1
|
Zhang X, Sun T, Li F, Ji C, Liu H, Wu H. Combinatorial accumulation, stress response, detoxification and synaptic transmission effects of cadmium and selenium in clams Ruditapes philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107075. [PMID: 39244834 DOI: 10.1016/j.aquatox.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
This study investigated the toxicological effects and mechanisms of cadmium (Cd) (5 and 50 μg/L) and selenium (Se) (3 and 30 μg/L) at environmentally relevant concentrations on the gills and digestive glands of clams Ruditapes philippinarum. Results indicated that Cd and Se could tissue-specifically impact osmoregulation, energy metabolism, and synaptic transmission in the gills and digestive glands of clams. After exposure to 50 μg/L Cd, the digestive glands of clams up-regulated the expression of methionine-gamma-lyase and metallothionein for detoxification. Clam digestive glands exposed to 3 μg/L Se up-regulated the expression of catalase and glutathione peroxidase to alleviate oxidative stress, and down-regulated the expression of selenide-water dikinase to reduce the conversion of inorganic Se. Additionally, the interaction mode between Cd and Se largely depended on their molar ratio, with a ratio of 11.71 (50 μg/L Cd + 3 μg/L Se) demonstrated to be particularly harmful, as manifested by significantly more lesions, oxidative stress, and detoxification demand in clams than those exposed to Cd or Se alone. Collectively, this study revealed the complex interaction patterns and mechanisms of Cd and Se on clams, providing a reference for exploring their single and combined toxicity.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Hongmei Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
2
|
Görgülü I, Jagannath V, Pons S, Koniuszewski F, Groszer M, Maskos U, Huck S, Scholze P. The human-specific nicotinic receptor subunit CHRFAM7A reduces α7 receptor function in human induced pluripotent stem cells-derived and transgenic mouse neurons. Eur J Neurosci 2024; 60:4893-4906. [PMID: 39073048 DOI: 10.1111/ejn.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
We investigated the impact of the human-specific gene CHRFAM7A on the function of α7 nicotinic acetylcholine receptors (α7 nAChRs) in two different types of neurons: human-induced pluripotent stem cell (hiPSC)-derived cortical neurons, and superior cervical ganglion (SCG) neurons, taken from transgenic mice expressing CHRFAM7A. dupα7, the gene product of CHRFAM7A, which lacks a major part of the extracellular N-terminal ligand-binding domain, co-assembles with α7, the gene product of CHRNA7. We assessed the receptor function in hiPSC-derived cortical and SCG neurons with Fura-2 calcium imaging and three different α7-specific ligands: PNU282987, choline, and 4BP-TQS. Given the short-lived open state of α7 receptors, we combined the two orthosteric agonists PNU282987 and choline with the type-2 positive allosteric modulator (PAM II) PNU120596. In line with different cellular models used previously, we demonstrate that CHRFAM7A has a major impact on nicotinic α7 nAChRs by reducing calcium transients in response to all three agonists.
Collapse
Affiliation(s)
- Ilayda Görgülü
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Vinita Jagannath
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
- MSD R&D Innovation Centre, London, UK
| | - Stephanie Pons
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Filip Koniuszewski
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Groszer
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Sigismund Huck
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Soares AR, Picciotto MR. Nicotinic regulation of microglia: potential contributions to addiction. J Neural Transm (Vienna) 2024; 131:425-435. [PMID: 37778006 PMCID: PMC11189589 DOI: 10.1007/s00702-023-02703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.
Collapse
Affiliation(s)
- Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
4
|
Szigeti K, Ihnatovych I, Notari E, Dorn RP, Maly I, He M, Birkaya B, Prasad S, Byrne RS, Indurthi DC, Nimmer E, Heo Y, Retfalvi K, Chaves L, Sule N, Hofmann WA, Auerbach A, Wilding G, Bae Y, Reynolds J. CHRFAM7A diversifies human immune adaption through Ca 2+ signalling and actin cytoskeleton reorganization. EBioMedicine 2024; 103:105093. [PMID: 38569318 PMCID: PMC10999709 DOI: 10.1016/j.ebiom.2024.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca2+ conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored. METHODS Two model systems are used, human induced pluripotent stem cells (iPSC) and human primary monocytes, to characterize α7 nAChR function, Ca2+ dynamics and decoders to elucidate the pathway from receptor to phenotype. FINDINGS CHRFAM7A/α7 nAChR is identified as a hypomorphic receptor with mitigated Ca2+ influx and prolonged channel closed state. This shifts the Ca2+ reservoir from the extracellular space to the endoplasmic reticulum (ER) leading to Ca2+ dynamic changes. Ca2+ decoder small GTPase Rac1 is then activated, reorganizing the actin cytoskeleton. Observed actin mediated phenotypes include cellular adhesion, motility, phagocytosis and tissue mechanosensation. INTERPRETATION CHRFAM7A introduces an additional, human specific, layer to Ca2+ regulation leading to an innate immune gain of function. Through the actin cytoskeleton it drives adaptation to the mechanical properties of the tissue environment leading to an ability to invade previously immune restricted niches. Human genetic diversity predicts profound translational significance as its understanding builds the foundation for successful treatments for infectious diseases, sepsis, and cancer metastasis. FUNDING This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti) and in part by NIH grant R01HL163168 (Yongho Bae).
Collapse
Affiliation(s)
- Kinga Szigeti
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| | - Ivanna Ihnatovych
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Emily Notari
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ryu P Dorn
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ivan Maly
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Muye He
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Barbara Birkaya
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Shreyas Prasad
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Robin Schwartz Byrne
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Dinesh C Indurthi
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Erik Nimmer
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Yuna Heo
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Kolos Retfalvi
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Lee Chaves
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Norbert Sule
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Wilma A Hofmann
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Anthony Auerbach
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Gregory Wilding
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Yongho Bae
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Jessica Reynolds
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| |
Collapse
|
5
|
Kawashima K, Mashimo M, Nomura A, Fujii T. Contributions of Non-Neuronal Cholinergic Systems to the Regulation of Immune Cell Function, Highlighting the Role of α7 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2024; 25:4564. [PMID: 38674149 PMCID: PMC11050324 DOI: 10.3390/ijms25084564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Loewi's discovery of acetylcholine (ACh) release from the frog vagus nerve and the discovery by Dale and Dudley of ACh in ox spleen led to the demonstration of chemical transmission of nerve impulses. ACh is now well-known to function as a neurotransmitter. However, advances in the techniques for ACh detection have led to its discovery in many lifeforms lacking a nervous system, including eubacteria, archaea, fungi, and plants. Notably, mRNAs encoding choline acetyltransferase and muscarinic and nicotinic ACh receptors (nAChRs) have been found in uninnervated mammalian cells, including immune cells, keratinocytes, vascular endothelial cells, cardiac myocytes, respiratory, and digestive epithelial cells. It thus appears that non-neuronal cholinergic systems are expressed in a variety of mammalian cells, and that ACh should now be recognized not only as a neurotransmitter, but also as a local regulator of non-neuronal cholinergic systems. Here, we discuss the role of non-neuronal cholinergic systems, with a focus on immune cells. A current focus of much research on non-neuronal cholinergic systems in immune cells is α7 nAChRs, as these receptors expressed on macrophages and T cells are involved in regulating inflammatory and immune responses. This makes α7 nAChRs an attractive potential therapeutic target.
Collapse
Grants
- 19-31: TF; 20-25: TF. Individual Research Grants from the Doshisha Women's College of Liberal Arts
- 24590120, K.K., T.F., K.H.; 22K06638, T.F., A.N., 15K18871, M.M.; 15K07979, T.F., 15K07969-m, K.K.; 18K06903, T.F. The Ministry of Education, Science, Sports and Culture of Japan
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| | - Atsuo Nomura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| |
Collapse
|
6
|
Jakimovski D, Dorn RP, Regno MD, Bartnik A, Bergsland N, Ramanathan M, Dwyer MG, Benedict RHB, Zivadinov R, Szigeti K. Human restricted CHRFAM7A gene increases brain efficiency. Front Neurosci 2024; 18:1359028. [PMID: 38711941 PMCID: PMC11070550 DOI: 10.3389/fnins.2024.1359028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction CHRFAM7A, a uniquely human fusion gene, has been associated with neuropsychiatric disorders including Alzheimer's disease, schizophrenia, anxiety, and attention deficit disorder. Understanding the physiological function of CHRFAM7A in the human brain is the first step to uncovering its role in disease. CHRFAM7A was identified as a potent modulator of intracellular calcium and an upstream regulator of Rac1 leading to actin cytoskeleton reorganization and a switch from filopodia to lamellipodia implicating a more efficient neuronal structure. We performed a neurocognitive-MRI correlation exploratory study on 46 normal human subjects to explore the effect of CHRFAM7A on human brain. Methods Dual locus specific genotyping of CHRFAM7A was performed on genomic DNA to determine copy number (TaqMan assay) and orientation (capillary sequencing) of the CHRFAM7A alleles. As only the direct allele is expressed at the protein level and affects α7 nAChR function, direct allele carriers and non-carriers are compared for neuropsychological and MRI measures. Subjects underwent neuropsychological testing to measure motor (Timed 25-foot walk test, 9-hole peg test), cognitive processing speed (Symbol Digit Modalities Test), Learning and memory (California Verbal Learning Test immediate and delayed recall, Brief Visuospatial Memory Test-Revised immediate and delayed recall) and Beck Depression Inventory-Fast Screen, Fatigue Severity Scale. All subjects underwent MRI scanning on the same 3 T GE scanner using the same protocol. Global and tissue-specific volumes were determined using validated cross-sectional algorithms including FSL's Structural Image Evaluation, using Normalization, of Atrophy (SIENAX) and FSL's Integrated Registration and Segmentation Tool (FIRST) on lesion-inpainted images. The cognitive tests were age and years of education-adjusted using analysis of covariance (ANCOVA). Age-adjusted analysis of covariance (ANCOVA) was performed on the MRI data. Results CHRFAM7A direct allele carrier and non-carrier groups included 33 and 13 individuals, respectively. Demographic variables (age and years of education) were comparable. CHRFAM7A direct allele carriers demonstrated an upward shift in cognitive performance including cognitive processing speed, learning and memory, reaching statistical significance in visual immediate recall (FDR corrected p = 0.018). The shift in cognitive performance was associated with smaller whole brain volume (uncorrected p = 0.046) and lower connectivity by resting state functional MRI in the visual network (FDR corrected p = 0.027) accentuating the cognitive findings. Conclusion These data suggest that direct allele carriers harbor a more efficient brain consistent with the cellular biology of actin cytoskeleton and synaptic gain of function. Further larger human studies of cognitive measures correlated with MRI and functional imaging are needed to decipher the impact of CHRFAM7A on brain function.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ryu P. Dorn
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Megan Del Regno
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Alexander Bartnik
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Michael G. Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ralph H. B. Benedict
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Kinga Szigeti
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
7
|
Ihnatovych I, Saddler RA, Sule N, Szigeti K. Translational implications of CHRFAM7A, an elusive human-restricted fusion gene. Mol Psychiatry 2024; 29:1020-1032. [PMID: 38200291 PMCID: PMC11176066 DOI: 10.1038/s41380-023-02389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Genes restricted to humans may contribute to human-specific traits and provide a different context for diseases. CHRFAM7A is a uniquely human fusion gene and a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR). The α7 nAChR has been a promising target for diseases affecting cognition and higher cortical functions, however, the treatment effect observed in animal models failed to translate into human clinical trials. As CHRFAM7A was not accounted for in preclinical drug screens it may have contributed to the translational gap. Understanding the complex genetic architecture of the locus, deciphering the functional impact of CHRFAM7A on α7 nAChR neurobiology and utilizing human-relevant models may offer novel approaches to explore α7 nAChR as a drug target.
