1
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
2
|
Suárez-Suárez C, González-Pérez S, Márquez-Miranda V, Araya-Duran I, Vidal-Beltrán I, Vergara S, Carvacho I, Hinostroza F. The Endocannabinoid Peptide RVD-Hemopressin Is a TRPV1 Channel Blocker. Biomolecules 2024; 14:1134. [PMID: 39334900 PMCID: PMC11430712 DOI: 10.3390/biom14091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Neurotransmission is critical for brain function, allowing neurons to communicate through neurotransmitters and neuropeptides. RVD-hemopressin (RVD-Hp), a novel peptide identified in noradrenergic neurons, modulates cannabinoid receptors CB1 and CB2. Unlike hemopressin (Hp), which induces anxiogenic behaviors via transient receptor potential vanilloid 1 (TRPV1) activation, RVD-Hp counteracts these effects, suggesting that it may block TRPV1. This study investigates RVD-Hp's role as a TRPV1 channel blocker using HEK293 cells expressing TRPV1-GFP. Calcium imaging and patch-clamp recordings demonstrated that RVD-Hp reduces TRPV1-mediated calcium influx and TRPV1 ion currents. Molecular docking and dynamics simulations indicated that RVD-Hp interacts with TRPV1's selectivity filter, forming stable hydrogen bonds and van der Waals contacts, thus preventing ion permeation. These findings highlight RVD-Hp's potential as a therapeutic agent for conditions involving TRPV1 activation, such as pain and anxiety.
Collapse
Affiliation(s)
- Constanza Suárez-Suárez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Sebastián González-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Isabel Vidal-Beltrán
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Sebastián Vergara
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Ingrid Carvacho
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
3
|
Tomašević N, Emser FS, Muratspahić E, Gattringer J, Hasinger S, Hellinger R, Keov P, Felkl M, Gertsch J, Becker CFW, Gruber CW. Discovery and development of macrocyclic peptide modulators of the cannabinoid 2 receptor. J Biol Chem 2024; 300:107330. [PMID: 38679329 PMCID: PMC11154713 DOI: 10.1016/j.jbc.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 μM and a potency (EC50) of 8 μM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.
Collapse
Affiliation(s)
- Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Susanna Emser
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Simon Hasinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Manuel Felkl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Ralvenius WT, Andresen JL, Huston MM, Penney J, Bonner JM, Fenton OS, Langer R, Tsai LH. Nanoparticle-Mediated Delivery of Anti-PU.1 siRNA via Localized Intracisternal Administration Reduces Neuroinflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309225. [PMID: 38018280 DOI: 10.1002/adma.202309225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Neuroinflammation is a hallmark of neurodegenerative disorders including Alzheimer's disease (AD). Microglia, the brain's immune cells, express many of the AD-risk loci identified in genome wide association studies and present a promising target for anti-inflammatory RNA therapeutics but are difficult to transfect with current methods. Here, several lipid nanoparticle (LNP) formulations are examined, and a lead candidate that supports efficient RNA delivery in cultures of human stem cell-derived microglia-like cells (iMGLs) and animal models of neuroinflammation is identified. The lead microglia LNP (MG-LNP) formulation shows minimal toxicity and improves delivery efficiency to inflammatory iMGLs, suggesting a preference for delivery into activated microglia. Intraperitoneal injection of the MG-LNP formulation generates widespread expression of the delivered reporter construct in all organs, whereas local intracisternal injection directly into the cerebrospinal fluid leads to preferential expression in the brain. It is shown that LNP-mediated delivery of siRNA targeting the PU.1 transcription factor, a known AD-risk locus, successfully reduces PU.1 levels in iMGLs and reduces neuroinflammation in mice injected with LPS and in CK-p25 mice that mimic the chronic neuroinflammation seen in AD patients. The LNP formulation represents an effective RNA delivery vehicle when applied intrathecally and can be broadly utilized to test potential neuroinflammation-directed gene therapies.
