1
|
Grizzell JA, Clarity TT, Rodriguez RM, Marshall ZQ, Cooper MA. Effects of social dominance and acute social stress on morphology of microglia and structural integrity of the medial prefrontal cortex. Brain Behav Immun 2024; 122:353-367. [PMID: 39187049 PMCID: PMC11402560 DOI: 10.1016/j.bbi.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic stress increases activity of the brain's innate immune system and impairs function of the medial prefrontal cortex (mPFC). However, whether acute stress triggers similar neuroimmune mechanisms is poorly understood. Across four studies, we used a Syrian hamster model to investigate whether acute stress drives changes in mPFC microglia in a time-, subregion-, and social status-dependent manner. We found that acute social defeat increased expression of ionized calcium binding adapter molecule 1 (Iba1) in the infralimbic (IL) and prelimbic (PL) and altered the morphology Iba1+ cells 1, 2, and 7 days after social defeat. We also investigated whether acute defeat induced tissue degeneration and reductions of synaptic plasticity 2 days post-defeat. We found that while social defeat increased deposition of cellular debris and reduced synaptophysin immunoreactivity in the PL and IL, treatment with minocycline protected against these cellular changes. Finally, we tested whether a reduced conditioned defeat response in dominant compared to subordinate hamsters was associated with changes in microglia reactivity in the IL and PL. We found that while subordinate hamsters and those without an established dominance relationships showed defeat-induced changes in morphology of Iba1+ cells and cellular degeneration, dominant hamsters showed resistance to these effects of social defeat. Taken together, these findings indicate that acute social defeat alters microglial morphology, increases markers of tissue degradation, and impairs structural integrity in the IL and PL, and that experience winning competitive interactions can specifically protect the IL and reduce stress vulnerability.
Collapse
Affiliation(s)
- J Alex Grizzell
- Neuroscience and Behavioral Biology Program, Emory University, United States; Department of Psychology, University of Tennessee Knoxville, United States; Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Thomas T Clarity
- Department of Psychology, University of Tennessee Knoxville, United States
| | - R Mason Rodriguez
- Department of Psychology, University of Tennessee Knoxville, United States
| | - Zachary Q Marshall
- Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, United States.
| |
Collapse
|
2
|
Chelucci E, Daniele S, Vergassola M, Ceccarelli L, Zucchi S, Boltri L, Martini C. Trazodone counteracts the response of microglial cells to inflammatory stimuli. Eur J Neurosci 2024; 60:5605-5620. [PMID: 39187397 DOI: 10.1111/ejn.16522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Microglia are resident brain cells that regulate neuronal development and innate immunity. Microglia activation participates in the cellular response to neuroinflammation, thus representing a possible target for pharmacological strategies aimed to counteract the onset and progression of brain disorders, including depression. Antidepressant drugs have been reported to reduce neuroinflammation by acting also on glial cells. Herein, the potential anti-inflammatory and neuroprotective effects of trazodone (TRZ) on the microglial human microglial clone 3 (HMC3) cell line were investigated. HMC3 cells were activated by a double inflammatory stimulus (lipopolysaccharide [LPS] and tumour necrosis factor-alpha [TNF-α], 24 h each), and the induction of inflammation was demonstrated by (i) the increased expression levels of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and ionized calcium-binding adapter molecule 1 (IBA-1), and (ii) the increased release of interleukin 6 (IL-6) and transforming growth factor-beta (TGF-β). TRZ effects were evaluated by treating HMC3 cells for 24 h before (pre-treatment) and after (post-treatment) the double inflammatory stimulus. Notably, TRZ treatments significantly decreased the expression of NF-kB and IBA-1 and the release of the cytokines IL-6 and TGF-β. Moreover, TRZ prevented and reduced the release of quinolinic acid (QUIN), a known neurotoxic kynurenine metabolite. Finally, cellular supernatants collected from microglial cells pre-treated LPS-TNF-α with TRZ were able to improve neuronal-like cell viability, demonstrating a potential neuroprotective effect. Overall, this study suggests the anti-inflammatory effects of TRZ on human microglia and strives for its neuroprotective properties.
Collapse
Affiliation(s)
| | | | - Matteo Vergassola
- Angelini Pharma S.p.A. Global External Innovation & Drug Discovery, Translational Research Department, Rome, Italy
| | | | - Sara Zucchi
- Angelini Pharma S.p.A. Global R&D PLCM Preclinical Development, Ancona, Italy
| | - Luigi Boltri
- Angelini Pharma S.p.A. Global R&D PLCM Preclinical Development, Ancona, Italy
| | | |
Collapse
|
3
|
Kim Y, Yeom CW, Lee HJ, Kim JH, Lee KM, Kim TY, Lee HB, Kim H, Im SA, Lee KH, Kim M, Han W, Moon HG, Spiegel D, Hahm BJ, Son KL. Differential effects of desvenlafaxine on hot flashes in women with breast cancer taking tamoxifen: a randomized controlled trial. NPJ Breast Cancer 2024; 10:59. [PMID: 39019875 PMCID: PMC11255222 DOI: 10.1038/s41523-024-00668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
Hot flashes (HF) are a common adverse event of prolonged tamoxifen use in women with estrogen receptor-positive breast cancer, impacting psychiatric health and quality of life. While desvenlafaxine does not interact with tamoxifen, its efficacy and safety in breast cancer patients remain unstudied. This phase 3, four-week, multi-center, three-arm, parallel-group, randomized, double-blind, placebo-controlled trial investigated the efficacy and safety of desvenlafaxine for treating HF in women with breast cancer taking tamoxifen, assessing potential differential effects in patients with psychiatric and inflammatory conditions. Between December 2017 and February 2019, 57 women aged 19 or older, regularly taking tamoxifen as adjuvant therapy, experiencing moderate-to-severe HFs for more than a month, were randomized to receive desvenlafaxine 50 mg/day (D-50), desvenlafaxine 100 mg/day (D-100), or placebo for four weeks. The primary endpoint was the change rate in HF scores over four weeks, with adverse events as a secondary endpoint. Both desvenlafaxine arms demonstrated greater HF score reductions compared to placebo: D-50 (2.20 points/week, 95% CI: 0.71, 3.68) and D-100 (2.34 points/week, 95% CI: 0.92, 3.76). Notably, D-50 arm showed significantly greater efficacy in patients with depression or elevated inflammation. Desvenlafaxine offers an effective and safe treatment regimen for HF in women with breast cancer taking tamoxifen. The presence of depression and inflammation may guide optimal desvenlafaxine dosing. (Trial Registration: ClinicalTrials.gov Identifier: NCT02819921).
Collapse
Affiliation(s)
- Yongjoo Kim
- College of Korean Medicine, Sangji University, Wonju, Republic of Korea
| | - Chan-Woo Yeom
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Uijeongbu, Republic of Korea
| | - Hyun Jeong Lee
- Mental Health Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Jeong-Hyun Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kwang-Min Lee
- Mind Lab Place Psychiatry Clinic, Seoul, Republic of Korea
| | - Tae-Yong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wonsik Han
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - David Spiegel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Bong-Jin Hahm
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Lak Son
- Department of Psychiatry, Dongguk University Ilsan Hospital, Goyang, Republic of Korea.
| |
Collapse
|
4
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
5
|
Jin H, Xu G, Lu Y, Niu C, Zhang X, Kan T, Cao J, Yang X, Cheng Q, Zhang J, Dong J. Fluoxetine partially alleviates inflammation in the kidney of socially stressed male C57 BL/6 mice. FEBS Open Bio 2023; 13:1723-1736. [PMID: 37400956 PMCID: PMC10476569 DOI: 10.1002/2211-5463.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stress-related illnesses are linked to the onset and progression of renal diseases and depressive disorders. To investigate stress-induced changes in the renal transcriptome associated with the development of depressive behaviors, we generated here a chronic social defeat stress (CSDS) model of C57 BL/6 male mice and then performed RNA sequencing of the kidneys to obtain an inflammation-related transcriptome. Administration of the antidepressant drug fluoxetine (10 mg·kg-1 ·day-1 ) during CSDS induction could partially alleviate renal inflammation and reverse CSDS-induced depression-like behaviors. Moreover, fluoxetine also modulated gene expression of stress-related hormone receptors, including prolactin and melanin-concentrating hormone. These results suggest that CSDS can induce gene expression changes associated with inflammation in the kidney of C57 BL/6 male mice, and this inflammation can be treated effectively by fluoxetine.
Collapse
Affiliation(s)
- Hailong Jin
- The Third CenterPLA General HospitalBeijingChina
| | - Guanglei Xu
- Beijing Institute of Basic Medical SciencesChina
| | - Yuchen Lu
- Beijing Institute of Basic Medical SciencesChina
| | - Chunxiao Niu
- Beijing Institute of Basic Medical SciencesChina
| | | | - Tongtong Kan
- Beijing Institute of Basic Medical SciencesChina
| | - Junxia Cao
- Beijing Institute of Basic Medical SciencesChina
| | - Xiqin Yang
- Beijing Institute of Basic Medical SciencesChina
| | | | - Jiyan Zhang
- Beijing Institute of Basic Medical SciencesChina
| | - Jie Dong
- Beijing Institute of Basic Medical SciencesChina
| |
Collapse
|
6
|
Zeb S, Ye H, Liu Y, Du HP, Guo Y, Zhu YM, Ni Y, Zhang HL, Xu Y. Necroptotic kinases are involved in the reduction of depression-induced astrocytes and fluoxetine's inhibitory effects on necroptotic kinases. Front Pharmacol 2023; 13:1060954. [PMID: 36686688 PMCID: PMC9847570 DOI: 10.3389/fphar.2022.1060954] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
The role of astrocytes in major depressive disorder has received great attention. Increasing evidence indicates that decreased astrocyte numbers in the hippocampus may be associated with depression, but the role of necroptosis in depression is unknown. Here, in a chronic unpredictable mild stress (CUMS) mouse model and a corticosterone (Cort)-induced human astrocyte injury model in vitro, we found that mice treated with chronic unpredictable mild stress for 3-5 weeks presented depressive-like behaviors and reduced body weight gain, accompanied by a reduction in astrocytes and a decrease in astrocytic brain-derived neurotropic factors (BDNF), by activation of necroptotic kinases, including RIPK1 (receptor-interacting protein kinase 1)/p-RIPK1, RIPK3 (receptor-interacting protein kinase 3)/p-RIPK3 and MLKL (mixed lineage kinase domain-like protein)/p-MLKL, and by upregulation of inflammatory cytokines in astrocytes of the mouse hippocampus. In contrast, necroptotic kinase inhibitors suppressed Cort-induced necroptotic kinase activation, reduced astrocytes, astrocytic necroptosis and dysfunction, and decreased Cort-mediated inflammatory cytokines in astrocytes. Treatment with fluoxetine (FLX) for 5 weeks improved chronic unpredictable mild stress-induced mouse depressive-like behaviors; simultaneously, fluoxetine inhibited depression-induced necroptotic kinase activation, reversed the reduction in astrocytes and astrocytic necroptosis and dysfunction, decreased inflammatory cytokines and upregulated brain-derived neurotropic factors and 5-HT1A levels. Furthermore, fluoxetine had no direct inhibitory effect on receptor-interacting protein kinase 1 phosphorylation. The combined administration of fluoxetine and necroptotic kinase inhibitors further reduced corticosterone-induced astrocyte injury. In conclusion, the reduction in astrocytes caused by depressive-like models in vivo and in vitro may be associated with the activation of necroptotic kinases and astrocytic necroptosis, and fluoxetine exerts an antidepressive effect by indirectly inhibiting receptor-interacting protein kinase 1-mediated astrocytic necroptosis.