Collapse
Affiliation(s)
- Ivanna Ihnatovych
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ruth-Ann Saddler
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Norbert Sule
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Kinga Szigeti
- Department of Neurology, State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| |
Collapse
|
8
|
Darrau E, Jacquemet E, Pons S, Schlick L, Zouridakis M, Wu CL, Richard JR, Barau C, Le Corvoisier P, Yolken R, Tamouza R, Leboyer M, Maskos U. Serum autoantibodies against α7-nicotinic receptors in subgroups of patients with bipolar disorder or schizophrenia: clinical features and link with peripheral inflammation. Transl Psychiatry 2024; 14:146. [PMID: 38485715 PMCID: PMC10940727 DOI: 10.1038/s41398-024-02853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
There is growing evidence that autoantibodies (AAbs) against proteins expressed in the brain are playing an important role in neurological and psychiatric disorders. Here, we explore the presence and the role of peripheral AAbs to the α7-nicotinic acetylcholine receptor (nAChR) in inflammatory subgroups of psychiatric patients with bipolar disorder (BD) or schizophrenia (SCZ) and healthy controls. We have identified a continuum of AAb levels in serum when employing a novel ELISA technique, with a significant elevation in patients compared to controls. Using unsupervised two-step clustering to stratify all the subjects according to their immuno-inflammatory background, we delineate one subgroup consisting solely of psychiatric patients with severe symptoms, high inflammatory profile, and significantly increased levels of anti-nAChR AAbs. In this context, we have used monoclonal mouse anti-human α7-nAChR antibodies (α7-nAChR-mAbs) and shown that TNF-α release was enhanced upon LPS stimulation in macrophages pre-incubated with α7-nAChR-mAbs compared to the use of an isotype control. These findings provide a basis for further study of circulating nicotinic AAbs, and the inflammatory profile observed in patients with major mood and psychotic disorders.
Collapse
Affiliation(s)
- Estelle Darrau
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
- Institut Pasteur, Université de Paris Cité, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France
| | - Elise Jacquemet
- Institut Pasteur, Université de Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Stéphanie Pons
- Institut Pasteur, Université de Paris Cité, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France
| | - Laurène Schlick
- Institut Pasteur, Université de Paris Cité, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France
| | - Marios Zouridakis
- Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Ching-Lien Wu
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Creteil, France
- Fondation FondaMental, Creteil, France
| | - Jean-Romain Richard
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Creteil, France
- Fondation FondaMental, Creteil, France
| | - Caroline Barau
- Plateforme de ressources biologiques, Hôpital Henri Mondor, Université Paris Est Créteil, Creteil, France
- Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Université Paris Est Créteil, Créteil, France
| | - Philippe Le Corvoisier
- Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Université Paris Est Créteil, Créteil, France
| | - Robert Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Creteil, France
- Fondation FondaMental, Creteil, France
- Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Université Paris Est Créteil, Créteil, France
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France.
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Creteil, France.
- Fondation FondaMental, Creteil, France.
- Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Université Paris Est Créteil, Créteil, France.
| | - Uwe Maskos
- Institut Pasteur, Université de Paris Cité, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France.
| |
Collapse
|
9
|
Rieder AS, Wyse ATS. Regulation of Inflammation by IRAK-M Pathway Can Be Associated with nAchRalpha7 Activation and COVID-19. Mol Neurobiol 2024; 61:581-592. [PMID: 37640915 DOI: 10.1007/s12035-023-03567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
In spite of the vaccine development and its importance, the SARS-CoV-2 pandemic is still impacting the world. It is known that the COVID-19 severity is related to the cytokine storm phenomenon, being inflammation a common disease feature. The nicotinic cholinergic system has been widely associated with COVID-19 since it plays a protective role in inflammation via nicotinic receptor alpha 7 (nAchRalpha7). In addition, SARS-CoV-2 spike protein (Spro) subunits can interact with nAchRalpha7. Moreover, Spro causes toll-like receptor (TLR) activation, leading to pro- and anti-inflammatory pathways. The increase and maturation of the IL-1 receptor-associated kinase (IRAK) family are mediated by activation of membrane receptors, such as TLRs. IRAK-M, a member of this family, is responsible for negatively regulating the activity of other active IRAKs. In addition, IRAK-M can regulate microglia phenotype by specific protein expression. Furthermore, there exists an antagonist influence of SARS-CoV-2 Spro and the cholinergic system action on the IRAK-M pathway and microglia phenotype. We discuss the overexpression and suppression of IRAK-M in inflammatory cell response to inflammation in SARS-CoV-2 infection when the cholinergic system is constantly activated via nAchRalpha7.
Collapse
Affiliation(s)
- Alessanda S Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases (Wyse's Lab), Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases (Wyse's Lab), Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre RS, 90035-003, Brazil.
| |
Collapse
|
10
|
Agrawal B, Boulos S, Khatib S, Feuermann Y, Panov J, Kaphzan H. Molecular Insights into Transcranial Direct Current Stimulation Effects: Metabolomics and Transcriptomics Analyses. Cells 2024; 13:205. [PMID: 38334596 PMCID: PMC10854682 DOI: 10.3390/cells13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is an evolving non-invasive neurostimulation technique. Despite multiple studies, its underlying molecular mechanisms are still unclear. Several previous human studies of the effect of tDCS suggest that it generates metabolic effects. The induction of metabolic effects by tDCS could provide an explanation for how it generates its long-term beneficial clinical outcome. AIM Given these hints of tDCS metabolic effects, we aimed to delineate the metabolic pathways involved in its mode of action. METHODS To accomplish this, we utilized a broad analytical approach of co-analyzing metabolomics and transcriptomic data generated from anodal tDCS in rat models. Since no metabolomic dataset was available, we performed a tDCS experiment of bilateral anodal stimulation of 200 µA for 20 min and for 5 consecutive days, followed by harvesting the brain tissue below the stimulating electrode and generating a metabolomics dataset using LC-MS/MS. The analysis of the transcriptomic dataset was based on a publicly available dataset. RESULTS Our analyses revealed that tDCS alters the metabolic profile of brain tissue, affecting bioenergetic-related pathways, such as glycolysis and mitochondrial functioning. In addition, we found changes in calcium-related signaling. CONCLUSIONS We conclude that tDCS affects metabolism by modulating energy production-related processes. Given our findings concerning calcium-related signaling, we suggest that the immediate effects of tDCS on calcium dynamics drive modifications in distinct metabolic pathways. A thorough understanding of the underlying molecular mechanisms of tDCS has the potential to revolutionize its applicability, enabling the generation of personalized medicine in the field of neurostimulation and thus contributing to its optimization.
Collapse
Affiliation(s)
- Bhanumita Agrawal
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Soad Boulos
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Julia Panov
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3103301, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
11
|
Stratilov V, Vetrovoy O, Potapova S, Tyulkova E. The Prenatal Hypoxic Pathology Associated with Maternal Stress Predisposes to Dysregulated Expression of the chrna7 Gene and the Subsequent Development of Nicotine Addiction in Adult Offspring. Neuroendocrinology 2024; 114:423-438. [PMID: 38198758 DOI: 10.1159/000536214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Previous studies have shown that fetal hypoxia predisposes individuals to develop addictive disorders in adulthood. However, the specific impact of maternal stress, mediated through glucocorticoids and often coexisting with fetal hypoxia, is not yet fully comprehended. METHODS To delineate the potential effects of these pathological factors, we designed models of prenatal severe hypoxia (PSH) in conjunction with maternal stress and prenatal intrauterine ischemia (PII). We assessed the suitability of these models for our research objectives by measuring HIF1α levels and evaluating the glucocorticoid neuroendocrine system. To ascertain nicotine dependence, we employed the conditioned place aversion test and the startle response test. To identify the key factor implicated in nicotine addiction associated with PSH, we employed techniques such as Western blot, immunohistochemistry, and correlational analysis between chrna7 and nr3c1 genes across different brain structures. RESULTS In adult rats exposed to PSH and PII, we observed increased levels of HIF1α in the hippocampus (HPC). However, the PSH group alone exhibited reduced glucocorticoid receptor levels and disturbed circadian glucocorticoid rhythms. Additionally, they displayed signs of nicotine addiction in the conditioned place aversion and startle response tests. We also observed elevated levels of phosphorylated DARPP-32 protein in the nucleus accumbens (NAc) indicated compromised glutamatergic efferent signaling. Furthermore, there was reduced expression of α7 nAChR, which modulates glutamate release, in the medial prefrontal cortex (PFC) and HPC. Correlation analysis revealed strong associations between chrna7 and nr3c1 expression in both brain structures. CONCLUSION Perturbations in the glucocorticoid neuroendocrine system and glucocorticoid-dependent gene expression of chrna7 associated with maternal stress response to hypoxia in prenatal period favor the development of nicotine addiction in adulthood.
