1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Li C, McCloskey NS, Inan S, Kirby LG. Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment. Neuropsychopharmacology 2024:10.1038/s41386-024-01993-1. [PMID: 39300273 DOI: 10.1038/s41386-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.
| |
Collapse
|
3
|
Colwell MJ, Tagomori H, Shang F, Cheng HI, Wigg CE, Browning M, Cowen PJ, Murphy SE, Harmer CJ. Direct serotonin release in humans shapes aversive learning and inhibition. Nat Commun 2024; 15:6617. [PMID: 39122687 PMCID: PMC11315928 DOI: 10.1038/s41467-024-50394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
The role of serotonin in human behaviour is informed by approaches which allow in vivo modification of synaptic serotonin. However, characterising the effects of increased serotonin signalling in human models of behaviour is challenging given the limitations of available experimental probes, notably selective serotonin reuptake inhibitors. Here we use a now-accessible approach to directly increase synaptic serotonin in humans (a selective serotonin releasing agent) and examine its influence on domains of behaviour historically considered core functions of serotonin. Computational techniques, including reinforcement learning and drift diffusion modelling, explain participant behaviour at baseline and after week-long intervention. Reinforcement learning models reveal that increasing synaptic serotonin reduces sensitivity for outcomes in aversive contexts. Furthermore, increasing synaptic serotonin enhances behavioural inhibition, and shifts bias towards impulse control during exposure to aversive emotional probes. These effects are seen in the context of overall improvements in memory for neutral verbal information. Our findings highlight the direct effects of increasing synaptic serotonin on human behaviour, underlining its role in guiding decision-making within aversive and more neutral contexts, and offering implications for longstanding theories of central serotonin function.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Fei Shang
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hoi Iao Cheng
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Chloe E Wigg
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
4
|
Chen HC, He P, McDonald M, Williamson MR, Varadharajan S, Lozzi B, Woo J, Choi DJ, Sardar D, Huang-Hobbs E, Sun H, Ippagunta SM, Jain A, Rao G, Merchant TE, Ellison DW, Noebels JL, Bertrand KC, Mack SC, Deneen B. Histone serotonylation regulates ependymoma tumorigenesis. Nature 2024; 632:903-910. [PMID: 39085609 DOI: 10.1038/s41586-024-07751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Bidirectional communication between tumours and neurons has emerged as a key facet of the tumour microenvironment that drives malignancy1,2. Another hallmark feature of cancer is epigenomic dysregulation, in which alterations in gene expression influence cell states and interactions with the tumour microenvironment3. Ependymoma (EPN) is a paediatric brain tumour that relies on epigenomic remodelling to engender malignancy4,5; however, how these epigenetic mechanisms intersect with extrinsic neuronal signalling during EPN tumour progression is unknown. Here we show that the activity of serotonergic neurons regulates EPN tumorigenesis, and that serotonin itself also serves as an activating modification on histones. We found that inhibiting histone serotonylation blocks EPN tumorigenesis and regulates the expression of a core set of developmental transcription factors. High-throughput, in vivo screening of these transcription factors revealed that ETV5 promotes EPN tumorigenesis and functions by enhancing repressive chromatin states. Neuropeptide Y (NPY) is one of the genes repressed by ETV5, and its overexpression suppresses EPN tumour progression and tumour-associated network hyperactivity through synaptic remodelling. Collectively, this study identifies histone serotonylation as a key driver of EPN tumorigenesis, and also reveals how neuronal signalling, neuro-epigenomics and developmental programs are intertwined to drive malignancy in brain cancer.
Collapse
Affiliation(s)
- Hsiao-Chi Chen
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Peihao He
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Michael R Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Srinidhi Varadharajan
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Emmet Huang-Hobbs
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Hua Sun
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Siri M Ippagunta
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey L Noebels
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey C Bertrand
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen C Mack
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Neurobiology and Brain Tumor Program, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Benjamin Deneen
- Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Program in Development, Disease, Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Henderson F, Dumas S, Gangarossa G, Bernard V, Pujol M, Poirel O, Pietrancosta N, El Mestikawy S, Daumas S, Fabre V. Regulation of stress-induced sleep perturbations by dorsal raphe VGLUT3 neurons in male mice. Cell Rep 2024; 43:114411. [PMID: 38944834 DOI: 10.1016/j.celrep.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.
Collapse
Affiliation(s)
- Fiona Henderson
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; Institut Universitaire de France (IUF), Paris, France
| | - Véronique Bernard
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Marine Pujol
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Odile Poirel
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Sorbonne Université, CNRS UMR 7203, Laboratoire des BioMolécules, 75005 Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC H4H 1R3, Canada
| | - Stéphanie Daumas
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Véronique Fabre
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
6
|
Zheng X, Dingpeng L, Yan X, Yao X, Wang Y. The role and mechanism of 5-HTDRN-BNST neural circuit in anxiety and fear lesions. Front Neurosci 2024; 18:1362899. [PMID: 38784088 PMCID: PMC11111893 DOI: 10.3389/fnins.2024.1362899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Central 5-hydroxytryptaminergic dorsal raphe nucleus (5-HTDRN)-bed nucleus of stria terminalis (BNST) neural circuit dysfunction is one of the important neurobiological basis of anxiety and fear disorders. Under stress, 5-hydroxytryptamine (5-HT) neurons act on BNST receptors to attenuate anxiety and fear responses or enhance anxiety and fear. In BNST, corticotropin releasing factor neurons play a role in regulating emotions by reversely regulating excitatory or inhibitory 5-HT neurons. The composition of 5-HTDRN-BNST neural circuit, the pathological changes of 5-HTDRN-BNST neural circuit function damage under stress, and the effects of 5-HTDRN-BNST neural circuit on anxiety disorder, panic disorder and post-traumatic stress disorder were analyzed and are summarized in this paper. The characteristics of functional changes of the neural circuit and its effects on brain functional activities provide a basis and ideas for the treatment of anxiety and fear disorders through the regulation of 5-HTDRN-BNST neural circuit, and they also provide a new perspective for understanding the pathological mechanism of such diseases.
Collapse
Affiliation(s)
- Xianli Zheng
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Li Dingpeng
- Gansu Provincial Second People’s Hospital, Lanzhou, Gansu, China
| | - Xingke Yan
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoqiang Yao
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Yongrui Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
8
|
Gullino LS, Fuller C, Dunn P, Collins HM, El Mestikawy S, Sharp T. Evidence for a Role of 5-HT-glutamate Co-releasing Neurons in Acute Stress Mechanisms. ACS Chem Neurosci 2024; 15:1185-1196. [PMID: 38377469 PMCID: PMC10958520 DOI: 10.1021/acschemneuro.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.
Collapse
Affiliation(s)
- L. Sophie Gullino
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Cara Fuller
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Poppy Dunn
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Helen M. Collins
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Salah El Mestikawy
- Douglas
Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC H4H
1R3, Canada
- Sorbonne
Université, INSERM, CNRS, Neuroscience Paris Seine –
Institut de Biologie Paris Seine (NPS – IBPS), 75005 Paris, France
| | - Trevor Sharp
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
9
|
Ritchie JL, Qi S, Christian RJ, Greenwood MJ, Grenz HI, Swatzell SE, Krych PJ, Fuchs RA. Requisite role of dorsal raphé in contextual cocaine-memory reconsolidation. Neuropharmacology 2024; 246:109832. [PMID: 38176535 PMCID: PMC10901441 DOI: 10.1016/j.neuropharm.2023.109832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Memory reconsolidation is a process by which labile drug memories are restabilized in long-term memory stores, permitting their enduring control over drug-seeking behaviors. In the present study, we investigated the involvement of the dorsal raphé nuclei (DRN) in cocaine-memory reconsolidation. Sprague-Dawley rats (male, female) were trained to self-administer cocaine in a distinct environmental context to establish contextual drug memories. They then received extinction training in a different context. Next, the rats were re-exposed to the cocaine-predictive context for 15 min to reactivate their cocaine memories or remained in their home cages (no-reactivation control). Memory reactivation was sufficient to increase c-Fos expression, an index of neuronal activation, in the DRN, but not in the median raphé nuclei, during reconsolidation, compared to no reactivation. To determine whether DRN neuronal activity was necessary for cocaine-memory reconsolidation, rats received intra-DRN baclofen plus muscimol (BM; GABAB/A agonists) or vehicle microinfusions immediately after or 6 h after a memory reactivation session conducted with or without lever access. The effects of DRN functional inactivation on long-term memory strength, as indicated by the magnitude of context-induced cocaine seeking, were assessed 72 h later. Intra-DRN BM treatment immediately after memory reactivation with or without lever access attenuated subsequent context-induced cocaine-seeking behavior, independent of sex. Conversely, BM treatment in the adjacent periaqueductal gray (PAG) immediately after memory reactivation, or BM treatment in the DRN 6 h after memory reactivation, did not alter responding. Together, these findings indicate that the DRN plays a requisite role in maintaining cocaine-memory strength during reconsolidation.