Collapse
Affiliation(s)
- Salman Zeb
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Huan Ye
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Hua-Ping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China,Pain Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China,*Correspondence: Hui-Ling Zhang, ; Yuan Xu,
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China,*Correspondence: Hui-Ling Zhang, ; Yuan Xu,
| |
Collapse
|
7
|
Cakir A, Bozali K, Celikten M, Guler EM, Sahan E, Durdu B, Sumbul B, Kocyigit A. Examination of antimicrobial effect of fluoxetine in experimental sepsis model: An in vivo study. J Biochem Mol Toxicol 2023; 37:e23240. [PMID: 36214215 DOI: 10.1002/jbt.23240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/03/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2023]
Abstract
Since most infectious diseases can develop into sepsis, it is still a major medical problem. Some in-vivo studies showed promising properties of fluoxetine in the treatment of infections. This study aims the antimicrobial effect of fluoxetine on the inflammatory process used in the treatment of sepsis-modeled rats. Besides, to investigate the efficacy of fluoxetine on modifying the antibiotic effect of imipenem in the inflammatory response. An experimental sepsis model was divided into negative control, positive control, fluoxetine 5 mg/kg, imipenem 60 mg/kg, and combined (fluoxetine; imipenem). Procalcitonin (PCT), high-sensitivity C-reactive protein (hs-CRP), lactate, myeloperoxidase activity (MPO), the inflammation markers interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alfa (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) levels were measured by enzyme-linked immunosorbent assay method. Oxidative stress markers, total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), and native thiol (NT) were measured using photometric methods. Oxidative stress index (OSI) was calculated according to TAS and TOS levels. The statistical analysis was performed by Statistical Package for Social Sciences version 22.0. After treatment with fluoxetine, imipenem, and combined groups, IL-1β, IL-6, TNF-α, MPO activity, MCP-1, hs-CRP, PCT, lactate, and the oxidative stress markers OSI, and disulfide levels were decreased (p < 0.05). The TT, NT, and TAS levels significantly statistically increased (p < 0.05). This research demonstrates that fluoxetine has effects as anti-inflammatory and antioxidant, and the combined treatment with antibioticum imipenem indicates positive synergistic effects in the experimental sepsis model.
Collapse
Affiliation(s)
- Ahsen Cakir
- Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Kubra Bozali
- Faculty Life Sciences and Environmental Technology, Avans University of Applied Science, Breda, The Netherlands.,Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences Turkey, Istanbul, Turkey
| | - Mert Celikten
- Department of Scientific Research Projects, Experimental Application and Research Center, Bezmialem Vakif University, Istanbul, Turkey.,Department of Anatomy, Medipol Institute of Health Sciences, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences Turkey, Istanbul, Turkey.,Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ebru Sahan
- Department of Psychiatry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Bulent Durdu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Bilge Sumbul
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
8
|
Jang DY, Yang B, You MJ, Rim C, Kim HJ, Sung S, Kwon MS. Fluoxetine Decreases Phagocytic Function via REV-ERBα in Microglia. Neurochem Res 2023; 48:196-209. [PMID: 36048349 DOI: 10.1007/s11064-022-03733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
Although fluoxetine (FLX) is a commonly used drug in psychiatric disorders, such as major depressive disorder, anxiety disorder, panic disorder, and obsessive-compulsive disorder, the mechanism by which FLX exerts its therapeutic effect is not completely understood. In this study, we aimed to determine the possible mechanism by which FLX focuses on microglial phagocytosis. FLX reduced phagocytic function in BV2 cells and increased REV-ERBα without affecting other microglia-related genes, such as inflammation and phagocytosis. Although FLX did not change BMAL1 protein levels, it restricted the nucleocytoplasmic transport (NCT) of BMAL1, leading to its cytosolic accumulation. REV-ERBα antagonist SR8278 rescued the decreased phagocytic activity and restricted NCT of BMAL1. We also found that REV-ERBα mediates the effect of FLX via the inhibition of phospho-ERK (pERK). The ERK inhibitor FR180204 was sufficient to reduce phagocytic function in BV2 cells and restrict the NCT of BMAL1. These results were recapitulated in the primary microglia. In conclusion, we propose that FLX decreases phagocytic function and restricts BMAL1 NCT via REV-ERBα. In addition, ERK inhibition mimics the effects of FLX on microglia.
Collapse
Affiliation(s)
- Da-Yoon Jang
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.,Research Competency Milestones Program (RECOMP) of School of Medicine, CHA University, Seongnam-si, South Korea
| | - Bohyun Yang
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Min-Jung You
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Chan Rim
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Hui-Ju Kim
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Soyoung Sung
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
9
|
Antidepressants as a potential candidate to reduce microglia activation in neurodegenerative diseases. A systematic review and meta-analysis of preclinical studies. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Önal HT, Yetkin D, Ayaz F. Immunostimulatory activity of fluoxetine in macrophages via regulation of the PI3K and P38 signaling pathways. Immunol Res 2022; 71:413-421. [PMID: 36512200 PMCID: PMC9745289 DOI: 10.1007/s12026-022-09350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Fluoxetine is an antidepressant drug that is heavily preferred in the cure of depression, which is from the selective serotonin reuptake inhibitor (SSRI) group. There are many reports on the effect of fluoxetine on the immune system, and its effect on the macrophage cells has never been looked at before. We aimed to demonstrate the cytokine production potential of fluoxetine antidepressant, which is widely used in the clinic, in the J774.2 cell line and its effect on PI3K and P38 pathways. The use of fluoxetine alone in J774.2 macrophage cells showed immunostimulatory properties by inducing the production of tumor necrosis factor-α (TNF-α), interleukin (IL) IL-6, IL-12p40, and granulocyte–macrophage colony-stimulating factor (GM-CSF) cytokines. It showed anti-inflammatory properties by completely stopping the production of cytokines (IL-6, IL12p40, TNF-α, and GM-CSF) at all concentrations where LPS and fluoxetine were used together. While PI3K and P38 pathways were not effective in the immunostimulatory effect in the presence of the drug agent, we found that the PI3K and P38 pathways were influenced during their anti-inflammatory activity.
Collapse
Affiliation(s)
- Harika Topal Önal
- Medical Laboratory Techniques, Vocational School of Health Services, Toros University, 33140 Mersin, Turkey
| | - Derya Yetkin
- Mersin University Advanced Technology Education Research and Application Center, Mersin University, 33110 Mersin, Turkey
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, Mersin, Turkey 33110
- Mersin University Biotechnology Research and Application Center, Mersin University, 33110, Mersin, Turkey
| |
Collapse
|
11
|
Duloxetine ameliorates lipopolysaccharide-induced microglial activation by suppressing iNOS expression in BV-2 microglial cells. Psychopharmacology (Berl) 2022; 239:3133-3143. [PMID: 35882635 DOI: 10.1007/s00213-022-06194-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
RATIONALE It is known that both selective serotonin and serotonin noradrenaline reuptake inhibitors (SSRI, SNRI) are first-line drugs for the treatment of major depressive disorder. It has also been considered that both SSRI and SNRI can improve the symptoms of major depressive disorder by increasing the concentration of monoamine in the synaptic cleft based on the monoamine hypothesis. However, accumulating evidence has indicated that inflammation in the brain may be a key factor in the pathophysiological mechanisms that underlie the development of major depressive disorder. OBJECTIVES It has been advocated that microglial cells may regulate the inflammatory response under pathological conditions such as major depressive disorder. In this study, we focused on whether duloxetine can ameliorate the inflammatory response induced by lipopolysaccharide (LPS) in BV-2 microglial cells. RESULTS Our results indicated that duloxetine significantly decreased the NO production induced by LPS. The increase in the protein expression level of iNOS induced by LPS was significantly decreased by treatment with duloxetine. Moreover, the increases in the protein expression levels of phosphorylated-IκBα, phosphorylated-Akt and Akt induced by LPS were also significantly decreased. Unexpectedly, the protein expression levels of other pro-inflammatory factors such as COX-2 and the phosphorylation ratios for various molecules including IκBα and Akt were not changed by treatment with duloxetine. CONCLUSIONS These findings suggest that duloxetine may have an anti-inflammatory effect, which could contribute to its therapeutic effectiveness for major depressive disorder.
Collapse
|
12
|
Ouyang H, Hu J, Qiu X, Wu S, Guo F, Tan Y. Improved biopharmaceutical performance of antipsychotic drug using lipid nanoparticles via intraperitoneal route. Pharm Dev Technol 2022; 27:853-863. [PMID: 36124550 DOI: 10.1080/10837450.2022.2124521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study aims to develop, characterize, and examine olanzapine-loaded solid lipid nanocarriers (OLAN-SLNs) for effective brain delivery. OLAN has poor water solubility and low penetration through blood-brain barrier (BBB). Herein, OLAN-SLNs were fabricated using high-pressure homogenization (HPH) method followed by their investigation for particle properties. Moreover, in vitro release and in vivo pharmacokinetics profiles of OLAN-SLNs were compared with pure drug. Anti-psychotic activity was performed in LPS-induced psychosis mice model. Furthermore, expressions of the COX-2 and NF-κB were measured trailed by histopathological examination. The optimized formulation demonstrated nanoparticle size (149.1 nm) with rounded morphology, negative zeta potential (-28.9 mV), lower PDI (0.334), and excellent entrapment efficiency (95%). OLAN-SLNs significantly retarded the drug release and showed sustained release pattern as compared to OLAN suspension. Significantly enhanced bioavailability (ninefold) was demonstrated in OLAN-SLNs when compared with OLAN suspension. Behavioral tests showed significantly less immobility and more struggling time in OLAN-SLNs treated mice group. Additionally, reduced expression of COX-2 and -NF κB in brain was found. Altogether, it can be concluded that SLNs have the potential to deliver active pharmaceutical ingredients to brain, most importantly to enhance their bioavailability and antipsychotic effect, as indicated for OLAN in this study.