Collapse
Affiliation(s)
- Viktor Stratilov
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
| | - Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Sophia Potapova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
| |
Collapse
|
12
|
Zhou R, Niu K, Wang C, He J, Huang W, Li T, Lan H, Zhang Y, Dang X, Mao L. Human-specific CHRFAM7A primes macrophages for a heightened pro-inflammatory response at the earlier stage of inflammation. Cell Biol Int 2023; 47:1926-1941. [PMID: 37655479 DOI: 10.1002/cbin.12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/11/2023] [Accepted: 08/12/2023] [Indexed: 09/02/2023]
Abstract
α7-Nicotinic acetylcholine receptor (α7-nAChR) is the key effector molecule of the cholinergic anti-inflammatory pathway. Evolution has evolved a uniquely human α7-nAChR encoded by CHRFAM7A. It has been demonstrated that CHRFAM7A dominant negatively regulates the functions of α7-nAChR. However, its role in inflammation remains to be fully characterized. CHRFAM7A transgenic (Tg) mice were phenotypically normal and their peritoneal macrophages exhibited decreased ligand-binding capability and, importantly, an activated gene expression profile of pro-inflammatory cytokines. Surprisingly, when challenged with sepsis, the Tg mice showed no survival disadvantage relative to their wild-type (Wt) counterparts. Further analysis showed that the complete blood count and serum levels of pro-inflammatory cytokines were comparable at resting state, but the degrees of leukocyte mobilization and the increase of pro-inflammatory cytokines were significantly higher in Tg than Wt mice at the early stage of sepsis. In vitro, peritoneal macrophages of the Tg mice exhibited an exaggerated response to lipopolysaccharides (LPSs), especially at the earlier time points and at lower dosages of LPS. Remarkably, monocytes from CHRFAM7A-carrier showed similar dynamic changes of the pro-inflammatory cytokines to that observed in the Tg mice upon LPS challenge. Our results suggest that CHRFAM7A increases the mobilization of leukocytes and primes macrophages that confer an enhanced immune response at the early stage of inflammation, which may lead to prompt pathogen clearance, an evolutionary advantage in less severe inflammatory conditions.
Collapse
Affiliation(s)
- Rui Zhou
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Keran Niu
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Chaoying Wang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Jianghui He
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Wenjun Huang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Tao Li
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Huan Lan
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Sinclair P, Kabbani N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 197:106975. [PMID: 38032294 DOI: 10.1016/j.phrs.2023.106975] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.
Collapse
Affiliation(s)
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, Fairfax, VA, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
14
|
Wang Y, Liu X, Wang W, Sun G, Xu X, Feng Y, Li Z, Yang J. Investigating the Mechanism of Low-Salinity Environmental Adaptation in Sepia esculenta Larvae through Transcriptome Profiling. Animals (Basel) 2023; 13:3139. [PMID: 37835745 PMCID: PMC10571815 DOI: 10.3390/ani13193139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Sepia esculenta is an economically important mollusk distributed in the coastal waters of China. Juveniles are more susceptible to stimulation by the external environment than mature individuals. The ocean salinity fluctuates due to environmental changes. However, there is a lack of research on the salinity adaptations of S. esculenta. Therefore, in this study, we investigated the differential expression of genes in S. esculenta larvae after stimulation by low salinity. RNA samples were sequenced and 1039 differentially expressed genes (DEGs) were identified. Then, enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, a protein-protein interaction network (PPI) was constructed, and the functions of key genes in S. esculenta larvae after low-salinity stimulation were explored. We suggest that low salinity leads to an excess proliferation of cells in S. esculenta larvae that, in turn, affects normal physiological activities. The results of this study can aid in the artificial incubation of S. esculenta and reduce the mortality of larvae.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
15
|
Ham JA, Kim SH, Park D. Septo-optic dysplasia associated with chromosome 15q13.3 duplication: a case report. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2023; 40:419-422. [PMID: 36458369 PMCID: PMC10626303 DOI: 10.12701/jyms.2022.00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Septo-optic dysplasia (SOD) is a rare congenital anomaly that is clinically defined by developmental delay and characteristic brain magnetic resonance imaging findings, including optic nerve hypoplasia, pituitary hormone abnormalities, and midline brain defects. The occurrence of SOD is generally sporadic; however, it can be inherited rarely. Although an association with HESX1, SOX2, and SOX3 mutations has been identified, the detailed etiology is multifactorial and unclear. Here, we present the case of a 7-year-old girl who was clinically diagnosed with SOD and 15q13.3 duplication. Patients with duplication at chromosome 15q13.3 were reported to be diagnosed with autism spectrum disorder, epilepsy, and schizophrenia in previous studies. The relationship between SOD and the microduplication of 15q13.3 has not yet been explored. In this study, we suggest that there may be an association between chromosome 15q13.3 microduplication and SOD.
Collapse
Affiliation(s)
- Jeong A Ham
- Department of Rehabilitation Medicine, DMC Bundang Jesaeng Hospital, Seoungnam, Korea
| | - Sung Hyun Kim
- Department of Rehabilitation Medicine, DMC Bundang Jesaeng Hospital, Seoungnam, Korea
| | - Donghwi Park
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
16
|
Letsinger AC, Nacer SA, Stevanovic KD, Larson GJ, DeFilipp JS, Cushman JD, Yakel JL. Genetic deletion of α7 nAChRs reduces hippocampal granule and pyramidal cell number in both sexes but impairs pattern separation in males only. Front Neurosci 2023; 17:1244118. [PMID: 37746145 PMCID: PMC10513752 DOI: 10.3389/fnins.2023.1244118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neurogenesis within the dentate gyrus is thought to play an important role in cognitive processes such as reversal learning and pattern separation. The α7 nicotinic acetylcholine receptor (α7 nAChR) is expressed early in newly formed granule cells of the dentate gyrus, though its role in neurogenesis and related cognitive function is not fully understood. Methods To better characterize relevant function of α7 nAChRs, we performed unbiased stereology to quantify hippocampal granule cells, pyramidal cells, and total volume and used a touchscreen operant spatial discrimination/reversal task to test pattern separation in a global α7 nAChR knockout mouse line. Results The knockout resulted in an ≈22% reduction in granule cells and a ≈ 20% reduction in pyramidal cells in both sexes, with no change in total hippocampal volume. However, the knockout impaired performance in the touchscreen task for males only. The sex-dependent difference in behavioral, but not stereological, results suggest a divergence in the structure-function relationship in males versus females. Detailed analyses revealed males were more biased by the initial reversal contingency relative to females indicating a potential source of the sex-specific interaction with the loss of α7 nAChRs. Discussion These findings argue that the α7 nAChR plays a critical role in hippocampal development, not just granule cell neurogenesis, and plays a sex-dependent role in cognitive function.
Collapse
Affiliation(s)
- Ayland C. Letsinger
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Samir A. Nacer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Korey D. Stevanovic
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Gary J. Larson
- Social & Scientific Systems, Inc., a DLH Holdings Corp. Company, Durham, NC, United States
| | - Jemma S. DeFilipp
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jesse D. Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
17
|
Szigeti K, Ihnatovych I, Rosas N, Dorn RP, Notari E, Cortes Gomez E, He M, Maly I, Prasad S, Nimmer E, Heo Y, Fuchsova B, Bennett DA, Hofmann WA, Pralle A, Bae Y, Wang J. Neuronal actin cytoskeleton gain of function in the human brain. EBioMedicine 2023; 95:104725. [PMID: 37517100 PMCID: PMC10404607 DOI: 10.1016/j.ebiom.2023.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND While advancements in imaging techniques have led to major strides in deciphering the human brain, successful interventions are elusive and represent some of the most persistent translational gaps in medicine. Human restricted CHRFAM7A has been associated with neuropsychiatric disorders. METHODS The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples. The emerging pathways and mechanistic hypotheses are tested and validated in an isogenic hiPSC model of CHRFAM7A knock-in medial ganglionic eminence progenitors and neurons. FINDINGS CHRFAM7A is identified as a modulator of intracellular calcium dynamics and an upstream regulator of Rac1. Rac1 activation re-designs the actin cytoskeleton leading to dynamic actin driven remodeling of membrane protrusion and a switch from filopodia to lamellipodia. The reinforced cytoskeleton leads to an advantage to tolerate stiffer mechanical properties of the extracellular environment. INTERPRETATION CHRFAM7A modifies the actin cytoskeleton to a more dynamic and stiffness resistant state in an α7nAChR dependent manner. CHRFAM7A may facilitate neuronal adaptation to changes in the brain environment in physiological and pathological conditions contributing to risk or recovery. Understanding how CHRFAM7A affects human brain requires human studies in the areas of memory formation and erasure, cognitive reserve, and neuronal plasticity. FUNDING This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti). Also, in part by the International Society for Neurochemistry (ISN) and The Company of Biologists (Nicolas Rosas). ROSMAP is supported by NIA grants P30AG10161, P30AG72975, R01AG15819, R01AG17917. U01AG46152, and U01AG61356.
Collapse
Affiliation(s)
- Kinga Szigeti
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| | - Ivanna Ihnatovych
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Nicolás Rosas
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA; Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de, Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Ryu P Dorn
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Emily Notari
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | | | - Muye He
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ivan Maly
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Shreyas Prasad
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Erik Nimmer
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Yuna Heo
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de, Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Wilma A Hofmann
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Arnd Pralle
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Yongho Bae
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Jianmin Wang
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA
| |
Collapse
|
18
|
Mashimo M, Fujii T, Ono S, Moriwaki Y, Misawa H, Azami T, Kasahara T, Kawashima K. GTS-21 Enhances Regulatory T Cell Development from T Cell Receptor-Activated Human CD4 + T Cells Exhibiting Varied Levels of CHRNA7 and CHRFAM7A Expression. Int J Mol Sci 2023; 24:12257. [PMID: 37569633 PMCID: PMC10418795 DOI: 10.3390/ijms241512257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Immune cells such as T cells and macrophages express α7 nicotinic acetylcholine receptors (α7 nAChRs), which contribute to the regulation of immune and inflammatory responses. Earlier findings suggest α7 nAChR activation promotes the development of regulatory T cells (Tregs) in mice. Using human CD4+ T cells, we investigated the mRNA expression of the α7 subunit and the human-specific dupα7 nAChR subunit, which functions as a dominant-negative regulator of ion channel function, under resting conditions and T cell receptor (TCR)-activation. We then explored the effects of the selective α7 nAChR agonist GTS-21 on proliferation of TCR-activated T cells and Treg development. Varied levels of mRNA for both the α7 and dupα7 nAChR subunits were detected in resting human CD4+ T cells. mRNA expression of the α7 nAChR subunit was profoundly suppressed on days 4 and 7 of TCR-activation as compared to day 1, whereas mRNA expression of the dupα7 nAChR subunit remained nearly constant. GTS-21 did not alter CD4+ T cell proliferation but significantly promoted Treg development. These results suggest the potential ex vivo utility of GTS-21 for preparing Tregs for adoptive immunotherapy, even with high expression of the dupα7 subunit.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (T.F.)
