectum, tegmentum, posterior nucleus of the thalamus, posterior tuberculum, and ventromedial thalamic nucleus. There is ipsilateral input to the visual lamina from torus semicircularis, pretectum, nucleus of Bellonci, and ventrolateral thalamic nucleus. There is contralateral input to the visual lamina from basal optic complex. Collectively, these results show the presence of visual influences in regions of the medulla that likely represent an important step in sensorimotor transformation.
Collapse
Affiliation(s)
- Mark T Wallace
- Vanderbilt University, Vanderbilt Brain Institute, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, USA.
| | - Eric Recktenwald
- Alvernia University, Department of Biology, 400 Bernardine Street, Reading, PA, 19607, USA.
| | - Elizabeth A Dudkin
- Penn State Brandywine, Department of Biology, 25 Yearsley Mill Road, Media, PA, 19063, USA.
| | - Edward R Gruberg
- Temple University, Department of Biology, 1900 North 12th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
47
|
Förster D, Helmbrecht TO, Mearns DS, Jordan L, Mokayes N, Baier H. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey. eLife 2020; 9:e58596. [PMID: 33044168 PMCID: PMC7550190 DOI: 10.7554/elife.58596] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Retinal axon projections form a map of the visual environment in the tectum. A zebrafish larva typically detects a prey object in its peripheral visual field. As it turns and swims towards the prey, the stimulus enters the central, binocular area, and seemingly expands in size. By volumetric calcium imaging, we show that posterior tectal neurons, which serve to detect prey at a distance, tend to respond to small objects and intrinsically compute their direction of movement. Neurons in anterior tectum, where the prey image is represented shortly before the capture strike, are tuned to larger object sizes and are frequently not direction-selective, indicating that mainly interocular comparisons serve to compute an object's movement at close range. The tectal feature map originates from a linear combination of diverse, functionally specialized, lamina-specific, and topographically ordered retinal ganglion cell synaptic inputs. We conclude that local cell-type composition and connectivity across the tectum are adapted to the processing of location-dependent, behaviorally relevant object features.
Collapse
Affiliation(s)
- Dominique Förster
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Thomas O Helmbrecht
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU BioCenterMartinsriedGermany
| | - Duncan S Mearns
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU BioCenterMartinsriedGermany
| | - Linda Jordan
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Nouwar Mokayes
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Department Genes – Circuits – BehaviorMartinsriedGermany
| |
Collapse
|
48
|
Oldfield CS, Grossrubatscher I, Chávez M, Hoagland A, Huth AR, Carroll EC, Prendergast A, Qu T, Gallant JL, Wyart C, Isacoff EY. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. eLife 2020; 9:e56619. [PMID: 32985972 PMCID: PMC7561350 DOI: 10.7554/elife.56619] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/26/2020] [Indexed: 01/16/2023] Open
Abstract
Experience influences behavior, but little is known about how experience is encoded in the brain, and how changes in neural activity are implemented at a network level to improve performance. Here we investigate how differences in experience impact brain circuitry and behavior in larval zebrafish prey capture. We find that experience of live prey compared to inert food increases capture success by boosting capture initiation. In response to live prey, animals with and without prior experience of live prey show activity in visual areas (pretectum and optic tectum) and motor areas (cerebellum and hindbrain), with similar visual area retinotopic maps of prey position. However, prey-experienced animals more readily initiate capture in response to visual area activity and have greater visually-evoked activity in two forebrain areas: the telencephalon and habenula. Consequently, disruption of habenular neurons reduces capture performance in prey-experienced fish. Together, our results suggest that experience of prey strengthens prey-associated visual drive to the forebrain, and that this lowers the threshold for prey-associated visual activity to trigger activity in motor areas, thereby improving capture performance.
Collapse
Affiliation(s)
- Claire S Oldfield
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Irene Grossrubatscher
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | | | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Alex R Huth
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Andrew Prendergast
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Tony Qu
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
| | - Jack L Gallant
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Claire Wyart
- CNRS-UMRParisFrance
- INSERM UMRSParisFrance
- Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-SalpêtrièreParisFrance
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute and Graduate Program, University of California BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeleyUnited States
- Bioscience Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
49
|
Avitan L, Pujic Z, Mölter J, McCullough M, Zhu S, Sun B, Myhre AE, Goodhill GJ. Behavioral Signatures of a Developing Neural Code. Curr Biol 2020; 30:3352-3363.e5. [DOI: 10.1016/j.cub.2020.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
|
50
|
Lagogiannis K, Diana G, Meyer MP. Learning steers the ontogeny of an efficient hunting sequence in zebrafish larvae. eLife 2020; 9:55119. [PMID: 32773042 PMCID: PMC7561354 DOI: 10.7554/elife.55119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Goal-directed behaviors may be poorly coordinated in young animals but, with age and experience, behavior progressively adapts to efficiently exploit the animal’s ecological niche. How experience impinges on the developing neural circuits of behavior is an open question. We have conducted a detailed study of the effects of experience on the ontogeny of hunting behavior in larval zebrafish. We report that larvae with prior experience of live prey consume considerably more prey than naive larvae. This is mainly due to increased capture success and a modest increase in hunt rate. We demonstrate that the initial turn to prey and the final capture manoeuvre of the hunting sequence were jointly modified by experience and that modification of these components predicted capture success. Our findings establish an ethologically relevant paradigm in zebrafish for studying how the brain is shaped by experience to drive the ontogeny of efficient behavior.
Collapse
Affiliation(s)
- Konstantinos Lagogiannis
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Giovanni Diana
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Martin P Meyer
- Centre for Developmental Neurobiology, MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|