Collapse
Affiliation(s)
- Hezhong Ouyang
- Department of Neurology, The People's Hospital of Danyang, Danyang, China
| | - Jinquan Hu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - XingYing Qiu
- Department of Neurology, People's Liberation Army Joint Support Force 900th Hospital, Cangshan Hospital District, Fuzhou, China
| | - Shaochang Wu
- Department of Geriatrics, The Second People's Hospital of LiShui, Lishui, China
| | - Fudong Guo
- Department of Neurology, Affiliated Hospital of Chifeng University, Chifeng city, China
| | - Youguo Tan
- Department of Psychiatry, Zigong Mental health Centre, Zigong, China
| |
Collapse
|
13
|
Rani T, Behl T, Sharma N, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Bungau SG. Exploring the role of biologics in depression. Cell Signal 2022; 98:110409. [PMID: 35843573 DOI: 10.1016/j.cellsig.2022.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Depression is a chronic and prevalent neuropsychiatric disorder; clinical symptoms include excessive sad mood, anhedonia, increased anxiety, disturbed sleep, and cognitive deficits. The exact etiopathogenesis of depression is not well understood. Studies have suggested that tumor necrosis factor-alpha (TNF-α) and interleukins (ILs) perform vital roles in the pathogenesis and treatment of depression. Increasing evidence suggests the upregulation of TNF-α and ILs expression in patients with depression. Therefore, biologics like TNF inhibitors (etanercept, infliximab, adalimumab) and IL inhibitors (ustekinumab) have become key compounds in the treatment of depression. Interestingly, treatment with an antidepressant has been found to decrease the TNF-α level and improve depression-like behaviors in several preclinical and clinical studies. In the current article, we have reviewed the recent findings linking TNF-α and the pathogenesis of depression proving TNF-α inhibitors as potential new therapeutic agents. Animal models and clinical studies further support that TNF-α inhibitors are effective in ameliorating depression-like behaviors. Moreover, studies showed that peripheral injection of TNF-α exhibits depressive symptoms. These symptoms have been improved by treatment with TNF-α inhibitors. Hence suggesting TNF-α inhibitors as potential new antidepressants for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Parctice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
14
|
Takenaka Y, Tanaka R, Kitabatake K, Kuramochi K, Aoki S, Tsukimoto M. Profiling Differential Effects of 5 Selective Serotonin Reuptake Inhibitors on TLRs-Dependent and -Independent IL-6 Production in Immune Cells Identifies Fluoxetine as Preferred Anti-Inflammatory Drug Candidate. Front Pharmacol 2022; 13:874375. [PMID: 35814203 PMCID: PMC9257214 DOI: 10.3389/fphar.2022.874375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Excessive proinflammatory cytokine production induced by abnormal activation of Toll-like receptor (TLR) signaling, for example, by SARS-CoV-2 infection, can cause a fatal cytokine storm. The selective serotonin reuptake inhibitors (SSRIs) fluoxetine and fluvoxamine, used to treat depression, were recently reported to reduce the risk of severe disease in patients with coronavirus disease 2019 (COVID-19), but the mechanisms of the anti-inflammatory effects of SSRIs, and which SSRI would be most suitable as an anti-inflammatory drug, remain unclear. Here, we examined the inhibitory effects of 5 FDA-approved SSRIs, paroxetine, fluoxetine, fluvoxamine, sertraline and escitalopram, on the production of interleukin-6 (IL-6) induced by stimulation with multiple TLR agonists in murine macrophages and dendritic cells, and on the production of cytokines induced by concanavalin A in murine lymphocytes. In J774.1 murine macrophage cells, pretreatment with SSRIs significantly suppressed IL-6 release induced by TLR3 agonist poly(I:C), TLR4 agonist LPS or TLR9 agonist CpG ODN, but did not affect IL-6 release induced by TLR7 agonists imiquimod or resiquimod. In accordance with the results obtained in J774.1 cells, pretreatment with SSRIs also suppressed IL-6 release induced by a TLR3, TLR4 or TLR9 agonist in bone marrow-derived dendritic cells and peritoneal cells of C57BL/6 mice. On the other hand, interestingly, sertraline alone among the SSRIs amplified IL-6 production induced by TLR7 agonists in murine dendritic cells, though not in macrophages. Concanavalin A-induced production of IL-6 or IL-2 in murine lymphocytes was suppressed by SSRIs, suggesting that SSRIs also inhibit TLRs-independent IL-6 production. Since SSRIs suppressed both IL-6 production induced by multiple TLR agonists in macrophages or dendritic cells and TLR-independent IL-6 production in lymphocytes, they are promising candidates for treatment of patients with cytokine storm, which is mediated by overactivation of multiple TLRs in a complex manner, leading to the so-called IL-6 amplifier, an IL-6 overproduction loop. However, the 5 SSRIs examined here all showed different effects. Overall, our results suggest that fluoxetine may be the most promising candidate as an anti-inflammatory drug. An examination of the structural requirements indicated that the N-methyl group of fluoxetine has a critical role in the inhibition of IL-6 production.
Collapse
Affiliation(s)
- Yohei Takenaka
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ryu Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Shin Aoki
- Department of Bioorganic and Bioinorganic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, Chiba, Japan
- *Correspondence: Mitsutoshi Tsukimoto,
| |
Collapse
|
15
|
Kim SR, Park Y, Li M, Kim YK, Lee S, Son SY, Lee S, Lee JS, Lee CH, Park HH, Lee JY, Hong S, Cho YC, Kim JW, Yoo HM, Cho N, Lee HS, Lee SH. Anti-inflammatory effect of Ailanthus altissima (Mill.) Swingle leaves in lipopolysaccharide-stimulated astrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114258. [PMID: 34271112 DOI: 10.1016/j.jep.2021.114258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Activated astrocytes are involved in the progression of neurodegenerative diseases. Traditionally, Ailanthus altissima (Mill.) Swingle, widely distributed in East Asia, has been used as a medicine for the treatment of fever, gastric diseases, and inflammation. Although A. altissima has been reported to play an anti-inflammatory role in peripheral tissues or cells, its role in the central nervous system (CNS) remains unclear. AIM OF THE STUDY In the present study, we investigated the anti-inflammatory effects and mechanism of action of A. altissima in primary astrocytes stimulated by lipopolysaccharide (LPS). MATERIALS AND METHODS A nitrite assay was used to measure nitric oxide (NO) production, and the tetrazolium salt 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was performed to determine cytotoxicity. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) were determined with western blotting. Reverse-transcription PCR was used to assess the expression of inflammatory cytokines. The levels of reactive oxygen species were measured using 2,7-dichlorodihydrofluorescein diacetate. Luciferase assay and immunocytochemistry were used for assessing nuclear factor-kappa B (NF-κB) transcription and p65 localization, respectively. Memory and social interaction were analyzed using the Y-maze and three-chamber tests, respectively. RESULTS The ethanol extract of A. altissima leaves (AAE) inhibited iNOS and COX-2 expression in LPS-stimulated astrocytes. Moreover, AAE reduced the transcription of various proinflammatory mediators, hindered NF-κB activation, and suppressed extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activation without p38 activation. Ultra-high performance liquid chromatography with mass spectrometry analysis revealed that AAE comprised ethyl gallate, quercetin, and kaempferol, along with luteolin, which has anti-inflammatory properties, and repressed LPS-induced nitrite levels and the nuclear translocation of p65. Finally, oral administration of AAE attenuated LPS-induced memory and social impairment in mice and repressed LPS-induced ERK and JNK activation in the cortices of mice. CONCLUSION AAE could have therapeutic uses in the treatment of neuroinflammatory diseases via suppression of astrocyte activation.
Collapse
Affiliation(s)
- Sung Rae Kim
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yongun Park
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Mo Li
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yeong Kyeong Kim
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, 42 Hwangyeong-ro, Seo-gu, Incheon, 22755, Republic of Korea
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, 42 Hwangyeong-ro, Seo-gu, Incheon, 22755, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyun Ho Park
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ji-Yun Lee
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Min Yoo
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hoon Lee
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
16
|
Zhao T, Wu D, Du J, Liu G, Ji G, Wang Z, Peng F, Man L, Zhou W, Hao A. Folic Acid Attenuates Glial Activation in Neonatal Mice and Improves Adult Mood Disorders Through Epigenetic Regulation. Front Pharmacol 2022; 13:818423. [PMID: 35197855 PMCID: PMC8859176 DOI: 10.3389/fphar.2022.818423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023] Open
Abstract
Growing evidence indicates that postnatal immune activation (PIA) can adversely increase the lifetime risk for several neuropsychiatric disorders, including anxiety and depression, which involve the activation of glial cells and early neural developmental events. Several glia-targeted agents are required to protect neonates. Folic acid (FA), a clinical medication used during pregnancy, has been reported to have neuroprotective properties. However, the effects and mechanisms of FA in PIA-induced neonatal encephalitis and mood disorders remain unclear. Here, we investigated the roles of FA in a mouse model of PIA, and found that FA treatment improved depressive- and anxiety-like behaviors in adults, accompanied by a decrease in the number of activated microglia and astrocytes, as well as a reduction in the inflammatory response in the cortex and hippocampus of neonatal mice. Furthermore, we offer new evidence describing the functional differences in FA between microglia and astrocytes. Our data show that epigenetic regulation plays an essential role in FA-treated glial cells following PIA stimulation. In astrocytes, FA promoted the expression of IL-10 by decreasing the level of EZH2-mediated H3K27me3 at its promoter, whereas FA promoted the expression of IL-13 by reducing the promoter binding of H3K9me3 mediated by KDM4A in microglia. Importantly, FA specifically regulated the expression level of BDNF in astrocytes through H3K27me3. Overall, our data supported that FA may be an effective treatment for reducing mood disorders induced by PIA, and we also demonstrated significant functional differences in FA between the two cell types following PIA stimulation.
Collapse
Affiliation(s)
- Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guowei Liu
- Department of Neurosurgery, Cheeloo College of Medicine, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lajie Man
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Wenjuan Zhou, ; Aijun Hao,
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Wenjuan Zhou, ; Aijun Hao,
| |
Collapse
|
17
|
Gholami E, Gholami MR, Tavakoli A, Ahmadi M, Rezaian J, Alipour M, Chehelcheraghi F, Khaksarian M. Effect of fluoxetine treatment on neurotoxicity induced by lysolecithin in male rats. Can J Physiol Pharmacol 2022; 100:107-116. [PMID: 34935529 DOI: 10.1139/cjpp-2021-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κβ, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.
Collapse
Affiliation(s)
- Elham Gholami
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Gholami
- Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asadollah Tavakoli
- Department of Physiology, Loretan University of Medical Sciences, Khorramabad, Iran
| | - Mahdie Ahmadi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Rezaian
- Department of Anatomy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Alipour
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicine Research Center and Department of Physiology, Loretan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
18
|
Abstract
BACKGROUND Recent studies have suggested that microglial activation plays a key role in the pathogenesis of depression. In fact, neuroinflammation is associated with a phenotypic change of microglia, consisting of morphological differences, increased release of cytokines and oxidative stress products, which may contribute to the development and maintenance of depression. Antidepressants, including selective serotonin re-uptake inhibitors and serotonin-norepinephrine reuptake inhibitors, have been shown to act on the immune and oxidative stress mechanisms commonly found to be disrupted in depression. Thus, the inhibition of microglial activation may be one of the mechanisms through which they exert an antidepressant action. AIM This is the first review summarising in vitro and ex vivo studies investigating the effects of different classes of antidepressants on microglia activation, by examining cellular changes and/or via measuring the production of immune and/or oxidative stress signalling molecules, in microglia models of neuroinflammation with either lipopolysaccharide (LPS) or cytokines. A total of 23 studies were identified, 18 using LPS stimulation and 5 using cytokines stimulation. RESULTS Overall, the studies show that antidepressants, such as selective serotonin re-uptake inhibitors, serotonin-norepinephrine reuptake inhibitors, monoamine oxidase inhibitors and tricyclic antidepressants prevented microglial activation, including reduced microglial reactivity and decreased immune and oxidative stress products, in both models. However, specific antidepressants, such as bupropion and agomelatine did not prevent interferon-gamma (IFN-γ)-induced microglial activation; and for other antidepressants, including phenelzine, venlafaxine and sertraline, the results of different studies were inconsistent. CONCLUSIONS Overall, results summarised in this review support the hypothesis that the action of at least certain classes of antidepressants may involve regulation of microglial activation, especially when in presence of increased levels of inflammation.