Collapse
Affiliation(s)
- J L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - S Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - R J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - M J Greenwood
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - H I Grenz
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - S E Swatzell
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - P J Krych
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - R A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA; Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA.
| |
Collapse
|
10
|
Khan N, Uribe Isaza J, Rouhi N, Jamani NF, Jabeen S, Gill AK, Tsutsui M, Visser F, Sargin D. Behavioral and Neurophysiological Implications of Pathological Human Tau Expression in Serotonin Neurons. ACS Chem Neurosci 2024; 15:932-943. [PMID: 38377680 PMCID: PMC10921395 DOI: 10.1021/acschemneuro.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder that results in a severe loss of brain cells and irreversible cognitive decline. Memory problems are the most recognized symptoms of AD. However, approximately 90% of patients diagnosed with AD suffer from behavioral symptoms, including mood changes and social impairment years before cognitive dysfunction. Recent evidence indicates that the dorsal raphe nucleus (DRN) is among the initial regions that show tau pathology, which is a hallmark feature of AD. The DRN harbors serotonin (5-HT) neurons, which are critically involved in mood, social, and cognitive regulation. Serotonergic impairment early in the disease process may contribute to behavioral symptoms in AD. However, the mechanisms underlying vulnerability and contribution of the 5-HT system to AD progression remain unknown. Here, we performed behavioral and electrophysiological characterizations in mice expressing a phosphorylation-prone form of human tau (hTauP301L) in 5-HT neurons. We found that pathological tau expression in 5-HT neurons induces anxiety-like behavior and alterations in stress-coping strategies in female and male mice. Female mice also exhibited social disinhibition and mild cognitive impairment in response to 5-HT neuron-specific hTauP301L expression. Behavioral alterations were accompanied by disrupted 5-HT neuron physiology in female and male hTauP301L expressing mice with exacerbated excitability disruption in females only. These data provide mechanistic insights into the brain systems and symptoms impaired early in AD progression, which is critical for disease intervention.
Collapse
Affiliation(s)
- Nazmus
S. Khan
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Juan Uribe Isaza
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nahid Rouhi
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Naila F. Jamani
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shaista Jabeen
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amisha K. Gill
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mio Tsutsui
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Frank Visser
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Derya Sargin
- Department
of Psychology, Department of Physiology and Pharmacology, Cumming School of
Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Ritchie JL, Qi S, Soto DA, Swatzell SE, Grenz HI, Pruitt AY, Artimenia LM, Cooke SK, Berridge CW, Fuchs RA. Dorsal Raphe to Basolateral Amygdala Corticotropin-Releasing Factor Circuit Regulates Cocaine-Memory Reconsolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579725. [PMID: 38405858 PMCID: PMC10888894 DOI: 10.1101/2024.02.10.579725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Environmental stimuli elicit drug craving and relapse in cocaine users by triggering the retrieval of strong cocainerelated contextual memories. Retrieval can also destabilize drug memories, requiring reconsolidation, a protein synthesis-dependent storage process, to maintain memory strength. Corticotropin-releasing factor (CRF) signaling in the basolateral amygdala (BLA) is necessary for cocainememory reconsolidation. We have hypothesized that a critical source of CRF in the BLA is the dorsal raphe nucleus (DR) based on its neurochemistry, anatomical connectivity, and requisite involvement in cocaine-memory reconsolidation. To test this hypothesis, male and female Sprague-Dawley rats received adeno-associated viruses to express Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) selectively in CRF neurons of the DR and injection cannulae directed at the BLA. The rats were trained to self-administer cocaine in a distinct environmental context then received extinction training in a different context. They were then briefly reexposed to the cocaine-predictive context to destabilize (reactivate) cocaine memories. Intra-BLA infusions of the DREADD agonist deschloroclozapine (DCZ; 0.1 mM, 0.5 μL/hemisphere) after memory reactivation attenuated cocaine-memory strength, relative to vehicle infusion. This was indicated by a selective, DCZ-induced and memory reactivation-dependent decrease in drug-seeking behavior in the cocaine-predictive context in DREADD-expressing males and females at test compared to respective controls. Notably, BLA-projecting DR CRF neurons that exhibited increased c-Fos expression during memory reconsolidation co-expressed glutamatergic and serotonergic neuronal markers. Together, these findings suggest that the DRCRF → BLA circuit is engaged to maintain cocaine-memory strength after memory destabilization, and this phenomenon may be mediated by DR CRF, glutamate, and/or serotonin release in the BLA.
Collapse
Affiliation(s)
- Jobe L. Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - David A. Soto
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Sydney E. Swatzell
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Hope I. Grenz
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Avery Y. Pruitt
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Lilia M. Artimenia
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Spencer K. Cooke
- Psychology Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig W. Berridge
- Psychology Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Rita A. Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
- Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA
| |
Collapse
|
13
|
Silverstein SE, O'Sullivan R, Bukalo O, Pati D, Schaffer JA, Limoges A, Zsembik L, Yoshida T, O'Malley JJ, Paletzki RF, Lieberman AG, Nonaka M, Deisseroth K, Gerfen CR, Penzo MA, Kash TL, Holmes A. A distinct cortical code for socially learned threat. Nature 2024; 626:1066-1072. [PMID: 38326610 DOI: 10.1038/s41586-023-07008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning1-4 (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The dorsomedial prefrontal cortex (dmPFC) performs several key functions that may underlie OFL, including processing of social information and disambiguation of threat cues5-11. Here we show that dmPFC is recruited and required for OFL in mice. Using cellular-resolution microendoscopic calcium imaging, we demonstrate that dmPFC neurons code for observational fear and do so in a manner that is distinct from direct experience. We find that dmPFC neuronal activity predicts upcoming switches between freezing and moving state elicited by threat. By combining neuronal circuit mapping, calcium imaging, electrophysiological recordings and optogenetics, we show that dmPFC projections to the midbrain periaqueductal grey (PAG) constrain observer freezing, and that amygdalar and hippocampal inputs to dmPFC opposingly modulate observer freezing. Together our findings reveal that dmPFC neurons compute a distinct code for observational fear and coordinate long-range neural circuits to select behavioural responses.
Collapse
Affiliation(s)
- Shana E Silverstein
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Ruairi O'Sullivan
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Dipanwita Pati
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia A Schaffer
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Leo Zsembik
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Takayuki Yoshida
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - John J O'Malley
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | | | - Abby G Lieberman
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Mio Nonaka
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | | | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Thomas L Kash
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
14
|
Salinas-Hernández XI, Zafiri D, Sigurdsson T, Duvarci S. Functional architecture of dopamine neurons driving fear extinction learning. Neuron 2023; 111:3854-3870.e5. [PMID: 37741275 DOI: 10.1016/j.neuron.2023.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The ability to extinguish fear responses to stimuli that no longer predict danger is critical for adaptive behavior and increases the likelihood of survival. During fear extinction, dopamine (DA) neurons signal the absence of the expected aversive outcome, and this extinction prediction error (EPE) signal is crucial for initiating and driving extinction learning. However, the neural circuits underlying the EPE signal have remained elusive. Here, we investigate the input-output circuitry of EPE-encoding DA neurons in male mice. By employing projection-specific fiber photometry and optogenetics, we demonstrate that these neurons project to a restricted subregion of the nucleus accumbens. Comprehensive anatomical analyses, as well as projection-specific chemogenetic manipulations combined with recordings of DA biosensors, further uncover the dorsal raphe as one key input structure critical for generating the EPE signal. Together, our results reveal for the first time the functional architecture of EPE-encoding DA neurons crucial for driving fear extinction learning.
Collapse
Affiliation(s)
- Ximena I Salinas-Hernández
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Daphne Zafiri
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
15
|
Martin-Fernandez M, Menegolla AP, Lopez-Fernandez G, Winke N, Jercog D, Kim HR, Girard D, Dejean C, Herry C. Prefrontal circuits encode both general danger and specific threat representations. Nat Neurosci 2023; 26:2147-2157. [PMID: 37904042 DOI: 10.1038/s41593-023-01472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/25/2023] [Indexed: 11/01/2023]
Abstract
Behavioral adaptation to potential threats requires both a global representation of danger to prepare the organism to react in a timely manner but also the identification of specific threatening situations to select the appropriate behavioral responses. The prefrontal cortex is known to control threat-related behaviors, yet it is unknown whether it encodes global defensive states and/or the identity of specific threatening encounters. Using a new behavioral paradigm that exposes mice to different threatening situations, we show that the dorsomedial prefrontal cortex (dmPFC) encodes a general representation of danger while simultaneously encoding a specific neuronal representation of each threat. Importantly, the global representation of danger persisted in error trials that instead lacked specific threat identity representations. Consistently, optogenetic prefrontal inhibition impaired overall behavioral performance and discrimination of different threatening situations without any bias toward active or passive behaviors. Together, these data indicate that the prefrontal cortex encodes both a global representation of danger and specific representations of threat identity to control the selection of defensive behaviors.
Collapse
Affiliation(s)
- Mario Martin-Fernandez
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France.
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| | - Ana Paula Menegolla
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Guillem Lopez-Fernandez
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Nanci Winke
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Daniel Jercog
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Ha-Rang Kim
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Delphine Girard
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Cyril Herry
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France.