Collapse
Affiliation(s)
- William T Ralvenius
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jason L Andresen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Margaret M Huston
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Julia Maeve Bonner
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Owen S Fenton
- UNC Eshelman School of Pharmacy, Department of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Hughes AC, Pollard BG, Xu B, Gammons JW, Chapman P, Bikoff JB, Schwarz LA. A Novel Single Vector Intersectional AAV Strategy for Interrogating Cellular Diversity and Brain Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527312. [PMID: 36798174 PMCID: PMC9934562 DOI: 10.1101/2023.02.07.527312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C. Hughes
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pollard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jesse W. Gammons
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Present address: Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Lead contact
| |
Collapse
|
6
|
Wu CH, Dong CD, Kumar Patel A, Rani Singhania R, Yang MJ, Guo HR, Kuo JM. Characterization of waste cell biomass derived glutamate decarboxylase for in vitro γ-aminobutyric acid production and value-addition. BIORESOURCE TECHNOLOGY 2021; 337:125423. [PMID: 34153863 DOI: 10.1016/j.biortech.2021.125423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Waste biomass of Lactobacillus brevis obtained from in vivo γ-aminobutyric acid (GABA) production was used for value-addition. This study aims to extract glutamate decarboxylase (GAD) and characterize it for in vitro GABA production. Extracted GAD showed an excellent activity for in vitro GABA production. 52 W ultrasonic output was best in crude GAD extraction which was purified by Q HP anion-exchange column followed by Superdex-200 colloid separation column. The molecular weight of the purified GAD was determined to be ~53 kDa, and the Km value for L-glutamic acid was calculated ~7.65 mM. Pyridoxal 5'-phosphate (PLP) acted as the best cofactor for GAD. Optimum temperature and PLP dosing were deferring for crude and purified enzyme forms which respectively exhibited at 45°C, 55°C, 200 µmol and 20 µmol whereas optimum pH was the same at 4.5. GAD finds applications in food industries hence its detailed characterization would be promising for commercial exploitations.
Collapse
Affiliation(s)
- Chien-Hui Wu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Jie Yang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Huei-Rong Guo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Jen-Min Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| |
Collapse
|
7
|
Ferrisi R, Ceni C, Bertini S, Macchia M, Manera C, Gado F. Medicinal Chemistry approach, pharmacology and neuroprotective benefits of CB 2R modulators in neurodegenerative diseases. Pharmacol Res 2021; 170:105607. [PMID: 34089867 DOI: 10.1016/j.phrs.2021.105607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
In the last decades, cannabinoid receptor 2 (CB2R) has continued to receive attention as a key therapeutic target in neuroprotection. Indeed, several findings highlight the neuroprotective effects of CB2R through suppression of both neuronal excitability and reactive microglia. Additionally, CB2R seems to be a more promising target than cannabinoid receptor 1 (CB1R) thanks to the lack of central side effects, its lower expression levels in the central nervous system (CNS), and its inducibility, since its expression enhances quickly in the brain following pathological conditions. This review aims to provide a thorough overview of the main natural and synthetic selective CB2R modulators, their chemical classification and their potential therapeutic usefulness in neuroprotection, a crucial aspect for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Costanza Ceni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
8
|
Glasmacher S, Gertsch J. Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice. Adv Biol Regul 2021; 80:100808. [PMID: 33799079 DOI: 10.1016/j.jbior.2021.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Hemopressins ((x)-PVNFKLLSH) or peptide endocannabinoids (pepcans) can bind to cannabinoid receptors. RVD-hemopressin (pepcan-12) was shown to act as endogenous allosteric modulator of cannabinoid receptors, with opposite effects on CB1 and CB2, respectively. Moreover, the N-terminally elongated pepcan-23 was detected in different tissues and was postulated to be the pro-peptide of RVD-hemopressin. Currently, data about the pharmacokinetics, tissue distribution and stability of hemopressin-type peptides are lacking. Here we investigated the secondary structure and physiological role of pepcan-23 as precursor of RVD-hemopressin. We assessed the metabolic stability of these peptides, including hemopressin. Using LC-ESI-MS/MS, pepcan-23 was measured in mouse tissues and human whole blood (~50 pmol/mL) and in plasma was the most stable endogenous peptide containing the hemopressin sequence. Using peptide spiked human whole blood, mouse adrenal gland and liver homogenates demonstrate that pepcan-23 acts as endogenous pro-peptide of RVD-hemopressin. Furthermore, administered pepcan-23 converted to RVD-hemopressin in mice. In circular dichroism spectroscopy, pepcan-23 showed a helix-unordered-helix structure and efficiently formed complexes with divalent metal ions, in particular Cu(II) and Ni(II). Hemopressin and RVD-hemopressin were not bioavailable to the brain and showed poor stability in plasma, in agreement with their overall poor biodistribution. Acute hemopressin administration (100 mg/kg) did not modulate endogenous RVD-hemopressin/pepcan-23 levels or influence the endocannabinoid lipidome but increased 1-stearoyl-2-arachidonoyl-sn-glycerol. Overall, we show that pepcan-23 is a biological pro-peptide of RVD-hemopressin and divalent metal ions may regulate this process. Given the lack of metabolic stability of hemopressins, administration of pepcan-23 as pro-peptide may be suitable in pharmacological experiments as it is converted to RVD-hemopressin in vivo.
