1
|
Vesci L, Martinelli G, Liu Y, Tagliavento L, Dell’Agli M, Wu Y, Soldi S, Sagheddu V, Piazza S, Sangiovanni E, Meneguzzo F. The New Phytocomplex AL0042 Extracted from Red Orange By-Products Inhibits the Minimal Hepatic Encephalopathy in Mice Induced by Thioacetamide. Biomedicines 2025; 13:686. [PMID: 40149662 PMCID: PMC11940312 DOI: 10.3390/biomedicines13030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Minimal hepatic encephalopathy (MHE) is a clinical condition characterized by neurological impairments, including brain inflammation, arising from the accumulation of toxic metabolites associated with liver dysfunction and leaky gut. This study investigated the pharmacological activity of a new phytocomplex extracted from red orange by-products (AL0042) using hydrodynamic cavitation and consisting of a mixture of pectin, polyphenols, and essential oils. Methods: Preliminary in vitro studies evaluated the impact on the epithelial integrity (TEER) of enterocytes challenged by a pro-inflammatory cocktail. The effect of AL0042 was then evaluated in a model of thioacetamide (TAA)-treated mice that mimics MHE. A group of 8-10-week-old male C57BL/6 mice was intraperitoneally injected with TAA to establish the MHE model. The intervention group received TAA along with AL0042 (20 mg/kg, administered orally once daily for 7 days). At the end of the treatment, the rotarod test was conducted to evaluate motor ability, along with the evaluation of blood biochemical, liver, and brain parameters. Results: In vitro, AL0042 (250 μg/mL) partially recovered the TEER values, although anti-inflammatory mechanisms played a negligible role. In vivo, compared with the control group, the test group showed significant behavioral differences, together with alterations in plasma ammonia, serum TNF-α, ALT, AST, corticosterone levels, and SOD activity. Moreover, histological data confirmed the anti-inflammatory effect at liver and brain level. Conclusions: AL0042 treatment revealed a significant therapeutic effect on the TAA-induced MHE mouse model, curbing oxidative stress and peripheral and central inflammation, thus suggesting that its pharmacological activity deserves to be further investigated in clinical studies.
Collapse
Affiliation(s)
- Loredana Vesci
- Research and Development, Alfasigma S.p.A., 00071 Pomezia, Italy;
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Yongqiang Liu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai 200131, China; (Y.L.); (Y.W.)
| | | | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Yunfei Wu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai 200131, China; (Y.L.); (Y.W.)
| | - Sara Soldi
- AAT Srl–Advanced Analytical Technologies, 29017 Fiorenzuola d’Arda, Italy; (S.S.); (V.S.)
| | - Valeria Sagheddu
- AAT Srl–Advanced Analytical Technologies, 29017 Fiorenzuola d’Arda, Italy; (S.S.); (V.S.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Francesco Meneguzzo
- Institute of Bioeconomy, National Research Council of Italy, 50019 Florence, Italy
| |
Collapse
|
2
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Ansari N, Wadhawan M. Evaluation and management of neurological complications in acute liver failure. Best Pract Res Clin Gastroenterol 2024; 73:101963. [PMID: 39709217 DOI: 10.1016/j.bpg.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/03/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
Neurological complications in acute liver failure are the most common cause of mortality in this group of patients. Almost all neurologic complications arise from underlying increase in intracranial pressure in ALF. In addition to symptomatic management, the treatment relies on measures to bring down ICP. Recently role of renal replacement therapy is gaining a lot of ground in ALF management, primarily due to its ammonia lowering effects indirectly leading to decrease in ICP. In this review we cover the neurologic issues in ALF in detail. We discuss the various non invasive techniques for ICP monitoring & their current application in ALF patients. We also focus on the management protocols in ALF & their role in improving the ICP & hence the outcome.