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| |
Collapse
|
16
|
Welsch L, Colantonio E, Frison M, Johnson DA, McClain SP, Mathis V, Banghart MR, Ben Hamida S, Darcq E, Kieffer BL. Mu Opioid Receptor-Expressing Neurons in the Dorsal Raphe Nucleus Are Involved in Reward Processing and Affective Behaviors. Biol Psychiatry 2023; 94:842-851. [PMID: 37285896 PMCID: PMC10850692 DOI: 10.1016/j.biopsych.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Mu opioid receptors (MORs) are key for reward processing, mostly studied in dopaminergic pathways. MORs are also expressed in the dorsal raphe nucleus (DRN), which is central for the modulation of reward and mood, but MOR function in the DRN remains underexplored. Here, we investigated whether MOR-expressing neurons of the DRN (DRN-MOR neurons) participate in reward and emotional responses. METHODS We characterized DRN-MOR neurons anatomically using immunohistochemistry and functionally using fiber photometry in responses to morphine and rewarding/aversive stimuli. We tested the effect of opioid uncaging on the DRN on place conditioning. We examined the effect of DRN-MOR neuron optostimulation on positive reinforcement and mood-related behaviors. We mapped their projections and selected DRN-MOR neurons projecting to the lateral hypothalamus for a similar optogenetic experimentation. RESULTS DRN-MOR neurons form a heterogeneous neuronal population essentially composed of GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons. Calcium activity of DRN-MOR neurons was inhibited by rewarding stimuli and morphine. Local photo-uncaging of oxymorphone in the DRN produced conditioned place preference. DRN-MOR neuron optostimulation triggered real-time place preference and was self-administered, promoted social preference, and reduced anxiety and passive coping. Finally, specific optostimulation of DRN-MOR neurons projecting to the lateral hypothalamus recapitulated the reinforcing effects of total DRN-MOR neuron stimulation. CONCLUSIONS Our data show that DRN-MOR neurons respond to rewarding stimuli and that their optoactivation has reinforcing effects and promotes positive emotional responses, an activity which is partially mediated by their projections to the lateral hypothalamus. Our study also suggests a complex regulation of DRN activity by MOR opioids, involving mixed inhibition/activation mechanisms that fine-tune DRN function.
Collapse
Affiliation(s)
- Lola Welsch
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Esther Colantonio
- INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Mathilde Frison
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Desiree A Johnson
- Neurobiology Department, School of the Biological Sciences, University of California San Diego, La Jolla, California
| | - Shannan P McClain
- Neurobiology Department, School of the Biological Sciences, University of California San Diego, La Jolla, California
| | - Victor Mathis
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212, Strasbourg, France
| | - Matthew R Banghart
- Neurobiology Department, School of the Biological Sciences, University of California San Diego, La Jolla, California
| | - Sami Ben Hamida
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM UMR 1247, Université de Picardie Jules Verne, Amiens, France
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Li W, Shen Z, Yin X, Chang W, Chen X, Yu J, Xu S. Reduction of p11 in dorsal raphe nucleus serotonergic neurons mediates depression-like behaviors. Transl Psychiatry 2023; 13:359. [PMID: 37993435 PMCID: PMC10665321 DOI: 10.1038/s41398-023-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
The pathology of depression is related to the imbalance of various neurotransmitters. The dorsal raphe nucleus (DRN), the main brain region producing 5-HT, is crucially involved in the pathophysiology of depression. It contains several neuron types, in which GABAergic neurons are activated by stimuli associated with negative experiences and 5-HT neurons are activated by reward signals. However, little is known about its underlying molecular mechanisms. Here, we found that p11, a multifunctional protein associated with depression, was down-regulated by chronic social defeat stress in 5-HTDRN neurons. Knockdown of p11 in DRN induced depression-like behaviors, while its overexpression in 5-HTDRN neurons alleviated depression-like behavior caused by chronic social defeat stress. Further, p11 regulates membrane trafficking of glutamate receptors in 5-HTDRN neurons, suggesting a possible molecular mechanism underlying the participation of p11 in the pathological process of depression. This may facilitate the understanding of the molecular and cellular basis of depression.
Collapse
Affiliation(s)
- Wei Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China
| | - Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China
| | - Xuan Yin
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China
| | - Xiaorong Chen
- Department of Physiology, Laboratory of Neurodegenerative diseases, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China.
| | - Shifen Xu
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
18
|
Gunduz-Cinar O, Castillo LI, Xia M, Van Leer E, Brockway ET, Pollack GA, Yasmin F, Bukalo O, Limoges A, Oreizi-Esfahani S, Kondev V, Báldi R, Dong A, Harvey-White J, Cinar R, Kunos G, Li Y, Zweifel LS, Patel S, Holmes A. A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron 2023; 111:3053-3067.e10. [PMID: 37480845 PMCID: PMC10592324 DOI: 10.1016/j.neuron.2023.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Preclinical and clinical studies implicate endocannabinoids (eCBs) in fear extinction, but the underlying neural circuit basis of these actions is unclear. Here, we employed in vivo optogenetics, eCB biosensor imaging, ex vivo electrophysiology, and CRISPR-Cas9 gene editing in mice to examine whether basolateral amygdala (BLA)-projecting medial prefrontal cortex (mPFC) neurons represent a neural substrate for the effects of eCBs on extinction. We found that photoexcitation of mPFC axons in BLA during extinction mobilizes BLA eCBs. eCB biosensor imaging showed that eCBs exhibit a dynamic stimulus-specific pattern of activity at mPFC→BLA neurons that tracks extinction learning. Furthermore, using CRISPR-Cas9-mediated gene editing, we demonstrated that extinction memory formation involves eCB activity at cannabinoid CB1 receptors expressed at vmPFC→BLA synapses. Our findings reveal the temporal characteristics and a neural circuit basis of eCBs' effects on fear extinction and inform efforts to target the eCB system as a therapeutic approach in extinction-deficient neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Maya Xia
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Elise Van Leer
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Emma T Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Gabrielle A Pollack
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Judy Harvey-White
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
McDonald AJ. Functional neuroanatomy of monoaminergic systems in the basolateral nuclear complex of the amygdala: Neuronal targets, receptors, and circuits. J Neurosci Res 2023; 101:1409-1432. [PMID: 37166098 PMCID: PMC10524224 DOI: 10.1002/jnr.25201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review discusses neuroanatomical aspects of the three main monoaminergic systems innervating the basolateral nuclear complex (BNC) of the amygdala (serotonergic, noradrenergic, and dopaminergic systems). It mainly focuses on immunohistochemical (IHC) and in situ hybridization (ISH) studies that have analyzed the relationship of specific monoaminergic inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of the monoaminergic modulation of BNC circuitry. First, light and electron microscopic IHC investigations identifying the main BNC neuronal subpopulations and characterizing their local circuitry, including connections with discrete PN compartments and other INs, are reviewed. Then, the relationships of each of the three monoaminergic systems to distinct PN and IN cell types, are examined in detail. For each system, the neuronal targets and their receptor expression are discussed. In addition, pertinent electrophysiological investigations are discussed. The last section of the review compares and contrasts various aspects of each of the three monoaminergic systems. It is concluded that the large number of different receptors, each with a distinct mode of action, expressed by distinct cell types with different connections and functions, should offer innumerable ways to subtlety regulate the activity of the BNC by therapeutic drugs in psychiatric diseases in which there are alterations of BNC monoaminergic modulatory systems, such as in anxiety disorders, depression, and drug addiction. It is suggested that an important area for future studies is to investigate how the three systems interact in concert at the neuronal and neuronal network levels.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
20
|
Tortora F, Hadipour AL, Battaglia S, Falzone A, Avenanti A, Vicario CM. The Role of Serotonin in Fear Learning and Memory: A Systematic Review of Human Studies. Brain Sci 2023; 13:1197. [PMID: 37626553 PMCID: PMC10452575 DOI: 10.3390/brainsci13081197] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fear is characterized by distinct behavioral and physiological responses that are essential for the survival of the human species. Fear conditioning (FC) serves as a valuable model for studying the acquisition, extinction, and expression of fear. The serotonin (5-hydroxytryptamine, 5-HT) system is known to play a significant role in emotional and motivational aspects of human behavior, including fear learning and expression. Accumulating evidence from both animal and human studies suggests that brain regions involved in FC, such as the amygdala, hippocampus, and prefrontal cortex, possess a high density of 5-HT receptors, implicating the crucial involvement of serotonin in aversive learning. Additionally, studies exploring serotonin gene polymorphisms have indicated their potential influence on FC. Therefore, the objective of this work was to review the existing evidence linking 5-HT with fear learning and memory in humans. Through a comprehensive screening of the PubMed and Web of Science databases, 29 relevant studies were included in the final review. These studies investigated the relationship between serotonin and fear learning using drug manipulations or by studying 5-HT-related gene polymorphisms. The results suggest that elevated levels of 5-HT enhance aversive learning, indicating that the modulation of serotonin 5-HT2A receptors regulates the expression of fear responses in humans. Understanding the role of this neurochemical messenger in associative aversive learning can provide insights into psychiatric disorders such as anxiety and post-traumatic stress disorder (PTSD), among others.
Collapse
Affiliation(s)
- Francesco Tortora
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Abed L. Hadipour
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
| | - Alessandra Falzone
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca 3460000, Chile
| | - Carmelo M. Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| |
Collapse
|
21
|
Ielpo D, Guzzo SM, Porcheddu GF, Viscomi MT, Catale C, Reverte I, Cabib S, Cifani C, Antonucci G, Ventura R, Lo Iacono L, Marchetti C, Andolina D. GABAergic miR-34a regulates Dorsal Raphè inhibitory transmission in response to aversive, but not rewarding, stimuli. Proc Natl Acad Sci U S A 2023; 120:e2301730120. [PMID: 37523544 PMCID: PMC10410731 DOI: 10.1073/pnas.2301730120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023] Open
Abstract
The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.