Collapse
Affiliation(s)
- Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
9
|
Heimann AS, Dale CS, Guimarães FS, Reis RAM, Navon A, Shmuelov MA, Rioli V, Gomes I, Devi LL, Ferro ES. Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 2021; 183:108406. [PMID: 33212113 PMCID: PMC8609950 DOI: 10.1016/j.neuropharm.2020.108406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.
Collapse
Affiliation(s)
| | - Camila S Dale
- Department of Anatomy, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil
| | - Ricardo A M Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Federal University, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal A Shmuelov
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response and Cell Signaling (CETICS), Butantan Institute, São Paulo, 05503-900, Brazil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Lakshmi L Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Emer S Ferro
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Pharmacology, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Camargo LL, Denadai-Souza A, Yshii LM, Lima C, Teixeira SA, Cerqueira ARA, Gewehr MCF, Fernandes ES, Schenka AA, Muscará MN, Ferro ES, Costa SKP. The potential anti-inflammatory and anti-nociceptive effects of rat hemopressin (PVNFKFLSH) in experimental arthritis. Eur J Pharmacol 2021; 890:173636. [PMID: 33053380 DOI: 10.1016/j.ejphar.2020.173636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1β, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 μg/day, i.art.), Hp given orally (20 μg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 μg/knee) or p.o. (20 μg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1β, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP.
Collapse
Affiliation(s)
- Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Alexandre Denadai-Souza
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France; KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Laboratory for Intestinal Neuroimmune Interactions, Leuven, Belgium; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Lidia M Yshii
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France; VIB Center for Brain & Disease Research and KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Carla Lima
- Special Laboratory of Applied Toxicology (CAT/CEPID), Butantan Institute, Avenue Vital Brazil, 1500, Butantan, 05503-009, Sao Paulo, Brazil
| | - Simone A Teixeira
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Anderson R A Cerqueira
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Mayara C F Gewehr
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Elizabeth S Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, 80250-060, PR, Brazil; Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, 80230-020, PR, Brazil
| | - André A Schenka
- Faculty of Medical Sciences- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil; Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Soraia K P Costa
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
11
|
Modulation of Noradrenergic and Serotonergic Systems by Cannabinoids: Electrophysiological, Neurochemical and Behavioral Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:111-132. [PMID: 33537940 DOI: 10.1007/978-3-030-61663-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The main noradrenergic and serotonergic nuclei in the central nervous system (CNS) are the locus coeruleus (LC) and the dorsal raphe nucleus (DRN). These brain areas, located in the brainstem, play a pivotal role in the control of various functions and behaviors that are altered by cannabinoids (i.e., pain, arousal, mood, anxiety, or sleep-wake cycle). Anatomical, neurochemical, and functional data suggest that cannabinoids regulate both central noradrenergic and serotonergic neurotransmission. Thus, strong evidence has shown that the firing activity of LC and DRN monoamine neurons or the synthesis/release of noradrenaline (NA) and serotonin (5-HT) in the projection areas are all affected by cannabinoid administration. Herein, we propose that interaction between the endocannabinoid system and the noradrenergic-serotonergic systems could account for some of the anxiolytic, antidepressant, and antinociceptive effects of cannabinoids or the disruption of attention/sleep induced by these drugs.