Collapse
Affiliation(s)
- Nuruddin Ansari
- Institute of Digestive & Liver Diseases, BLK Superspeciality Hospital, Delhi, India
| | - Manav Wadhawan
- Institute of Digestive & Liver Diseases, BLK Superspeciality Hospital, Delhi, India.
| |
Collapse
|
4
|
Rezaie P, Hanisch UK. History of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:15-37. [PMID: 39207684 DOI: 10.1007/978-3-031-55529-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The term 'microglia' was first introduced into the scientific literature a century ago. The various eras of microglial research have been defined not only by the number of reports subsequently generated but, more critically, also by the concepts that have shaped our present-day views and understanding of microglia. Key methods, technologies, and models, as well as seminal discoveries made possible through their deployment have enabled breakthroughs, and now pave the way for lines of investigation that could not have been anticipated even a decade ago. Advances in our understanding of the microglial origin, forms, and functions have relied fundamentally on parallel developments in immunology. As the 'neuro-immune' cells of the brain, microglia are now under the spotlight in various disciplines. This chapter surveys the gradual processes and precipitous events that helped form ideas concerning the developmental origin of microglia and their roles in health and disease. It first covers the dawning phase during which the early pioneers of microglial research discovered cellular entities and already assigned functions to them. Following a recess period, the 1960s brought about a renaissance of active interest, with the development of tools and models-and fundamental notions on microglial contributions to central nervous system (CNS) pathologies. These seminal efforts laid the foundation for the awakening of a sweeping research era beginning in the 1980s and spurred on by a blast of immunological discoveries. Finally, this chapter stresses the advancements in molecular, genetic, and imaging approaches to the study of microglia with the turn of the millennium, enabling insights into virtually all facets of microglial physiology. Moving forward, it is clear that the future holds substantial promise for further discoveries. The next epoch in the history of microglial research has just begun.
Collapse
Affiliation(s)
- Payam Rezaie
- School of Life, Health & Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK.
| | | |
Collapse
|
5
|
Wang ZX, Wang MY, Yang RX, Ren TY, Zhao ZH, Xin FZ, Fan JG. Limited role for hyperammonemia in the progression of diet-induced nonalcoholic steatohepatitis. J Dig Dis 2023; 24:408-418. [PMID: 37529891 DOI: 10.1111/1751-2980.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES To determine whether hyperammonemia has a direct impact on steatohepatitis in mice fed with a high-fat diet (HFD). METHODS Male C57BL/6 mice were divided into two groups receiving either chow diet or HFD. After 12-week NASH modeling, hyperammonemia was induced by intragastric administration of ammonium chloride solution (NH4 Cl) or liver-specific carbamoyl phosphate synthetase 1 (Cps1) knockdown. In vitro experiments were performed in HepG2 cells induced by free fatty acid (FFA) and NH4 Cl. RESULTS NH4 Cl administration led to increased levels of plasma and hepatic ammonia in NASH mice. NH4 Cl-induced hyperammonemia did not influence liver histological changes in mice fed with HFD; however, elevated plasma cholesterol level, and an increasing trend of liver lipid content were observed. No significant effect of hyperammonemia on hepatic inflammation and fibrosis in NASH mice was found. In vitro cell experiments showed that NH4 Cl treatment failed to increase the lipid droplet content and the expressions of de novo lipogenesis genes in HepG2 cells induced by FFA. The knockdown of Cps1 in HFD-fed mice resulted in elevated plasma ammonia levels but did not cause histological change in the liver. CONCLUSIONS Our study revealed a limited role of ammonia in aggravating the progression of NASH. Further studies are needed to clarify the role and mechanism of ammonia in NASH development.