Collapse
Affiliation(s)
- Donald Ielpo
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Serafina M. Guzzo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino62032, Italy
| | - Giovanni F. Porcheddu
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome00161, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico, Rome00168, Italy
| | - Clarissa Catale
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Ingrid Reverte
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome00185, Italy
| | - Simona Cabib
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino62032, Italy
| | - Gabriella Antonucci
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Rossella Ventura
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
- San Raffaele Istituto di Ricovero e Cura a Carattere Scientifico, Rome00166, Italy
| | - Luisa Lo Iacono
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Cristina Marchetti
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome00161, Italy
- Institute of Molecular Biology and Pathology, National Research Council, Rome00185, Italy
| | - Diego Andolina
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| |
Collapse
|
22
|
Fortin-Houde J, Henderson F, Dumas S, Ducharme G, Amilhon B. Parallel streams of raphe VGLUT3-positive inputs target the dorsal and ventral hippocampus in each hemisphere. J Comp Neurol 2023; 531:702-719. [PMID: 36855269 DOI: 10.1002/cne.25452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 03/02/2023]
Abstract
The hippocampus (HP) receives neurochemically diverse inputs from the raphe nuclei, including glutamatergic axons characterized by the expression of the vesicular glutamate transporter type 3 (VGLUT3). These raphe-HP VGLUT3 projections have been suggested to play a critical role in HP functions, yet a complete anatomical overview of raphe VGLUT3 projections to the forebrain, and in particular to the HP, is lacking. Using anterograde viral tracing, we describe largely nonoverlapping VGLUT3-positive projections from the dorsal raphe (DR) and median raphe (MnR) to the forebrain, with the HP receiving inputs from the MnR. A limited subset of forebrain regions such as the amygdaloid complex, claustrum, and hypothalamus receives projections from both the DR and MnR that remain largely segregated. This highly complementary anatomical pattern suggests contrasting roles for DR and MnR VGLUT3 neurons. To further analyze the topography of VGLUT3 raphe projections to the HP, we used retrograde tracing and found that HP-projecting VGLUT3-positive neurons (VGLUT3HP ) distribute over several raphe subregions (including the MnR, paramedian raphe, and B9 cell group) and lack co-expression of serotonergic markers. Strikingly, double retrograde tracing experiments unraveled two parallel streams of VGLUT3-positive projections targeting the dorsal and ventral poles of the HP. These results demonstrate highly organized and segregated VGLUT3-positive projections to the HP, suggesting independent modulation of HP functions such as spatial memory and emotion-related behavior.
Collapse
Affiliation(s)
- Justine Fortin-Houde
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Fiona Henderson
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | | | | | - Bénédicte Amilhon
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
23
|
Flanigan ME, Hon OJ, D'Ambrosio S, Boyt KM, Hassanein L, Castle M, Haun HL, Pina MM, Kash TL. Subcortical serotonin 5HT 2c receptor-containing neurons sex-specifically regulate binge-like alcohol consumption, social, and arousal behaviors in mice. Nat Commun 2023; 14:1800. [PMID: 37002196 PMCID: PMC10066391 DOI: 10.1038/s41467-023-36808-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/17/2023] [Indexed: 04/03/2023] Open
Abstract
Binge alcohol consumption induces discrete social and arousal disturbances in human populations that promote increased drinking and accelerate the progression of Alcohol Use Disorder. Here, we show in a mouse model that binge alcohol consumption disrupts social recognition in females and potentiates sensorimotor arousal in males. These negative behavioral outcomes were associated with sex-specific adaptations in serotonergic signaling systems within the lateral habenula (LHb) and the bed nucleus of the stria terminalis (BNST), particularly those related to the receptor 5HT2c. While both BNST and LHb neurons expressing this receptor display potentiated activation following binge alcohol consumption, the primary causal mechanism underlying the effects of alcohol on social and arousal behaviors appears to be excessive activation of LHb5HT2c neurons. These findings may have valuable implications for the development of sex-specific treatments for mood and alcohol use disorders targeting the brain's serotonin system.
Collapse
Affiliation(s)
- M E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - O J Hon
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - S D'Ambrosio
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - K M Boyt
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - L Hassanein
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - H L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M M Pina
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - T L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
de Almeida C, Chabbah N, Eyraud C, Fasano C, Bernard V, Pietrancosta N, Fabre V, El Mestikawy S, Daumas S. Absence of VGLUT3 Expression Leads to Impaired Fear Memory in Mice. eNeuro 2023; 10:ENEURO.0304-22.2023. [PMID: 36720646 PMCID: PMC9953049 DOI: 10.1523/eneuro.0304-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Fear is an emotional mechanism that helps to cope with potential hazards. However, when fear is generalized, it becomes maladaptive and represents a core symptom of posttraumatic stress disorder (PTSD). Converging lines of research show that dysfunction of glutamatergic neurotransmission is a cardinal feature of trauma and stress related disorders such as PTSD. However, the involvement of glutamatergic co-transmission in fear is less well understood. Glutamate is accumulated into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The atypical subtype, VGLUT3, is responsible for the co-transmission of glutamate with acetylcholine, serotonin, or GABA. To understand the involvement of VGLUT3-dependent co-transmission in aversive memories, we used a Pavlovian fear conditioning paradigm in VGLUT3-/- mice. Our results revealed a higher contextual fear memory in these mice, despite a facilitation of extinction. In addition, the absence of VGLUT3 leads to fear generalization, probably because of a pattern separation deficit. Our study suggests that the VGLUT3 network plays a crucial role in regulating emotional memories. Hence, VGLUT3 is a key player in the processing of aversive memories and therefore a potential therapeutic target in stress-related disorders.
Collapse
Affiliation(s)
- Camille de Almeida
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Nida Chabbah
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Camille Eyraud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Caroline Fasano
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal QC H4H 1R3, Quebec, Canada
| | - Véronique Bernard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Nicolas Pietrancosta
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Véronique Fabre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Salah El Mestikawy
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal QC H4H 1R3, Quebec, Canada
| | - Stephanie Daumas
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| |
Collapse
|
25
|
Dunn GA, Thompson JR, Mitchell AJ, Papadakis S, Selby M, Fair D, Gustafsson HC, Sullivan EL. Perinatal Western-style diet alters serotonergic neurons in the macaque raphe nuclei. Front Neurosci 2023; 16:1067479. [PMID: 36704012 PMCID: PMC9872117 DOI: 10.3389/fnins.2022.1067479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The neurotransmitter serotonin is a key regulator of neurotransmission, mood, and behavior and is essential in neurodevelopment. Dysfunction in this important neurotransmitter system is connected to behavioral disorders such as depression and anxiety. We have previously shown that the developing serotonin system is sensitive to perinatal exposure to Western-style diet (WSD). Methods To advance our hypothesis that perinatal WSD has a long-term impact on the serotonergic system, we designed a fluorescent immunohistochemistry experiment using antibodies against tryptophan hydroxylase 2 (TPH2) and vesicular glutamate transporter 3 (VGLUT3) to probe protein expression in the raphe subnuclei in 13-month-old Japanese macaques (Macaca fuscata; n = 22). VGLUT3 has been shown to be coexpressed in TPH2+ cells in the dorsal raphe (DR) and median raphe nucleus (MnR) of rodent raphe nuclei and may provide information about the projection site of serotonergic fibers into the forebrain. We also sought to improve scientific understanding of the heterogeneity of the serotonin production center for the central nervous system, the midbrain raphe nuclei. Results In this immunohistochemical study, we provide the most detailed characterization of the developing primate raphe to date. We utilize multi-level modeling (MLM) to simultaneously probe the contribution of WSD, offspring sex, and raphe anatomical location, to raphe neuronal measurements. Our molecular and morphological characterization revealed that the 13-month-old macaque DR is remarkably similar to that of adult macaques and humans. We demonstrate that vesicular glutamate transporter 3 (VGLUT3), which rodent studies have recently shown can distinguish raphe populations with distinct projection targets and behavioral functions, likewise contributes to the heterogeneity of the primate raphe. Discussion This study provides evidence that perinatal WSD has a long-term impact on the density of serotonin-producing neurons, potentially limiting serotonin availability throughout the brain. Due to the critical involvement of serotonin in development and behavior, these findings provide important insight into the mechanisms by which maternal nutrition and metabolic state influence offspring behavioral outcomes. Finally, these findings could inform future research focused on designing therapeutic interventions to optimize neural development and decrease a child's risk of developing a mental health disorder.
Collapse
Affiliation(s)
- Geoffrey A. Dunn
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | | | - A J Mitchell
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Samantha Papadakis
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Matthew Selby
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Damien Fair
- Masonic Institute of Child Development, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Hanna C. Gustafsson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Elinor L. Sullivan
- Department of Human Physiology, University of Oregon, Eugene, OR, United States,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Elinor L. Sullivan,
| |
Collapse
|
26
|
Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion. Nat Commun 2022; 13:7708. [PMID: 36550097 PMCID: PMC9780347 DOI: 10.1038/s41467-022-35346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.