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (T.F.)
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan;
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan; (Y.M.); (H.M.)
| | - Hidemi Misawa
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan; (Y.M.); (H.M.)
| | - Tetsushi Azami
- Division of Gastroenterology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama 227-8502, Japan;
| | - Tadashi Kasahara
- Division of Inflammation Research, Jichi Medical University, Shimotsukeshi 324-0498, Japan;
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
19
|
Mina S, Elfeky DM, Kabel AM, Hedya SE. Ameliorative Potential of Donepezil with or without Prednisolone in Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of the Anti-Inflammatory, Antioxidant, and the Antifibrotic Pathways. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050980. [PMID: 37241212 DOI: 10.3390/medicina59050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Bleomycin-induced pulmonary fibrosis is one of the serious complications that may limit the use of bleomycin in cancer therapy. To date, there is no effective remedy for the amelioration of this condition. Donepezil, an anti-Alzheimer's medication, has recently been proven to exhibit potent anti-inflammatory, antioxidant, and antifibrotic effects. To the best of our knowledge, this study represents the first study designed to investigate the prophylactic effects of donepezil, either alone or in combination with the classic anti-inflammatory drug prednisolone, in bleomycin-induced pulmonary fibrosis. Methods: This study was carried out on fifty rats, which were divided into five equal groups: control (Saline) group; bleomycin group; bleomycin + prednisolone group; bleomycin + donepezil group; and bleomycin + prednisolone + donepezil group. At the end of the experiments, bronchoalveolar lavage was performed to evaluate the total and differential leucocytic counts. The right lung was processed to assess the oxidative stress markers, proinflammatory cytokines, NLRP3 inflammasome, and transforming growth factor-beta1. The left lung was subjected to histopathological and immunohistochemical examination. Results: The administration of donepezil and/or prednisolone induced a significant amelioration of oxidative stress, inflammation, and fibrosis. In addition, these animals showed a significant amelioration of the histopathological changes of fibrosis, together with a significant decline in nuclear factor kappa B (p65) immunoexpression, compared to the group treated with bleomycin alone. However, the rats treated with the donepezil/prednisolone combination showed non-significant effects on the aforementioned parameters compared to the group treated with prednisolone alone. Conclusions: Donepezil may emerge as a promising drug that shows significant prophylactic effects against bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Shery Mina
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Dina M Elfeky
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- National Committee of Drugs, Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo 11694, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
20
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
21
|
Sanders VR, Millar NS. Potentiation and allosteric agonist activation of α7 nicotinic acetylcholine receptors: binding sites and hypotheses. Pharmacol Res 2023; 191:106759. [PMID: 37023990 DOI: 10.1016/j.phrs.2023.106759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Considerable progress has been made in recent years towards the identification and characterisation of novel subtype-selective modulators of nicotinic acetylcholine receptors (nAChRs). In particular, this has focussed on modulators of α7 nAChRs, a nAChR subtype that has been identified as a target for drug discovery in connection with a range of potential therapeutic applications. This review focusses upon α7-selective modulators that bind to receptor sites other than the extracellular 'orthosteric' agonist binding site for the endogenous agonist acetylcholine (ACh). Such compounds include those that are able to potentiate responses evoked by orthosteric agonists such as ACh (positive allosteric modulators; PAMs) and those that are able to activate α7 nAChRs by direct allosteric activation in the absence of an orthosteric agonist (allosteric agonists or 'ago-PAMs'). There has been considerable debate about the mechanism of action of α7-selective PAMs and allosteric agonists, much of which has centred around identifying the location of their binding sites on α7 nAChRs. Based on a variety of experimental evidence, including recent structural data, there is now clear evidence indicating that at least some α7-selective PAMs bind to an inter-subunit site located in the transmembrane domain. In contrast, there are differing hypotheses about the site or sites at which allosteric agonists bind to α7 nAChRs. It will be argued that the available evidence supports the conclusion that direct allosteric activation by allosteric agonists/ago-PAMs occurs via the same inter-subunit transmembrane site that has been identified for several α7-selective PAMs.
Collapse
Affiliation(s)
- Victoria R Sanders
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Neil S Millar
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
22
|
Choueiry J, Blais CM, Shah D, Smith D, Fisher D, Labelle A, Knott V. An α7 nAChR approach for the baseline-dependent modulation of deviance detection in schizophrenia: A pilot study assessing the combined effect of CDP-choline and galantamine. J Psychopharmacol 2023; 37:381-395. [PMID: 36927273 PMCID: PMC10101183 DOI: 10.1177/02698811231158903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Cognitive operations including pre-attentive sensory processing are markedly impaired in patients with schizophrenia (SCZ) but evidence significant interindividual heterogeneity, which moderates treatment response with nicotinic acetylcholine receptor (nAChR) agonists. Previous studies in healthy volunteers have shown baseline-dependency effects of the α7 nAChR agonist cytidine 5'-diphosphocholine (CDP-choline) administered alone and in combination with a nicotinic allosteric modulator (galantamine) on auditory deviance detection measured with the mismatch negativity (MMN) event-related potential (ERP). AIM The objective of this pilot study was to assess the acute effect of this combined α7 nAChR-targeted treatment (CDP-choline/galantamine) on speech MMN in patients with SCZ (N = 24) stratified by baseline MMN responses into low, medium, and high baseline auditory deviance detection subgroups. METHODS Patients with a stable diagnosis of SCZ attended two randomized, double-blind, placebo-controlled and counter-balanced testing sessions where they received a placebo or a CDP-choline (500 mg) and galantamine (16 mg) treatment. MMN ERPs were recorded during the presentation of a fast multi-feature speech MMN paradigm including five speech deviants. Clinical measures were acquired before and after treatment administration. RESULTS While no main treatment effect was observed, CDP-choline/galantamine significantly increased MMN amplitudes to frequency, duration, and vowel speech deviants in low group individuals. Individuals with higher positive and negative symptom scale negative, general, and total scores expressed the greatest MMN amplitude improvement following CDP-choline/galantamine. CONCLUSIONS These baseline-dependent nicotinic effects on early auditory information processing warrant different dosage and repeated administration assessments in patients with low baseline deviance detection levels.
Collapse
Affiliation(s)
- Joëlle Choueiry
- Department of Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Crystal M Blais
- Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Dhrasti Shah
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Derek Fisher
- Department of Psychology, Faculty of Social Sciences, Mount Saint Vincent University, Halifax, NS, Canada
| | - Alain Labelle
- The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Verner Knott
- Department of Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.,Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.,The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
23
|
Effects of Different Exercise Types on Chrna7 and Chrfam7a Expression in Healthy Normal Weight and Overweight Type 2 Diabetic Adults. Biomedicines 2023; 11:biomedicines11020565. [PMID: 36831101 PMCID: PMC9953734 DOI: 10.3390/biomedicines11020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose: Considering that the CHRNA7 and CHRFAM7A genes can be modulated by acute or chronic inflammation, and exercise modulates inflammatory responses, the question that arises is whether physical exercise could exert any effect on the expression of these genes. Thus, the aim of this work is to identify the effects of different types of exercises on the expression of the CHRNA7, CHRFAM7A and tumor necrosis factor-α (TNF-α) in leukocytes of healthy normal weight (HNW), and overweight with type 2 diabetes (OT2D) individuals. Methods: 15 OT2D and 13 HNW participants (men and women, from 40 to 60 years old) performed in a randomized crossover design three exercise sessions: aerobic exercise (AE), resistance exercise (RE) and combined exercise (CE). Blood samples were collected at rest and post-60-min of the exercise sessions. The leukocytes were the analysis of the CHRNA7, CHRFAM7A and (TNF-α) gene expression. Results: At baseline, OT2D had higher CHRFAM7A and TNF-α expression compared to HNW. No statistical differences were observed between groups for CHRNA7; however, the HNW group presented almost twice as many subjects with the expression of this gene (24% vs. 49%). Post exercise, the CHRFAM7A increased in AE, RE and CE for HNW, and in AE and CE for OT2D. There was no significant difference for TNF-α and CHRNA7 expression between any type of exercise and group. Conclusions: Our study shows that OT2D individuals presented higher baseline expression of TNF-α and CHRFAM7A, besides evidence of decreased CHRNA7A expression in leukocytes when compared with HNW. On the other hand, acutely physical exercise induces increased CHRFAM7A expression, especially when the aerobic component is present.