Collapse
Affiliation(s)
- Zi Xuan Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yu Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Xu Yang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Yi Ren
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Hua Zhao
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Feng Zhi Xin
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
6
|
Reactive Microgliosis in Sepsis-Associated and Acute Hepatic Encephalopathies: An Ultrastructural Study. Int J Mol Sci 2022; 23:ijms232214455. [PMID: 36430933 PMCID: PMC9696099 DOI: 10.3390/ijms232214455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis and acute liver failure are associated with severe endogenous intoxication. Microglia, which are the resident immune brain cells, play diverse roles in central nervous system development, surveillance, and defense, as well as contributing to neuroinflammatory reactions. In particular, microglia are fundamental to the pathophysiology of reactive toxic encephalopathies. We analyzed microglial ultrastructure, morphotypes, and phagocytosis in the sensorimotor cortex of cecal ligation and puncture (CLP) and acetaminophen-induced liver failure (AILF) Wistar rats. A CLP model induced a gradual shift of ~50% of surveillant microglia to amoeboid hypertrophic-like and gitter cell-like reactive phenotypes with active phagocytosis and frequent contacts with damaged neurons. In contrast, AILF microglia exhibited amoeboid, rod-like, and hypertrophic-like reactive morphotypes with minimal indications for efficient phagocytosis, and were mostly in contact with edematous astrocytes. Close interactions of reactive microglia with neurons, astrocytes, and blood-brain barrier components reflect an active contribution of these cells to the tissue adaptation and cellular remodeling to toxic brain damage. Partial disability of reactive microglia may affect the integrity and metabolism in all tissue compartments, leading to failure of the compensatory mechanisms in acute endogenous toxic encephalopathies.
Collapse
|
7
|
Ribas GS, Lopes FF, Deon M, Vargas CR. Hyperammonemia in Inherited Metabolic Diseases. Cell Mol Neurobiol 2022; 42:2593-2610. [PMID: 34665389 PMCID: PMC11421644 DOI: 10.1007/s10571-021-01156-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Franciele Fátima Lopes
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
8
|
A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Sci Rep 2022; 12:17558. [PMID: 36266427 PMCID: PMC9585018 DOI: 10.1038/s41598-022-22423-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic liver disease, characterized by an altered mental state and hyperammonemia. Insight into the brain pathophysiology of HE is limited due to a paucity of well-characterized HE models beyond the rat bile duct ligation (BDL) model. Here, we assess the presence of HE characteristics in the mouse BDL model. We show that BDL in C57Bl/6j mice induces motor dysfunction, progressive liver fibrosis, liver function failure and hyperammonemia, all hallmarks of HE. Swiss mice however fail to replicate the same phenotype, underscoring the importance of careful strain selection. Next, in-depth characterisation of metabolic disturbances in the cerebrospinal fluid of BDL mice shows glutamine accumulation and transient decreases in taurine and choline, indicative of brain ammonia overload. Moreover, mouse BDL induces glial cell dysfunction, namely microglial morphological changes with neuroinflammation and astrocyte reactivity with blood-brain barrier (BBB) disruption. Finally, we identify putative novel mechanisms involved in central HE pathophysiology, like bile acid accumulation and tryptophan-kynurenine pathway alterations. Our study provides the first comprehensive evaluation of a mouse model of HE in chronic liver disease. Additionally, this study further underscores the importance of neuroinflammation in the central effects of chronic liver disease.
Collapse
|
9
|
Undifferentiated non-hepatic hyperammonemia in the ICU: Diagnosis and management. J Crit Care 2022. [DOI: 10.1016/j.jcrc.2022.154042
expr 979693480 + 932749582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Undifferentiated non-hepatic hyperammonemia in the ICU: Diagnosis and management. J Crit Care 2022; 70:154042. [PMID: 35447602 DOI: 10.1016/j.jcrc.2022.154042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
Abstract
Hyperammonemia occurs frequently in the critically ill but is largely confined to patients with hepatic dysfunction or failure. Non-hepatic hyperammonemia (NHHA) is far less common but can be a harbinger of life-threatening diagnoses that warrant timely identification and, sometimes, empiric therapy to prevent seizures, status epilepticus, cerebral edema, coma and death; in children, permanent cognitive impairment can result. Subsets of patients are at particular risk for developing NHHA, including the organ transplant recipient. Unique etiologies include rare infections, such as with Ureaplasma species, and unmasked inborn errors of metabolism, like urea cycle disorders, must be considered in the critically ill. Early recognition and empiric therapy, including directed therapies towards these rare etiologies, is crucial to prevent catastrophic demise. We review the etiologies of NHHA and highlight the first presentation of it associated with a concurrent Ureaplasma urealyticum and Mycoplasma hominis infection in a previously healthy individual with polytrauma. Based on this clinical review, a diagnostic and treatment algorithm to identify and manage NHHA is proposed.
