1
|
Zhu M, Wang X, Zhao X, Cai Q. Intrahemispheric White Matter Asymmetries and Interhemispheric Connections Underlying the Lateralization of Language Production and Spatial Attention in Left-Handers. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00153. [PMID: 39830069 PMCID: PMC11740161 DOI: 10.1162/nol_a_00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/04/2024] [Indexed: 01/22/2025]
Abstract
Leftward language production and rightward spatial attention are salient features of functional organization in most humans, but their anatomical basis remains unclear. Interhemispheric connections and intrahemispheric white matter asymmetries have been proposed as important factors underlying functional lateralization. To investigate the role of white matter connectivity in functional lateralization, we first identified 96 left-handers using visual half field naming tasks. They were then divided into atypical and typical functional dominance based on the lateralization of brain activation in a word generation task (for language production) and a landmark task (for spatial attention). Using a novel fixel-based framework, we obtained fiber-specific properties of white matter pathways. Results showed, first, that differences between two language dominance groups occurred in the asymmetry of the superior longitudinal fasciculus-III (SLF-III), whereas differences between two spatial attention dominance groups occurred in the rostrum and rostral body of the corpus callosum. However, the directions of functional lateralization were not associated with the directions of white matter asymmetries. Second, the degree of language lateralization was predicted by SLF-III asymmetry and the rostral body of the corpus callosum, whereas the degree of spatial attention lateralization was predicted by the rostrum of the corpus callosum. Notably, the degree of each functional lateralization was negatively correlated with the anterior and middle callosal connections, supporting the excitatory model of the corpus callosum. The results suggest that language lateralization is shaped by a combined effect of intra- and interhemispheric connections, whereas spatial attention lateralization relies more on interhemispheric connections.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Institute of Brain Science and Education Innovation, East China Normal University, Shanghai, China
| | - Xiao Wang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xier Zhao
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Institute of Brain Science and Education Innovation, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| |
Collapse
|
2
|
Li J, He J, Ren H, Li Z, Ma X, Yuan L, Ouyang L, Li C, He Y, Tang J, Chen X. Inter- and intra-hemispheric lateralization alterations in auditory verbal hallucinations of Schizophrenia: insights from resting-state functional connectivity. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-024-01955-0. [PMID: 39751656 DOI: 10.1007/s00406-024-01955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
Auditory verbal hallucinations (AVHs) in schizophrenia are hypothesized to involve alterations in hemispheric lateralization, but the specific neural mechanisms remain unclear. This study investigated functional intra- and inter-hemispheric connectivity to identify lateralization patterns unique to AVHs. Resting-state fMRI data were collected from 60 schizophrenia patients with persistent AVHs (p-AVH group), 39 patients without AVHs (n-AVH group), and 59 healthy controls (HC group). Using a homotopic atlas, we quantified lateralization indices of functional segregation and integration across 200 homotopic ROI pairs. Segregation was defined as the degree of preferential intra-hemispheric communication within each hemisphere versus inter-hemispheric communication. Integration was used to assess the extent of inter-hemispheric communication between the two hemispheres. Our findings revealed a significant rightward lateralization of segregation in two lateral prefrontal cortex homotopic pairs in the p-AVH group. Additionally, we observed a leftward lateralization of integration in an inferior parietal lobule homotopic pair within the temporoparietal junction region, specifically in the p-AVH group. Importantly, the lateralization index of segregation in the prefrontal cortex was negatively correlated with AVH severity, indicating that greater rightward lateralization is associated with more severe AVHs. These lateralization changes were absent when comparing the n-AVH group to HC group, suggesting they are unique to AVHs in schizophrenia. Our results underscore the pivotal role of altered hemispheric lateralization of functional segregation and integration in the etiology of AVHs, providing new insights into the neural mechanisms underlying these symptoms.
Collapse
Affiliation(s)
- Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Jingqi He
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honghong Ren
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.
| |
Collapse
|
3
|
Jin X, Zhang L, Wu G, Wang X, Du Y. Compensation or Preservation? Different Roles of Functional Lateralization in Speech Perception of Older Non-musicians and Musicians. Neurosci Bull 2024; 40:1843-1857. [PMID: 38839688 PMCID: PMC11625043 DOI: 10.1007/s12264-024-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 06/07/2024] Open
Abstract
Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.
Collapse
Affiliation(s)
- Xinhu Jin
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Wu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyi Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Du
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Amelink JS, Postema MC, Kong XZ, Schijven D, Carrión-Castillo A, Soheili-Nezhad S, Sha Z, Molz B, Joliot M, Fisher SE, Francks C. Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness. Commun Biol 2024; 7:1209. [PMID: 39342056 PMCID: PMC11438961 DOI: 10.1038/s42003-024-06890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Language is supported by a distributed network of brain regions with a particular contribution from the left hemisphere. A multi-level understanding of this network requires studying its genetic architecture. We used resting-state imaging data from 29,681 participants (UK Biobank) to measure connectivity between 18 left-hemisphere regions involved in multimodal sentence-level processing, as well as their right-hemisphere homotopes, and interhemispheric connections. Multivariate genome-wide association analysis of this total network, based on genetic variants with population frequencies >1%, identified 14 genomic loci, of which three were also associated with asymmetry of intrahemispheric connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry of functional connectivity. Exome-wide association analysis based on rare, protein-altering variants (frequencies <1%) suggested 7 additional genes. These findings shed new light on genetic contributions to language network organization and related behavioural traits.
Collapse
Affiliation(s)
- Jitse S Amelink
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Merel C Postema
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China
- Department of Psychiatry of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Amaia Carrión-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Commissariat à L'énergie Atomique et aux Énergies Alternatives, CNRS, Université de Bordeaux, Bordeaux, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Borne A, Lemaitre C, Bulteau C, Baciu M, Perrone-Bertolotti M. Unveiling the cognitive network organization through cognitive performance. Sci Rep 2024; 14:11645. [PMID: 38773246 PMCID: PMC11109237 DOI: 10.1038/s41598-024-62234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
The evaluation of cognitive functions interactions has become increasingly implemented in the cognition exploration. In the present study, we propose to examine the organization of the cognitive network in healthy participants through the analysis of behavioral performances in several cognitive domains. Specifically, we aim to explore cognitive interactions profiles, in terms of cognitive network, and as a function of participants' handedness. To this end, we proposed several behavioral tasks evaluating language, memory, executive functions, and social cognition performances in 175 young healthy right-handed and left-handed participants and we analyzed cognitive scores, from a network perspective, using graph theory. Our results highlight the existence of intricate interactions between cognitive functions both within and beyond the same cognitive domain. Language functions are interrelated with executive functions and memory in healthy cognitive functioning and assume a central role in the cognitive network. Interestingly, for similar high performance, our findings unveiled differential organizations within the cognitive network between right-handed and left-handed participants, with variations observed both at a global and nodal level. This original integrative network approach to the study of cognition provides new insights into cognitive interactions and modulations. It allows a more global understanding and consideration of cognitive functioning, from which complex behaviors emerge.
Collapse
Affiliation(s)
- A Borne
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - C Lemaitre
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - C Bulteau
- Service de Neurochirurgie Pédiatrique, Hôpital Fondation Adolphe de Rothschild, 75019, Paris, France
- MC2 Lab, Institut de Psychologie, Université de Paris-Cité, 92100, Boulogne-Billancourt, France
| | - M Baciu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - M Perrone-Bertolotti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France.
| |
Collapse
|
6
|
Petrie DJ, Meeks KD, Fisher ZF, Geier CF. Associations between somatomotor-putamen resting state connectivity and obsessive-compulsive symptoms vary as a function of stress during early adolescence: Data from the ABCD study. Brain Res Bull 2024; 210:110934. [PMID: 38508468 DOI: 10.1016/j.brainresbull.2024.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Obsessive-compulsive symptoms (OCS) are relatively common during adolescence although most individuals do not meet diagnostic criteria for obsessive-compulsive disorder (OCD). Nonetheless, OCS during adolescence are associated with comorbid psychopathologies and behavioral problems. Heightened levels of environmental stress and greater functional connectivity between the somatomotor network and putamen have been previously associated with elevated OCS in OCD patients relative to healthy controls. However, the interaction of these factors within the same sample of individuals has been understudied. This study examined somatomotor-putamen resting state connectivity, stress, and their interaction on OCS in adolescents from 9-12 years of age. Participants (n = 6386) were drawn from the ABCD Study 4.0 release. Multilevel modeling was used to account for nesting in the data and to assess changes in OCS in this age range. Stress moderated the association between somatomotor-putamen connectivity and OCS (β = 0.35, S.E. = 0.13, p = 0.006). Participants who reported more stress than their average and had greater somatomotor-left putamen connectivity reported more OCS, whereas participants who reported less stress than their average and had greater somatomotor-left putamen connectivity reported less OCS. These data suggest that stress differentially affects the direction of association between somatomotor-putamen connectivity and OCS. Individual differences in the experience or perception of stress may contribute to more OCS in adolescents with greater somatomotor-putamen connectivity.