Collapse
|
24
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Zhou B, Zhang Y, Dang X, Li B, Wang H, Gong S, Li S, Meng F, Xing J, Li T, He L, Zou P, Wan Y. Up-regulation of the human-specific CHRFAM7A gene protects against renal fibrosis in mice with obstructive nephropathy. J Cell Mol Med 2023; 27:52-65. [PMID: 36479618 PMCID: PMC9806291 DOI: 10.1111/jcmm.17630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a major factor in the progression of chronic kidney diseases. Obstructive nephropathy is a common cause of renal fibrosis, which is also accompanied by inflammation. To explore the effect of human-specific CHRFAM7A expression, an inflammation-related gene, on renal fibrosis during obstructive nephropathy, we studied CHRFAM7A transgenic mice and wild type mice that underwent unilateral ureteral obstruction (UUO) injury. Transgenic overexpression of CHRFAM7A gene inhibited UUO-induced renal fibrosis, which was demonstrated by decreased fibrotic gene expression and collagen deposition. Furthermore, kidneys from transgenic mice had reduced TGF-β1 and Smad2/3 expression following UUO compared with those from wild type mice with UUO. In addition, the overexpression of CHRFAM7A decreased release of inflammatory cytokines in the kidneys of UUO-injured mice. In vitro, the overexpression of CHRFAM7A inhibited TGF-β1-induced increase in expression of fibrosis-related genes in human renal tubular epithelial cells (HK-2 cells). Additionally, up-regulated expression of CHRFAM7A in HK-2 cells decreased TGF-β1-induced epithelial-mesenchymal transition (EMT) and inhibited activation f TGF-β1/Smad2/3 signalling pathways. Collectively, our findings demonstrate that overexpression of the human-specific CHRFAM7A gene can reduce UUO-induced renal fibrosis by inhibiting TGF-β1/Smad2/3 signalling pathway to reduce inflammatory reactions and EMT of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Bingru Zhou
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Yudian Zhang
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Xitong Dang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology of Ministry of EducationSouthwest Medical UniversityLuzhouChina
| | - Bowen Li
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Hui Wang
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Shu Gong
- Science and Technology DivisionSouthwest Medical UniversityLuzhouChina
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public HealthCentral South UniversityChangshaChina
| | - Fanyin Meng
- Indiana Center for Liver Research, Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Tian Li
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Longfei He
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Ping Zou
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Ying Wan
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
26
|
Physiologic Functions and Therapeutic Applications of α7 Nicotinic Acetylcholine Receptor in Brain Disorders. Pharmaceutics 2022; 15:pharmaceutics15010031. [PMID: 36678660 PMCID: PMC9865019 DOI: 10.3390/pharmaceutics15010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Accumulating data suggest that α7 nicotinic acetylcholine receptors (α7nAChRs) are an important therapeutic target for the treatment of Alzheimer's disease (AD) and schizophrenia. The homopentameric ligand-gated ion channel α7nAChR consists of five identical α7 subunits that are encoded by the CHRNA7 (cholinergic receptor nicotinic alpha7 subunit) gene. Moreover, α7nAChRs are densely distributed throughout the hippocampus, cortex, and thalamus brain regions, but sparsely in the striatum, forebrain, and medulla. Compared with other nAChRs, α7nAChR binds with low affinity to the naturally occurring neurotransmitter acetylcholine and the non-specific exogenous agonist nicotine, and with high affinity to the specific antagonists α-bungarotoxin and methyllycaconitine. Reports indicate that α7nAChR plays important roles in neurotransmitter release, cognitive functioning, and the cholinergic anti-inflammatory response. Genetic variations that alter CHRNA7 mRNA and protein expression or cause α7nAChR dysfunction are associated with many brain disorders. Our previous studies revealed that α7nAChR exerts neuroprotection in AD by acting as a cargo receptor for binding the autophagosomal marker protein LC3 and engulfing extracellular neurotoxic Aβ1-42 during autophagic degradation of the α7nAChR-Aβ1-42 complex. However, the role of α7nAChRs in other diseases remains unknown. Here, we review and summarize the essential characteristics and current findings concerning α7nAChRs in four common brain diseases (AD, Parkinson's disease, schizophrenia, and depression), which may elucidate the role of α7nAChRs and inform innovative research and novel treatments that target α7nAChRs in brain disease.
Collapse
|
27
|
Agoston DV, McCullough J, Aniceto R, Lin IH, Kamnaksh A, Eklund M, Graves WM, Dunbar C, Engall J, Schneider EB, Leonessa F, Duckworth JL. Blood-Based Biomarkers of Repetitive, Subconcussive Blast Overpressure Exposure in the Training Environment: A Pilot Study. Neurotrauma Rep 2022; 3:479-490. [PMID: 36337080 PMCID: PMC9634979 DOI: 10.1089/neur.2022.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Because of their unknown long-term effects, repeated mild traumatic brain injuries (TBIs), including the low, subconcussive ones, represent a specific challenge to healthcare systems. It has been hypothesized that they can have a cumulative effect, and they may cause molecular changes that can lead to chronic degenerative processes. Military personnel are especially vulnerable to consequences of subconcussive TBIs because their training involves repeated exposures to mild explosive blasts. In this pilot study, we collected blood samples at baseline, 6 h, 24 h, 72 h, 2 weeks, and 3 months after heavy weapons training from students and instructors who were exposed to repeated subconcussive blasts. Samples were analyzed using the reverse and forward phase protein microarray platforms. We detected elevated serum levels of glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1 (UCH-L1), nicotinic alpha 7 subunit (CHRNA7), occludin (OCLN), claudin-5 (CLDN5), matrix metalloprotease 9 (MMP9), and intereukin-6 (IL-6). Importantly, serum levels of most of the tested protein biomarkers were the highest at 3 months after exposures. We also detected elevated autoantibody titers of proteins related to vascular and neuroglia-specific proteins at 3 months after exposures as compared to baseline levels. These findings suggest that repeated exposures to subconcussive blasts can induce molecular changes indicating not only neuron and glia damage, but also vascular changes and inflammation that are detectable for at least 3 months after exposures whereas elevated titers of autoantibodies against vascular and neuroglia-specific proteins can indicate an autoimmune process.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA.,Address correspondence to: Denes V. Agoston, MD, PhD, Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Building B, Room 2036, Bethesda, MD 20814, USA.
| | - Jesse McCullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Michael Eklund
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Wallace M. Graves
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Cyrus Dunbar
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - James Engall
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Eric B. Schneider
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fabio Leonessa
- Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Josh L. Duckworth
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Peng W, Mao L, Dang X. The emergence of the uniquely human α7 nicotinic acetylcholine receptor gene and its roles in inflammation. Gene 2022; 842:146777. [PMID: 35952843 DOI: 10.1016/j.gene.2022.146777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
The uniquely human CHRFAM7A gene is evolved from the fusion of two partially duplicated genes, ULK4 and CHRNA7. Transcription of CHRFAM7A gene produces a 1256-bp open reading frame (ORF) that encodes duplicate α7-nAChR (dup-α7-nAChR), in which a 27-aminoacid peptide derived from ULK4 gene replaces the 146-aminoacid N-terminal extracellular domain of α7-nAChR, and the rest protein domains are exactly the same as those of α7-nAChR. In vitro, dup-α7-nAChR has been shown to form hetero-pentamer with α7-nAChR and dominant-negatively inhibits the channel functions of the latter. α7-nAChR has been shown to participate in many pathophysiological processes such as cognition, memory, neuronal degenerative disease, psychological disease, and inflammatory diseases, among others, and thus has been extensively exploited as potential therapeutic targets for many diseases. Unfortunately, many lead compounds that showed potent therapeutic effect in preclinical animal models failed clinical trials, suggesting the possibility that the contribution of the uniquely human CHRFAM7A gene may not be accounted for in the preclinical research. Here, we review the emergence of CHRFAM7A gene and its transcriptional regulation, the regulatory roles of CHRFAM7A gene in α7-nAChR-mediated cholinergic anti-inflammatory pathway, and the potential implications of CHRFAM7A gene in translational research and drug discovery.
Collapse
Affiliation(s)
- Wanling Peng
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, India
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, India
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, India; Department of Cardiovascular Medicine, The 1st Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
29
|
Batiuk MY, Tyler T, Dragicevic K, Mei S, Rydbirk R, Petukhov V, Deviatiiarov R, Sedmak D, Frank E, Feher V, Habek N, Hu Q, Igolkina A, Roszik L, Pfisterer U, Garcia-Gonzalez D, Petanjek Z, Adorjan I, Kharchenko PV, Khodosevich K. Upper cortical layer-driven network impairment in schizophrenia. SCIENCE ADVANCES 2022; 8:eabn8367. [PMID: 36223459 PMCID: PMC9555788 DOI: 10.1126/sciadv.abn8367] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/24/2022] [Indexed: 05/31/2023]
Abstract
Schizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry. Compositional analysis of snRNA-seq data revealed a reduction in abundance of GABAergic neurons and a concomitant increase in principal neurons, most pronounced for upper cortical layer subtypes, which was substantiated by histological analysis. Many neuronal subtypes showed extensive transcriptomic changes, the most marked in upper-layer GABAergic neurons, including down-regulation in energy metabolism and up-regulation in neurotransmission. Transcription factor network analysis demonstrated a developmental origin of transcriptomic changes. Last, Visium spatial transcriptomics further corroborated upper-layer neuron vulnerability in schizophrenia. Overall, our results point toward general network impairment within upper cortical layers as a core substrate associated with schizophrenia symptomatology.
Collapse
Affiliation(s)
- Mykhailo Y. Batiuk
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Teadora Tyler
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1085, Hungary
| | - Katarina Dragicevic
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Rasmus Rydbirk
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Viktor Petukhov
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ruslan Deviatiiarov
- The National Center for Personalized Medicine of Endocrine Diseases, Moscow 115478, Russia
- Kazan Federal University, Kazan 420043, Russia
| | - Dora Sedmak
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Erzsebet Frank
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1085, Hungary
| | - Virginia Feher
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1085, Hungary
| | - Nikola Habek
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Qiwen Hu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Igolkina
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- St. Petersburg Polytechnical University, St. Petersburg 195251, Russia
| | - Lilla Roszik
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1085, Hungary
| | - Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Diego Garcia-Gonzalez
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zdravko Petanjek
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Istvan Adorjan
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1085, Hungary
| | - Peter V. Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
30
|
Lin M, Stewart MT, Zefi S, Mateti KV, Gauthier A, Sharma B, Martinez LR, Ashby CR, Mantell LL. Dual effects of supplemental oxygen on pulmonary infection, inflammatory lung injury, and neuromodulation in aging and COVID-19. Free Radic Biol Med 2022; 190:247-263. [PMID: 35964839 PMCID: PMC9367207 DOI: 10.1016/j.freeradbiomed.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.
Collapse
Affiliation(s)
- Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Maleka T Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Sidorela Zefi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Kranthi Venkat Mateti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lauren R Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
31
|
The Alpha 7 Nicotinic Acetylcholine Receptor Does Not Affect Neonatal Brain Injury. Biomedicines 2022; 10:biomedicines10082023. [PMID: 36009570 PMCID: PMC9405910 DOI: 10.3390/biomedicines10082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation plays a central role in the development of neonatal brain injury. The alpha 7 nicotinic acetylcholine receptor (α7nAChR) can modulate inflammation and has shown promising results as a treatment target in rodent models of adult brain injury. However, little is known about the role of the α7nAChR in neonatal brain injury. Hypoxic-ischemic (HI) brain injury was induced in male and female C57BL/6 mice, α7nAChR knock-out (KO) mice and their littermate controls on postnatal day (PND) 9–10. C57BL/6 pups received i.p. injections of α7nAChR agonist PHA 568487 (8 mg/kg) or saline once daily, with the first dose given directly after HI. Caspase-3 activity and cytokine mRNA expression in the brain was analyzed 24 h after HI. Motor function was assessed 24 and 48 h after HI, and immunohistochemistry was used to assess tissue loss at 24 h and 7 days after HI and microglial activation 7 days after HI. Activation of α7nAChR with the agonist PHA 568487 significantly decreased CCL2/MCP-1, CCL5/RANTES and IL-6 gene expression in the injured brain hemisphere 24 h after HI compared with saline controls in male, but not female, pups. However, α7nAChR activation did not alter caspase-3 activity and TNFα, IL-1β and CD68 mRNA expression. Furthermore, agonist treatment did not affect motor function (24 or 48 h), neuronal tissue loss (24 h or 7 days) or microglia activation (7 days) after HI in either sex. Knock-out of α7nAChR did not influence neuronal tissue loss 7 days after HI. In conclusion, targeting the α7nAChR in neonatal brain injury shows some effect on dampening acute inflammatory responses in male pups. However, this does not lead to an effect on overall injury outcome.