Collapse
|
12
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Allosteric modulators targeting cannabinoid cb1 and cb2 receptors: implications for drug discovery. Future Med Chem 2020; 11:2019-2037. [PMID: 31517528 DOI: 10.4155/fmc-2019-0005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allosteric modulators of cannabinoid receptors hold great therapeutic potential, as they do not possess intrinsic efficacy, but instead enhance or diminish the receptor's response of orthosteric ligands allowing for the tempering of cannabinoid receptor signaling without the desensitization, tolerance and dependence. Allosteric modulators of cannabinoid receptors have numerous advantages over the orthosteric ligands such as higher receptor type selectivity, probe dependence and biased signaling, so they have a great potential to separate the therapeutic benefits from side effects own of orthosteric ligands. This review aims to give an overview of the CB1 and CB2 receptor allosteric modulators highlighting the structure-activity relationship and pharmacological profile of each classes, and their future promise.
Collapse
|
14
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
15
|
Wei F, Zhao L, Jing Y. Signaling molecules targeting cannabinoid receptors: Hemopressin and related peptides. Neuropeptides 2020; 79:101998. [PMID: 31831183 DOI: 10.1016/j.npep.2019.101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022]
Abstract
Cannabinoid receptors (CBRs) are part of the endocannabinoid system, which is involved in various physiological processes such as nociception, inflammation, appetite, stress, and emotion regulation. Many studies have linked the endocannabinoid system to neuroinflammatory and neurodegenerative disorders such as Parkinson's disease, Huntington's chorea, Alzheimer's disease, and multiple sclerosis. Hemopressin [Hp; a fragment of the hemoglobin α1 chain (95-103 amino acids)] and related peptides [VD-Hpα and RVD-Hpα] are peptides that bind to CBRs. Hp acts as an inverse agonist to CB1 receptor (CB1R), VD-Hpα acts as an agonist to CB1R, and RVD-Hpα acts as a negative allosteric modulator of CB1R and a positive allosteric modulator of CB2R. Because of the critical roles of CBRs in numerous physiological processes, it is appealing to use Hp and related peptides for therapeutic purposes. This review discusses their discovery, structure, metabolism, brain exposure, self-assembly characteristics, pharmacological characterization, and pharmacological activities.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
16
|
Abstract
Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited. During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs. In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs. As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
17
|
de Araujo CB, Heimann AS, Remer RA, Russo LC, Colquhoun A, Forti FL, Ferro ES. Intracellular Peptides in Cell Biology and Pharmacology. Biomolecules 2019; 9:biom9040150. [PMID: 30995799 PMCID: PMC6523763 DOI: 10.3390/biom9040150] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Intracellular peptides are produced by proteasomes following degradation of nuclear, cytosolic, and mitochondrial proteins, and can be further processed by additional peptidases generating a larger pool of peptides within cells. Thousands of intracellular peptides have been sequenced in plants, yeast, zebrafish, rodents, and in human cells and tissues. Relative levels of intracellular peptides undergo changes in human diseases and also when cells are stimulated, corroborating their biological function. However, only a few intracellular peptides have been pharmacologically characterized and their biological significance and mechanism of action remains elusive. Here, some historical and general aspects on intracellular peptides' biology and pharmacology are presented. Hemopressin and Pep19 are examples of intracellular peptides pharmacologically characterized as inverse agonists to cannabinoid type 1 G-protein coupled receptors (CB1R), and hemopressin fragment NFKF is shown herein to attenuate the symptoms of pilocarpine-induced epileptic seizures. Intracellular peptides EL28 (derived from proteasome 26S protease regulatory subunit 4; Rpt2), PepH (derived from Histone H2B type 1-H), and Pep5 (derived from G1/S-specific cyclin D2) are examples of peptides that function intracellularly. Intracellular peptides are suggested as biological functional molecules, and are also promising prototypes for new drug development.