Collapse
|
11
|
Claeys W, Van Hoecke L, Lefere S, Geerts A, Verhelst X, Van Vlierberghe H, Degroote H, Devisscher L, Vandenbroucke RE, Van Steenkiste C. The neurogliovascular unit in hepatic encephalopathy. JHEP Rep 2021; 3:100352. [PMID: 34611619 PMCID: PMC8476774 DOI: 10.1016/j.jhepr.2021.100352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological complication of hepatic dysfunction and portosystemic shunting. It is highly prevalent in patients with cirrhosis and is associated with poor outcomes. New insights into the role of peripheral origins in HE have led to the development of innovative treatment strategies like faecal microbiota transplantation. However, this broadening of view has not been applied fully to perturbations in the central nervous system. The old paradigm that HE is the clinical manifestation of ammonia-induced astrocyte dysfunction and its secondary neuronal consequences requires updating. In this review, we will use the holistic concept of the neurogliovascular unit to describe central nervous system disturbances in HE, an approach that has proven instrumental in other neurological disorders. We will describe HE as a global dysfunction of the neurogliovascular unit, where blood flow and nutrient supply to the brain, as well as the function of the blood-brain barrier, are impaired. This leads to an accumulation of neurotoxic substances, chief among them ammonia and inflammatory mediators, causing dysfunction of astrocytes and microglia. Finally, glymphatic dysfunction impairs the clearance of these neurotoxins, further aggravating their effect on the brain. Taking a broader view of central nervous system alterations in liver disease could serve as the basis for further research into the specific brain pathophysiology of HE, as well as the development of therapeutic strategies specifically aimed at counteracting the often irreversible central nervous system damage seen in these patients.
Collapse
Key Words
- ABC, ATP-binding cassette
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- ALF, acute liver failure
- AOM, azoxymethane
- AQP4, aquaporin 4
- Acute Liver Failure
- Ammonia
- BBB, blood-brain barrier
- BCRP, breast cancer resistance protein
- BDL, bile duct ligation
- Blood-brain barrier
- Brain edema
- CCL, chemokine ligand
- CCR, C-C chemokine receptor
- CE, cerebral oedema
- CLD, chronic liver disease
- CLDN, claudin
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Cirrhosis
- Energy metabolism
- GS, glutamine synthetase
- Glymphatic system
- HE, hepatic encephalopathy
- HO-1, heme oxygenase 1
- IL-, interleukin
- MMP-9, matrix metalloproteinase 9
- MRP, multidrug resistance associated protein
- NGVU
- NGVU, neurogliovascular unit
- NKCC1, Na-K-2Cl cotransporter 1
- Neuroinflammation
- OCLN, occludin
- ONS, oxidative and nitrosative stress
- Oxidative stress
- P-gp, P-glycoprotein
- PCA, portacaval anastomosis
- PSS, portosystemic shunt
- S1PR2, sphingosine-1-phosphate receptor 2
- SUR1, sulfonylurea receptor 1
- Systemic inflammation
- TAA, thioacetamide
- TGFβ, transforming growth factor beta
- TJ, tight junction
- TNF, tumour necrosis factor
- TNFR1, tumour necrosis factor receptor 1
- ZO, zonula occludens
- mPT, mitochondrial pore transition
Collapse
Affiliation(s)
- Wouter Claeys
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Helena Degroote
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Steenkiste
- Antwerp University, Department of Gastroenterology and Hepatology, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| |
Collapse
|
12
|