Collapse
|
32
|
Liu YX, Yu Y, Liu JP, Liu WJ, Cao Y, Yan RM, Yao YM. Neuroimmune Regulation in Sepsis-Associated Encephalopathy: The Interaction Between the Brain and Peripheral Immunity. Front Neurol 2022; 13:892480. [PMID: 35832175 PMCID: PMC9271799 DOI: 10.3389/fneur.2022.892480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE), the most popular cause of coma in the intensive care unit (ICU), is the diffuse cerebral damage caused by the septic challenge. SAE is closely related to high mortality and extended cognitive impairment in patients in septic shock. At present, many studies have demonstrated that SAE might be mainly associated with blood–brain barrier damage, abnormal neurotransmitter secretion, oxidative stress, and neuroimmune dysfunction. Nevertheless, the precise mechanism which initiates SAE and contributes to the long-term cognitive impairment remains largely unknown. Recently, a growing body of evidence has indicated that there is close crosstalk between SAE and peripheral immunity. The excessive migration of peripheral immune cells to the brain, the activation of glia, and resulting dysfunction of the central immune system are the main causes of septic nerve damage. This study reviews the update on the pathogenesis of septic encephalopathy, focusing on the over-activation of immune cells in the central nervous system (CNS) and the “neurocentral–endocrine–immune” networks in the development of SAE, aiming to further understand the potential mechanism of SAE and provide new targets for diagnosis and management of septic complications.
Collapse
Affiliation(s)
- Yu-xiao Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jing-peng Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Wen-jia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yang Cao
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Run-min Yan
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yong-ming Yao
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Run-min Yan
| |
Collapse
|
33
|
Argueta N, Notari E, Szigeti K. Role of Pharmacogenomics in Individualizing Treatment for Alzheimer's Disease. CNS Drugs 2022; 36:365-376. [PMID: 35352296 DOI: 10.1007/s40263-022-00915-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
The development of Alzheimer's disease therapeutics has been challenging, with 99% of clinical trials failing to find a significant difference between drug and placebo. While the quest continues for more effective treatments, there is emerging evidence that pharmacogenetic considerations are important factors in regard to metabolism, efficacy, and toxicity of drugs. Currently, there are five US Food and Drug Administration-approved drugs for the treatment of Alzheimer's disease; three acetylcholinesterase inhibitors, memantine, and aducanumab. Introducing a limited genetic panel consisting of APOE4, CYP2D6*10, and BChE*K would optimize acetylcholinesterase inhibitor therapy, facilitate immunotherapy risk assessment, and inform an amyloid-related imaging abnormality surveillance schedule. In view of the genetic heterogeneity of Alzheimer's disease identified in genome-wide association studies, pharmacogenetics is expected to play an increasing role in mechanism-specific treatment strategies and personalized medicine.
Collapse
Affiliation(s)
- Natalie Argueta
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Emily Notari
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Kinga Szigeti
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| |
Collapse
|
34
|
Pattanaik B, Hammarlund M, Mjörnstedt F, Ulleryd MA, Zhong W, Uhlén M, Gummesson A, Bergström G, Johansson ME. Polymorphisms in alpha 7 nicotinic acetylcholine receptor gene, CHRNA7, and its partially duplicated gene, CHRFAM7A, associate with increased inflammatory response in human peripheral mononuclear cells. FASEB J 2022; 36:e22271. [PMID: 35344211 DOI: 10.1096/fj.202101898r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
The vagus nerve can, via the alpha 7 nicotinic acetylcholine receptor (α7nAChR), regulate inflammation. The gene coding for the α7nAChR, CHRNA7, can be partially duplicated, that is, CHRFAM7A, which is reported to impair the anti-inflammatory effect mediated via the α7nAChR. Several single nucleotide polymorphisms (SNPs) have been described in both CHRNA7 and CHRFAM7A, however, the functional role of these SNPs for immune responses remains to be investigated. In the current study, we set out to investigate whether genetic variants of CHRNA7 and CHRFAM7A can influence immune responses. By investigating data available from the Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) study, in combination with droplet digital PCR and freshly isolated PBMCs from the S3WP participants, challenged with lipopolysaccharide (LPS), we show that CHRNA7 and CHRFAM7A are expressed in human PBMCs, with approximately four times higher expression of CHRFAM7A compared with CHRNA7. One SNP in CHRFAM7A, rs34007223, is positively associated with hsCRP in healthy individuals. Furthermore, gene ontology (GO)-terms analysis of plasma proteins associated with gene expression of CHRNA7 and CHRFAM7A demonstrated an involvement for these genes in immune responses. This was further supported by in vitro data showing that several SNPs in both CHRNA7 and CHRFAM7A are significantly associated with cytokine response. In conclusion, genetic variants of CHRNA7 and CHRFAM7A alters cytokine responses. Furthermore, given that CHRFAM7A SNP rs34007223 is associated with inflammatory marker hsCRP in healthy individuals suggests that CHRFAM7A may have a more pronounced role in regulating inflammatory processes in humans than previously been recognized.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus A Ulleryd
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int J Mol Sci 2022; 23:ijms23073463. [PMID: 35408823 PMCID: PMC8998457 DOI: 10.3390/ijms23073463] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
- NeuroMi, Milan Center for Neuroscience, University of Milano Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
36
|
Letsinger AC, Gu Z, Yakel JL. α7 nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends Neurosci 2022; 45:145-157. [PMID: 34916082 PMCID: PMC8914277 DOI: 10.1016/j.tins.2021.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Cholinergic innervation of the hippocampus uses the neurotransmitter acetylcholine (ACh) to coordinate neuronal circuit activity while simultaneously influencing the function of non-neuronal cell types. The α7 nicotinic ACh receptor (nAChR) subtype is highly expressed throughout the hippocampus, has the highest calcium permeability compared with other subtypes of nAChRs, and is of high therapeutic interest due to its association with a variety of neurological disorders and neurodegenerative diseases. In this review, we synthesize research describing α7 nAChR properties, function, and relationship to cognitive dysfunction within the hippocampal circuit and highlight approaches to help improve therapeutic development.
Collapse
Affiliation(s)
- Ayland C. Letsinger
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA,Corresponding Author,
| |
Collapse
|
37
|
Lauwers M, Au M, Yuan S, Wen C. COVID-19 in Joint Ageing and Osteoarthritis: Current Status and Perspectives. Int J Mol Sci 2022; 23:720. [PMID: 35054906 PMCID: PMC8775477 DOI: 10.3390/ijms23020720] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
COVID-19 is a trending topic worldwide due to its immense impact on society. Recent trends have shifted from acute effects towards the long-term morbidity of COVID-19. In this review, we hypothesize that SARS-CoV-2 contributes to age-related perturbations in endothelial and adipose tissue, which are known to characterize the early aging process. This would explain the long-lasting symptoms of SARS-CoV-2 as the result of an accelerated aging process. Connective tissues such as adipose tissue and musculoskeletal tissue are the primary sites of aging. Therefore, current literature was analyzed focusing on the musculoskeletal symptoms in COVID-19 patients. Hypovitaminosis D, increased fragility, and calcium deficiency point towards bone aging, while joint and muscle pain are typical for joint and muscle aging, respectively. These characteristics could be classified as early osteoarthritis-like phenotype. Exploration of the impact of SARS-CoV-2 and osteoarthritis on endothelial and adipose tissue, as well as neuronal function, showed similar perturbations. At a molecular level, this could be attributed to the angiotensin-converting enzyme 2 expression, renin-angiotensin system dysfunction, and inflammation. Finally, the influence of the nicotinic cholinergic system is being evaluated as a new treatment strategy. This is combined with the current knowledge of musculoskeletal aging to pave the road towards the treatment of long-term COVID-19.
Collapse
Affiliation(s)
- Marianne Lauwers
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| | - Manting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong;
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| |
Collapse
|
38
|
Schmidt ERE, Polleux F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front Neural Circuits 2022; 15:787164. [PMID: 35069126 PMCID: PMC8777274 DOI: 10.3389/fncir.2021.787164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.
Collapse
Affiliation(s)
- Ewoud R. E. Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Ewoud R. E. Schmidt
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
- Franck Polleux
| |
Collapse
|
39
|
Rooy M, Lazarevich I, Koukouli F, Maskos U, Gutkin B. Cholinergic modulation of hierarchical inhibitory control over cortical resting state dynamics: Local circuit modeling of schizophrenia-related hypofrontality. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100018. [PMID: 34820636 PMCID: PMC8591733 DOI: 10.1016/j.crneur.2021.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate the cholinergic drive to a hierarchy of inhibitory neurons in the superficial layers of the PFC, critical to cognitive processes. It has been shown that genetic deletions of the various types of nAChRs impact the properties of ultra-slow transitions between high and low PFC activity states in mice during quiet wakefulness. The impact characteristics depend on specific interneuron populations expressing the manipulated receptor subtype. In addition, recent data indicate that a genetic mutation of the α5 nAChR subunit, located on vasoactive intestinal polypeptide (VIP) inhibitory neurons, the rs16969968 single nucleotide polymorphism (α5 SNP), plays a key role in the hypofrontality observed in schizophrenia patients carrying the SNP. Data also indicate that chronic nicotine application to α5 SNP mice relieves the hypofrontality. We developed a computational model to show that the activity patterns recorded in the genetically modified mice can be explained by changes in the dynamics of the local PFC circuit. Notably, our model shows that these altered PFC circuit dynamics are due to changes in the stability structure of the activity states. We identify how this stability structure is differentially modulated by cholinergic inputs to the parvalbumin (PV), somatostatin (SOM) or the VIP inhibitory populations. Our model uncovers that a change in amplitude, but not duration of the high activity states can account for the lowered pyramidal (PYR) population firing rates recorded in α5 SNP mice. We demonstrate how nicotine-induced desensitization and upregulation of the β2 nAChRs located on SOM interneurons, as opposed to the activation of α5 nAChRs located on VIP interneurons, is sufficient to explain the nicotine-induced activity normalization in α5 SNP mice. The model further implies that subsequent nicotine withdrawal may exacerbate the hypofrontality over and beyond one caused by the SNP mutation. Prefrontal cortex shows ultra-slow alterations between low and high activity states at rest. This activity is characteristically decreased in schizophrenia patients. Model identifies local circuit origin of hypofrontality associated with schizophrenia and a5 nicotinic receptor malfunction. Decrease in PFC VIP-interneuron excitability drives decrease in high-activity-state stability and overall hypofrontality. Model shows desensitization/upregulation of SOM-expressed β2-NAChRs drive nicotine-induced renormalization of PFC activity.