Collapse
Affiliation(s)
- Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James Everson
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
19
|
García-García ML, Tovilla-Zárate CA, Villar-Soto M, Juárez-Rojop IE, González-Castro TB, Genis-Mendoza AD, Ramos-Méndez MÁ, López-Nárvaez ML, Saucedo-Osti AS, Ruiz-Quiñones JA, Martinez-Magaña JJ. Fluoxetine modulates the pro-inflammatory process of IL-6, IL-1β and TNF-α levels in individuals with depression: a systematic review and meta-analysis. Psychiatry Res 2022; 307:114317. [PMID: 34864233 DOI: 10.1016/j.psychres.2021.114317] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
Clinical evidence suggests that inflammation is a key factor to understand the causes of depressive symptoms. Fluoxetine is one of the main first-line medications used for depression, and it is hypothesized that it participates in the decrease of pro-inflammatory cytokines. Hence, our aim was to perform a meta-analysis and systematic review to understand the interaction of fluoxetine in the IL-1β, IL-6 and TNF-α inflammatory process. Studies identified in PubMed and Scopus databases were used to perform a meta-analysis via the Comprehensive software. Standardized mean difference (SMD) was used as a summary statistic. The analysis included a total of 292 individuals with major depressive disorder who received fluoxetine for a period longer than 6 weeks; additionally, IL-1β, IL-6 or TNF-α levels were measured at the end of the antidepressant treatment. The findings were significant revealed decreased levels of the cytokines studied. In conclusion, the pooled data suggest that fluoxetine treatment improved depressive symptomatology by the modulation of pro-inflammatory process such as IL-1β, IL-6 or TNF-α.
Collapse
Affiliation(s)
| | | | - Mario Villar-Soto
- Hospital Regional de Alta Especialidad de Salud Mental. Tabasco, México.
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco. Tabasco, México.
| | | | | | - Miguel Ángel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco. Tabasco, México.
| | | | | | | | | |
Collapse
|
20
|
Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs 2022; 36:681-702. [PMID: 35727534 PMCID: PMC9210800 DOI: 10.1007/s40263-022-00931-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is still spreading worldwide over 2 years since its outbreak. The psychopathological implications in COVID-19 survivors such as depression, anxiety, and cognitive impairments are now recognized as primary symptoms of the "post-acute COVID-19 syndrome." Depressive psychopathology was reported in around 35% of patients at short, medium, and long-term follow-up after the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. Post-COVID-19 depressive symptoms are known to increase fatigue and affect neurocognitive functioning, sleep, quality of life, and global functioning in COVID-19 survivors. The psychopathological mechanisms underlying post-COVID-19 depressive symptoms are mainly related to the inflammation triggered by the peripheral immune-inflammatory response to the viral infection and to the persistent psychological burden during and after infection. The large number of SARS-CoV-2-infected patients and the high prevalence of post-COVID-19 depressive symptoms may significantly increase the pool of people suffering from depressive disorders. Therefore, it is essential to screen, diagnose, treat, and monitor COVID-19 survivors' psychopathology to counteract the depression disease burden and related years of life lived with disability. This paper reviews the current literature in order to synthesize the available evidence regarding epidemiology, clinical features, neurobiological underpinning, and pharmacological treatment of post-COVID-19 depressive symptoms.
Collapse
Affiliation(s)
- Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.
| | - Mariagrazia Palladini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.15496.3f0000 0001 0439 0892PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
21
|
Maratha S, Sharma V, Walia V. Possible involvement of NO-sGC-cGMP signaling in the antidepressant like effect of pyridoxine in mice. Metab Brain Dis 2022; 37:173-183. [PMID: 34739660 DOI: 10.1007/s11011-021-00858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
The present study was designed to determine the antidepressant like effect of pyridoxine in mice. Pyridoxine (12.5, 25 and 50 mg/kg, i.p.) was administered to the mice and depression related behavioral and neurochemical alterations were determined. It was observed that pyridoxine (50 mg/kg, i.p.) treatment decreased the immobility period in tail suspension test (TST) and forced swim test (FST) significantly as compared to control. Pyridoxine (50 mg/kg, i.p.) treatment increased the level of serotonin (5-HT) and decreased the level of nitrite in the brain of mice significantly as compared to control. Pyridoxine thus confer antidepressant like effect by increasing the level of 5-HT and by decreasing the level of nitrite in the brain of mice. Further the influence of nitric oxide (NO)/ soluble guanylate cyclase (sGC)/ cyclic guanosine monophosphate (cGMP) in antidepressant-like effect of pyridoxine was studied. It was observed that the pretreatment of NO donor (i.e. L-Arginine) and cGMP modulator (i.e. sildenafil) counteracted while the pretreatment of NO/sGC inhibitor (i.e. methylene blue) potentiated the effect of pyridoxine in TST and FST. Pretreatment of NO donor did not influence, pretreatment of NO/sGC inhibitor decreased while the pretreatment of cGMP modulator increased the level of brain nitrite in pyridoxine treated mice. Further the pretreatment of NO donor and cGMP modulator decreased while the pretreatment of NO/sGC inhibitor increased the level of brain serotonin in pyridoxine treated mice. Pyridoxine thus exerted antidepressant like effect and NO-sGC-cGMP signaling modulated the antidepressant like effect of pyridoxine in mice.
Collapse
Affiliation(s)
- Sushma Maratha
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vijay Sharma
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
22
|
Park SH, Lee YS, Yang HJ, Song GJ. Fluoxetine Potentiates Phagocytosis and Autophagy in Microglia. Front Pharmacol 2021; 12:770610. [PMID: 34899324 PMCID: PMC8662994 DOI: 10.3389/fphar.2021.770610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
Fluoxetine is a classic antidepressant drug, and its immunomodulatory effects have recently been reported in many disease models. In addition, it has strong antineuroinflammatory effects in stroke and neurodegenerative animal models. However, the effect of fluoxetine on microglia phagocytosis and its molecular mechanisms have not yet been studied. In this study, we investigated whether fluoxetine has a regulatory effect on microglial function. Microglia cell lines and primary mouse microglia were treated with fluoxetine, and the production of inflammatory cytokines and neurotrophic factors and the phagocytosis of amyloid β were measured. Fluoxetine significantly attenuated the production of lipopolysaccharide-induced proinflammatory cytokines and oxidative stress in microglia. Fluoxetine also significantly potentiated microglia phagocytosis and autophagy. In addition, autophagy flux inhibitors attenuated fluoxetine-induced phagocytosis. In conclusion, fluoxetine induces autophagy and potentiates phagocytosis in microglia, which can be a novel molecular mechanism of the neuroinflammatory and neuroprotective effects of fluoxetine.
Collapse
Affiliation(s)
- Sung Hee Park
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Korea
| | - Young-Sun Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Korea.,The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Korea
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Korea.,The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| |
Collapse
|
23
|
Ayyash A, Holloway AC. Fluoxetine-induced hepatic lipid accumulation is mediated by prostaglandin endoperoxide synthase 1 and is linked to elevated 15-deoxy-Δ 12,14 PGJ 2. J Appl Toxicol 2021; 42:1004-1015. [PMID: 34897744 DOI: 10.1002/jat.4272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Major depressive disorder and other neuropsychiatric disorders are often managed with long-term use of antidepressant medication. Fluoxetine, an SSRI antidepressant, is widely used as a first-line treatment for neuropsychiatric disorders. However, fluoxetine has also been shown to increase the risk of metabolic diseases such as non-alcoholic fatty liver disease. Fluoxetine has been shown to increase hepatic lipid accumulation in vivo and in vitro. In addition, fluoxetine has been shown to alter the production of prostaglandins which have also been implicated in the development of non-alcoholic fatty liver disease. The goal of this study was to assess the effect of fluoxetine exposure on the prostaglandin biosynthetic pathway and lipid accumulation in a hepatic cell line (H4-II-E-C3 cells). Fluoxetine treatment increased mRNA expression of prostaglandin biosynthetic enzymes (Ptgs1, Ptgs2, and Ptgds), PPAR gamma (Pparg), and PPAR gamma downstream targets involved in fatty acid uptake (Cd36, Fatp2, and Fatp5) as well as production of 15-deoxy-Δ12,14 PGJ2 a PPAR gamma ligand. The effects of fluoxetine to induce lipid accumulation were attenuated with a PTGS1 specific inhibitor (SC-560), whereas inhibition of PTGS2 had no effect. Moreover, SC-560 attenuated 15-deoxy-Δ12,14 PGJ2 production and expression of PPAR gamma downstream target genes. Taken together these results suggest that fluoxetine-induced lipid abnormalities appear to be mediated via PTGS1 and its downstream product 15d-PGJ2 and suggest a novel therapeutic target to prevent some of the adverse effects of fluoxetine treatment.
Collapse
Affiliation(s)
- Ahmed Ayyash
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Zirak A, Soleimani M, Jameie SB, Abdollahifar MA, Fadaei Fathabadi F, Hassanzadeh S, Esmaeilzadeh E, Farjoo MH, Norouzian M. Related Fluoxetine and Methylprednisolone Changes of TNF-α and IL-6 Expression in The Hypothyroidism Rat Model of Spinal Cord Injury. CELL JOURNAL 2021; 23:763-771. [PMID: 34979066 PMCID: PMC8753107 DOI: 10.22074/cellj.2021.7459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/03/2022]
Abstract
Objective Spinal cord injury (SCI) is a serious clinical condition that leads to disability. Following primary injury, pro-
inflammatory cytokines play an important role in the subsequent secondary events. The thyroid hormone (TH) is known
as the modulator of inflammatory cytokines and acts as a neuroprotective agent. Methylprednisolone (MP) is used
for the early treatment of SCI. Fluoxetine (FLX), also is known as a selective serotonin reuptake inhibitor (SSRI), has
therapeutic potential in neurological disorders. The aim of the present study was to investigate the combined effects of
MP and FLX on SCI in the rat hypothyroidism (hypo) model. Materials and Methods In this experimental study, 48 male Wistar rats with hypothyroidism were randomly divided
into 6 groups (n=8/group): control (Hypo), Hypo+Surgical sham, Hypo+SCI, Hypo+SCI+MP, Hypo+SCI+FLX, and
Hypo+SCI+MP+FLX. SCI was created using an aneurysm clip and Hypothyroidism was induced by 6-Propyl-2-thiouracil
(PTU) at a dose of 10 mg/kg/day administered intraperitoneally. Following SCI induction, rats received MP and FLX
treatments via separate intraperitoneal injections at a dose of 30 and 10 mg/kg/day respectively on the surgery day
and FLX continued daily for 3 weeks. The expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6
(IL-6) were quantified by Real-time polymerase chain reaction (PCR) and Western blotting. Myelination and glutathione
(GSH) levels were analyzed by Luxol Fast Blue (LFB) staining and ELISA respectively.
Results Following combined MP and FLX treatments, the expression levels of TNF-α and IL-6 significantly decreased
and GSH level considerably increased in the trial animals.
Conclusion Our results show the neuroprotective effects of MP and FLX with better results in Hypo+SCI+MP+FLX
group. Further study is required to identify the mechanisms involved.
Collapse
Affiliation(s)
- Atousa Zirak
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Hassanzadeh
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran.,Skull Base Research Center, Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hadi Farjoo
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Mani S, Sevanan M, Krishnamoorthy A, Sekar S. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurol Sci 2021; 42:4459-4469. [PMID: 34480241 DOI: 10.1007/s10072-021-05551-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/07/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder that affects 1% of the population worldwide. Etiology of PD is likely to be multi-factorial such as protein misfolding, mitochondrial dysfunction, oxidative stress, and neuroinflammation that contributes to the pathology of Parkinson's disease (PD), numerous studies have shown that mitochondrial dysfunction may play a key role in the dopaminergic neuronal loss. In multiple ways, the two most important are the activation of neuroinflammation and mitochondrial dysfunction, while mitochondrial dysfunction could cause neuroinflammation and vice versa. Thus, the mitochondrial proteins are the highly promising target for the development of PD. However, the limited amount of dopaminergic neurons prevented the detailed investigation of Parkinson's disease with regard to mitochondrial dysfunction. Both genetic and environmental factors are also associated with mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provide direct evidence linking mitochondrial dysfunction to PD. A decrease of mitochondrial complex I activity is observed in PD brain and in neurotoxin- or genetic factor-induced in vitro and in vivo models. Moreover, PINK1, Parkin, DJ-1 and LRRK2 mitochondrial PD gene products have important roles in mitophagy, a cellular process that clear damaged mitochondria. This review paper would discuss the evidence for the mitochondrial dysfunction and neuroinflammation in PD.