Collapse
Affiliation(s)
- Christiane B de Araujo
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Butantan Institute, São Paulo SP 05503-900, Brazil.
| | | | | | - Lilian C Russo
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| | - Fábio L Forti
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| |
Collapse
|
18
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
19
|
Emendato A, Guerrini R, Marzola E, Wienk H, Boelens R, Leone S, Picone D. Disordered Peptides Looking for Their Native Environment: Structural Basis of CB1 Endocannabinoid Receptor Binding to Pepcans. Front Mol Biosci 2018; 5:100. [PMID: 30505835 PMCID: PMC6250848 DOI: 10.3389/fmolb.2018.00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 01/15/2023] Open
Abstract
Endocannabinoid peptides, or “pepcans,” are endogenous ligands of the CB1 cannabinoid receptor. Depending on their length, they display diverse activity: For instance, the nona-peptide Pepcan-9, also known as hemopressin, is a powerful inhibitor of CB1, whereas the longer variant Pepcan-12, which extends by only three amino acid residues at the N-terminus, acts on both CB1 and CB2 as an allosteric modulator, although with diverse effects. Despite active research on their pharmacological applications, very little is known about structure-activity relationships of pepcans. Different structures have been proposed for the nona-peptide, which has also been reported to form fibrillar aggregates. This might have affected the outcome and reproducibility of bioactivity studies. In an attempt of elucidating the determinants of both biological activity and aggregation propensity of Pepcan-9 and Pepcan-12, we have performed their structure characterization in solvent systems characterized by different polarity and pH. We have found that, while disordered in aqueous environment, both peptides display helical structure in less polar environment, mimicking the proteic receptor milieu. In the case of Pepcan-9, this structure is fully consistent with the observed modulation of the CB1. For Pepcan-12, whose allosteric binding site is still unknown, the presented structure is compatible with the binding at one of the previously proposed allosteric sites on CB1. These findings open the way to structure-driven design of selective peptide modulators of CB1.
Collapse
Affiliation(s)
- Alessandro Emendato
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Marzola
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Hans Wienk
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Storozhuk MV, Zholos AV. TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endocannabinoids and Nociceptive Signalling. Curr Neuropharmacol 2018; 16:137-150. [PMID: 28440188 PMCID: PMC5883376 DOI: 10.2174/1570159x15666170424120802] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Chronic pain is a significant clinical problem and a very complex pathophysiological phenomenon. There is growing evidence that targeting the endocannabinoid system may be a useful approach to pain alleviation. Classically, the system includes G protein-coupled receptors of the CB1 and CB2 subtypes and their endogenous ligands. More recently, several subtypes of the large superfamily of cation TRP channels have been coined as “ionotropic cannabinoid receptors”, thus highlighting their role in cannabinoid signalling. Thus, the aim of this review was to explore the intimate connection between several “painful” TRP channels, endocannabinoids and nociceptive signalling. Methods: Research literature on this topic was critically reviewed allowing us not only summarize the existing evidence in this area of research, but also propose several possible cellular mechanisms linking nociceptive and cannabinoid signaling with TRP channels. Results: We begin with an overview of physiology of the endocannabinoid system and its major components, namely CB1 and CB2 G protein-coupled receptors, their two most studied endogenous ligands, anandamide and 2-AG, and several enzymes involved in endocannabinoid biosynthesis and degradation. The role of different endocannabinoids in the regulation of synaptic transmission is then discussed in detail. The connection between the endocannabinoid system and several TRP channels, especially TRPV1-4, TRPA1 and TRPM8, is then explored, while highlighting the role of these same channels in pain signalling. Conclusion: There is increasing evidence implicating several TRP subtypes not only as an integral part of the endocannabinoid system, but also as promising molecular targets for pain alleviation with the use of endo- and phytocannabinoids, especially when the function of these channels is upregulated under inflammatory conditions.
Collapse
Affiliation(s)
- Maksim V Storozhuk
- A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine
| | - Alexander V Zholos
- A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine.,Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine
| |
Collapse
|
21
|
Morales P, Goya P, Jagerovic N. Emerging strategies targeting CB 2 cannabinoid receptor: Biased agonism and allosterism. Biochem Pharmacol 2018; 157:8-17. [PMID: 30055149 DOI: 10.1016/j.bcp.2018.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 01/24/2023]
Abstract
During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain.