Collapse
Affiliation(s)
- Daniel J Petrie
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States.
| | - Kathleen D Meeks
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| | - Zachary F Fisher
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| | - Charles F Geier
- Department of Human Development and Family Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Day TKM, Hermosillo R, Conan G, Randolph A, Perrone A, Earl E, Byington N, Hendrickson TJ, Elison JT, Fair DA, Feczko E. Multi-level fMRI analysis applied to hemispheric specialization in the language network, functional areas, and their behavioral correlations in the ABCD sample. Dev Cogn Neurosci 2024; 66:101355. [PMID: 38354531 PMCID: PMC10875197 DOI: 10.1016/j.dcn.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Prior research suggests that the organization of the language network in the brain is left-dominant and becomes more lateralized with age and increasing language skill. The age at which specific components of the language network become adult-like varies depending on the abilities they subserve. So far, a large, developmental study has not included a language task paradigm, so we introduce a method to study resting-state laterality in the Adolescent Brain Cognitive Development (ABCD) study. Our approach mixes source timeseries between left and right homotopes of the (1) inferior frontal and (2) middle temporal gyri and (3) a region we term "Wernicke's area" near the supramarginal gyrus. Our large subset sample size of ABCD (n = 6153) allows improved reliability and validity compared to previous, smaller studies of brain-behavior associations. We show that behavioral metrics from the NIH Youth Toolbox and other resources are differentially related to tasks with a larger linguistic component over ones with less (e.g., executive function-dominant tasks). These baseline characteristics of hemispheric specialization in youth are critical for future work determining the correspondence of lateralization with language onset in earlier stages of development.
Collapse
Affiliation(s)
- Trevor K M Day
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Robert Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Earl
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Abstract
Neurological insults, such as congenital blindness, deafness, amputation, and stroke, often result in surprising and impressive behavioural changes. Cortical reorganisation, which refers to preserved brain tissue taking on a new functional role, is often invoked to account for these behavioural changes. Here, we revisit many of the classical animal and patient cortical remapping studies that spawned this notion of reorganisation. We highlight empirical, methodological, and conceptual problems that call this notion into doubt. We argue that appeal to the idea of reorganisation is attributable in part to the way that cortical maps are empirically derived. Specifically, cortical maps are often defined based on oversimplified assumptions of 'winner-takes-all', which in turn leads to an erroneous interpretation of what it means when these maps appear to change. Conceptually, remapping is interpreted as a circuit receiving novel input and processing it in a way unrelated to its original function. This implies that neurons are either pluripotent enough to change what they are tuned to or that a circuit can change what it computes. Instead of reorganisation, we argue that remapping is more likely to occur due to potentiation of pre-existing architecture that already has the requisite representational and computational capacity pre-injury. This architecture can be facilitated via Hebbian and homeostatic plasticity mechanisms. Crucially, our revised framework proposes that opportunities for functional change are constrained throughout the lifespan by the underlying structural 'blueprint'. At no period, including early in development, does the cortex offer structural opportunities for functional pluripotency. We conclude that reorganisation as a distinct form of cortical plasticity, ubiquitously evoked with words such as 'take-over'' and 'rewiring', does not exist.
Collapse
Affiliation(s)
- Tamar R Makin
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - John W Krakauer
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Santa Fe InstituteSanta FeUnited States
| |
Collapse
|
9
|
Labache L, Ge T, Yeo BTT, Holmes AJ. Language network lateralization is reflected throughout the macroscale functional organization of cortex. Nat Commun 2023; 14:3405. [PMID: 37296118 PMCID: PMC10256741 DOI: 10.1038/s41467-023-39131-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Hemispheric specialization is a fundamental feature of human brain organization. However, it is not yet clear to what extent the lateralization of specific cognitive processes may be evident throughout the broad functional architecture of cortex. While the majority of people exhibit left-hemispheric language dominance, a substantial minority of the population shows reverse lateralization. Using twin and family data from the Human Connectome Project, we provide evidence that atypical language dominance is associated with global shifts in cortical organization. Individuals with atypical language organization exhibit corresponding hemispheric differences in the macroscale functional gradients that situate discrete large-scale networks along a continuous spectrum, extending from unimodal through association territories. Analyses reveal that both language lateralization and gradient asymmetries are, in part, driven by genetic factors. These findings pave the way for a deeper understanding of the origins and relationships linking population-level variability in hemispheric specialization and global properties of cortical organization.
Collapse
Affiliation(s)
- Loïc Labache
- Department of Psychology, Yale University, New Haven, CT, 06520, US.
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, US
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, US
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, US
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, National University of Singapore, Singapore, SG, 119077, Singapore
- Department of Electrical and Computer Engineering, Centre for Translational Magnetic Resonance Research, National University of Singapore, Singapore, SG, 119077, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, SG, 119077, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, US
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, SG, 119077, Singapore
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT, 06520, US.
- Department of Psychiatry, Yale University, New Haven, CT, 06520, US.
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, US.
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, US.
| |
Collapse
|
10
|
Hranilovich JA, Legget KT, Dodd KC, Wylie KP, Tregellas JR. Functional magnetic resonance imaging of headache: Issues, best-practices, and new directions, a narrative review. Headache 2023; 63:309-321. [PMID: 36942411 PMCID: PMC10089616 DOI: 10.1111/head.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To ensure readers are informed consumers of functional magnetic resonance imaging (fMRI) research in headache, to outline ongoing challenges in this area of research, and to describe potential considerations when asked to collaborate on fMRI research in headache, as well as to suggest future directions for improvement in the field. BACKGROUND Functional MRI has played a key role in understanding headache pathophysiology, and mapping networks involved with headache-related brain activity have the potential to identify intervention targets. Some investigators have also begun to explore its use for diagnosis. METHODS/RESULTS The manuscript is a narrative review of the current best practices in fMRI in headache research, including guidelines on transparency and reproducibility. It also contains an outline of the fundamentals of MRI theory, task-related study design, resting-state functional connectivity, relevant statistics and power analysis, image preprocessing, and other considerations essential to the field. CONCLUSION Best practices to increase reproducibility include methods transparency, eliminating error, using a priori hypotheses and power calculations, using standardized instruments and diagnostic criteria, and developing large-scale, publicly available datasets.
Collapse
Affiliation(s)
- Jennifer A Hranilovich
- Division of Child Neurology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Keith C Dodd
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
11
|
Hopkins WD. Neuroanatomical asymmetries in nonhuman primates in the homologs to Broca's and Wernicke's areas: a mini-review. Emerg Top Life Sci 2022; 6:ETLS20210279. [PMID: 36073786 PMCID: PMC9472819 DOI: 10.1042/etls20210279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
Population-level lateralization in structure and function is a fundamental measure of the human nervous system. To what extent nonhuman primates exhibit similar patterns of asymmetry remains a topic of considerable scientific interest. In this mini-review, a brief summary of findings on brain asymmetries in nonhuman primates in brain regions considered to the homolog's to Broca's and Wernicke's area are presented. Limitations of existing and directions for future studies are discussed in the context of facilitating comparative investigations in primates.
Collapse
Affiliation(s)
- William D. Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX 78602, U.S.A
| |
Collapse
|
12
|
Tejavibulya L, Peterson H, Greene A, Gao S, Rolison M, Noble S, Scheinost D. Large-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity. Neuroimage 2022; 252:119040. [PMID: 35272202 PMCID: PMC9013515 DOI: 10.1016/j.neuroimage.2022.119040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/15/2022] Open
Abstract
Handedness influences differences in lateralization of language areas as well as dominance of motor and somatosensory cortices. However, differences in whole-brain functional connectivity (i.e., functional connectomes) due to handedness have been relatively understudied beyond pre-specified networks of interest. Here, we compared functional connectomes of left- and right-handed individuals at the whole brain level. We explored differences in functional connectivity of previously established regions of interest, and showed differences between primarily left- and primarily right-handed individuals in the motor, somatosensory, and language areas using functional connectivity. We then proceeded to investigate these differences in the whole brain and found that the functional connectivity of left- and right-handed individuals are not specific to networks of interest, but extend across every region of the brain. In particular, we found that connections between and within the cerebellum show distinct patterns of connectivity. To put these effects into context, we show that the effect sizes associated with handedness differences account for a similar amount of individual differences in the connectome as sex differences. Together these results shed light on regions of the brain beyond those traditionally explored that contribute to differences in the functional organization of left- and right-handed individuals and underscore that handedness effects are neurobiologically meaningful in addition to being statistically significant.