Collapse
Affiliation(s)
- Marie Rooy
- Ecole Normale Sup'erieure PSL Univeristy, Laboratoire de Neurosciences Cognitives INSERM U960, Group for Neural Theory, Paris, France.,Center for Cognition and Decision Making, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Ivan Lazarevich
- Ecole Normale Sup'erieure PSL Univeristy, Laboratoire de Neurosciences Cognitives INSERM U960, Group for Neural Theory, Paris, France.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Fani Koukouli
- Institut Pasteur, Neurobiologie integrative des systemes cholinergiques, Paris, France.,CNRS UMR 3571, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie integrative des systemes cholinergiques, Paris, France.,CNRS UMR 3571, Paris, France
| | - Boris Gutkin
- Ecole Normale Sup'erieure PSL Univeristy, Laboratoire de Neurosciences Cognitives INSERM U960, Group for Neural Theory, Paris, France.,Center for Cognition and Decision Making, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
40
|
Kolodziej MA, Gött H, Kopischke B, Bender MK, Weigand MA, Di Fazio P, Schwarm FP, Uhle F. Antiproliferative effect of GTS-21 in glioblastoma cells. Oncol Lett 2021; 22:759. [PMID: 34539863 PMCID: PMC8436335 DOI: 10.3892/ol.2021.13020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults. The poor prognosis and short median overall survival of patients with GBM is associated with resistance to therapy after surgical and adjuvant treatment. The expression of various acetylcholine receptors (AChR) in GBM has been widely reported. The present study aimed to investigate the expression of cholinergic system-related genes in primary GBM and to explore the antiproliferative effect of 3-(2,4-dimethoxybenzylidene) anabaseine (GTS-21) in GBM cell lines. Therefore, the expression of 28 genes associated with the cholinergic system was detected using a customized RT2 Profiler PCR Array in 44 GBM and 5 healthy control brain tissue samples. In addition, the activity of GTS-21, an alpha 7 subunit nicotinic AChR (α7 nAChR) agonist, and that of α-bungarotoxin (α-BTX), an α7 nAChR antagonist, was determined in primary and established GBM cells. Therefore, the A172, U87 and G28 cell lines and primary GBM cells were treated with GTS-21, ACh or nicotine. Cell viability was evaluated using MTT assay at 24, 48 and 72 h following cell treatment with the corresponding compounds. The results revealed that the expression of cholinergic system-related components was notably downregulated, except that of cholinergic receptor nicotinic alpha 7 subunit (CHRNA7), in primary GBM and U87 cells. However, the dominant-negative duplicate form of CHRNA7 was also downregulated. Furthermore, A172 and G28 cells exhibited a heterogeneous gene expression pattern. Additionally, GTS-21 inhibited the proliferation of GBM cells in a dose- and time-dependent manner. Interestingly, treatment with α-BTX restored the proliferation of U87 cells, but not that of A172 and G28 cells. Collectively, the findings of the present study suggested that GTS-21 may inhibit the proliferation of GBM cells and may therefore serve as a novel therapeutic approach to the treatment of GBM, which warrants further investigation.
Collapse
Affiliation(s)
- Malgorzata A. Kolodziej
- Department of Neurosurgery, Justus-Liebig University Giessen, D-35392 Giessen, Germany
- Correspondence to: Dr Malgorzata Anna Kolodziej, Department of Neurosurgery, Justus-Liebig University Giessen, Klinikstrasse 33, D-35392 Giessen, Germany, E-mail:
| | - Hanna Gött
- Department of Neurosurgery, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Benjamin Kopischke
- Department of Neurosurgery, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Michael K.F. Bender
- Department of Neurosurgery, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Markus A. Weigand
- Department of Anaesthesiology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, D-35033 Marburg, Germany
| | - Frank P. Schwarm
- Department of Neurosurgery, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Florian Uhle
- Department of Anaesthesiology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
41
|
Kwok HH, Gao B, Chan KH, Ip MSM, Minna JD, Lam DCL. Nicotinic Acetylcholine Receptor Subunit α7 Mediates Cigarette Smoke-Induced PD-L1 Expression in Human Bronchial Epithelial Cells. Cancers (Basel) 2021; 13:5345. [PMID: 34771509 PMCID: PMC8582493 DOI: 10.3390/cancers13215345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Tobacco smoking is the top risk factor for lung cancer development. Nicotine in cigarettes can induce addiction, and its derivatives become potent carcinogens after metabolic activation and activate oncogenic signaling in lung epithelial cells through their expressed nicotinic acetylcholine receptors (nAChRs). However, the effects of smoking on the tumor immune microenvironment are under investigation. In the current study, we investigated whether nicotine activation of nicotinic acetylcholine receptor subunit α7 (nAChRα7, CHRNA7) would induce PD-L1 expression in lung epithelial cells. The expression levels of nAChRα7 and PD-L1 in eight human bronchial epithelial cell (HBEC) lines were measured after treatment with cigarette smoke extract (CSE) or nicotine derivatives. The results showed that PD-L1 expression levels increased in HBECs after exposure to CSE or nicotine derivatives. This induction of PD-L1 expression could be diminished by treatment with CHRNA7 small-interfering RNA, and the relevant signaling was mediated via STAT3 phosphorylation and NRF2 expression. In summary, this study demonstrated that the well-known nicotine derivative-activated nAChRα7 could induce STAT3/NRF2 pathways and subsequently promote PD-L1 expression in normal lung epithelial cells. This information provides mechanistic insight into cigarette smoke-induced immune evasion in lung epithelial cells.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-H.K.); (K.-H.C.); (M.S.-M.I.)
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.G.); (J.D.M.)
| | - Koon-Ho Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-H.K.); (K.-H.C.); (M.S.-M.I.)
| | - Mary Sau-Man Ip
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-H.K.); (K.-H.C.); (M.S.-M.I.)
| | - John Dorrance Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.G.); (J.D.M.)
| | - David Chi-Leung Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-H.K.); (K.-H.C.); (M.S.-M.I.)
| |
Collapse
|
42
|
Neuroinflammation Modulation via α7 Nicotinic Acetylcholine Receptor and Its Chaperone, RIC-3. Molecules 2021; 26:molecules26206139. [PMID: 34684720 PMCID: PMC8539643 DOI: 10.3390/molecules26206139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in or on various cell types and have diverse functions. In immune cells nAChRs regulate proliferation, differentiation and cytokine release. Specifically, activation of the α7 nAChR reduces inflammation as part of the cholinergic anti-inflammatory pathway. Here we review numerous effects of α7 nAChR activation on immune cell function and differentiation. Further, we also describe evidence implicating this receptor and its chaperone RIC-3 in diseases of the central nervous system and in neuroinflammation, focusing on multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Deregulated neuroinflammation due to dysfunction of α7 nAChR provides one explanation for involvement of this receptor and of RIC-3 in neurodegenerative diseases. In this review, we also provide evidence implicating α7 nAChRs and RIC-3 in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) involving neuroinflammation. Besides, we will describe the therapeutic implications of activating the cholinergic anti-inflammatory pathway for diseases involving neuroinflammation.
Collapse
|
43
|
Li YY, Geng RJ, Yu SY, Li GJ, Wang ZY, Li HF. Association Study of Polymorphisms in Neuronal Nicotinic Acetylcholine Receptor Subunit Genes With Schizophrenia in the Han Chinese Population. Psychiatry Investig 2021; 18:943-948. [PMID: 34555889 PMCID: PMC8542753 DOI: 10.30773/pi.2021.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the relation between nicotinic acetylcholine receptor subunit (nAChR) genes and schizophrenia, and the relation between tag single nucleotide polymorphism (rs1317286, rs1044396, rs6494212, rs16969968, and rs684513) and schizophrenia in Han Chinese people. METHODS The protein-protein interaction (PPI) network among nAChR protein and 350 proteins encoded by schizophrenia-related susceptibility genes was constructed through the String database to explore whether nAChR genes were associated with schizophrenia in these known databases. Then, five single nucleotide polymorphisms (SNPs) of CHRNA3 (rs1317286), CHRNA4 (rs1044396), CHRNA7 (rs6494212), and CHRNA5 (rs16969968, rs684513) were analyzed in a sample of 1,035 schizophrenic patients and 816 healthy controls. The interaction between the markers was analyzed using multifactor dimensionality reduction (MDR) software. Power analysis was performed using the Quanto program. RESULTS There are no significant differences in genotype or allele distribution were identified between the patients and controls (p>0.05). The haplotypes constructed by four markers rs1317286, rs6494212, rs16969968, and rs684513 were not associated with schizophrenia either. However, a significant association between models made of rs1317286, rs1044396, rs6494212, and rs684513 and schizophrenia was revealed in interaction analysis (p<0.05). CONCLUSION The nAChR protein may have effects on the development of schizophrenia through the interaction with proteins encoded by schizophrenia-related susceptibility genes, but no relation was found between selected polymorphisms and schizophrenia in the collected Han Chinese people. However, interaction analysis suggested four-SNP model has an important effect on schizophrenia.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui-Jie Geng
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shun-Ying Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guan-Jun Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou-Ye Wang
- Department of Medical Psychology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Fang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Özaltun MF, Geyik S, Yılmaz ŞG. Screening for Copy Number Variations of the 15q13.3 Hotspot in CHRNA7 Gene and Expression in Patients with Migraines. Curr Issues Mol Biol 2021; 43:1090-1113. [PMID: 34563047 PMCID: PMC8929100 DOI: 10.3390/cimb43020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
Background: a migraine is a neurological disease. Copy number variation (CNV) is a phenomenon in which parts of the genome are repeated. We investigated the effects of the CNV and gene expression at the location 15q13.3 in the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, which we believe to be effective in the migraine clinic. Methods: we evaluated changes in CHRNA7 gene expression levels and CNV of 15q13.3 in patients with migraine (n = 102, with aura, n = 43; without aura, n = 59) according to healthy controls (n = 120) by q-PCR. The data obtained were analyzed against the reference telomerase reverse transcriptase (TERT) gene with the double copy number by standard curve analysis. Copy numbers were graded as a normal copy (2), gain (2>), and loss (<2). Results: we analyzed using the 2−ΔΔCT calculation method. The CHRNA7 gene was significantly downregulated in patients (p < 0.05). The analysis of CNV in the CHRNA7 gene was statistically significant in the patient group, according to healthy controls (p < 0.05). A decreased copy number indicates a dosage loss. However, no significant difference was observed among gain, normal, and loss copy numbers and expression values in patients (p > 0.05). The change in CNV was not associated with the downregulation of the CHRNA7 gene. Conclusion: Downregulation of the CHRNA7 gene may contribute to the formation of migraine by inactivation of the alpha-7 nicotinic receptor (α7nAChR). The association of CNV gains and losses with migraines will lead to better understanding of the molecular mechanisms and pathogenesis, to better define the disease, to be used as a treatment target.