| |
Collapse
|
22
|
Busquets-Garcia A, Bains J, Marsicano G. CB 1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology 2018; 43:4-20. [PMID: 28862250 PMCID: PMC5719111 DOI: 10.1038/npp.2017.206] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Endocannabinoids (eCBs) are amongst the most ubiquitous signaling molecules in the nervous system. Over the past few decades, observations based on a large volume of work, first examining the pharmacological effects of exogenous cannabinoids, and then the physiological functions of eCBs, have directly challenged long-held and dogmatic views about communication, plasticity and behavior in the central nervous system (CNS). The eCBs and their cognate cannabinoid receptors exhibit a number of unique properties that distinguish them from the widely studied classical amino-acid transmitters, neuropeptides, and catecholamines. Although we now have a loose set of mechanistic rules based on experimental findings, new studies continue to reveal that our understanding of the eCB system (ECS) is continuously evolving and challenging long-held conventions. Here we will briefly summarize findings on the current canonical view of the 'ECS' and will address novel aspects that reveal how a nearly ubiquitous system can determine highly specific functions in the brain. In particular, we will focus on findings that push for an expansion of our ideas around long-held beliefs about eCB signaling that, while clearly true, may be contributing to an oversimplified perspective on how cannabinoid signaling at the microscopic level impacts behavior at the macroscopic level.
Collapse
Affiliation(s)
- Arnau Busquets-Garcia
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Anorexigenic effects induced by RVD-hemopressin(α) administration. Pharmacol Rep 2017; 69:1402-1407. [DOI: 10.1016/j.pharep.2017.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/31/2023]
|
24
|
Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron 2017; 93:1252-1274. [PMID: 28334603 DOI: 10.1016/j.neuron.2017.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.
Collapse
Affiliation(s)
- Pier Vincenzo Piazza
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| | - Daniela Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| |
Collapse
|
25
|
Khurana L, Mackie K, Piomelli D, Kendall DA. Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities. Neuropharmacology 2017; 124:3-12. [PMID: 28527758 PMCID: PMC5540789 DOI: 10.1016/j.neuropharm.2017.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 02/03/2023]
Abstract
Cannabinoid pharmacology has been intensely studied because of cannabis' pervasive medicinal and non-medicinal uses as well as for the therapeutic potential of cannabinoid-based drugs for the treatment of pain, anxiety, substance abuse, obesity, cancer and neurodegenerative disorders. The identification of allosteric modulators of the cannabinoid receptor 1 (CB1) has given a new direction to the development of cannabinoid-based therapeutics due to the many advantages offered by targeting allosteric site(s). Allosteric receptor modulators hold potential to develop subtype-specific and pathway-specific therapeutics. Here we briefly discuss the first-generation of allosteric modulators of CB1 receptor, their structure-activity relationships, signaling pathways and the allosteric binding site(s) on the CB1 receptor. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Leepakshi Khurana
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Ken Mackie
- Gill Center and Departmental of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, United States; Department of Biological Chemistry, University of California, Irvine, CA 92697, United States
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
26
|
Pepcan-12 (RVD-hemopressin) is a CB2 receptor positive allosteric modulator constitutively secreted by adrenals and in liver upon tissue damage. Sci Rep 2017; 7:9560. [PMID: 28842619 PMCID: PMC5573408 DOI: 10.1038/s41598-017-09808-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Pepcan-12 (RVD-hemopressin; RVDPVNFKLLSH) is the major peptide of a family of endogenous peptide endocannabinoids (pepcans) shown to act as negative allosteric modulators (NAM) of cannabinoid CB1 receptors. Noradrenergic neurons have been identified to be a specific site of pepcan production. However, it remains unknown whether pepcans occur in the periphery and interact with peripheral CB2 cannabinoid receptors. Here, it is shown that pepcan-12 acts as a potent (Ki value ~50 nM) hCB2 receptor positive allosteric modulator (PAM). It significantly potentiated the effects of CB2 receptor agonists, including the endocannabinoid 2-arachidonoyl glycerol (2-AG), for [35S]GTPγS binding and cAMP inhibition (5–10 fold). In mice, the putative precursor pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH) was identified with pepcan-12 in brain, liver and kidney. Pepcan-12 was increased upon endotoxemia and ischemia reperfusion damage where CB2 receptors play a protective role. The adrenals are a major endocrine site of production/secretion of constitutive pepcan-12, as shown by its marked loss after adrenalectomy. However, upon I/R damage pepcan-12 was strongly increased in the liver (from ~100 pmol/g to ~500 pmol/g) independent of adrenals. The wide occurrence of this endogenous hormone-like CB2 receptor PAM, with unforeseen opposite allosteric effects on cannabinoid receptors, suggests its potential role in peripheral pathophysiological processes.