Collapse
Affiliation(s)
- Sugumar Mani
- Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, 641114, India.
| | | | - Sathiya Sekar
- Department of Biotechnology, Dr.M.G.R Educational Research Institute, Chennai, India
| |
Collapse
|
26
|
Gu JY, Xu YW, Feng LP, Dong J, Zhao LQ, Liu C, Wang HY, Zhang XY, Song C, Wang CH. Enriched environment mitigates depressive behavior by changing the inflammatory activation phenotype of microglia in the hippocampus of depression model rats. Brain Res Bull 2021; 177:252-262. [PMID: 34653561 DOI: 10.1016/j.brainresbull.2021.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Inflammation mediated by microglia has been shown to be involved in the pathogenesis of depression. The enriched environment (EE) can improve depression-like behaviors and reduce inflammatory reactions, but it is unclear whether this is by changing the inflammatory activation phenotype of microglia. METHOD A depression rat model was established using chronic unpredictable stress (CUS) for four weeks. The rats were then treated with EE or fluoxetine administration during the following three weeks. Behavior tests including sucrose preference, forced swimming and open field were applied to evaluate the depression-like behaviors of rats at the baseline period prior to CUS, the end of fourth week and at the end of the seventh week. Microglial activation and hippocampal neuro-inflammation were detected on postmortem using immunofluorescence, western blotting, and real-time polymerase reaction (PCR). RESULT The results showed that severe depressive-like behavior was induced by four weeks of CUS. Changes in peripheral blood inflammatory cytokines were detected by ELISA. Immunofluorescent staining showed the IBA-1 of microglia activation marker level significantly increased in affected rats. The hippocampal microglial activation state was determined by measuring the increased levels of iNOS an M1 marker and the decreased levels of CD206, an M2 marker. The activation of NF-κB upregulation of inflammatory cytokines in the hippocampus and factors such as IL-10 were decreased. This study showed that EE and chronic fluoxetine treatment alleviated the depressive-like behavior induced by chronic stress and significantly inhibited microglial activation, activated NF-κB inflammasome and increased pro-inflammatory cytokines. CONCLUSION EE can alleviate depression-like behavior by modulating the phenotype of microglia, inhibiting pro-inflammatory genes, and promoting anti-inflammatory genes. Furthermore, EE can effectively reduce the phosphorylation and expression levels of NF-κB.
Collapse
Affiliation(s)
- Jing-Yang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yao-Wei Xu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Lai-Peng Feng
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Li-Qin Zhao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Cong Liu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Hui-Ying Wang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.
| |
Collapse
|
27
|
Sedaghat K, Naderian R, Pakdel R, Bandegi AR, Ghods Z. Regulatory effect of vitamin D on pro-inflammatory cytokines and anti-oxidative enzymes dysregulations due to chronic mild stress in the rat hippocampus and prefrontal cortical area. Mol Biol Rep 2021; 48:7865-7873. [PMID: 34642830 DOI: 10.1007/s11033-021-06810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Chronic stress increases the production of pro-inflammatory cytokines and oxidative stress in the brain, which underlay cognitive and psychological problems. In addition to the anti-depressants, vitamin D is known to act as an anti-inflammatory and anti-oxidative agent. This study investigates the specific effects of vitamin D in protecting hippocampus and pre-frontal cortex (PFC) against chronic mild stress (CMS)-induced activation of pro-inflammatory cytokines IL-6 and TNF-α and decreasing the activation of anti-oxidative enzymes super oxide dismutase (SOD) and glutathione peroxidase (GPx). METHODS AND RESULTS Rats were exposed to CMS for 3 weeks. Two groups of rats received vitamin D (5 and 10 μg/kg) and another received fluoxetine (5 mg/kg) along with CMS. Control groups were not exposed to CMS, but received treatments similar to CMS groups. Serum corticosterone and IL-6, TNF-α and SOD and GPx levels in the hippocampus and PFC were measured at the end of three weeks. CMS significantly increased corticosterone, IL-6, TNF-α and decreased SOD and GPx levels (P < 0.0001) in hippocampus and PFC. Vitamin D treatment reduced corticosterone levels (P < 0.01), increased SOD (P < 0.0001) and GPx (P < 0.01) and decreased IL-6 and TNF-α (P < 0.0001) levels in the hippocampus and PFC compared to rats treated with vitamin D vehicle. Vitamin D-10 regulation of SOD and IL-6 levels was more effective than fluoxetine (P < 0.0001 and P < 0.01, respectively, in hippocampus). CONCLUSION This study suggests that vitamin D effectively protects the key regions of the brain related to cognition and affective behavior, against the inflammation and oxidative stress caused by the chronic stress.
Collapse
Affiliation(s)
- Katayoun Sedaghat
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ramtin Naderian
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Roghayeh Pakdel
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad-Reza Bandegi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Ghods
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
28
|
Yanguas-Casás N, Torres C, Crespo-Castrillo A, Diaz-Pacheco S, Healy K, Stanton C, Chowen JA, Garcia-Segura LM, Arevalo MA, Cryan JF, de Ceballos ML. High-fat diet alters stress behavior, inflammatory parameters and gut microbiota in Tg APP mice in a sex-specific manner. Neurobiol Dis 2021; 159:105495. [PMID: 34478848 DOI: 10.1016/j.nbd.2021.105495] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long-term high-fat diet (HFD) consumption commonly leads to obesity, a major health concern of western societies and a risk factor for Alzheimer's disease (AD). Both conditions present glial activation and inflammation and show sex differences in their incidence, clinical manifestation, and disease course. HFD intake has an important impact on gut microbiota, the bacteria present in the gut, and microbiota dysbiosis is associated with inflammation and certain mental disorders such as anxiety. In this study, we have analyzed the effects of a prolonged (18 weeks, starting at 7 months of age) HFD on male and female mice, both wild type (WT) and TgAPP mice, a model for AD, investigating the behavioral profile, gut microbiota composition and inflammatory/phagocytosis-related gene expression in hippocampus. In the open-field test, no overt differences in motor activity were observed between male and female or WT and TgAPP mice on a low-fat diet (LFD). However, HFD induced anxiety, as judged by decreased motor activity and increased time in the margins in the open-field, and a trend towards increased immobility time in the tail suspension test, with increased defecation. Intriguingly, female TgAPP mice on HFD showed less immobility and defecation compared to female WT mice on HFD. HFD induced dysbiosis of gut microbiota, resulting in reduced microbiota diversity and abundance compared with LFD fed mice, with some significant differences due to sex and little effect of genotype. Gene expression of pro-inflammatory/phagocytic markers in the hippocampus were not different between male and female WT mice, and in TgAPP mice of both sexes, some cytokines (IL-6 and IFNγ) were higher than in WT mice on LFD, more so in female TgAPP (IL-6). HFD induced few alterations in mRNA expression of inflammatory/phagocytosis-related genes in male mice, whether WT (IL-1β, MHCII), or TgAPP (IL-6). However, in female TgAPP, altered gene expression returned towards control levels following prolonged HFD (IL-6, IL-12β, TNFα, CD36, IRAK4, PYRY6). In summary, we demonstrate that HFD induces anxiogenic symptoms, marked alterations in gut microbiota, and increased expression of inflammatory genes, except for female TgAPP that appear to be resistant to the diet effects. Lifestyle interventions should be introduced to prevent AD onset or exacerbation by reducing inflammation and its associated symptoms; however, our results suggest that the eventual goal of developing prevention and treatment strategies should take sex into consideration.
Collapse
Affiliation(s)
- Natalia Yanguas-Casás
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain; Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Madrid, Spain
| | - Cristina Torres
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, 43007 Tarragona, Spain
| | | | | | - Kiera Healy
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Catherine Stanton
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain; Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; The Madrid Institute for the advanced study of Food (IMDEA de Alimentación), Madrid, Spain
| | - Luis M Garcia-Segura
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Arevalo
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - John F Cryan
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
29
|
Minamihata T, Takano K, Nakamura Y, Seto R, Moriyama M. Increase in Cellular Lysophosphatidylserine Content Exacerbates Inflammatory Responses in LPS-Activated Microglia. Neurochem Res 2021; 47:2602-2616. [PMID: 34383250 DOI: 10.1007/s11064-021-03425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Mutations in alpha/beta-hydrolase domain containing (ABHD) 12 gene, which encodes lysophosphatidylserine (LysoPS) lipase, cause the neurodegenerative disease PHARC (Polyneuropathy, Hearing loss, Ataxia, Retinitis pigmentosa, Cataract). Since ABHD12 is expressed by microglia in the central nervous system and is localized to the endoplasmic reticulum, accumulation of intracellular LysoPS by ABHD12 mutations is assumed to be one of the pathological mechanisms associated with microglial activation in PHARC. However, the role of microglia in the PHARC brain and the relationship between microglial function and cellular LysoPS content remains unclear. Therefore, we explored the influence of cellular LysoPS content in microglial inflammatory responses. We evaluated the effects of inhibitors of cellular LysoPS metabolism, KC01 and DO-264, on inflammatory responses using a lipopolysaccharide (LPS)-stimulated mouse microglial cell line, BV-2 and primary microglia. Treatment of DO-264, an inhibitor of cellular LysoPS degradation, enhanced LPS-induced phagocytosis concomitant with the increase in cellular LysoPS content in BV-2 cells. On the other hand, treatment with KC01, an agent had been developed as an inhibitor of LysoPS synthase, reduced phagocytosis without affecting cellular LysoPS content. Such effects of both inhibitors on phagocytosis were also confirmed using primary microglia. KC01 treatment decreased nitric oxide (NO) production, accompanied by a reduction in inducible NO synthase expression in BV-2 microglia. KC01 also suppressed LPS-induced generation of intracellular reactive oxygen species and cytokines such as interleukin-6. Our results suggest that increase in cellular LysoPS levels can exacerbate microglial inflammatory responses. Treatment to prevent the increase in cellular LysoPS in microglia may have therapeutic potential for PHARC.
Collapse
Affiliation(s)
- Tomoki Minamihata
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Ryoya Seto
- Chemicals Evaluation and Research Institute, Kitakatsushika, Saitama, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| |
Collapse
|
30
|
Budni J, Moretti M, Freitas AE, Neis VB, Ribeiro CM, de Oliveira Balen G, Rieger DK, Leal RB, Rodrigues ALS. Behavioral and neurochemical effects of folic acid in a mouse model of depression induced by TNF-α. Behav Brain Res 2021; 414:113512. [PMID: 34358572 DOI: 10.1016/j.bbr.2021.113512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 02/03/2023]
Abstract
Folic acid has been reported to exert antidepressant effects, but its ability to abrogate the depressive-like behavior and signaling pathways alterations elicited by an inflammatory model of depression remains to be established. This study examined: a) the efficacy of folic acid in a mouse model of depression induced by tumor necrosis factor (TNF-α); b) whether the administration of subthreshold doses of folic acid and antidepressants (fluoxetine, imipramine, and bupropion), MK-801, or 7-nitroindazole cause antidepressant-like effects; c) the effects of TNF-α and/or folic acid on hippocampal p38MAPK, Akt, ERK, and JNK phosphorylation. Folic acid reduced the immobility time in the tail suspension test (TST) in control mice (10-50 mg/kg, p.o) and abolished the depressive-like behavior elicited by TNF-α (0.001 fg/site, i.c.v.) in this test (1-50 mg/kg, p.o). Coadministration of subthreshold doses of folic acid (1 mg/kg, p.o.) and fluoxetine, imipramine, bupropion, MK-801, or 7-nitroindazole produced an antidepressant-like effect in mice exposed or not to TNF-α. TNF-α-treated mice presented increased p38MAPK phosphorylation and decreased Akt phosphorylation, and the later effect was prevented by folic acid (10 mg/kg, p.o.). Additionally, ERK1 phosphorylation was increased in mice treated with TNF-α + folic acid (1 mg/kg), but no effects on ERK2 or JNK1/2/3 phosphorylation were found in any group. The results indicate the efficacy of folic acid to counteract the depressive-like behavior induced by a pro-inflammatory cytokine, an effect that might be associated with the activation of monoaminergic systems, inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) synthesis, as well as Akt modulation.