Collapse
|
27
|
Guo W, Fan S, Xiao D, He C, Guan M, Xiong W. A midbrain-reticulotegmental circuit underlies exaggerated startle under fear emotions. Mol Psychiatry 2022; 27:4881-4892. [PMID: 36117214 DOI: 10.1038/s41380-022-01782-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023]
Abstract
Exaggerated startle has been recognized as a core hyperarousal symptom of multiple fear-related anxiety disorders, such as post-traumatic stress disorder (PTSD) and panic disorder. However, the mechanisms driving this symptom are poorly understood. Here we reveal a neural projection from dorsal raphe nucleus (DRN) to a startle-controlling center reticulotegmental nucleus (RtTg) that mediates enhanced startle response under fear condition. Within RtTg, we identify an inhibitory microcircuit comprising GABAergic neurons in pericentral RtTg (RtTgP) and glutamatergic neurons in central RtTg (RtTgC). Inhibition of this RtTgP-RtTgC microcircuit leads to elevated startle amplitudes. Furthermore, we demonstrate that the conditioned fear-activated DRN 5-HTergic neurons send inhibitory projections to RtTgP GABAergic neurons, which in turn upregulate neuronal activities of RtTgC glutamatergic neurons. Chemogenetic activation of the DRN-RtTgP projections mimics the increased startle response under fear emotions. Moreover, conditional deletion of 5-HT1B receptor from RtTgP GABAergic neurons largely reverses the exaggeration of startle during conditioned fear. Thus, our study establishes the disinhibitory DRN-RtTgP-RtTgC circuit as a critical mechanism underlying exaggerated startle under fear emotions, and provides 5-HT1B receptor as a potential therapeutic target for treating hyperarousal symptom in fear-associated psychiatric disorders.
Collapse
Affiliation(s)
- Weiwei Guo
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Sijia Fan
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Dan Xiao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chen He
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Mengyuan Guan
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Xiong
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
28
|
Yu XD, Zhu Y, Sun QX, Deng F, Wan J, Zheng D, Gong W, Xie SZ, Shen CJ, Fu JY, Huang H, Lai HY, Jin J, Li Y, Li XM. Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety. Nat Neurosci 2022; 25:1651-1663. [PMID: 36446933 DOI: 10.1038/s41593-022-01200-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Abstract
Anxiety-like behaviors in mice include social avoidance and avoidance of bright spaces. Whether these features are distinctly regulated is unclear. We demonstrate that in mice, social and anxiogenic stimuli, respectively, increase and decrease serotonin (5-HT) levels in basal amygdala (BA). In dorsal raphe nucleus (DRN), 5-HT∩vGluT3 neurons projecting to BA parvalbumin (DRN5-HT∩vGluT3-BAPV) and pyramidal (DRN5-HT∩vGluT3-BAPyr) neurons have distinct intrinsic properties and gene expression and respond to anxiogenic and social stimuli, respectively. Activation of DRN5-HT∩vGluT3→BAPV inhibits 5-HT release via GABAB receptors on serotonergic terminals in BA, inducing social avoidance and avoidance of bright spaces. Activation of DRN5-HT∩vGluT3→BA neurons inhibits two subsets of BAPyr neurons via 5-HT1A receptors (HTR1A) and 5-HT1B receptors (HTR1B). Pharmacological inhibition of HTR1A and HTR1B in BA induces avoidance of bright spaces and social avoidance, respectively. These findings highlight the functional significance of heterogenic inputs from DRN to BA subpopulations in the regulation of separate anxiety-related behaviors.
Collapse
Affiliation(s)
- Xiao-Dan Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qi-Xin Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Di Zheng
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Wankun Gong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Ze Xie
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Jie Shen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Yu Fu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Huiqian Huang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hsin-Yi Lai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China. .,Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences/Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
29
|
Hon OJ, DiBerto JF, Mazzone CM, Sugam J, Bloodgood DW, Hardaway JA, Husain M, Kendra A, McCall NM, Lopez AJ, Kash TL, Lowery-Gionta EG. Serotonin modulates an inhibitory input to the central amygdala from the ventral periaqueductal gray. Neuropsychopharmacology 2022; 47:2194-2204. [PMID: 35999277 PMCID: PMC9630515 DOI: 10.1038/s41386-022-01392-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Fear is an adaptive state that drives defensive behavioral responses to specific and imminent threats. The central nucleus of the amygdala (CeA) is a critical site of adaptations that are required for the acquisition and expression of fear, in part due to alterations in the activity of inputs to the CeA. Here, we characterize a novel GABAergic input to the CeA from the ventral periaqueductal gray (vPAG) using fiber photometry and ex vivo whole-cell slice electrophysiology combined with optogenetics and pharmacology. GABA transmission from this ascending vPAG-CeA input was enhanced by serotonin via activation of serotonin type 2 C (5HT2C) receptors. Results suggest that these receptors are presynaptic. Interestingly, we found that GABA release from the vPAG-CeA input is enhanced following fear learning via activation of 5HT2C receptors and that this pathway is dynamically engaged in response to aversive stimuli. Additionally, we characterized serotonin release in the CeA during fear learning and recall for the first time using fiber photometry coupled to a serotonin biosensor. Together, these findings describe a mechanism by which serotonin modulates GABA release from ascending vPAG GABA inputs to the CeA and characterize a role for this pathway in fear.
Collapse
Affiliation(s)
- Olivia J Hon
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher M Mazzone
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel W Bloodgood
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Andrew Hardaway
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mariya Husain
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Kendra
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nora M McCall
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alberto J Lopez
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
He A, Zhang C, Ke X, Yi Y, Yu Q, Zhang T, Yu H, Du H, Li H, Tian Q, Zhu LQ, Lu Y. VGLUT3 neurons in median raphe control the efficacy of spatial memory retrieval via ETV4 regulation of VGLUT3 transcription. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1590-1607. [PMID: 35089530 DOI: 10.1007/s11427-021-2047-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The raphe nucleus is critical for feeding, rewarding and memory. However, how the heterogenous raphe neurons are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing VGLUT3. VGLUT3 neurons control the efficacy of spatial memory retrieval by synapsing directly with parvalbumin-expressing GABA interneurons (PGIs) in the dentate gyrus. In a mouse model of Alzheimer's disease (AD mice), VGLUT3→PGIs synaptic transmission is impaired by ETV4 inhibition of VGLUT3 transcription. ETV4 binds to a promoter region of VGLUT3 and activates VGLUT3 transcription in VGLUT3 neurons. Strengthening VGLUT3→PGIs synaptic transmission by ETV4 activation of VGLUT3 transcription upscales the efficacy of spatial memory retrieval in AD mice. This study reports a novel circuit and molecular mechanism underlying the efficacy of spatial memory retrieval via ETV4 inhibition of VGLUT3 transcription and hence provides a promising target for therapeutic intervention of the disease progression.
Collapse
Affiliation(s)
- Aodi He
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Ke
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Yi
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongmei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyan Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Tian
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Qiang Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
5-HT and α-m-5-HT attenuate excitatory synaptic transmissions onto the lateral amygdala principal neurons via presynaptic 5-HT1B receptors. Biochem Biophys Res Commun 2022; 624:28-34. [DOI: 10.1016/j.bbrc.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
|
32
|
Sachella TE, Ihidoype MR, Proulx CD, Pafundo DE, Medina JH, Mendez P, Piriz J. A novel role for the lateral habenula in fear learning. Neuropsychopharmacology 2022; 47:1210-1219. [PMID: 35217797 PMCID: PMC9018839 DOI: 10.1038/s41386-022-01294-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023]
Abstract
Fear is an extreme form of aversion that underlies pathological conditions such as panic or phobias. Fear conditioning (FC) is the best-understood model of fear learning. In FC the context and a cue are independently associated with a threatening unconditioned stimulus (US). The lateral habenula (LHb) is a general encoder of aversion. However, its role in fear learning remains poorly understood. Here we studied in rats the role of the LHb in FC using optogenetics and pharmacological tools. We found that inhibition or activation of the LHb during entire FC training impaired both cued and contextual FC. In contrast, optogenetic inhibition of the LHb restricted to cue and US presentation impaired cued but not contextual FC. In either case, simultaneous activation of contextual and cued components of FC, by the presentation of the cue in the training context, recovered the conditioned fear response. Our results support the notion that the LHb is required for the formation of independent contextual and cued fear memories, a previously uncharacterized function for this structure, that could be critical in fear generalization.