Collapse
|
27
|
Gertsch J. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 2017; 174:1464-1483. [PMID: 27891602 DOI: 10.1111/bph.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
28
|
Janero DR, Thakur GA. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opin Drug Discov 2016; 11:1223-1237. [PMID: 27712124 DOI: 10.1080/17460441.2016.1245289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands. These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential. Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints. Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity. In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs. Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.
Collapse
Affiliation(s)
- David R Janero
- a Center for Drug Discovery; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences; Department of Chemistry and Chemical Biology, College of Science; and Health Sciences Entrepreneurs , Northeastern University , Boston , MA , USA
| | - Ganesh A Thakur
- b Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
29
|
Dvorácskó S, Tömböly C, Berkecz R, Keresztes A. Investigation of receptor binding and functional characteristics of hemopressin(1-7). Neuropeptides 2016; 58:15-22. [PMID: 26895730 DOI: 10.1016/j.npep.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/23/2022]
Abstract
The orally active, α-hemoglobin derived hemopressin (PVNFKFLSH, Hp(1-9)) and its truncated (PVNFKFL, Hp(1-7) and PVNFKF, Hp(1-6)) and extended ((R)VDPVNFKFLSH, VD-Hp(1-9) and RVD-Hp(1-9)) derivatives have been postulated to be the endogenous peptide ligands of the cannabinoid receptor type 1 (CB1). In an attempt to create a versatile peptidic research tool for the direct study of the CB1 receptor-peptide ligand interactions, Hp(1-7) was radiolabeled and in vitro characterized in rat and CB1 knockout mouse brain membrane homogenates. In saturation and competition radioligand binding studies, [(3)H]Hp(1-7) labeled membrane receptors with high densities and displayed specific binding to a receptor protein, but seemingly not to the cannabinoid type 1, in comparison the results with the prototypic JWH-018, AM251, rimonabant, Hp(1-9) and RVD-Hp(1-9) (pepcan 12) ligands in both rat brain and CB1 knockout mouse brain homogenates. Furthermore, functional [(35)S]GTP γS binding studies revealed that Hp(1-7) and Hp(1-9) only weakly activated G-proteins in both brain membrane homogenates. Based on our findings and the latest literature data, we assume that the Hp(1-7) peptide fragment may be an allosteric ligand or indirect regulator of the endocannabinoid system rather than an endogenous ligand of the CB1 receptor.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Róbert Berkecz
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Attila Keresztes
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
30
|
Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB
1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB
1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB
1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB
1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Collapse
Affiliation(s)
- Arnau Busquets Garcia
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Edgar Soria-Gomez
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
31
|
Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2016; 16:705-18. [PMID: 26585799 DOI: 10.1038/nrn4036] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux 33077, France.,University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33077, France
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
32
|
Morales P, Goya P, Jagerovic N, Hernandez-Folgado L. Allosteric Modulators of the CB 1 Cannabinoid Receptor: A Structural Update Review. Cannabis Cannabinoid Res 2016; 1:22-30. [PMID: 28861476 PMCID: PMC5576597 DOI: 10.1089/can.2015.0005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In 2005, the first evidence of an allosteric binding site at the CB1R was provided by the identification of three indoles of the company Organon that were allosteric enhancers of agonist binding affinity and, functionally, allosteric inhibitors of agonist activity. Since then, structure–activity relationships of indoles as CB1R modulators have been reported. Targeting the allosteric site on CB1R, new families structurally based on urea and on 3-phenyltropane analogs of cocaine have been discovered as CB1R-negative allosteric modulators (NAMs), respectively, by Prosidion and by the Research Triangle Park. Endogenous allosteric ligands of different nature have been identified more recently. Thus, the therapeutic neuroprotection application of lipoxin A4, an arachidonic acid derivative, as an allosteric enhancer of CB1R activity has been confirmed in vivo. It was also the case of the steroid hormone, pregnenolone, whose negative allosteric effects on Δ9-tetrahydrocannabinol (Δ9-THC) were reproduced in vivo in a