Collapse
Affiliation(s)
- Josiane Budni
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Andiara E Freitas
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Camille M Ribeiro
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Grasiela de Oliveira Balen
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Débora K Rieger
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Rodrigo B Leal
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
31
|
Siemsen BM, Landin JD, McFaddin JA, Hooker KN, Chandler LJ, Scofield MD. Chronic intermittent ethanol and lipopolysaccharide exposure differentially alter Iba1-derived microglia morphology in the prelimbic cortex and nucleus accumbens core of male Long-Evans rats. J Neurosci Res 2021; 99:1922-1939. [PMID: 32621337 PMCID: PMC7779701 DOI: 10.1002/jnr.24683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has linked pathological changes associated with chronic alcohol exposure to neuroimmune signaling mediated by microglia. Prior characterization of the microglial structure-function relationship demonstrates that alterations in activity states occur concomitantly with reorganization of cellular architecture. Accordingly, gaining a better understanding of microglial morphological changes associated with ethanol exposure will provide valuable insight into how neuroimmune signaling may contribute to ethanol-induced reshaping of neuronal function. Here we have used Iba1-staining combined with high-resolution confocal imaging and 3D reconstruction to examine microglial structure in the prelimbic (PL) cortex and nucleus accumbens (NAc) in male Long-Evans rats. Rats were either sacrificed at peak withdrawal following 15 days of exposure to chronic intermittent ethanol (CIE) or 24 hr after two consecutive injections of the immune activator lipopolysaccharide (LPS), each separated by 24 hr. LPS exposure resulted in dramatic structural reorganization of microglia in the PL cortex, including increased soma volume, overall cellular volume, and branching complexity. In comparison, CIE exposure was associated with a subtle increase in somatic volume and differential effects on microglia processes, which were largely absent in the NAc. These data reveal that microglial activation following a neuroimmune challenge with LPS or exposure to chronic alcohol exhibits distinct morphometric profiles and brain region-dependent specificity.
Collapse
Affiliation(s)
- Benjamin M. Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jon A. McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N. Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lawrence J. Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021; 55:2895-2911. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Psychiatric diseases, like depression, largely affect the central nervous system (CNS). While the underlying neuropathology of depressive illness remains to be elucidated, several hypotheses have been proposed as molecular underpinnings for major depressive disorder, including the monoamine hypothesis and the cytokine hypothesis. The monoamine hypothesis has been largely supported by the pharmaceuticals that target monoamine neurotransmitters as a treatment for depression. However, these antidepressants have come under scrutiny due to their limited clinical efficacy, side effects, and delayed onset of action. The more recent, cytokine hypothesis of depression is supported by the ability of immune-active agents to induce "sickness behaviour" akin to that seen with depression. However, treatments that more selectively target inflammation have yielded inconsistent antidepressive results. As such, neither of these hypotheses can fully explain depressive illness pathology, implying that the underlying neuropathological mechanisms may encompass aspects of both theories. The goal of the current review is to integrate these two well-studied hypotheses and to propose a role for histamine as a potential unifying factor that links monoamines to cytokines. Additionally, we will focus on stress-induced depression, to provide an updated perspective of depressive illness research and thereby identify new potential targets for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA.,Department of Bioengineering, Imperial College, London, UK
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
33
|
Meikle CKS, Creeden JF, McCullumsmith C, Worth RG. SSRIs: Applications in inflammatory lung disease and implications for COVID-19. Neuropsychopharmacol Rep 2021; 41:325-335. [PMID: 34254465 PMCID: PMC8411309 DOI: 10.1002/npr2.12194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have anti-inflammatory properties that may have clinical utility in treating severe pulmonary manifestations of COVID-19. SSRIs exert anti-inflammatory effects at three mechanistic levels: (a) inhibition of proinflammatory transcription factor activity, including NF-κB and STAT3; (b) downregulation of lung tissue damage and proinflammatory cell recruitment via inhibition of cytokines, including IL-6, IL-8, TNF-α, and IL-1β; and (c) direct suppression inflammatory cells, including T cells, macrophages, and platelets. These pathways are implicated in the pathogenesis of COVID-19. In this review, we will compare the pathogenesis of lung inflammation in pulmonary diseases including COVID-19, ARDS, and chronic obstructive pulmonary disease (COPD), describe the anti-inflammatory properties of SSRIs, and discuss the applications of SSRIS in treating COVID-19-associated inflammatory lung disease.
Collapse
Affiliation(s)
- Claire Kyung Sun Meikle
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.,Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cheryl McCullumsmith
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Randall G Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
34
|
Das A, Ranadive N, Kinra M, Nampoothiri M, Arora D, Mudgal J. An Overview on Chemotherapy-induced Cognitive Impairment and Potential Role of Antidepressants. Curr Neuropharmacol 2021; 18:838-851. [PMID: 32091339 PMCID: PMC7569321 DOI: 10.2174/1570159x18666200221113842] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cognitive impairment is an adverse reaction of cancer chemotherapy and is likely to affect up to 75% of patients during the treatment and 35% of patients experience it for several months after the chemotherapy. Patients manifest symptoms like alteration in working ability, awareness, concentration, visual-verbal memory, attention, executive functions, processing speed, fatigue and behavioural dysfunctions. Post-chemotherapy, cancer survivors have a reduced quality of life due to the symptoms of chemobrain. Apart from this, there are clinical reports which also associate mood disorders, vascular complications, and seizures in some cases. Therefore, the quality of lifestyle of cancer patients/ survivors is severely affected and only worsens due to the absence of any efficacious treatments. With the increase in survivorship, it's vital to identify effective strategies, until then only symptomatic relief for chemobrain can be provided. The depressive symptoms were causally linked to the pathophysiological imbalance between the pro and antiinflammatory cytokines. CONCLUSION The common causative factor, cytokines can be targeted for the amelioration of an associated symptom of both depression and chemotherapy. Thus, antidepressants can have a beneficial effect on chemotherapy-induced inflammation and cognitive dysfunction via cytokine balance. Also, neurogenesis property of certain antidepressant drugs rationalises their evaluation against CICI. This review briefly glances upon chemotherapy-induced cognitive impairment (CICI), and the modulatory effect of antidepressants on CICI pathomechanisms.
Collapse
Affiliation(s)
- Ankit Das
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.,School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
35
|
Afridi R, Suk K. Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci 2021; 15:691067. [PMID: 34276311 PMCID: PMC8283257 DOI: 10.3389/fncel.2021.691067] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The neuroinflammatory basis of depression encompasses the detrimental role of otherwise supportive non-neuronal cells and neuroinflammation in hampering neuronal function, leading to depressive behavior. Animals subjected to different stress paradigms show glial cell activation and a surge in proinflammatory cytokines in various brain regions. The concept of sterile inflammation observed in animal models of depression has intrigued many researchers to determine the possible triggers of central immune cell activation. Notably, microglial activation and subsequent phenotypic polarization in depression have been strongly advocated by the wealth of recent preclinical studies; however, findings from human studies have shown contradictory results. Despite intensive investigation, many research gaps still exist to elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression. In this mini-review, recent progress in understanding neuroinflammatory mechanisms in light of experimental models of depression will be thoroughly discussed. The challenges of mirroring depression in animal and in vitro models will also be highlighted. Furthermore, prospects of targeting neuroinflammation to treat depressive disorder will be covered.
Collapse
Affiliation(s)
- Ruqayya Afridi
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
36
|
Creeden JF, Imami AS, Eby HM, Gillman C, Becker KN, Reigle J, Andari E, Pan ZK, O'Donovan SM, McCullumsmith RE, McCullumsmith CB. Fluoxetine as an anti-inflammatory therapy in SARS-CoV-2 infection. Biomed Pharmacother 2021; 138:111437. [PMID: 33691249 PMCID: PMC7904450 DOI: 10.1016/j.biopha.2021.111437] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023] Open
Abstract
Hyperinflammatory response caused by infections such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) increases organ failure, intensive care unit admission, and mortality. Cytokine storm in patients with Coronavirus Disease 2019 (COVID-19) drives this pattern of poor clinical outcomes and is dependent upon the activity of the transcription factor complex nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and its downstream target gene interleukin 6 (IL6) which interacts with IL6 receptor (IL6R) and the IL6 signal transduction protein (IL6ST or gp130) to regulate intracellular inflammatory pathways. In this study, we compare transcriptomic signatures from a variety of drug-treated or genetically suppressed (i.e. knockdown) cell lines in order to identify a mechanism by which antidepressants such as fluoxetine demonstrate non-serotonergic, anti-inflammatory effects. Our results demonstrate a critical role for IL6ST and NF-kappaB Subunit 1 (NFKB1) in fluoxetine's ability to act as a potential therapy for hyperinflammatory states such as asthma, sepsis, and COVID-19.
Collapse
Affiliation(s)
- Justin Fortune Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Ali Sajid Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Hunter M Eby
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Cassidy Gillman
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kathryn N Becker
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jim Reigle
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elissar Andari
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Zhixing K Pan
- Department of Medical Microbiology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Cheryl B McCullumsmith
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
37
|
Turkin A, Tuchina O, Klempin F. Microglia Function on Precursor Cells in the Adult Hippocampus and Their Responsiveness to Serotonin Signaling. Front Cell Dev Biol 2021; 9:665739. [PMID: 34109176 PMCID: PMC8182052 DOI: 10.3389/fcell.2021.665739] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia are the resident immune cells of the adult brain that become activated in response to pathogen- or damage-associated stimuli. The acute inflammatory response to injury, stress, or infection comprises the release of cytokines and phagocytosis of damaged cells. Accumulating evidence indicates chronic microglia-mediated inflammation in diseases of the central nervous system, most notably neurodegenerative disorders, that is associated with disease progression. To understand microglia function in pathology, knowledge of microglia communication with their surroundings during normal state and the release of neurotrophins and growth factors in order to maintain homeostasis of neural circuits is of importance. Recent evidence shows that microglia interact with serotonin, the neurotransmitter crucially involved in adult neurogenesis, and known for its role in antidepressant action. In this chapter, we illustrate how microglia contribute to neuroplasticity of the hippocampus and interact with local factors, e.g., BDNF, and external stimuli that promote neurogenesis. We summarize the recent findings on the role of various receptors in microglia-mediated neurotransmission and particularly focus on microglia’s response to serotonin signaling. We review microglia function in neuroinflammation and neurodegeneration and discuss their novel role in antidepressant mechanisms. This synopsis sheds light on microglia in healthy brain and pathology that involves serotonin and may be a potential therapeutic model by which microglia play a crucial role in the maintenance of mood.