Collapse
Affiliation(s)
- Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; MD PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Wu X, Kong X, Vatansever D, Liu Z, Zhang K, Sahakian BJ, Robbins TW, Feng J, Thompson P, Zhang J. Dynamic changes in brain lateralization correlate with human cognitive performance. PLoS Biol 2022; 20:e3001560. [PMID: 35298460 PMCID: PMC8929635 DOI: 10.1371/journal.pbio.3001560] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Hemispheric lateralization constitutes a core architectural principle of human brain organization underlying cognition, often argued to represent a stable, trait-like feature. However, emerging evidence underlines the inherently dynamic nature of brain networks, in which time-resolved alterations in functional lateralization remain uncharted. Integrating dynamic network approaches with the concept of hemispheric laterality, we map the spatiotemporal architecture of whole-brain lateralization in a large sample of high-quality resting-state fMRI data (N = 991, Human Connectome Project). We reveal distinct laterality dynamics across lower-order sensorimotor systems and higher-order associative networks. Specifically, we expose 2 aspects of the laterality dynamics: laterality fluctuations (LF), defined as the standard deviation of laterality time series, and laterality reversal (LR), referring to the number of zero crossings in laterality time series. These 2 measures are associated with moderate and extreme changes in laterality over time, respectively. While LF depict positive association with language function and cognitive flexibility, LR shows a negative association with the same cognitive abilities. These opposing interactions indicate a dynamic balance between intra and interhemispheric communication, i.e., segregation and integration of information across hemispheres. Furthermore, in their time-resolved laterality index, the default mode and language networks correlate negatively with visual/sensorimotor and attention networks, which are linked to better cognitive abilities. Finally, the laterality dynamics are associated with functional connectivity changes of higher-order brain networks and correlate with regional metabolism and structural connectivity. Our results provide insights into the adaptive nature of the lateralized brain and new perspectives for future studies of human cognition, genetics, and brain disorders. Hemispheric lateralization constitutes a core architectural principle of human brain organization, often argued to represent a stable, trait-like feature, but how does this fit with our increasing appreciation of the inherently dynamic nature of brain networks? This neuroimaging study reveals the dynamic nature of functional brain lateralization at resting-state and its relationship with language function and cognitive flexibility.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zhejiang, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhaowen Liu
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Barbara J. Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, China
| | - Paul Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Fallahi A, Pooyan M, Habibabadi JM, Hashemi-Fesharaki SS, Tabatabaei NH, Ay M, Nazem-Zadeh MR. A novel approach for extracting functional brain networks involved in mesial temporal lobe epilepsy based on self organizing maps. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Sun F, Liu Z, Fan Z, Zuo J, Xi C, Yang J. Dynamical regional activity in putamen distinguishes bipolar type I depression and unipolar depression. J Affect Disord 2022; 297:94-101. [PMID: 34678402 DOI: 10.1016/j.jad.2021.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Intrinsic human brain activity is time-varying and dynamic. However, there is still a lack of knowledge about the dynamic regional activity differences between unipolar depression (UD) and bipolar type I depression (BD-I), and whether their differential pattern can help to distinguish these two patient groups who are prone to misdiagnosis in clinical practice. METHOD In this study, we used the dynamical fractional amplitude of low-frequency fluctuations (dfALFF) to examine the resting-state dynamical regional activity in 40 BD-I, 42 UD, and 44 healthy controls (HCs). Analysis of covariance was applied to explore the shared and distinct dfALFF pattern among three groups, and machine-learning methods were conducted to classify BD-I from UD by using the detected distinct dfALFF pattern. RESULTS Compared with HCs, both BD-I and UD exhibited decreased dfALFF temporal variability in the left inferior temporal gyrus. The BD-I showed significantly decreased dfALFF temporal variability in the left putamen compared to UD. By using the dfALFF variability pattern of the left putamen as features, we achieved the 75.61% accuracy and 0.756 area under curve in classifying BD-I from UD. LIMITATIONS The small sample size of the current study may limit the generalizability of the findings. CONCLUSIONS The current study demonstrated that the dfALFF temporal variability pattern in the putamen may show a promise as future diagnostic aids for BD-I and UD.
Collapse
Affiliation(s)
- Fuping Sun
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zebin Fan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Zuo
- Clinical Medical Research Center of Hunan Provincial Mental Behavioral Disorder, Clinical Medical School of Hunan University of Chinese Medicine, Hunan Provincial Brain Hospital, Changsha, Hunan 410007, China
| | - Chang Xi
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jie Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
16
|
Zhang Y. Individual prediction of hemispheric similarity of functional connectivity during normal aging. Front Psychiatry 2022; 13:1016807. [PMID: 36226096 PMCID: PMC9548650 DOI: 10.3389/fpsyt.2022.1016807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
In the aging process of normal people, the functional activity pattern of brain is in constant change, and the change of brain runs through the whole life cycle, which plays a crucial role in the track of individual development. In recent years, some studies had been carried out on the brain functional activity pattern during individual aging process from different perspectives, which provided an opportunity for the problem we want to study. In this study, we used the resting-state functional magnetic resonance imaging (rs-fMRI) data from Cambridge Center for Aging and Neuroscience (Cam-CAN) database with large sample and long lifespan, and computed the functional connectivity (FC) values for each individual. Based on these values, the hemispheric similarity of functional connectivity (HSFC) obtained by Pearson correlation was used as the starting point of this study. We evaluated the ability of individual recognition of HSFC in the process of aging, as well as the variation trend with aging process. The results showed that HSFC could be used to identify individuals effectively, and it could reflect the change rule in the process of aging. In addition, we observed a series of results at the sub-module level and find that the recognition rate in the sub-module was different from each other, as well as the trend with age. Finally, as a validation, we repeated the main results by human brainnetome atlas (BNA) template and without global signal regression, found that had a good robustness. This also provides a new clue to hemispherical change patterns during normal aging.
Collapse
Affiliation(s)
- Yingteng Zhang
- Department of Mathematics, Taizhou University, Taizhou, China
| |
Collapse
|
17
|
Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proc Natl Acad Sci U S A 2021; 118:2113095118. [PMID: 34785596 PMCID: PMC8617418 DOI: 10.1073/pnas.2113095118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/01/2023] Open
Abstract
Left-handedness occurs in roughly 10% of people, but whether it involves altered brain anatomy has remained unclear. We measured left to right asymmetry of the cerebral cortex in 28,802 right-handers and 3,062 left-handers. There were small average differences between the two handedness groups in brain regions important for hand control, language, vision, and working memory. Genetic influences on handedness were associated with some of these brain asymmetries, especially of language-related regions. This suggests links between handedness and language during human development and evolution. One implicated gene is NME7, which also affects placement of the visceral organs (heart, liver, etc.) on the left to right body axis—a possible connection between brain and body asymmetries in embryonic development. Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7—mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference.
Collapse
|
18
|
Gonzalez Alam TRDJ, Mckeown BLA, Gao Z, Bernhardt B, Vos de Wael R, Margulies DS, Smallwood J, Jefferies E. A tale of two gradients: differences between the left and right hemispheres predict semantic cognition. Brain Struct Funct 2021; 227:631-654. [PMID: 34510282 PMCID: PMC8844158 DOI: 10.1007/s00429-021-02374-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Decomposition of whole-brain functional connectivity patterns reveals a principal gradient that captures the separation of sensorimotor cortex from heteromodal regions in the default mode network (DMN). Functional homotopy is strongest in sensorimotor areas, and weakest in heteromodal cortices, suggesting there may be differences between the left and right hemispheres (LH/RH) in the principal gradient, especially towards its apex. This study characterised hemispheric differences in the position of large-scale cortical networks along the principal gradient, and their functional significance. We collected resting-state fMRI and semantic, working memory and non-verbal reasoning performance in 175 + healthy volunteers. We then extracted the principal gradient of connectivity for each participant, tested which networks showed significant hemispheric differences on the gradient, and regressed participants’ behavioural efficiency in tasks outside the scanner against interhemispheric gradient differences for each network. LH showed a higher overall principal gradient value, consistent with its role in heteromodal semantic cognition. One frontotemporal control subnetwork was linked to individual differences in semantic cognition: when it was nearer heteromodal DMN on the principal gradient in LH, participants showed more efficient semantic retrieval—and this network also showed a strong hemispheric difference in response to semantic demands but not working memory load in a separate study. In contrast, when a dorsal attention subnetwork was closer to the heteromodal end of the principal gradient in RH, participants showed better visual reasoning. Lateralization of function may reflect differences in connectivity between control and heteromodal regions in LH, and attention and visual regions in RH.