behavioral tetrad model and in food intake and memory impairment assays. Curiously, the peroxisome proliferator-activated receptor-γ agonist fenofibrate or polypeptides such as pepcan-12 have been shown to act on the endocannabinoid system through CB1R allosteric modulation. The mechanistic bases of the effects of the phytocannabinoid cannabidiol (CBD) are still not fully explained. However, there is evidence that CBD behaves as an NAM of Δ9-THC- and 2-AG. Allosteric modulation at CB1R offers new opportunities for therapeutic applications. Therefore, further understanding of the chemical features required for allosteric modulation as well as their orthosteric probe dependence may broaden novel approaches for fine-tuning the signaling pathways of the CB1R.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
33
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
34
|
Hillard CJ. The Endocannabinoid Signaling System in the CNS: A Primer. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:1-47. [PMID: 26638763 DOI: 10.1016/bs.irn.2015.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this chapter is to provide an introduction to the mechanisms for the regulation of endocannabinoid signaling through CB1 cannabinoid receptors in the central nervous system. The processes involved in the synthesis and degradation of the two most well-studied endocannabinoids, 2-arachidonoylglycerol and N-arachidonylethanolamine are outlined along with information regarding the regulation of the proteins involved. Signaling mechanisms and pharmacology of the CB1 cannabinoid receptor are outlined, as is the paradigm of endocannabinoid/CB1 receptor regulation of neurotransmitter release. The reader is encouraged to appreciate the importance of the endocannabinoid/CB1 receptor signaling system in the regulation of synaptic activity in the brain.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center, and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
35
|
Thompson AJ, Lochner M. Lighting up neuroscience. Neuropharmacology 2015; 98:1-2. [PMID: 26449869 DOI: 10.1016/j.neuropharm.2015.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Martin Lochner
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
36
|
Zádor F, Wollemann M. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors. Pharmacol Res 2015; 102:254-63. [PMID: 26520391 DOI: 10.1016/j.phrs.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Maria Wollemann
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
37
|
Straiker A, Mitjavila J, Yin D, Gibson A, Mackie K. Aiming for allosterism: Evaluation of allosteric modulators of CB1 in a neuronal model. Pharmacol Res 2015. [PMID: 26211948 DOI: 10.1016/j.phrs.2015.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cannabinoid pharmacology has proven nettlesome with issues of promiscuity a common theme among both agonists and antagonists. One recourse is to develop allosteric ligands to modulate cannabinoid receptor signaling. Cannabinoids have come late to the allosteric table. The 'first-generation' negative and positive allosteric modulators (NAMs and PAMs) represent an important first effort. However, most studies have relied on synthetic agonists, often tested in over-expression systems rather than a defined neuronal model system that utilizes endogenously synthesized and released cannabinoids. We have systematically examined first-generation NAMs and a PAM on endocannabinoid modulation of synaptic transmission in cultured autaptic hippocampal neurons. These neurons exhibit CB1 and 2-arachidonoyl glycerol (2-AG)-mediated depolarization induced suppression of excitation (DSE) and therefore serve as a model to test CB1 modulators in a neuronal model of endogenous cannabinoid signaling. We find ORG27569, PSNCBAM-1, and PEPCAN12 attenuate DSE and do not directly inhibit CB1 receptors. Of these PSNCBAM-1 is the most efficacious while PEPCAN12 has the distinction of being an endogenous NAM. The reported NAMs pregnenolone and hemopressin as well as the reported PAM lipoxin A4 are without effect in this model of endocannabinoid signaling. In summary, three of the allosteric modulators evaluated function in a manner consistent with allosterism in a neuronal 2-AG-based model of endogenous cannabinoid signaling.
Collapse
Affiliation(s)
- Alex Straiker
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, 1101 E, 10th St, Bloomington, IN 47405, United States.
| | - José Mitjavila
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, 1101 E, 10th St, Bloomington, IN 47405, United States
| | - Danielle Yin
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, 1101 E, 10th St, Bloomington, IN 47405, United States
| | - Anne Gibson
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, 1101 E, 10th St, Bloomington, IN 47405, United States
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, 1101 E, 10th St, Bloomington, IN 47405, United States
| |
Collapse
|