Limón ID, Angulo-Cruz I, Sánchez-Abdon L, Patricio-Martínez A. Disturbance of the Glutamate-Glutamine Cycle, Secondary to Hepatic Damage, Compromises Memory Function. Front Neurosci 2021; 15:578922. [PMID: 33584185 PMCID: PMC7873464 DOI: 10.3389/fnins.2021.578922] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Glutamate fulfils many vital functions both at a peripheral level and in the central nervous system (CNS). However, hyperammonemia and hepatic failure induce alterations in glutamatergic neurotransmission, which may be the main cause of hepatic encephalopathy (HE), an imbalance which may explain damage to both learning and memory. Cognitive and motor alterations in hyperammonemia may be caused by a deregulation of the glutamate-glutamine cycle, particularly in astrocytes, due to the blocking of the glutamate excitatory amino-acid transporters 1 and 2 (EAAT1, EAAT2). Excess extracellular glutamate triggers mechanisms involving astrocyte-mediated inflammation, including the release of Ca2+-dependent glutamate from astrocytes, the appearance of excitotoxicity, the formation of reactive oxygen species (ROS), and cell damage. Glutamate re-uptake not only prevents excitotoxicity, but also acts as a vital component in synaptic plasticity and function. The present review outlines the evidence of the relationship between hepatic damage, such as that occurring in HE and hyperammonemia, and changes in glutamine synthetase function, which increase glutamate concentrations in the CNS. These conditions produce dysfunction in neuronal communication. The present review also includes data indicating that hyperammonemia is related to the release of a high level of pro-inflammatory factors, such as interleukin-6, by astrocytes. This neuroinflammatory condition alters the function of the membrane receptors, such as N-methyl-D-aspartate (NMDA), (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) AMPA, and γ-aminobutyric acid (GABA), thus affecting learning and spatial memory. Data indicates that learning and spatial memory, as well as discriminatory or other information acquisition processes in the CNS, are damaged by the appearance of hyperammonemia and, moreover, are associated with a reduction in the production of cyclic guanosine monophosphate (cGMP). Therefore, increased levels of pharmacologically controlled cGMP may be used as a therapeutic tool for improving learning and memory in patients with HE, hyperammonemia, cerebral oedema, or reduced intellectual capacity.
Collapse
Affiliation(s)
| | - Isael Angulo-Cruz
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lesli Sánchez-Abdon
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
13
|
Zhang Y, Li H, Song L, Xue J, Wang X, Song S, Wang S. Polysaccharide from Ganoderma lucidum ameliorates cognitive impairment by regulating the inflammation of the brain-liver axis in rats. Food Funct 2021; 12:6900-6914. [PMID: 34338268 DOI: 10.1039/d1fo00355k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ganoderma lucidum (G. lucidum) polysaccharide-1 (GLP-1) is one of the polysaccharides isolated from the fruiting bodies of G. lucidum. Inflammation in the brain-liver axis plays a vital role in the progress of cognitive impairment. In this study, the beneficial effect of GLP-1 on d-galactose (d-gal) rats was carried out by regulating the inflammation of the brain-liver axis. A Morris water maze test was used to assess the cognitive ability of d-gal rats. ELISA and/or western blot analysis were used to detect the blood ammonia and inflammatory cytokines levels in the brain-liver axis. Metabolomic analysis was used to evaluate the changes of small molecule metabolomics between the brain and liver. As a result, GLP-1 could obviously ameliorate the cognitive impairment of d-gal rats. The mechanism was related to the decreasing levels of TNF-α, IL-6, phospho-p38MAPK, phospho-p53, and phospho-JNK1 + JNK2 + JNK3, the increasing levels of IL-10 and TGF-β1, and the regulation of the metabolic disorders of the brain-liver axis. Our study suggests that G. lucidum could be exploited as an effective food or health care product to prevent and delay cognitive impairment and improve the quality of life.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, Chawla YK, Chowdhury A, Chaoudhuri A, Eapen EC, Devarbhavi H, Dhiman R, Datta Gupta S, Duseja A, Jothimani D, Kapoor D, Kar P, Khuroo MS, Kumar A, Madan K, Mallick B, Maiwall R, Mohan N, Nagral A, Nath P, Panigrahi SC, Pawar A, Philips CA, Prahraj D, Puri P, Rastogi A, Saraswat VA, Saigal S, Shalimar, Shukla A, Singh SP, Verghese T, Wadhawan M. Indian National Association for the Study of the Liver Consensus Statement on Acute Liver Failure (Part 1): Epidemiology, Pathogenesis, Presentation and Prognosis. J Clin Exp Hepatol 2020; 10:339-376. [PMID: 32655238 PMCID: PMC7335721 DOI: 10.1016/j.jceh.2020.