Collapse
Affiliation(s)
| | | | - Zhiyao Gao
- Department of Psychology, University of York, York, UK
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) and Université de Paris, INCC UMR 8002, Paris, France
| | | | | |
Collapse
|
19
|
Handedness Does Not Impact Inhibitory Control, but Movement Execution and Reactive Inhibition Are More under a Left-Hemisphere Control. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.
Collapse
|
20
|
Interhemispheric co-alteration of brain homotopic regions. Brain Struct Funct 2021; 226:2181-2204. [PMID: 34170391 PMCID: PMC8354999 DOI: 10.1007/s00429-021-02318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
Asymmetries in gray matter alterations raise important issues regarding the pathological co-alteration between hemispheres. Since homotopic areas are the most functionally connected sites between hemispheres and gray matter co-alterations depend on connectivity patterns, it is likely that this relationship might be mirrored in homologous interhemispheric co-altered areas. To explore this issue, we analyzed data of patients with Alzheimer’s disease, schizophrenia, bipolar disorder and depressive disorder from the BrainMap voxel-based morphometry database. We calculated a map showing the pathological homotopic anatomical co-alteration between homologous brain areas. This map was compared with the meta-analytic homotopic connectivity map obtained from the BrainMap functional database, so as to have a meta-analytic connectivity modeling map between homologous areas. We applied an empirical Bayesian technique so as to determine a directional pathological co-alteration on the basis of the possible tendencies in the conditional probability of being co-altered of homologous brain areas. Our analysis provides evidence that: the hemispheric homologous areas appear to be anatomically co-altered; this pathological co-alteration is similar to the pattern of connectivity exhibited by the couples of homologues; the probability to find alterations in the areas of the left hemisphere seems to be greater when their right homologues are also altered than vice versa, an intriguing asymmetry that deserves to be further investigated and explained.
Collapse
|
21
|
Li D, Tang W, Yan T, Zhang N, Xiang J, Niu Y, Wang B. Abnormalities in hemispheric lateralization of intra- and inter-hemispheric white matter connections in schizophrenia. Brain Imaging Behav 2021; 15:819-832. [PMID: 32767209 DOI: 10.1007/s11682-020-00292-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hemispheric lateralization is a prominent feature of the human brain and is grounded into intra- and inter-hemispheric white matter (WM) connections. However, disruptions in hemispheric lateralization involving both intra- and inter-hemispheric WM connections in schizophrenia is still unclear. Hence, a quantitative measure of the hemispheric lateralization of intra- and inter-hemispheric WM connections could provide new insights into schizophrenia. This work performed diffusion tensor imaging on 50 patients and 58 matched healthy controls. Using graph theory, the global and nodal efficiencies were computed for both intra- and inter-hemispheric networks. We found that patients with schizophrenia showed significantly decrease in both global and nodal efficiency of hemispheric networks relative to healthy controls. Specially, deficits in intra-hemispheric integration and inter-hemispheric communication were revealed in frontal and temporal regions for schizophrenia. We also found disrupted hemispheric asymmetries in brain regions associated with emotion, memory, and visual processes for schizophrenia. Moreover, abnormal hemispheric asymmetry of nodal efficiency was significantly correlated with the symptom of the patients. Our finding indicated that the hemispheric WM lateralization of intra- and inter-hemispheric connections could serve as a potential imaging biomarker for schizophrenia.
Collapse
Affiliation(s)
- Dandan Li
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China
| | - Wenjing Tang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, Shandong, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Shanxi, China
| | - Nan Zhang
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China.
- Translational Medicine Research Center, Shanxi Medical University, Shanxi, China.
| |
Collapse
|
22
|
Mbwana JS, You X, Ailion A, Fanto EJ, Krishnamurthy M, Sepeta LN, Newport EL, Vaidya CJ, Berl MM, Gaillard WD. Functional connectivity hemispheric contrast (FC-HC): A new metric for language mapping. Neuroimage Clin 2021; 30:102598. [PMID: 33858809 PMCID: PMC8102641 DOI: 10.1016/j.nicl.2021.102598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 01/23/2023]
Abstract
Development of a task-free method for presurgical mapping of language function is important for use in young or cognitively impaired patients. Resting state connectivity fMRI (RS-fMRI) is a task-free method that may be used to identify cognitive networks. We developed a voxelwise RS-fMRI metric, Functional Connectivity Hemispheric Contrast (FC-HC), to map the language network and determine language laterality through comparison of within-hemispheric language network connections (Integration) to cross-hemispheric connections (Segregation). For the first time, we demonstrated robustness and efficacy of a RS-fMRI metric to map language networks across five groups (total N = 243) that differed in MRI scanning parameters, fMRI scanning protocols, age, and development (typical vs pediatric epilepsy). The resting state FC-HC maps for the healthy pediatric and adult groups showed higher values in the left hemisphere, and had high agreement with standard task language fMRI; in contrast, the epilepsy patient group map was bilateral. FC-HC has strong but not perfect agreement with task fMRI and thus, may reflect related and complementary information about language plasticity and compensation.
Collapse
Affiliation(s)
- Juma S Mbwana
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Xiaozhen You
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Alyssa Ailion
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Eleanor J Fanto
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Manu Krishnamurthy
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Leigh N Sepeta
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Elissa L Newport
- Department of Neurology, Georgetown University Medical Center, 37th and O Street, N.W., Washington, DC 20057, United States.
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, United States.
| | - Madison M Berl
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - William D Gaillard
- Department of Neurology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States.
| |
Collapse
|
23
|
Labache L, Mazoyer B, Joliot M, Crivello F, Hesling I, Tzourio-Mazoyer N. Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries. eLife 2020; 9:e58722. [PMID: 33064079 PMCID: PMC7605859 DOI: 10.7554/elife.58722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/16/2020] [Indexed: 01/23/2023] Open
Abstract
Based on the joint investigation in 287 healthy volunteers (150 left-Handers (LH)) of language task-induced asymmetries and intrinsic connectivity strength of the sentence-processing supramodal network, we show that individuals with atypical rightward language lateralization (N = 30, 25 LH) do not rely on an organization that simply mirrors that of typical leftward lateralized individuals. Actually, the resting-state organization in the atypicals showed that their sentence processing was underpinned by left and right networks both wired for language processing and highly interacting by strong interhemispheric intrinsic connectivity and larger corpus callosum volume. Such a loose hemispheric specialization for language permits the hosting of language in either the left and/or right hemisphere as assessed by a very high incidence of dissociations across various language task-induced asymmetries in this group.
Collapse
Affiliation(s)
- Loïc Labache
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- Université de Bordeaux, Institut de Mathématiques de Bordeaux, UMR 5251BordeauxFrance
- Bordeaux INP, Institut de Mathématiques de Bordeaux, UMR 5251BordeauxFrance
- INRIA Bordeaux Sud-Ouest, Institut de Mathématiques de Bordeaux, UMR 5251, Contrôle de Qualité et Fiabilité DynamiqueTalenceFrance
| | - Bernard Mazoyer
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- Centre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Marc Joliot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
| | - Fabrice Crivello
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
| | - Isabelle Hesling
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
| | - Nathalie Tzourio-Mazoyer
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
- CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d’Imagerie NeurofonctionnelleBordeauxFrance
| |
Collapse
|
24
|
Jung JY, Park CA, Lee YB, Kang CK. Investigation of Functional Connectivity Differences between Voluntary Respirations via Mouth and Nose Using Resting State fMRI. Brain Sci 2020; 10:brainsci10100704. [PMID: 33022977 PMCID: PMC7599777 DOI: 10.3390/brainsci10100704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/03/2022] Open
Abstract
The problems of mouth breathing have been well-studied, but the neural correlates of functional connectivity (FC) still remain unclear. We examined the difference in FC between the two types of breathing. For our study, 21 healthy subjects performed voluntary mouth and nasal breathing conditions during a resting state functional magnetic resonance imaging (fMRI). The region of interest (ROI) analysis of FC in fMRI was conducted using a MATLAB-based imaging software. The resulting analysis showed that mouth breathing had widespread connections and more left lateralization. Left inferior temporal gyrus had the most left lateralized connections in mouth breathing condition. Furthermore, the central opercular cortex FC showed a significant relationship with mouth breathing. For nasal breathing, the sensorimotor area had symmetry FC pattern. These findings suggest that various FCs difference appeared between two breathing conditions. The impacts of these differences need to be more investigated to find out potential link with cognitive decline in mouth breathing syndrome.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Korea;
| | - Chan-A Park
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Korea;
| | - Yeong-Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Chang-Ki Kang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21936, Korea
- Correspondence: ; Tel.: +82-32-820-4110
| |
Collapse
|
25
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
26
|
Park KY, Lee JJ, Dierker D, Marple LM, Hacker CD, Roland JL, Marcus DS, Milchenko M, Miller-Thomas MM, Benzinger TL, Shimony JS, Snyder AZ, Leuthardt EC. Mapping language function with task-based vs. resting-state functional MRI. PLoS One 2020; 15:e0236423. [PMID: 32735611 PMCID: PMC7394427 DOI: 10.1371/journal.pone.0236423] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Background Use of functional MRI (fMRI) in pre-surgical planning is a non-invasive method for pre-operative functional mapping for patients with brain tumors, especially tumors located near eloquent cortex. Currently, this practice predominantly involves task-based fMRI (T-fMRI). Resting state fMRI (RS-fMRI) offers an alternative with several methodological advantages. Here, we compare group-level analyses of RS-fMRI vs. T-fMRI as methods for language localization. Purpose To contrast RS-fMRI vs. T-fMRI as techniques for localization of language function. Methods We analyzed data obtained in 35 patients who had both T-fMRI and RS-fMRI scans during the course of pre-surgical evaluation. The RS-fMRI data were analyzed using a previously trained resting-state network classifier. The T-fMRI data were analyzed using conventional techniques. Group-level results obtained by both methods were evaluated in terms of two outcome measures: (1) inter-subject variability of response magnitude and (2) sensitivity/specificity analysis of response topography, taking as ground truth previously reported maps of the language system based on intraoperative cortical mapping as well as meta-analytic maps of language task fMRI responses. Results Both fMRI methods localized major components of the language system (areas of Broca and Wernicke) although not with equal inter-subject consistency. Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. Conclusion We demonstrate several advantages of classifier-based mapping of language representation in the brain. Language T-fMRI activated task-general (i.e., not language-specific) functional systems in addition to areas of Broca and Wernicke. In contrast, classifier-based analysis of RS-fMRI data generated maps confined to language-specific regions of the brain.