Collapse
Affiliation(s)
- Andrei Turkin
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Oksana Tuchina
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Friederike Klempin
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
38
|
Methiwala HN, Vaidya B, Addanki VK, Bishnoi M, Sharma SS, Kondepudi KK. Gut microbiota in mental health and depression: role of pre/pro/synbiotics in their modulation. Food Funct 2021; 12:4284-4314. [PMID: 33955443 DOI: 10.1039/d0fo02855j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome residing in the human gut performs a wide range of biological functions. Recently, it has been elucidated that a change in dietary habits is associated with alteration in the gut microflora which results in increased health risks and vulnerability towards various diseases. Falling in line with the same concept, depression has also been shown to increase its prevalence around the globe, especially in the western world. Various research studies have suggested that changes in the gut microbiome profile further result in decreased tolerance of stress. Although currently available medications help in relieving the symptoms of depressive disorders briefly, these drugs are not able to completely reverse the multifactorial pathology of depression. The discovery of the communication pathway between gut microbes and the brain, i.e. the Gut-Brain Axis, has led to new areas of research to find more effective and safer alternatives to current antidepressants. The use of probiotics and prebiotics has been suggested as being effective in various preclinical studies and clinical trials for depression. Therefore, in the present review, we address the new antidepressant mechanisms via gut microbe alterations and provide insight into how these can provide an alternative to antidepressant therapy without the side effects and risk of adverse drug reactions.
Collapse
Affiliation(s)
- Hasnain N Methiwala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| | | | | | | | | | | |
Collapse
|
39
|
SIRT1 and SIRT2 modulators reduce LPS-induced inflammation in HAPI microglial cells and protect SH-SY5Y neuronal cells in vitro. J Neural Transm (Vienna) 2021; 128:631-644. [PMID: 33821324 DOI: 10.1007/s00702-021-02331-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is associated with the development of depression. Deacetylases SIRT1 and SIRT2 are reported to exert neuroprotective effects in aging, neurogenesis, neurodegeneration and neuroinflammation. Therefore, this study aimed to investigate the effects of SIRT1 and SIRT2 modulators on LPS-induced neuroinflammation and neurodegeneration in vitro. To achieve this, HAPI rat microglial cells were pre-treated with the SIRT1 activator resveratrol (0.1-20 µM), the selective SIRT1 inhibitor EX527 (0.1; 1 µM), the dual SIRT1/SIRT2 inhibitor sirtinol (0.1-20 µM) and the SIRT2 inhibitor AGK2 (0.1; 1 µM), prior to exposure with LPS (5 ng/mL) for 20 h. The reference antidepressant drug fluoxetine and the nonsteroidal anti-inflammatory drug ibuprofen were also evaluated in the same paradigm, both at 1 μM. Resveratrol and sirtinol inhibited TNF-α production to a greater degree than either fluoxetine or ibuprofen. Resveratrol, sirtinol, EX527 and AGK2 significantly reduced PGE2 production by up to 100% in microglia. Then, the supernatant was transferred to treat SH-SY5Y cells for 24 h. In all cases, SIRT modulator pretreatment significantly protected undifferentiated SH-SY5Y human neuroblastoma cells from the insult of LPS-stimulated HAPI supernatant by up to 40%. Moreover, resveratrol and sirtinol also showed significantly better neuroprotection than fluoxetine or ibuprofen by up to 83 and 69%, respectively. In differentiated SH-SY5Y cells, only sirtinol (20, 10 µM) and AGK2 (0.1 µM) pretreatment protected the cells from LPS-stimulated HAPI supernatant. This study suggests that SIRT1 and SIRT2 modulators are effective in inhibiting LPS-stimulated production of TNF-α and PGE2 in HAPI microglial cells and protecting SH-SY5Y cells from inflammation. Thus, we provide proof of concept for further investigation of the therapeutic effect of SIRT1 and SIRT2 modulators and combination with current antidepressant medication as a treatment option.
Collapse
|
40
|
Synthesis of 4-(3-oxo-3-phenylpropyl)morpholin-4-ium chloride analogues and their inhibitory activities of nitric oxide production in lipopolysaccharide-induced BV2 cells. Bioorg Med Chem Lett 2021; 36:127780. [PMID: 33422605 DOI: 10.1016/j.bmcl.2021.127780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/30/2022]
Abstract
Based on our previous report that 3-morpholino-1-phenylpropan-1-one 2, one of the fluoxetine's simplified morpholino analogue, inhibited nitric oxide (NO) production, in this paper, various substituted benzene analogues with morpholine hydrochloride of 2 were synthesized and their inhibitory effects on NO production in lipopolysaccharide (LPS)-induced BV2 cells were tested. Among the synthesized compounds, 2-trifluoromethyl analogue 16n (IC50 = 8.6 μM) showed a significantly higher inhibitory activity than that of the parent compound 2a (IC50 > 50 μM) and suppressed NO production dose-dependently without cytotoxicity. Compound 16n also inhibited iNOS expression in LPS-induced BV2 cells at 2, 10 and 20 μM concentrations. These results suggest that compound 16n inhibited NO production by suppressing the expression of iNOS and can be used as a lead structure for developing new inhibitor of NO production.
Collapse
|
41
|
Carlson EL, Karuppagounder V, Pinamont WJ, Yoshioka NK, Ahmad A, Schott EM, Le Bleu HK, Zuscik MJ, Elbarbary RA, Kamal F. Paroxetine-mediated GRK2 inhibition is a disease-modifying treatment for osteoarthritis. Sci Transl Med 2021; 13:13/580/eaau8491. [PMID: 33568523 DOI: 10.1126/scitranslmed.aau8491] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by progressive cartilage degeneration, with no available disease-modifying therapy. OA is driven by pathological chondrocyte hypertrophy (CH), the cellular regulators of which are unknown. We have recently reported the therapeutic efficacy of G protein-coupled receptor kinase 2 (GRK2) inhibition in other diseases by recovering protective G protein-coupled receptor (GPCR) signaling. However, the role of GPCR-GRK2 pathway in OA is unknown. Thus, in a surgical OA mouse model, we performed genetic GRK2 deletion in chondrocytes or pharmacological inhibition with the repurposed U.S. Food and Drug Administration (FDA)-approved antidepressant paroxetine. Both GRK2 deletion and inhibition prevented CH, abated OA progression, and promoted cartilage regeneration. Supporting experiments with cultured human OA cartilage confirmed the ability of paroxetine to mitigate CH and cartilage degradation. Our findings present elevated GRK2 signaling in chondrocytes as a driver of CH in OA and identify paroxetine as a disease-modifying drug for OA treatment.
Collapse
Affiliation(s)
- Elijah L Carlson
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - William J Pinamont
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Natalie K Yoshioka
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Adeel Ahmad
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | - Michael J Zuscik
- Colorado Program for Skeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Reyad A Elbarbary
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA. .,Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
42
|
Zheng ZH, Tu JL, Li XH, Hua Q, Liu WZ, Liu Y, Pan BX, Hu P, Zhang WH. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun 2021; 91:505-518. [PMID: 33161163 DOI: 10.1016/j.bbi.2020.11.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that excessive inflammatory responses play a crucial role in the pathophysiology of psychiatric diseases, including depression and anxiety disorders. The dysfunctional neural plasticity in amygdala has long been proposed as the vital cause for the progression of psychiatric disorders. However, the effect of neuroinflammation on the functional changes of the amygdala remains largely unknown. Here, by using a mouse model of inflammation induced by lipopolysaccharide (LPS) injection, we investigated the effect of LPS-induced neuroinflammation on the synaptic and non-synaptic plasticity in basolateral amygdala (BLA) projection neurons (PNs) and their contribution to the LPS-induced anxiety- and depressive-like behavior. The results showed that LPS treatment led to the activation of microglia and production of proinflammatory cytokines in the BLA. Furthermore, LPS treatment increased excitatory but not inhibitory synaptic transmission due to the enhanced presynaptic glutamate release, thus leading to the shift of excitatory/inhibitory balance towards excitatory. In addition, the intrinsic neuronal excitability of BLA PNs was also increased by LPS treatment through the loss of expression and function of small-conductance, calcium-activated potassium channel. Chronic fluoxetine pretreatment significantly prevented these neurophysiological changes induced by LPS, and alleviated anxiety and depressive-like behavior, indicating that LPS-induced neuronal dysregulation of BLA PNs may contribute to the development of psychiatry disorders. Collectively, these findings provide evidence that dysregulation of synaptic and non-synaptic transmission in the BLA PNs may account for neuroinflammation-induced anxiety- and depressive-like behavior.
Collapse
Affiliation(s)
- Zhi-Heng Zheng
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Jiang-Long Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiao-Han Li
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, PR China
| | - Qing Hua
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, PR China
| | - Wei-Zhu Liu
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Yu Liu
- Rehabilitation Department, Second Affiliated Hospital of Nanchang University, PR China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, PR China
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
43
|
Anti-Inflammatory Effects of Asian Fawn Lily ( Erythronium japonicum) Extract on Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Nutrients 2020; 12:nu12123809. [PMID: 33322645 PMCID: PMC7764803 DOI: 10.3390/nu12123809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is associated with an increased risk of depression. Lipopolysaccharide (LPS) treatment is known to induce pro-inflammatory cytokine secretion and a depressive-like phenotype in mice. Although Erythronium japonicum exhibits various health benefits, the role of E. japonicum extract (EJE) in inflammation-associated depression is unknown. This study aimed to explore the anti-inflammatory effect of EJE on LPS-induced depressive symptoms in mice using the open field test (OFT), passive avoidance test (PAT), tail suspension test (TST), and forced swim test (FST). LPS-treated mice had significantly increased immobility time in the TST and FST, decreased step-through latency time in the PAT, and decreased locomotor activity in the OFT. However, administration of 100 and 300 mg/kg of EJE significantly improved these depressive-like behaviors. EJE also prevented the increase in mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 (MCP-1), and the decrease in IL-10 levels by inhibiting nuclear factor-κB (NF-κB) subunit p65 phosphorylation. Additionally, LPS-treated mice showed markedly decreased brain-derived neurotrophic factor (BDNF) levels and phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt, while EJE treatment significantly increased these levels in the hippocampus. These results suggest that EJE ameliorated LPS-induced depressive-like behavior by reducing LPS-induced neuroinflammation and activating the BDNF-PI3K/Akt pathway.
Collapse
|
44
|
Guo Y, Gan X, Zhou H, Zhou H, Pu S, Long X, Ren C, Feng T, Tang H. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation. Life Sci 2020; 263:118582. [PMID: 33058911 DOI: 10.1016/j.lfs.2020.118582] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Depression is a common aspect of the modern lifestyle, and most patients are recalcitrant to the current antidepressants. Fingolimod (FTY720), a sphingosine analogue approved for the treatment of multiple sclerosis, has a significant neuroprotective effect on the central nervous system. The aim of this study was to determine the potential therapeutic effect of FTY720 on the behavior and cognitive function of rats exposed daily to chronic unpredictable mild stress (CUMS), and elucidate the underlying mechanisms. The 42-day CUMS modeling induced depression-like behavior as indicated by the scores of sugar water preference, forced swimming, open field and Morris water maze tests. Mechanistically, CUMS caused significant damage to the hippocampal neurons, increased inflammation and oxidative stress, activated the NF-κB/NLRP3 axis, and skewed microglial polarization to the M1 phenotype. FTY720 not only alleviated neuronal damage and oxidative stress, but also improved the depression-like behavior and cognitive function of the rats. It also inhibited NF-κB activation and blocked NLRP3 inflammasome assembly by down-regulating NLRP3, ACS and caspase-1. Furthermore, FTY720 inhibited the microglial M1 polarization markers iNOS and CD16, and promoted the M2 markers Arg-1 and CD206. This in turn reduced the levels of TNF-α, IL-6 and IL-1β, and increased that of IL-10 in the hippocampus. In conclusion, FTY720 protects hippocampal neurons from stress-induced damage and alleviates depressive symptoms by inhibiting neuroinflammation. Our study provides a theoretical basis for S1P receptor modulation in treating depression.