Collapse
Affiliation(s)
- Mehmet Fatih Özaltun
- Department of Neurology, Gaziantep University, Gaziantep 27310, Turkey; (M.F.Ö.); (S.G.)
| | - Sırma Geyik
- Department of Neurology, Gaziantep University, Gaziantep 27310, Turkey; (M.F.Ö.); (S.G.)
| | - Şenay Görücü Yılmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep 27310, Turkey
- Correspondence: or ; Tel.: +90-(342)-360-1200; Fax: +90-(342)-360-8795
| |
Collapse
|
45
|
Bedoya-Reina OC, Li W, Arceo M, Plescher M, Bullova P, Pui H, Kaucka M, Kharchenko P, Martinsson T, Holmberg J, Adameyko I, Deng Q, Larsson C, Juhlin CC, Kogner P, Schlisio S. Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nat Commun 2021; 12:5309. [PMID: 34493726 PMCID: PMC8423786 DOI: 10.1038/s41467-021-24870-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Childhood neuroblastoma has a remarkable variability in outcome. Age at diagnosis is one of the most important prognostic factors, with children less than 1 year old having favorable outcomes. Here we study single-cell and single-nuclei transcriptomes of neuroblastoma with different clinical risk groups and stages, including healthy adrenal gland. We compare tumor cell populations with embryonic mouse sympatho-adrenal derivatives, and post-natal human adrenal gland. We provide evidence that low and high-risk neuroblastoma have different cell identities, representing two disease entities. Low-risk neuroblastoma presents a transcriptome that resembles sympatho- and chromaffin cells, whereas malignant cells enriched in high-risk neuroblastoma resembles a subtype of TRKB+ cholinergic progenitor population identified in human post-natal gland. Analyses of these populations reveal different gene expression programs for worst and better survival in correlation with age at diagnosis. Our findings reveal two cellular identities and a composition of human neuroblastoma tumors reflecting clinical heterogeneity and outcome.
Collapse
Affiliation(s)
- O C Bedoya-Reina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - W Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M Arceo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M Plescher
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - P Bullova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - H Pui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - P Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - T Martinsson
- Department of Pathology and Genetics, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - J Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - I Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Q Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - C Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - C C Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - P Kogner
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - S Schlisio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Borroni V, Barrantes FJ. Homomeric and Heteromeric α7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. MEMBRANES 2021; 11:membranes11090664. [PMID: 34564481 PMCID: PMC8465519 DOI: 10.3390/membranes11090664] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in the modulation of essential brain functions such as memory, learning, and attention. Homomeric α7 nAChR, formed exclusively by five identical α7 subunits, is involved in rapid synaptic transmission, whereas the heteromeric oligomers composed of α7 in combination with β subunits display metabotropic properties and operate in slower time frames. At the cellular level, the activation of nAChRs allows the entry of Na+ and Ca2+; the two cations depolarize the membrane and trigger diverse cellular signals, depending on the type of nAChR pentamer and neurons involved, the location of the intervening cells, and the networks of which these neuronal cells form part. These features make the α7 nAChR a central player in neurotransmission, metabolically associated Ca2+-mediated signaling, and modulation of diverse fundamental processes operated by other neurotransmitters in the brain. Due to its ubiquitous distribution and the multiple functions it displays in the brain, the α7 nAChR is associated with a variety of neurological and neuropsychiatric disorders whose exact etiopathogenic mechanisms are still elusive.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1127AAR, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
47
|
Meganathan K, Prakasam R, Baldridge D, Gontarz P, Zhang B, Urano F, Bonni A, Maloney SE, Turner TN, Huettner JE, Constantino JN, Kroll KL. Altered neuronal physiology, development, and function associated with a common chromosome 15 duplication involving CHRNA7. BMC Biol 2021; 19:147. [PMID: 34320968 PMCID: PMC8317352 DOI: 10.1186/s12915-021-01080-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - James E. Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Kristen L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| |
Collapse
|
48
|
Song C, Shi J, Xu J, Zhao L, Zhang Y, Huang W, Qiu Y, Zhang R, Chen H, Wang H. Post-transcriptional regulation of α7 nAChR expression by miR-98-5p modulates cognition and neuroinflammation in an animal model of Alzheimer's disease. FASEB J 2021; 35:e21658. [PMID: 34010470 DOI: 10.1096/fj.202100257r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is a complicated neurodegenerative disease and therefore addressing multiple targets simultaneously has been believed as a promising therapeutic strategy against AD. α7 nicotinic acetylcholine receptor (nAChR), which plays an important role in improving cognitive function and alleviating neuroinflammation in central nervous system (CNS), has been regarded as a potential target in the treatment of AD. However, the regulation of α7 nAChR at post-transcriptional level in mammalian brain remains largely speculated. Herein, we uncovered a novel post-transcriptional regulatory mechanism of α7 nAChR expression in AD and further demonstrated that miR-98-5p suppressed α7 nAChR expression through directly binding to the 3'UTR of mRNA. Knockdown of miR-98-5p activated Ca2+ signaling pathway and consequently reversed cognitive deficits and Aβ burden in APP/PS1 mice. Furthermore, miR-98-5p downregulation increased α7 nAChR expression, and ameliorated neuroinflammation via inhibiting NF-κB pathway and upregulating Nrf2 target genes. Our findings illustrate a prominent regulatory role of miR-98-5p in targeting inflammation and cognition, and provide an insight into the potential of miR-98-5p/α7 nAChR axis as a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Science, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Budisteanu M, Papuc SM, Streata I, Cucu M, Pirvu A, Serban-Sosoi S, Erbescu A, Andrei E, Iliescu C, Ioana D, Severin E, Ioana M, Arghir A. The Phenotypic Spectrum of 15q13.3 Region Duplications: Report of 5 Patients. Genes (Basel) 2021; 12:1025. [PMID: 34356041 PMCID: PMC8306426 DOI: 10.3390/genes12071025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Chromosome 15q13.3 microduplications are associated with a wide spectrum of clinical presentations ranging from normal to different neuropsychiatric conditions, such as developmental delay (DD), intellectual disability (ID), epilepsy, hypotonia, autism spectrum disorders (ASD), attention-deficit hyperactivity disorder, and schizophrenia. The smallest region of overlap for 15q13.3 duplications encompasses the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, a strong candidate for the behavioral abnormalities. We report on a series of five patients with 15q13.3 duplications detected by chromosomal microarray. The size of the duplications ranged from 378 to 537 kb, and involved the CHRNA7 gene in all patients. The most common clinical features, present in all patients, were speech delay, autistic behavior, and muscle hypotonia; DD/ID was present in three patients. One patient presented epileptic seizures; EEG anomalies were observed in three patients. No consistent dysmorphic features were noted. Neuroimaging studies revealed anomalies in two patients: Dandy-Walker malformation and a right temporal cyst. 15q13.3 duplications are associated with various neuropsychiatric features, including speech delay, hypotonia, ASD, and ID, also present in our patient group. Our study brings detailed clinical and molecular data from five ASD patients with 15q13.3 microduplications involving the CHRNA7 gene, contributing to the existing knowledge about the association of 15q13.3 duplications with neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
- Department of Genetics, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Sorina Mihaela Papuc
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| | - Ioana Streata
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mihai Cucu
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Andrei Pirvu
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Simona Serban-Sosoi
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Alina Erbescu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| | - Emanuela Andrei
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Catrinel Iliescu
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Doina Ioana
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Emilia Severin
- Department of Genetics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania;
| | - Mihai Ioana
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Aurora Arghir
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| |
Collapse
|
50
|
Regulation of Immune Functions by Non-Neuronal Acetylcholine (ACh) via Muscarinic and Nicotinic ACh Receptors. Int J Mol Sci 2021; 22:ijms22136818. [PMID: 34202925 PMCID: PMC8268711 DOI: 10.3390/ijms22136818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) is the classical neurotransmitter in the cholinergic nervous system. However, ACh is now known to regulate various immune cell functions. In fact, T cells, B cells, and macrophages all express components of the cholinergic system, including ACh, muscarinic, and nicotinic ACh receptors (mAChRs and nAChRs), choline acetyltransferase, acetylcholinesterase, and choline transporters. In this review, we will discuss the actions of ACh in the immune system. We will first briefly describe the mechanisms by which ACh is stored in and released from immune cells. We will then address Ca2+ signaling pathways activated via mAChRs and nAChRs on T cells and B cells, highlighting the importance of ACh for the function of T cells, B cells, and macrophages, as well as its impact on innate and acquired (cellular and humoral) immunity. Lastly, we will discuss the effects of two peptide ligands, secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) and hippocampal cholinergic neurostimulating peptide (HCNP), on cholinergic activity in T cells. Overall, we stress the fact that ACh does not function only as a neurotransmitter; it impacts immunity by exerting diverse effects on immune cells via mAChRs and nAChRs.
Collapse
|