Collapse
Affiliation(s)
- Ki Yun Park
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John J. Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura M. Marple
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carl D. Hacker
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jarod L. Roland
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mikhail Milchenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle M. Miller-Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tammie L. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
27
|
Rolinski R, You X, Gonzalez‐Castillo J, Norato G, Reynolds RC, Inati SK, Theodore WH. Language lateralization from task-based and resting state functional MRI in patients with epilepsy. Hum Brain Mapp 2020; 41:3133-3146. [PMID: 32329951 PMCID: PMC7336139 DOI: 10.1002/hbm.25003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/05/2023] Open
Abstract
We compared resting state (RS) functional connectivity and task‐based fMRI to lateralize language dominance in 30 epilepsy patients (mean age = 33; SD = 11; 12 female), a measure used for presurgical planning. Language laterality index (LI) was calculated from task fMRI in frontal, temporal, and frontal + temporal regional masks using LI bootstrap method from SPM12. RS language LI was assessed using two novel methods of calculating RS language LI from bilateral Broca's area seed based connectivity maps across regional masks and multiple thresholds (p < .05, p < .01, p < .001, top 10% connections). We compared LI from task and RS fMRI continuous values and dominance classifications. We found significant positive correlations between task LI and RS LI when functional connectivity thresholds were set to the top 10% of connections. Concordance of dominance classifications ranged from 20% to 30% for the intrahemispheric resting state LI method and 50% to 63% for the resting state LI intra‐ minus interhemispheric difference method. Approximately 40% of patients left dominant on task showed RS bilateral dominance. There was no difference in LI concordance between patients with right‐sided and left‐sided resections. Early seizure onset (<6 years old) was not associated with atypical language dominance during task‐based or RS fMRI. While a relationship between task LI and RS LI exists in patients with epilepsy, language dominance is less lateralized on RS than task fMRI. Concordance of language dominance classifications between task and resting state fMRI depends on brain regions surveyed and RS LI calculation method.
Collapse
Affiliation(s)
- Rachel Rolinski
- National Institute of Neurological Disorders and StrokeClinical Epilepsy SectionBethesdaMarylandUSA
| | - Xiaozhen You
- National Institute of Neurological Disorders and StrokeClinical Epilepsy SectionBethesdaMarylandUSA
- Children's National Medical CenterDepartment of NeurologyWashingtonDistrict of ColumbiaUSA
| | | | - Gina Norato
- National Institute of Neurological Disorders and StrokeClinical Trials UnitBethesdaMarylandUSA
| | - Richard C. Reynolds
- National Institute of Mental HealthScientific and Statistical Computing CoreBethesdaMarylandUSA
| | - Sara K. Inati
- National Institute of Neurological Disorders and StrokeElectroencephalography SectionBethesdaMarylandUSA
| | - William H. Theodore
- National Institute of Neurological Disorders and StrokeClinical Epilepsy SectionBethesdaMarylandUSA
| |
Collapse
|
28
|
Johnstone LT, Karlsson EM, Carey DP. The validity and reliability of quantifying hemispheric specialisation using fMRI: Evidence from left and right handers on three different cerebral asymmetries. Neuropsychologia 2020; 138:107331. [DOI: 10.1016/j.neuropsychologia.2020.107331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
|
29
|
Functional lateralization of tool-sound and action-word processing in a bilingual brain. HEALTH PSYCHOLOGY REPORT 2020. [DOI: 10.5114/hpr.2020.92718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Jastrzębowska MA, Marquis R, Melie-García L, Lutti A, Kherif F, Herzog MH, Draganski B. Dopaminergic modulation of motor network compensatory mechanisms in Parkinson's disease. Hum Brain Mapp 2019; 40:4397-4416. [PMID: 31291039 DOI: 10.1002/hbm.24710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
The dopaminergic system has a unique gating function in the initiation and execution of movements. When the interhemispheric imbalance of dopamine inherent to the healthy brain is disrupted, as in Parkinson's disease (PD), compensatory mechanisms act to stave off behavioral changes. It has been proposed that two such compensatory mechanisms may be (a) a decrease in motor lateralization, observed in drug-naïve PD patients and (b) reduced inhibition - increased facilitation. Seeking to investigate the differential effect of dopamine depletion and subsequent substitution on compensatory mechanisms in non-drug-naïve PD, we studied 10 PD patients and 16 healthy controls, with patients undergoing two test sessions - "ON" and "OFF" medication. Using a simple visually-cued motor response task and fMRI, we investigated cortical motor activation - in terms of laterality, contra- and ipsilateral percent BOLD signal change and effective connectivity in the parametric empirical Bayes framework. We found that decreased motor lateralization persists in non-drug-naïve PD and is concurrent with decreased contralateral activation in the cortical motor network. Normal lateralization is not reinstated by dopamine substitution. In terms of effective connectivity, disease-related changes primarily affect ipsilaterally-lateralized homotopic cortical motor connections, while medication-related changes affect contralaterally-lateralized homotopic connections. Our findings suggest that, in non-drug-naïve PD, decreased lateralization is no longer an adaptive cortical mechanism, but rather the result of maladaptive changes, related to disease progression and long-term dopamine replacement. These findings highlight the need for the development of noninvasive therapies, which would promote the adaptive mechanisms of the PD brain.