Collapse
Affiliation(s)
- Yuanxin Guo
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Xiaohong Gan
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Xia Long
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Tao Feng
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Hongmei Tang
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China.
| |
Collapse
|
45
|
Costa LHA, Santos BM, Branco LGS. Can selective serotonin reuptake inhibitors have a neuroprotective effect during COVID-19? Eur J Pharmacol 2020; 889:173629. [PMID: 33022271 PMCID: PMC7832208 DOI: 10.1016/j.ejphar.2020.173629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
The absence of a specific treatment for SARS-CoV-2 infection led to an intense global effort in order to find new therapeutic interventions and improve patient outcomes. One important feature of COVID-19 pathophysiology is the activation of immune cells, with consequent massive production and release of inflammatory mediators that may cause impairment of several organ functions, including the brain. In addition to its classical role as a neurotransmitter, serotonin (5-hydroxytryptamine, 5-HT) has immunomodulatory properties, downregulating the inflammatory response by central and peripheral mechanisms. In this review, we describe the roles of 5-HT in the regulation of systemic inflammation and the potential benefits of the use of specific serotonin reuptake inhibitors as a coadjutant therapy to attenuate neurological complications of COVID-19.
Collapse
Affiliation(s)
- Luis H A Costa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - Bruna M Santos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil.
| |
Collapse
|
46
|
Locateli G, de Oliveira Alves B, Miorando D, Ernetti J, Alievi K, Zilli GAL, Serpa PZ, Vecchia CAD, Mota da Silva L, Müller LG, Roman Junior WA. Antidepressant-like effects of solidagenone on mice with bacterial lipopolysaccharide (LPS)-induced depression. Behav Brain Res 2020; 395:112863. [PMID: 32818537 DOI: 10.1016/j.bbr.2020.112863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Considering the pharmacological potential of solidagenone from Solidago chilensis, the present investigation was carried out to evaluate its antidepressant-like effect in mice with bacterial lipopolysaccharide (LPS)-induced depressive like behavior and its mode of action through the measurement of neuroinflammatory and oxidative markers. MATERIALS AND METHODS In the prophylactic test, the mice were pretreated with solidagenone (1, 10 or 100 mg/kg, p.o) and after one hour received LPS. In therapeutic test, the mice received LPS and after 5 h were treated with solidagenone (1, 10 or 100 mg/kg, p.o). In both experimental approaches, the animals were submitted to OFT and to the TST after 6 and 24 h of the LPS administration, respectively. One hour after the TST the animals were euthanized, the blood was collected, the cortex was removed and biochemical analyzes were performed for measurement of the inflammatory and oxidative stress markers. RESULTS The LPS induced sickness- and depressive-like behaviors and increased the cortical activity of myeloperoxidase (MPO), as well as the IL-6 and TNF amount. Interestingly, the pretreatment with solidagenone at 100 mg/kg avoided the behavioral alterations in OFT. In the mice post treated with solidagenone, all tested doses of resulted in an antidepressant-like effect evidenced by the decrease in immobility time in the TST. This effect was accompanied by a decrease in the MPO activity and in the IL-6 and TNF levels in the cortex in parallel to the increase in catalase activity. CONCLUSIONS The solidagenone has a promissor antidepressant-like potential, which can result of its beneficial action in the neuroinflammation process and due its antioxidant capability at the central nervous system.
Collapse
Affiliation(s)
- Gelvani Locateli
- Programa de Pós-graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Bianca de Oliveira Alves
- Laboratório de Farmacognosia, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Daniela Miorando
- Laboratório de Farmacognosia, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Jackeline Ernetti
- Laboratório de Farmacognosia, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Kelly Alievi
- Laboratório de Farmacognosia, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | | | - Patrícia Zanotelli Serpa
- Programa de Pós-graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Cristian Alex Dalla Vecchia
- Programa de Pós-graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Itajaí, SC, Brazil
| | - Liz Girardi Müller
- Programa de Pós-graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Walter Antônio Roman Junior
- Programa de Pós-graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil; Laboratório de Farmacognosia, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|
47
|
Rana I, Khan N, Ansari MM, Shah FA, Din FU, Sarwar S, Imran M, Qureshi OS, Choi HI, Lee CH, Kim JK, Zeb A. Solid lipid nanoparticles-mediated enhanced antidepressant activity of duloxetine in lipopolysaccharide-induced depressive model. Colloids Surf B Biointerfaces 2020; 194:111209. [DOI: 10.1016/j.colsurfb.2020.111209] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
|
48
|
Spohr L, Luduvico KP, Soares MSP, Bona NP, Oliveira PS, de Mello JE, Alvez FL, Teixeira FC, Felix ADOC, Stefanello FM, Spanevello RM. Blueberry extract as a potential pharmacological tool for preventing depressive-like behavior and neurochemical dysfunctions in mice exposed to lipopolysaccharide. Nutr Neurosci 2020; 25:857-870. [PMID: 32954970 DOI: 10.1080/1028415x.2020.1819104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Major depressive disorder is a debilitating and recurrent psychiatric disorder. Blueberries have several biological properties, including neuroprotective effects, through antioxidant and anti-inflammatory actions. The aim of this study was to evaluate the effect of blueberry extract on depressive-like behavior and lipopolysaccharide (LPS)-induced neurochemical changes. METHODS Mice were pretreated with vehicle, fluoxetine (20 mg/kg) or blueberry extract (100 or 200 mg/kg) intragastrically for seven days before intraperitoneal LPS (0.83 mg/kg) injection. Twenty-four hours after LPS administration, mice were submitted to behavioral tests. Oxidative stress and neuroinflammatory parameters were evaluated in the cerebral cortex, hippocampus, and striatum. RESULTS Our data showed that blueberry extract or fluoxetine treatment protected against LPS-induced depressive-like behavior in tail suspension and splash tests (P < 0.05), without changes in locomotor activity (P > 0.05). LPS induced an increase in the levels of reactive oxygen species (P < 0.001), nitrite (P < 0.05) and thiobarbituric acid reactive substances (P < 0.01), as well as a reduction in total sulfhydryl content (P < 0.05) and catalase activity (P < 0.05) in brain structures; blueberry extract restored these alterations (P < 0.05). In addition, blueberry extract attenuated the increase in tumor necrosis factor-alpha (TNF-α) levels induced by LPS administration (P < 0.05). CONCLUSION This study showed that blueberry extract exerted antidepressant-like effects, protected the brain against oxidative damage, and modulated TNF-α levels induced by LPS.
Collapse
Affiliation(s)
- Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Pathise Souto Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Julia Eisenhardt de Mello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fernando Lopez Alvez
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
49
|
Peng X, Liu G, Zhu L, Yu K, Qian K, Zhan X. In vitro and in vivo study of novel antimicrobial gellan-polylysine polyion complex fibers as suture materials. Carbohydr Res 2020; 496:108115. [PMID: 32829205 DOI: 10.1016/j.carres.2020.108115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/17/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023]
Abstract
GELLAN GUM: and gellan-derived materials have never been used for suture materials due to their lack of strength and toughness. In this study, gellan and ε-polylysine formed a polyion complex in water solution, and the complex was transformed into fibers via wet-spinning. The fibers were bundled, twisted, and elongated, and the resultant twisted and elongated yarn (GPF) had a diameter of 97.53-103.76 μm and tensile strength of 4 N. The swelling ratio of GPF was 165.55%-183.23% in weight in normal saline, and the linear density was 2.84-3.31 g/km. GPF was tested using agar diffusion tests and it was found that the fibers had good antibacterial activity against Escherichia coli and Staphylococcus epidermidis. In weight loss experiments, GPF was found to be undegradable in normal saline and slightly degradable (residual weight ratio was 83.2 ± 1.2%) in simulated body fluid with trypsin within 7 days. Moreover, GPF showed no cytotoxicity toward BV-2 cells in cytotoxity tests with CCK8 and no hemolysis in hemolytic tests with fresh C57 mice blood. Finally, GPF was assessed using mouse dorsal cross-cutting model, and none of the mice that were tested with GPF showed infection or rejection reaction. Therefore, GPF is a promising suture material, and this study provides a new development direction for the application of gellan materials with improved mechanical properties.
Collapse
Affiliation(s)
- Xingqiao Peng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Gengliang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li Zhu
- Wuxi Galaxy Biotech Co., Ltd., Wuxi, Jiangsu, 214125, China
| | - Kejing Yu
- Key Laboratory of Science & Technology of Eco-Textile, School of Textile Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Kun Qian
- Key Laboratory of Science & Technology of Eco-Textile, School of Textile Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
50
|
Seo KH, Choi SY, Jin Y, Son H, Kang YS, Jung SH, Kim YI, Eum S, Bach TT, Yoo HM, Whang WK, Jung SY, Kang W, Ko HM, Lee SH. Anti‑inflammatory role of Prunus persica L. Batsch methanol extract on lipopolysaccharide‑stimulated glial cells. Mol Med Rep 2020; 21:2030-2040. [PMID: 32186769 PMCID: PMC7115241 DOI: 10.3892/mmr.2020.11016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022] Open
Abstract
Glial cells are the resident immune cells of the central nervous system. Reactive glial cells release inflammatory mediators that induce neurotoxicity or aggravate neurodegeneration. Regulation of glial activation is crucial for the initiation and progression of neuropathological conditions. Constituents of the peach tree (Prunus persica L. Batsch), which has a global distribution, have been found to exert therapeutic effects in pathological conditions, such as rashes, eczema and allergies. However, the therapeutic potential of its aerial parts (leaves, fruits and twigs) remains to be elucidated. The present study aimed to evaluate the anti-inflammatory role of P. persica methanol extract (PPB) on lipopolysaccharide (LPS)-stimulated glial cells. High-performance liquid chromatography coupled with tandem mass spectrometry analysis showed that PPB contained chlorogenic acid and catechin, which have antioxidant properties. Western blot and reverse transcription polymerase chain reaction results indicated that PPB reduced the transcription of various proinflammatory enzymes (nitric oxide synthase and cyclooxygenase-2) and cytokines [tumor necrosis factor-α, interleukin (IL)-1β and IL-6] in LPS-stimulated BV2 cells. In addition, PPB inhibited the activation of NF-κB and various mitogen-activated protein kinases required for proinflammatory mediator transcription. Finally, nitrite measurement and immunocytochemistry results indicated that PPB also suppressed nitrite production and NF-κB translocation in LPS-stimulated primary astrocytes. Thus, PPB may be used as a potential therapeutic agent for neurodegenerative diseases and neurotoxicity via the suppression of glial cell activation.
Collapse
Affiliation(s)
- Kyoung Hee Seo
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - So Young Choi
- Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeonsun Jin
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Heebin Son
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Young Sun Kang
- Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Yong-In Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangmi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tran The Bach
- Department of Botany, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 10000, Vietnam
| | - Hee Min Yoo
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Wan Kyunn Whang
- Pharmaceutical Botany Laboratory, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Sun-Young Jung
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Chungcheongbuk 27841, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|