Collapse
Affiliation(s)
- Tomas E. Sachella
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marina R. Ihidoype
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christophe D. Proulx
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Quebec City, Quebec Canada
| | - Diego E. Pafundo
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge H. Medina
- grid.423606.50000 0001 1945 2152Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina ,grid.441574.70000000090137393Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Pablo Mendez
- grid.419043.b0000 0001 2177 5516Instituto Cajal, CSIC, Madrid, España
| | - Joaquin Piriz
- Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Involvement of DR→mPFC 5-HTergic neural projections in changes of social exploration behaviors caused by adult chronic social isolation in mice. Brain Res Bull 2022; 186:16-26. [DOI: 10.1016/j.brainresbull.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
|
34
|
Palamarchuk IS, Vaillancourt T. Integrative Brain Dynamics in Childhood Bullying Victimization: Cognitive and Emotional Convergence Associated With Stress Psychopathology. Front Integr Neurosci 2022; 16:782154. [PMID: 35573445 PMCID: PMC9097078 DOI: 10.3389/fnint.2022.782154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Bullying victimization is a form of psychological stress that is associated with poor outcomes in the areas of mental health and learning. Although the emotional maladjustment and memory impairment following interpersonal stress are well documented, the mechanisms of complex cerebral dysfunctions have neither been outlined nor studied in depth in the context of childhood bullying victimization. As a contribution to the cross-disciplinary field of developmental psychology and neuroscience, we review the neuropathophysiology of early life stress, as well as general psychological stress to synthesize the data and clarify the versatile dynamics within neuronal networks linked to bullying victimization. The stress-induced neuropsychological cascade and associated cerebral networks with a focus on cognitive and emotional convergence are described. The main findings are that stress-evoked neuroendocrine reactivity relates to neuromodulation and limbic dysregulation that hinder emotion processing and executive functioning such as semantic cognition, cognitive flexibility, and learning. Developmental aspects and interacting neural mechanisms linked to distressed cognitive and emotional processing are pinpointed and potential theory-of-mind nuances in targets of bullying are presented. The results show that childhood stress psychopathology is associated with a complex interplay where the major role belongs to, but is not limited to, the amygdala, fusiform gyrus, insula, striatum, and prefrontal cortex. This interplay contributes to the sensitivity toward facial expressions, poor cognitive reasoning, and distress that affect behavioral modulation and emotion regulation. We integrate the data on major brain dynamics in stress neuroactivity that can be associated with childhood psychopathology to help inform future studies that are focused on the treatment and prevention of psychiatric disorders and learning problems in bullied children and adolescents.
Collapse
|
35
|
A serotonergic circuit regulates aversive associative learning under mitochondrial stress in
C. elegans. Proc Natl Acad Sci U S A 2022; 119:e2115533119. [PMID: 35254908 PMCID: PMC8931235 DOI: 10.1073/pnas.2115533119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance
Physiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode
Caenorhabditis elegans
to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.
Collapse
|
36
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
37
|
Neural serotonergic circuits for controlling long-term voluntary alcohol consumption in mice. Mol Psychiatry 2022; 27:4599-4610. [PMID: 36195637 PMCID: PMC9531213 DOI: 10.1038/s41380-022-01789-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Alcohol-use-disorders are chronic relapsing illnesses, often co-morbid with anxiety. We have previously shown using the "drinking-in-the-dark" model in mice that the stimulation of the serotonin receptor 1A (5-HT1A) reduces ethanol binge-drinking behaviour and withdrawal-induced anxiety. The 5-HT1A receptor is located either on Raphe neurons as autoreceptors, or on target neurons as heteroreceptors. By combining a pharmacological approach with biased agonists targeting the 5-HT1A auto- or heteroreceptor and a chemogenetic approach (DREADDs), here we identified that ethanol-binge drinking behaviour is dependent on 5-HT1A autoreceptors and 5-HT neuronal function, with a transition from DRN-dependent regulation of short-term (6 weeks) ethanol intake, to MRN-dependent regulation after longer ethanol exposure (12 weeks). We further identified a serotonergic microcircuit (5-HTMRN→DG) originating from the MRN and projecting to the dentate gyrus (DG) of the hippocampus, that is specifically affected by, and modulates long-term ethanol consumption. The present study indicates that targeting Raphe nuclei 5-HT1A autoreceptors with agonists might represent an innovative pharmacotherapeutic strategy to combat alcohol abuse.
Collapse
|
38
|
Dorsal Raphe 5-HT Neurons Utilize, But Do Not Generate, Negative Aversive Prediction Errors. eNeuro 2022; 9:ENEURO.0132-21.2022. [PMID: 35078807 PMCID: PMC8868025 DOI: 10.1523/eneuro.0132-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
The dorsal raphe nucleus (DRN) contains the largest population of serotonin (5-HT) neurons in the central nervous system. 5-HT, synthesized via tryptophan hydroxylase 2 (Tph2), is a widely functioning neuromodulator implicated in fear learning. Here, we sought to investigate whether DRN 5-HT is necessary to reduce fear via negative prediction error (–PE). Using male and female TPH2-cre rats, DRNtph2+ cells were selectively deleted via cre-caspase (rAAV5-Flex-taCasp3-TEVp) in experiment 1. Rats then underwent fear discrimination during which three cues were associated with unique foot shock probabilities: safety p = 0.00, uncertainty p = 0.375, and danger p = 1.00. Rats then received selective extinction to the uncertainty cue, a behavioral manipulation designed to probe –PE. Deleting DRNtph2+ cells had no impact on initial discrimination but slowed selective extinction. In experiment 2, we used a within-subjects optogenetic inhibition design to causally implicate DRNtph2+ cells in prediction error signaling. Male and female TPH2-cre rats received intra-DRN infusions of cre-dependent halorhodopsin (rAAV5-Ef1a-DIO-eNpHR3.0-eYFP) or cre-YFP. DRNtph2+ cells were inhibited specifically during the time of prediction error or a control period. Illumination during either positive prediction error (+PE) or control periods had no impact on fear to the uncertainty cue. Inhibition of DRNtph2+ cells at the time of –PE did not impact immediate fear, but facilitated selective extinction in postillumination sessions. Together, these results demonstrate a role for DRNtph2+ cells in using, but not generating, –PE to weaken cue-shock associations.
Collapse
|
39
|
Choi K, Park K, Lee S, Yi JH, Woo C, Kang SJ, Shin KS. Auditory fear conditioning facilitates neurotransmitter release at lateral amygdala to basal amygdala synapses. Biochem Biophys Res Commun 2021; 584:39-45. [PMID: 34768080 DOI: 10.1016/j.bbrc.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
The lateral amygdala (LA) is a main sensory input site from the cortical and thalamic regions. In turn, LA glutamatergic pyramidal neurons strongly project to the basal amygdala (BA). Although it is well known that auditory fear conditioning involves synaptic potentiation in the LA, it is not clear whether the LA-BA synaptic transmission is modified upon auditory fear conditioning. Here we found that high-frequency stimulation ex vivo resulted in long-term potentiation (LTP) with a concomitant enhancement of neurotransmitter release at LA-BA synapses. Auditory fear conditioning also led to the presynaptic facilitation at LA-BA synapses. Meanwhile, AMPA/NMDA current ratio was not changed upon fear conditioning, excluding the involvement of postsynaptic mechanism. Notably, fear conditioning occluded electrically induced ex vivo LTP in the LA-BA pathway, indicating that the conditioning and electrically induced LTP share common mechanisms. Our findings suggest that the presynaptic potentiation of LA-BA synapses may be involved in fear conditioning.
Collapse
Affiliation(s)
- Kyuhyun Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyungjoon Park
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soonje Lee
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee Hyun Yi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Changsu Woo
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Shin Jung Kang
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Ki Soon Shin
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
40
|
Czarnecki D, Ziółkowski M, Chodkiewicz J, Długosz A, Feldheim J, Waszkiewicz N, Kułak-Bejda A, Gorzkiewicz M, Budzyński J, Junkiert-Czarnecka A, Siomek-Górecka A, Nicpoń K, Kawala-Sterniuk A, Ferri R, Pelc M, Walecki P, Laskowska E, Gorzelańczyk EJ. Initial Study on COMT and DRD2 Gene Polymorphisms as Well as the Influence of Temperament and Character Trait on the Severity of Alcohol Craving in Alcohol-Dependent Patients. J Clin Med 2021; 10:jcm10245892. [PMID: 34945190 PMCID: PMC8704345 DOI: 10.3390/jcm10245892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 12/31/2022] Open
Abstract
The main aim of this work was to determine the impact of COMT and DRD2 gene polymorphisms together with temperament and character traits on alcohol craving severity alcohol-dependent persons. The sample comprised of 89 men and 16 women (aged 38±7). For the sake of psychological assessment various analytic methods have been applied like the Short Alcohol Dependence Data Questionnaire (SADD), Penn Alcohol Craving Scale (PACS) or Temperament and Character Inventory (TCI) test. The SNP polymorphism of the analyzed genes was determined by Real Time PCR test. The results showed, that the COMT polymorphismmay have an indirected relationship with the intensity and changes in alcohol craving during abstinence. The DRD2 receptor gene polymorphisms are related with the intensity of alcohol craving. It seems that the character traits like “self-targeting”, including “self-acceptance”, are more closely related to the severity of alcohol craving and polymorphic changes in the DRD2 receptor than temperamental traits. Although this is a pilot study the obtained results appeared to be promising and clearly indicate the link betweengene polymorphisms alcohol craving and its severity.
Collapse
Affiliation(s)
- Damian Czarnecki
- Department of Preventive Nursing, Collegium Medicum, Nicolaus Copernicus University, Torun, ul. Ignacego Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.Z.); (K.N.)