Collapse
Affiliation(s)
- Maya A Jastrzębowska
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Renaud Marquis
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- EEG and Epilepsy Unit, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Lester Melie-García
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
31
|
Wiberg A, Ng M, Al Omran Y, Alfaro-Almagro F, McCarthy P, Marchini J, Bennett DL, Smith S, Douaud G, Furniss D. Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain 2019; 142:2938-2947. [PMID: 31504236 PMCID: PMC6763735 DOI: 10.1093/brain/awz257] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
Ninety per cent of the human population has been right-handed since the Paleolithic, yet the brain signature and genetic basis of handedness remain poorly characterized. Here, we correlated brain imaging phenotypes from ∼9000 UK Biobank participants with handedness, and with loci found significantly associated with handedness after we performed genome-wide association studies (GWAS) in ∼400 000 of these participants. Our imaging-handedness analysis revealed an increase in functional connectivity between left and right language networks in left-handers. GWAS of handedness uncovered four significant loci (rs199512, rs45608532, rs13017199, and rs3094128), three of which are in-or expression quantitative trait loci of-genes encoding proteins involved in brain development and patterning. These included microtubule-related MAP2 and MAPT, as well as WNT3 and MICB, all implicated in the pathogenesis of diseases such as Parkinson's, Alzheimer's and schizophrenia. In particular, with rs199512, we identified a common genetic influence on handedness, psychiatric phenotypes, Parkinson's disease, and the integrity of white matter tracts connecting the same language-related regions identified in the handedness-imaging analysis. This study has identified in the general population genome-wide significant loci for human handedness in, and expression quantitative trait loci of, genes associated with brain development, microtubules and patterning. We suggest that these genetic variants contribute to neurodevelopmental lateralization of brain organization, which in turn influences both the handedness phenotype and the predisposition to develop certain neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Yasser Al Omran
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Fidel Alfaro-Almagro
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Paul McCarthy
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Stephen Smith
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Gwenaëlle Douaud
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Chen Q, Beaty RE, Cui Z, Sun J, He H, Zhuang K, Ren Z, Liu G, Qiu J. Brain hemispheric involvement in visuospatial and verbal divergent thinking. Neuroimage 2019; 202:116065. [PMID: 31398434 DOI: 10.1016/j.neuroimage.2019.116065] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023] Open
Abstract
Hemispheric lateralization for creative thinking remains a controversial topic. Early behavioral and neuroimaging research supported right hemisphere dominance in creative thinking, but more recent evidence suggests the left hemisphere plays an equally important role. In addition, the extent to which hemispheric lateralization in specific brain regions relates to individual creative ability, and whether hemispheric dominance relates to distinct task performance, remain poorly understood. Here, using multivariate predictive modeling of resting-state functional MRI data in a large sample of adults (N = 502), we estimated hemispheric segregation and integration for each brain region and investigated these lateralization indices with respect to individual differences in visuospatial and verbal divergent thinking. Our analyses revealed that individual visuospatial divergent thinking performance could be predicted by right-hemispheric segregation within the visual network, sensorimotor network, and some regions within the default mode network. High visuospatial divergent thinking was related to stronger functional connectivity between the visual network, fronto-parietal network, and default mode network within the right hemisphere. In contrast, high verbal divergent thinking performance could be predicted by inter-hemispheric balance within regions mainly involved in complex semantic processing (e.g., lateral temporal cortex and inferior frontal gyrus) and cognitive control processing (e.g., inferior frontal gyrus, middle frontal cortex, and superior parietal lobule). The current study suggests that two distinct forms of functional lateralization support individual differences in visuospatial and verbal divergent thinking. These findings have important implications for our understanding of hemispheric interaction mechanisms of creative thinking.
Collapse
Affiliation(s)
- Qunlin Chen
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, 400715, China; School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, PA, 16801, USA
| | - Zaixu Cui
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiangzhou Sun
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, 400715, China
| | - Hong He
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, 400715, China
| | - Kaixiang Zhuang
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, 400715, China
| | - Zhiting Ren
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, 400715, China
| | - Guangyuan Liu
- College of Electronic and Information Engineering, Southwest University, Chongqing, 400715, China.
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
33
|
Toraman S, Tuncer SA, Balgetir F. Is it possible to detect cerebral dominance via EEG signals by using deep learning? Med Hypotheses 2019; 131:109315. [PMID: 31443748 DOI: 10.1016/j.mehy.2019.109315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022]
Abstract
Each brain hemisphere is dominant for certain functions such as speech. The determination of speech laterality prior to surgery is of paramount importance for accurate risk prediction. In this study, we aimed to determine speech laterality via EEG signals by using noninvasive machine learning techniques. The retrospective study included 67 subjects aged 18-65 years who had no chronic diseases and were diagnosed as healthy based on EEG examination. The subjects comprised 35 right-hand dominant (speech center located in the left hemisphere) and 32 left-hand dominant individuals (speech center located in the right hemisphere). A spectrogram was created for each of the 18 EEG channels by using various Convolutional Neural Networks (CNN) architectures including VGG16, VGG19, ResNet, MobileNet, NasNet, and DenseNet. These architectures were used to extract features from the spectrograms. The extracted features were classified using Support Vector Machines (SVM) and the classification performances of the CNN models were evaluated using Area Under the Curve (AUC). Of all the CNN models used in the study, VGG16 had a higher AUC value (0.83 ± 0.05) in the determination of speech laterality compared to all other models. The present study is a pioneer investigation into the determination of speech laterality via EEG signals with machine learning techniques, which, to our knowledge, has never been reported in the literature. Moreover, the classification results obtained in the study are promising and lead the way for subsequent studies though not practically feasible.
Collapse
Affiliation(s)
- Suat Toraman
- Firat University, Department of Informatics, 23119 Elazig, Turkey.
| | - Seda Arslan Tuncer
- Firat University, Department of Software Engineering, 23119 Elazig, Turkey.
| | - Ferhat Balgetir
- Firat University, Faculty of Medicine, 23119 Elazig, Turkey.
| |
Collapse
|
34
|
Bernal B, Guillen M, Korman B. Nontask-Related Brain Lateralization Biomarkers in Children: The Asymmetry of Language Areas on Functional Connectivity Functional Magnetic Resonance Imaging. Brain Connect 2019; 8:321-332. [PMID: 30124344 DOI: 10.1089/brain.2017.0553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this work, we will test the hypothesis that the connectivity of language areas in normal children is asymmetric between the hemispheres. Intrahemispheric region of interest (ROI)-to-ROI connectivity was assessed in 40 normal right-handed children. Asymmetries were assessed (1) between the hemispheres (global language connectivity); (2) between Brodmann areas (BAs) pairs (pairwise connectivity); and (3) between two homotopic BA (Global BA connectivity). Sixteen BAs were selected: 6, 7, 9, 19, 21, 22, 37, 38, 39, 40, 41, 42, 44, 45, 46, and 47. T scores for connectivity of each BA pair were ascertained using the MATLAB toolbox CONN. Lateralization index (LI) scores based on T-values were obtained. Only LIs with 2SD above the mean were considered as significant. Comparisons between T-value groups (per side and per BA) were performed utilizing double-sided T-tests. Null hypothesis was rejected for p < 0.05. There was not a statistical difference between global left and right connectivity strength (p = 0.40). There was significant pairwise connectivity asymmetry for the following pairs: BA7-BA44 (LI = 0.662); BA21-BA42 (LI = -0.616); BA21-BA40 (LI = -0.595); BA38-BA44 (LI = 0.470); BA39-BA44 (LI = -0.903); and BA42-BA47 (LI = -0.445). Language-related brain connectivity asymmetries have been demonstrated in a group of children and young adolescents. Two pairs related to Broca's area were left dominant (BA44-BA38 and BA44-BA7) and four pairs right dominant (BA42-BA47, BA39-BA44, BA21-BA40, and BA21-BA42).
Collapse
Affiliation(s)
- Byron Bernal
- 1 Brain Institute , Nicklaus Children's Hospital, Miami, Florida.,2 Department of Radiology, Florida International University , Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| | - Magno Guillen
- 2 Department of Radiology, Florida International University , Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| | - Brandon Korman
- 1 Brain Institute , Nicklaus Children's Hospital, Miami, Florida.,3 Nicklaus Children's Hospital and Florida International University , Miami, Florida
| |
Collapse
|
35
|
Carrion‐Castillo A, Van der Haegen L, Tzourio‐Mazoyer N, Kavaklioglu T, Badillo S, Chavent M, Saracco J, Brysbaert M, Fisher SE, Mazoyer B, Francks C. Genome sequencing for rightward hemispheric language dominance. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12572. [PMID: 30950222 PMCID: PMC6850193 DOI: 10.1111/gbb.12572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Most people have left-hemisphere dominance for various aspects of language processing, but only roughly 1% of the adult population has atypically reversed, rightward hemispheric language dominance (RHLD). The genetic-developmental program that underlies leftward language laterality is unknown, as are the causes of atypical variation. We performed an exploratory whole-genome-sequencing study, with the hypothesis that strongly penetrant, rare genetic mutations might sometimes be involved in RHLD. This was by analogy with situs inversus of the visceral organs (left-right mirror reversal of the heart, lungs and so on), which is sometimes due to monogenic mutations. The genomes of 33 subjects with RHLD were sequenced and analyzed with reference to large population-genetic data sets, as well as 34 subjects (14 left-handed) with typical language laterality. The sample was powered to detect rare, highly penetrant, monogenic effects if they would be present in at least 10 of the 33 RHLD cases and no controls, but no individual genes had mutations in more than five RHLD cases while being un-mutated in controls. A hypothesis derived from invertebrate mechanisms of left-right axis formation led to the detection of an increased mutation load, in RHLD subjects, within genes involved with the actin cytoskeleton. The latter finding offers a first, tentative insight into molecular genetic influences on hemispheric language dominance.