- Correspondence: (D.C.); (A.K.-S.)
| | - Marcin Ziółkowski
- Department of Preventive Nursing, Collegium Medicum, Nicolaus Copernicus University, Torun, ul. Ignacego Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.Z.); (K.N.)
| | - Jan Chodkiewicz
- Institute of Psychology, Department of Clinical Psychology and Psychopathology, University of Lodz, ul. Smugowa 10/12, 91-433 Łódź, Poland;
| | - Anna Długosz
- Faculty of Chemical Technology and Engineering, University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (A.D.); (J.F.)
| | - Joanna Feldheim
- Faculty of Chemical Technology and Engineering, University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (A.D.); (J.F.)
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Białystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (N.W.); (A.K.-B.)
| | - Agnieszka Kułak-Bejda
- Department of Psychiatry, Medical University of Białystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (N.W.); (A.K.-B.)
| | - Marta Gorzkiewicz
- Department of Molecular Genetics and Justice, Collegium Medicum, Nicolaus Copernicus University, Torun, ul. Marii Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland;
| | - Jacek Budzyński
- Department of Vascular and Internal Diseases, Nicolaus Copernicus University, Torun, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland;
| | - Anna Junkiert-Czarnecka
- Department of Clinical Genetics, Nicolaus Copernicus University, Torun, ul. Marii Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland;
| | - Agnieszka Siomek-Górecka
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Torun, ul. Karłowicza 24, 85-092 Bydgoszcz, Poland;
| | - Krzysztof Nicpoń
- Department of Preventive Nursing, Collegium Medicum, Nicolaus Copernicus University, Torun, ul. Ignacego Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.Z.); (K.N.)
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland;
- Correspondence: (D.C.); (A.K.-S.)
| | - Raffaele Ferri
- Oasi Research Institute IRCCS, Via C. Ruggero, 73, 94018 Troina, Italy;
| | - Mariusz Pelc
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland;
- School of Computing and Mathematical Sciences, University of Greenwich, London SE10 9LS, UK
| | - Piotr Walecki
- Department of Bioinformatics and Telemedicine, Collegium Medicum, Jagiellonian University, ul. Medyczna 7, 30-688 Krakow, Poland;
| | - Ewa Laskowska
- Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, Torun, ul. Jagiellońska 15, 85-067 Bydgoszcz, Poland;
| | - Edward Jacek Gorzelańczyk
- Department of Theoretical Basis of BioMedical Sciences and Medical Informatics, Collegium Medicum, Nicolaus Copernicus University, ul. Jagiellońska 15, 85-067 Bydgoszcz, Poland;
- Institute of Philosophy, Kazimierz Wielki University, ul. Ogińskiego 16, 85-092 Bydgoszcz, Poland
- Babinski Specialist Psychiatric Healthcare Center, Outpatient Addiction Treatment, ul. Aleksandrowska 159, 91-229 Łódź, Poland
- The Society for the Substitution Treatment of Addiction “Medically Assisted Recovery”, ul. Rzeźniackiego 1D, 85-791 Bydgoszcz, Poland
| |
Collapse
|
41
|
Ahmed SR, Liu E, Yip A, Lin Y, Balaban E, Pompeiano M. Novel localizations of TRPC5 channels suggest novel and unexplored roles: A study in the chick embryo brain. Dev Neurobiol 2021; 82:41-63. [PMID: 34705331 DOI: 10.1002/dneu.22857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022]
Abstract
Mammalian TRPC5 channels are predominantly expressed in the brain, where they increase intracellular Ca2+ and induce depolarization. Because they augment presynaptic vesicle release, cause persistent neural activity, and show constitutive activity, TRPC5s could play a functional role in late developmental brain events. We used immunohistochemistry to examine TRPC5 in the chick embryo brain between 8 and 20 days of incubation, and provide the first detailed description of their distribution in birds and in the whole brain of any animal species. Stained areas substantially increased between E8 and E16, and staining intensity in many areas peaked at E16, a time when chick brains first show organized patterns of whole-brain metabolic activation like what is seen consistently after hatching. Areas showing cell soma staining match areas showing Trpc5 mRNA or protein in adult rodents (cerebral cortex, hippocampus, amygdala, cerebellar Purkinje cells). Chick embryos show protein staining in the optic tectum, cerebellar nuclei, and several brainstem nuclei; equivalent areas in the Allen Institute mouse maps express Trpc5 mRNA. The strongest cell soma staining was found in a dorsal hypothalamic area (matching a group of parvicellular arginine vasotocin neurons and a pallial amygdalohypothalamic cell corridor) and the vagal motor complex. Purkinje cells showed strong dendritic staining at E20. Unexpectedly, we also describe neurite staining in the septum, several hypothalamic nuclei, and a paramedian raphe area; the strongest neurite staining was in the median eminence. These novel localizations suggest new unexplored TRPC5 functions, and possible roles in late embryonic brain development.
Collapse
Affiliation(s)
- Sharifuddin Rifat Ahmed
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Faculté de médecine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Elise Liu
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Institute du Cerveau - ICM, Paris Brain Institute, Paris, 75013, France
| | - Alissa Yip
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Yuqi Lin
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Evan Balaban
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Department of Bioengineering and Aerospace Engineering, Carlo III University of Madrid, Avda. de la Universidad 30, Leganés, Madrid, E-28911, Spain
| | - Maria Pompeiano
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Department of Bioengineering and Aerospace Engineering, Carlo III University of Madrid, Avda. de la Universidad 30, Leganés, Madrid, E-28911, Spain
| |
Collapse
|
42
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
43
|
Kusek M, Siwiec M, Sowa JE, Bobula B, Bilecki W, Ciurej I, Kaczmarczyk M, Kowalczyk T, Maćkowiak M, Hess G, Tokarski K. 5-HT 7 receptors enhance inhibitory synaptic input to principal neurons in the mouse basal amygdala. Neuropharmacology 2021; 198:108779. [PMID: 34481835 DOI: 10.1016/j.neuropharm.2021.108779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022]
Abstract
The basal amygdala (BA) has been implicated in encoding fear and its extinction. The level of serotonin (5-HT) in the BA increases due to arousal and stress related to aversive stimuli. The effects of 5-HT7 receptor (5-HT7R) activation and blockade on the activity of BA neurons have not yet been investigated. In the present study, a transgenic mouse line carrying green fluorescent protein (GFP) reporter gene was used to identify neurons that express the 5-HT7R. GFP immunoreactivity was present mainly in cells that also expressed GAD67 or parvalbumin (PV), the phenotypic markers for GABAergic interneurons. Most cells showing GFP fluorescence demonstrated firing patterns characteristic of BA inhibitory interneurons. Activation of 5-HT7Rs resulted in a depolarization and/or occurrence of spontaneous spiking activity of BA interneurons that was accompanied by an increase in the mean frequency and mean amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from BA principal neurons. These effects were blocked by a specific 5-HT7R antagonist, SB269970 and were absent in slices from 5-HT7R knockout mice. Activation of 5-HT7Rs also decreased the mean frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from BA principal neurons, which was blocked by the GABAA receptor antagonist picrotoxin. Neither inhibitory nor excitatory miniature postsynaptic currents (mIPSCs/mEPSCs) were affected by 5-HT7R activation. These results show that in the BA 5-HT7Rs stimulate an activity-dependent enhancement of inhibitory input from local interneurons to BA principal neurons and provide insights about the possible involvement of BA serotonergic receptors in neuronal mechanisms underlying fear memory.
Collapse
Affiliation(s)
- Magdalena Kusek
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Joanna Ewa Sowa
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Wiktor Bilecki
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Izabela Ciurej
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Str., 30-387, Kraków, Poland
| | - Maria Kaczmarczyk
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Tomasz Kowalczyk
- Department of Neurobiology, University of Łódź, Pomorska Str. No 141/143, 91-236, Łódź, Poland
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland.
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343, Kraków, Poland.
| |
Collapse
|
44
|
Alexander C, Vasefi M. Cannabidiol and the corticoraphe circuit in post-traumatic stress disorder. IBRO Neurosci Rep 2021; 11:88-102. [PMID: 34485973 PMCID: PMC8408530 DOI: 10.1016/j.ibneur.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD), characterized by re-experiencing, avoidance, negative affect, and impaired memory processing, may develop after traumatic events. PTSD is complicated by impaired plasticity and medial prefrontal cortex (mPFC) activity, hyperactivity of the amygdala, and impaired fear extinction. Cannabidiol (CBD) is a promising candidate for treatment due to its multimodal action that enhances plasticity and calms hyperexcitability. CBD’s mechanism in the mPFC of PTSD patients has been explored extensively, but literature on the mechanism in the dorsal raphe nucleus (DRN) is lacking. Following the PRISMA guidelines, we examined current literature regarding CBD in PTSD and overlapping symptomologies to propose a mechanism by which CBD treats PTSD via corticoraphe circuit. Acute CBD inhibits excess 5-HT release from DRN to amygdala and releases anandamide (AEA) onto amygdala inputs. By first reducing amygdala and DRN hyperactivity, CBD begins to ameliorate activity disparity between mPFC and amygdala. Chronic CBD recruits the mPFC, creating harmonious corticoraphe signaling. DRN releases enough 5-HT to ameliorate mPFC hypoactivity, while the mPFC continuously excites DRN 5-HT neurons via glutamate. Meanwhile, AEA regulates corticoraphe activity to stabilize signaling. AEA prevents DRN GABAergic interneurons from inhibiting 5-HT release so the DRN can assist the mPFC in overcoming its hypoactivity. DRN-mediated restoration of mPFC activity underlies CBD’s mechanism on fear extinction and learning of stress coping. CBD reduces PTSD symptoms via the DRN and corticoraphe circuit. Acute effects of CBD reduce DRN-amygdala excitatory signaling to lessen the activity disparity between amygdala and mPFC. Chronic CBD officially resolves mPFC hypoactivity by facilitating 5-HT release from DRN to mPFC. CBD-facilitated endocannabinoid signaling stabilizes DRN activity and restores mPFC inhibitory control. Chronically administered CBD acts via the corticoraphe circuit to favor fear extinction over fear memory reconsolidation.