Collapse
Affiliation(s)
- Amaia Carrion‐Castillo
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Lise Van der Haegen
- Department of Experimental PsychologyGhent Institute for Functional and Metabolic Imaging, Ghent UniversityGhentBelgium
| | - Nathalie Tzourio‐Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomiqueet Université de BordeauxBordeauxFrance
| | - Tulya Kavaklioglu
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Solveig Badillo
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomiqueet Université de BordeauxBordeauxFrance
- Institut de Mathématiques de Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Recherche en Informatique et Automatiqueet Université de BordeauxBordeauxFrance
| | - Marie Chavent
- Institut de Mathématiques de Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Recherche en Informatique et Automatiqueet Université de BordeauxBordeauxFrance
| | - Jérôme Saracco
- Institut de Mathématiques de Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Recherche en Informatique et Automatiqueet Université de BordeauxBordeauxFrance
| | - Marc Brysbaert
- Department of Experimental PsychologyGhent Institute for Functional and Metabolic Imaging, Ghent UniversityGhentBelgium
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomiqueet Université de BordeauxBordeauxFrance
| | - Clyde Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
36
|
Labache L, Joliot M, Saracco J, Jobard G, Hesling I, Zago L, Mellet E, Petit L, Crivello F, Mazoyer B, Tzourio-Mazoyer N. A SENtence Supramodal Areas AtlaS (SENSAAS) based on multiple task-induced activation mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers. Brain Struct Funct 2019; 224:859-882. [PMID: 30535758 PMCID: PMC6420474 DOI: 10.1007/s00429-018-1810-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/01/2018] [Indexed: 12/13/2022]
Abstract
We herein propose an atlas of 32 sentence-related areas based on a 3-step method combining the analysis of activation and asymmetry during multiple language tasks with hierarchical clustering of resting-state connectivity and graph analyses. 144 healthy right-handers performed fMRI runs based on language production, reading and listening, both with sentences and lists of over-learned words. Sentence minus word-list BOLD contrast and left-minus-right BOLD asymmetry for each task were computed in pairs of homotopic regions of interest (hROIs) from the AICHA atlas. Thirty-two hROIs were identified that were conjointly activated and leftward asymmetrical in each of the three language contrasts. Analysis of resting-state temporal correlations of BOLD variations between these 32 hROIs allowed the segregation of a core network, SENT_CORE including 18 hROIs. Resting-state graph analysis applied to SENT_CORE hROIs revealed that the pars triangularis of the inferior frontal gyrus and the superior temporal sulcus were hubs based on their degree centrality (DC), betweenness, and participation values corresponding to epicentres of sentence processing. Positive correlations between DC and BOLD activation values for SENT_CORE hROIs were observed across individuals and across regions regardless of the task: the more a SENT_CORE area is connected at rest the stronger it is activated during sentence processing. DC measurements in SENT_CORE may thus be a valuable index for the evaluation of inter-individual variations in language areas functional activity in relation to anatomical or clinical patterns in large populations. SENSAAS (SENtence Supramodal Areas AtlaS), comprising the 32 supramodal sentence areas, including SENT_CORE network, can be downloaded at http://www.gin.cnrs.fr/en/tools/ .
Collapse
Affiliation(s)
- L Labache
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
- Univ. Bordeaux, IMB, UMR 5251, 33405, Talence, France
- INRIA Bordeaux Sud-Ouest, CQFD, UMR 5251, 33405, Talence, France
| | - M Joliot
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - J Saracco
- INRIA Bordeaux Sud-Ouest, CQFD, UMR 5251, 33405, Talence, France
- Bordeaux INP, IMB, UMR 5251, 33405, Talence, France
| | - G Jobard
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - I Hesling
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - L Zago
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - E Mellet
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - L Petit
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - F Crivello
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - B Mazoyer
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Univ. Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France.
- CNRS, IMN, UMR 5293, 33000, Bordeaux, France.
- CEA, GIN, IMN, UMR 5293, 33000, Bordeaux, France.
| |
Collapse
|
37
|
Wang S, Van der Haegen L, Tao L, Cai Q. Brain Functional Organization Associated With Language Lateralization. Cereb Cortex 2018; 29:4312-4320. [DOI: 10.1093/cercor/bhy313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
Although it is well-established that human language functions are mostly lateralized to the left hemisphere of the brain, little is known about the functional mechanisms underlying such hemispheric dominance. The present study investigated intrinsic organization of the whole brain at rest, by means of functional connectivity and graph theoretical analysis, with the aim to characterize brain functional organization underlying typical and atypical language dominance. We included healthy left-handers, both those with typical left-lateralized language and those with atypical right-lateralized language. Results show that 1) differences between typical and atypical language lateralization are associated with functional connectivity within the language system, particularly with weakened connectivity between left inferior frontal gyrus and several other language-related areas; and 2) for participants with atypical language dominance, the degree of lateralization is linked with multiple functional connectivities and graph theoretical metrics of whole brain organization, including local efficiency and small-worldness. This is the first study, to our knowledge, that linked the degree of language lateralization to global topology of brain networks. These results reveal that typical and atypical language dominance mainly differ in functional connectivity within the language system, and that atypical language dominance is associated with whole-brain organization.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | | | - Lily Tao
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Haskins Laboratories, 300 George Street, New Haven, USA
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| |
Collapse
|
38
|
Zhu F, Liu F, Guo W, Chen J, Su Q, Zhang Z, Li H, Fan X, Zhao J. Disrupted asymmetry of inter- and intra-hemispheric functional connectivity in patients with drug-naive, first-episode schizophrenia and their unaffected siblings. EBioMedicine 2018; 36:429-435. [PMID: 30241918 PMCID: PMC6197719 DOI: 10.1016/j.ebiom.2018.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022] Open
Abstract
Background Lack of normal asymmetry in the brain has been reported in patients with schizophrenia. However, it remains unclear whether disrupted asymmetry originates from inter-hemispheric functional connectivity (FC) and/or intra-hemispheric FC in this patient population. Methods Forty-four patients with drug-naive, first-episode schizophrenia, 42 unaffected siblings, and 44 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) scan. The parameter of asymmetry (PAS) and support vector machine (SVM) were used to analyze the data. Patients were treated with olanzapine for 8 weeks. Findings Compared with healthy controls, patients showed lower PAS scores in the left middle temporal gyrus (MTG)/inferior temporal gyrus (ITG), left posterior cingulate cortex (PCC)/precuneus and left angular gyrus, and higher PAS scores in the left precentral gyrus/postcentral gyrus. Unaffected siblings also showed lower PAS scores in the left MTG/ITG and left PCC/precuneus relative to healthy controls. Further, SVM analysis showed that a combination of the PAS scores in these two clusters in patients at baseline was able to predict clinical response after 8 weeks of olanzapine treatment with 77.27% sensitivity, 72.73% specificity, and 75.00% accuracy. Interpretation The present study suggests disrupted asymmetry of inter- and intra-hemispheric FC in drug-naive, first-episode schizophrenia; in addition, a reduced asymmetry of inter-hemispheric FC in the left MTG/ITG and left PCC/precuneus may serve as an endophenotype for schizophrenia, and may have clinical utility to predict response to olanzapine treatment. Fund The National Key R&D Program of China and the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qinji Su
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoduo Fan
- University of Massachusetts Medical School, UMass Memorial Medical Center, One Biotech, Suite 100, 365 Plantation Street, Worcester, MA 01605, United States.
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
39
|
Almgren H, Van de Steen F, Kühn S, Razi A, Friston K, Marinazzo D. Variability and reliability of effective connectivity within the core default mode network: A multi-site longitudinal spectral DCM study. Neuroimage 2018; 183:757-768. [PMID: 30165254 PMCID: PMC6215332 DOI: 10.1016/j.neuroimage.2018.08.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Dynamic causal modelling (DCM) for resting state fMRI – namely spectral DCM – is a recently developed and widely adopted method for inferring effective connectivity in intrinsic brain networks. Most applications of spectral DCM have focused on group-averaged connectivity within large-scale intrinsic brain networks; however, the consistency of subject- and session-specific estimates of effective connectivity has not been evaluated. Establishing reliability (within subjects) is crucial for its clinical use; e.g., as a neurophysiological phenotype of disease progression. Effective connectivity during rest is likely to vary due to changes in cognitive, and physiological states. Quantifying these variations may help understand functional brain architectures – and inform clinical applications. In the present study, we investigated the consistency of effective connectivity within and between subjects, as well as potential sources of variability (e.g., hemispheric asymmetry). We also addressed the effects on consistency of standard data processing procedures. DCM analyses were applied to four longitudinal resting state fMRI datasets. Our sample comprised 17 subjects with 589 resting state fMRI sessions in total. These data allowed us to quantify the robustness of connectivity estimates for each subject, and to generalise our conclusions beyond specific data features. We found that subjects showed systematic and reliable patterns of hemispheric asymmetry. When asymmetry was taken into account, subjects showed very similar connectivity patterns. We also found that various processing procedures (e.g. global signal regression and ROI size) had little effect on inference and the reliability of connectivity estimates for the majority of subjects. Finally, Bayesian model reduction significantly increased the consistency of connectivity patterns. Across datasets, subjects’ effective connectivity patterns in the core default mode network showed hemispheric asymmetry. Differences in hemispheric asymmetry was found to be a major source of between-subject variability. In contrast, most subjects showed reliable within-subject hemispheric asymmetry. Differences in preprocessing methods had little effect on connectivity estimates. Bayesian model reduction increased the within- and between-subject consistency of connectivity patterns.
Collapse
Affiliation(s)
- Hannes Almgren
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Belgium.
| | - Frederik Van de Steen
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Clinic and Polyclinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Germany
| | - Adeel Razi
- Monash Institute of Cognitive and Clinical Neurosciences and Monash Biomedical Imaging, Monash University, Clayton, Australia; The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, WC1N 3BG, UK; Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London, WC1N 3BG, UK
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
| |
Collapse
|
40
|
Botha H, Duffy JR, Whitwell JL, Strand EA, Machulda MM, Spychalla AJ, Tosakulwong N, Senjem ML, Knopman DS, Petersen RC, Jack CR, Lowe VJ, Josephs KA. Non-right handed primary progressive apraxia of speech. J Neurol Sci 2018; 390:246-254. [PMID: 29801898 PMCID: PMC5986290 DOI: 10.1016/j.jns.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/12/2022]
Abstract
In recent years a large and growing body of research has greatly advanced our understanding of primary progressive apraxia of speech. Handedness has emerged as one potential marker of selective vulnerability in degenerative diseases. This study evaluated the clinical and imaging findings in non-right handed compared to right handed participants in a prospective cohort diagnosed with primary progressive apraxia of speech. A total of 30 participants were included. Compared to the expected rate in the population, there was a higher prevalence of non-right handedness among those with primary progressive apraxia of speech (6/30, 20%). Small group numbers meant that these results did not reach statistical significance, although the effect sizes were moderate-to-large. There were no clinical differences between right handed and non-right handed participants. Bilateral hypometabolism was seen in primary progressive apraxia of speech compared to controls, with non-right handed participants showing more right hemispheric involvement. This is the first report of a higher rate of non-right handedness in participants with isolated apraxia of speech, which may point to an increased vulnerability for developing this disorder among non-right handed participants. This challenges prior hypotheses about a relative protective effect of non-right handedness for tau-related neurodegeneration. We discuss potential avenues for future research to investigate the relationship between handedness and motor disorders more generally.
Collapse
Affiliation(s)
- Hugo Botha
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph R Duffy
- Department of Neurology (Speech Pathology), Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L Whitwell
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, MN 55905, USA
| | - Edythe A Strand
- Department of Neurology (Speech Pathology), Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology (Neuropsychology), Mayo Clinic, Rochester, MN 55905, USA
| | - Anthony J Spychalla
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, MN 55905, USA
| | - Nirubol Tosakulwong
- Department of Health Sciences Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN 55905, USA
| | - Ronald C Petersen
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology (Nuclear Medicine), Mayo Clinic, Rochester, MN 55905, USA
| | - Keith A Josephs
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN 55905, USA; Department of Neurology (Movement Disorders), Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Michel GF, Babik I, Nelson EL, Campbell JM, Marcinowski EC. Evolution and development of handedness: An Evo-Devo approach. PROGRESS IN BRAIN RESEARCH 2018; 238:347-374. [PMID: 30097200 DOI: 10.1016/bs.pbr.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hand preference is a sensorimotor skill whose development both reflects and promotes the development of hemispheric lateralization for manual and cognitive functions. Extensive comparative, crosscultural, and paleoanthropological evidence demonstrates the prevalence of limb lateralized preferences across vertebrate species and the prevalence of right-handedness within hominid evolution. Many reviews of the evolution and development of human handedness have proposed adaptive explanations for its evolution. However, during the last 3 decades a new approach to understanding evolution (the Extended Evolutionary Synthesis-EES) provided a persuasive alternative to the conventional (Neo-Darwinian Synthetic Theory-ST) evolutionary and developmental accounts. EES combines modern evolutionary and developmental research (Evo-Devo) in ways that alter understanding of natural selection, adaptation, and the role of genes in development and evolution. These changes make obsolete all past accounts of the evolution and development of lateralization and handedness because EES/Evo-Devo requires new study designs. The developmental trajectories of any structural or functional trait must be specified so that it may be related to variations in the developmental trajectories of other traits. First, we describe how the EES/Evo-Devo differs from the conventional ST, particularly for understanding of how traits develop. Then, we apply Evo-Devo to the study of handedness development in infancy and its relation to the development of other cognitive functions. Finally, we argue that identifying the development of atypical traits would benefit from knowledge of the range of individual differences in typical developmental trajectories of hand-use preference and their relation to variations in the developmental trajectories of cognitive functions.
Collapse
Affiliation(s)
- George F Michel
- Psychology Department, University of North Carolina Greensboro, Greensboro, NC, United States.
| | - Iryna Babik
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
| | - Eliza L Nelson
- Psychology Department, Florida International University, Miami, FL, United States
| | - Julie M Campbell
- Psychology Department, Illinois State University, Normal, IL, United States
| | - Emily C Marcinowski
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
42
|
Knowing left from right: asymmetric functional connectivity during resting state. Brain Struct Funct 2018; 223:1909-1922. [PMID: 29299691 PMCID: PMC5884915 DOI: 10.1007/s00429-017-1604-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/27/2017] [Indexed: 01/23/2023]
Abstract
The functional organization of left and right hemispheres is different, and hemispheric asymmetries are thought to underlie variations in brain function across individuals. In this study, we assess how differences between hemispheres are reflected in Asymmetric Functional Connectivity (AFC), which provides a full description of how the brain’s connectivity structure during resting state differs from that of the same brain mirrored over the longitudinal fissure. In addition, we assess how AFC varies across subjects. Data were provided by the Human Connectome Project, including 423 resting state and combined language task fMRI data sets, and the pattern of AFC was established for all subjects. While we could quantify the symmetry of brain connectivity at 95%, significant asymmetries were observed, consisting foremost of: (1) higher correlations between language areas in the left hemisphere than between their right hemisphere homologues. (2) Higher correlations between language homologue areas in the right hemisphere and left default mode network, than between language areas in the left hemisphere and the default mode network in the right hemisphere. The extent to which subjects exhibited this pattern correlated with language lateralization and handedness. Further exploration in intersubject variation in AFC revealed several additional patterns, one involving entire hemispheres, and another correlations with limbic areas. These results show that language is an important, but not only determinant of AFC. The additional patterns of AFC require further research to be linked to specific asymmetric neuronal states or events.
Collapse
|
43
|
Biduła SP, Przybylski Ł, Pawlak MA, Króliczak G. Unique Neural Characteristics of Atypical Lateralization of Language in Healthy Individuals. Front Neurosci 2017; 11:525. [PMID: 28983238 PMCID: PMC5613132 DOI: 10.3389/fnins.2017.00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Using functional magnetic resonance imaging (fMRI) in 63 healthy participants, including left-handed and ambidextrous individuals, we tested how atypical lateralization of language—i. e., bilateral or right hemispheric language representation—differs from the typical left-hemisphere dominance. Although regardless of their handedness, all 11 participants from the atypical group engaged classical language centers, i.e., Broca's and Wernicke's areas, the right-hemisphere components of the default mode network (DMN), including the angular gyrus and middle temporal gyrus, were also critically involved during the verbal fluency task. Importantly, activity in these regions could not be explained in terms of mirroring the typical language pattern because left-hemisphere dominant individuals did not exhibit similar significant signal modulations. Moreover, when spatial extent of language-related activity across whole brain was considered, the bilateral language organization entailed more diffuse functional processing. Finally, we detected significant differences between the typical and atypical group in the resting-state connectivity at the global and local level. These findings suggest that the atypical lateralization of language has unique features, and is not a simple mirror image of the typical left hemispheric language representation.
Collapse
Affiliation(s)
- Szymon P Biduła
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| | - Łukasz Przybylski
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| | - Mikołaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznań University of Medical SciencesPoznan, Poland
| | - Gregory Króliczak
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| |
Collapse
|
44
|
Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: A review. Cortex 2017; 86:314-339. [DOI: 10.1016/j.cortex.2016.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
|
45
|
Piervincenzi C, Petrilli A, Marini A, Caulo M, Committeri G, Sestieri C. Multimodal assessment of hemispheric lateralization for language and its relevance for behavior. Neuroimage 2016; 142:351-370. [DOI: 10.1016/j.neuroimage.2016.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022] Open
|