Collapse
Key Words
- 2-AG, 2-arachidonoylglycerol
- 5-HT, Serotonin
- 5-HT1AR, 5-HT Receptor Type 1A
- 5-HT2AR, 5-HT Receptor Type 2 A
- AEA, Anandamide
- CB1R, Cannabinoid Receptor Type 1
- CB2R, Cannabinoid Receptor Type 2
- CBD, Cannabidiol
- COVID-19, SARS-CoV-2
- Cannabidiol
- DRN, Dorsal Raphe Nucleus
- ERK1/2, Extracellular Signal-Related Kinases Type 1 or Type 2
- FAAH, Fatty Acid Amide Hydrolase
- GABA, Gamma-Aminobutyric Acid
- GPCRs, G-Protein Coupled Receptors
- NMDAR, N-Methyl-D-aspartate Receptors
- PET, Positron Emission Tomography
- PFC, DRN and Raphe
- PFC, Prefrontal Cortex
- PTSD
- PTSD, Post-Traumatic Stress Disorder
- SSNRI, Selective Norepinephrine Reuptake Inhibitor
- SSRI, Selective Serotonin Reuptake Inhibitor
- Serotonin
- TRPV1, Transient Receptor Potential Vanilloid 1 Channels
- Traumatic Stress
- fMRI, Functional Magnetic Resonance Imaging
- mPFC, Medial Prefrontal Cortex
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
45
|
Piantadosi PT, Halladay LR, Radke AK, Holmes A. Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 2021; 157:1547-1571. [PMID: 33704784 PMCID: PMC8981567 DOI: 10.1111/jnc.15342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
The risk of an aversive consequence occurring as the result of a reward-seeking action can have a profound effect on subsequent behavior. Such aversive events can be described as punishers, as they decrease the probability that the same action will be produced again in the future and increase the exploration of less risky alternatives. Punishment can involve the omission of an expected rewarding event ("negative" punishment) or the addition of an unpleasant event ("positive" punishment). Although many individuals adaptively navigate situations associated with the risk of negative or positive punishment, those suffering from substance use disorders or behavioral addictions tend to be less able to curtail addictive behaviors despite the aversive consequences associated with them. Here, we discuss the psychological processes underpinning reward seeking despite the risk of negative and positive punishment and consider how behavioral assays in animals have been employed to provide insights into the neural mechanisms underlying addictive disorders. We then review the critical contributions of dopamine signaling to punishment learning and risky reward seeking, and address the roles of interconnected ventral striatal, cortical, and amygdala regions to these processes. We conclude by discussing the ample opportunities for future study to clarify critical gaps in the literature, particularly as related to delineating neural contributions to distinct phases of the risky decision-making process.
Collapse
Affiliation(s)
- Patrick T. Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, Santa Clara, California 95053, USA
| | - Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
46
|
Cheng H, Qi Y, Lai N, Yang L, Xu C, Wang S, Guo Y, Chen Z, Wang Y. Inhibition of hyperactivity of the dorsal raphe 5-HTergic neurons ameliorates hippocampal seizure. CNS Neurosci Ther 2021; 27:963-972. [PMID: 33955651 PMCID: PMC8265946 DOI: 10.1111/cns.13648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/07/2023] Open
Abstract
Aims Epilepsy, frequently comorbid with depression, easily develops drug resistance. Here, we investigated how dorsal raphe (DR) and its 5‐HTergic neurons are implicated in epilepsy. Methods In mouse hippocampal kindling model, using immunochemistry, calcium fiber photometry, and optogenetics, we investigated the causal role of DR 5‐HTergic neurons in seizure of temporal lobe epilepsy (TLE). Further, deep brain stimulation (DBS) of the DR with different frequencies was applied to test its effect on hippocampal seizure and depressive‐like behavior. Results Number of c‐fos+ neurons in the DR and calcium activities of DR 5‐HTergic neurons were both increased during kindling‐induced hippocampal seizures. Optogenetic inhibition, but not activation, of DR 5‐HTergic neurons conspicuously retarded seizure acquisition specially during the late period. For clinical translation, 1‐Hz‐specific, but not 20‐Hz or 100‐Hz, DBS of the DR retarded the acquisition of hippocampal seizure. This therapeutic effect may be mediated by the inhibition of DR 5‐HTergic neurons, as optogenetic activation of DR 5‐HTergic neurons reversed the anti‐seizure effects of 1‐Hz DR DBS. However, DBS treatment had no effect on depressive‐like behavior. Conclusion Inhibition of hyperactivity of DR 5‐HTergic neuron may present promising anti‐seizure effect and the DR may be a potential DBS target for the therapy of TLE.
Collapse
Affiliation(s)
- Heming Cheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingbei Qi
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci Biobehav Rev 2021; 127:334-352. [PMID: 33964307 DOI: 10.1016/j.neubiorev.2021.04.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
The acquisition of fear associative memory requires brain processes of coordinated neural activity within the amygdala, prefrontal cortex (PFC), hippocampus, thalamus and brainstem. After fear consolidation, a suppression of fear memory in the absence of danger is crucial to permit adaptive coping behavior. Acquisition and maintenance of fear extinction critically depend on amygdala-PFC projections. The robust correspondence between the brain networks encompassed cortical and subcortical hubs involved into fear processing in humans and in other species underscores the potential utility of comparing the modulation of brain circuitry in humans and animals, as a crucial step to inform the comprehension of fear mechanisms and the development of treatments for fear-related disorders. The present review is aimed at providing a comprehensive description of the literature on recent clinical and experimental researches regarding the noninvasive brain stimulation and optogenetics. These innovative manipulations applied over specific hubs of fear matrix during fear acquisition, consolidation, reconsolidation and extinction allow an accurate characterization of specific brain circuits and their peculiar interaction within the specific fear processing.
Collapse
|
48
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
49
|
Carneiro-Nascimento S, Powell W, Uebel M, Buerge M, Sigrist H, Patterson M, Pryce CR, Opacka-Juffry J. Region- and receptor-specific effects of chronic social stress on the central serotonergic system in mice. IBRO Neurosci Rep 2021; 10:8-16. [PMID: 33861815 PMCID: PMC8019833 DOI: 10.1016/j.ibneur.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 10/25/2022] Open
Abstract
Serotonin (5-HT), via its receptors expressed in discrete brain regions, modulates aversion and reward processing and is implicated in various psychiatric disorders including depression. Stressful experiences affect central serotonergic activity and act as a risk factor for depression; this can be modelled preclinically. In adult male C57BL/6J mice, 15-day chronic social stress (CSS) leads to depression-relevant behavioural states, including increased aversion and reduced reward sensitivity. Based on this evidence, here we investigated CSS effects on 5-HT1A, 5-HT2A, and 5-HT2C receptor binding in discrete brain regions using in vitro quantitative autoradiography with selective radioligands. In addition, mRNA expression of Htr1a, 2a, 2c and Slc6a4 (5-HT transporter) was measured by quantitative PCR. Relative to controls, the following effects were observed in CSS mice: 5-HT1A receptor binding was markedly increased in the dorsal raphe nucleus (136%); Htr1a mRNA expression was increased in raphe nuclei (19%), medial prefrontal cortex (35%), and hypothalamic para- and periventricular nuclei (21%) and ventral medial nucleus (38%). 5-HT2A receptor binding was decreased in the amygdala (48%) and ventral tegmental area (60%); Htr2a mRNA expression was increased in the baso-lateral amygdala (116%). 5-HT2C receptor binding was decreased in the dorsal raphe nucleus (42%). Slc6a4 mRNA expression was increased in the raphe (59%). The present findings add to the translational evidence that chronic social stress impacts on the central serotonergic system in a region- and receptor-specific manner, and that this altered state of the serotonergic system contributes to stress-induced dysfunctions in emotional processing.
Collapse
Affiliation(s)
| | - William Powell
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Michaela Uebel
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Michaela Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Michael Patterson
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
50
|
Leveraging VGLUT3 Functions to Untangle Brain Dysfunctions. Trends Pharmacol Sci 2021; 42:475-490. [PMID: 33775453 DOI: 10.1016/j.tips.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergic neurons. Recent reports show the subtle, but critical, implications of VGLUT3-dependent glutamate co-transmission and its roles in the regulation of diverse brain functions and dysfunctions. Progress in the neuropharmacology of VGLUT3 could lead to decisive breakthroughs in the treatment of Parkinson's disease (PD), addiction, eating disorders, anxiety, presbycusis, or pain. This review summarizes recent findings on VGLUT3 and its vesicular underpinnings as well as on possible ways to target this atypical transporter for future therapeutic strategies.
Collapse
|