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is an infrequent, unpredictable, potentially fatal complication of acute liver injury (ALI) consequent to varied etiologies. Etiologies of ALF as reported in the literature have regional differences, which affects the clinical presentation and natural course. In this part of the consensus article designed to reflect the clinical practices in India, disease burden, epidemiology, clinical presentation, monitoring, and prognostication have been discussed. In India, viral hepatitis is the most frequent cause of ALF, with drug-induced hepatitis due to antituberculosis drugs being the second most frequent cause. The clinical presentation of ALF is characterized by jaundice, coagulopathy, and encephalopathy. It is important to differentiate ALF from other causes of liver failure, including acute on chronic liver failure, subacute liver failure, as well as certain tropical infections which can mimic this presentation. The disease often has a fulminant clinical course with high short-term mortality. Death is usually attributable to cerebral complications, infections, and resultant multiorgan failure. Timely liver transplantation (LT) can change the outcome, and hence, it is vital to provide intensive care to patients until LT can be arranged. It is equally important to assess prognosis to select patients who are suitable for LT. Several prognostic scores have been proposed, and their comparisons show that indigenously developed dynamic scores have an edge over scores described from the Western world. Management of ALF will be described in part 2 of this document.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- AFLP, acute fatty liver of pregnancy
- AKI, Acute kidney injury
- ALF, Acute liver failure
- ALFED, Acute Liver Failure Early Dynamic
- ALT, alanine transaminase
- ANA, antinuclear antibody
- AP, Alkaline phosphatase
- APTT, activated partial thromboplastin time
- ASM, alternative system of medicine
- ASMA, antismooth muscle antibody
- AST, aspartate transaminase
- ATN, Acute tubular necrosis
- ATP, adenosine triphosphate
- ATT, anti-TB therapy
- AUROC, Area under the receiver operating characteristics curve
- BCS, Budd-Chiari syndrome
- BMI, body mass index
- CBF, cerebral blood flow
- CBFV, cerebral blood flow volume
- CE, cerebral edema
- CHBV, chronic HBV
- CLD, chronic liver disease
- CNS, central nervous system
- CPI, clinical prognostic indicator
- CSF, cerebrospinal fluid
- DAMPs, Damage-associated molecular patterns
- DILI, drug-induced liver injury
- EBV, Epstein-Barr virus
- ETCO2, End tidal CO2
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- HAV, hepatitis A virus
- HBV, Hepatitis B virus
- HELLP, hemolysis
- HEV, hepatitis E virus
- HLH, Hemophagocytic lymphohistiocytosis
- HSV, herpes simplex virus
- HV, hepatic vein
- HVOTO, hepatic venous outflow tract obstruction
- IAHG, International Autoimmune Hepatitis Group
- ICH, intracerebral hypertension
- ICP, intracerebral pressure
- ICU, intensive care unit
- IFN, interferon
- IL, interleukin
- IND-ALF, ALF of indeterminate etiology
- INDILI, Indian Network for DILI
- KCC, King's College Criteria
- LC, liver cirrhosis
- LDLT, living donor liver transplantation
- LT, liver transplantation
- MAP, mean arterial pressure
- MHN, massive hepatic necrosis
- MPT, mitochondrial permeability transition
- MUAC, mid-upper arm circumference
- NAPQI, n-acetyl-p-benzo-quinone-imine
- NPV, negative predictive value
- NWI, New Wilson's Index
- ONSD, optic nerve sheath diameter
- PAMPs, pathogen-associated molecular patterns
- PCR, polymerase chain reaction
- PELD, Pediatric End-Stage Liver Disease
- PPV, positive predictive value
- PT, prothrombin time
- RAAS, renin–angiotensin–aldosterone system
- SHF, subacute hepatic failure
- SIRS, systemic inflammatory response syndrome
- SNS, sympathetic nervous system
- TB, tuberculosis
- TCD, transcranial Doppler
- TGF, tumor growth factor
- TJLB, transjugular liver biopsy
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TSFT, triceps skin fold thickness
- US, ultrasound
- USALF, US Acute Liver Failure
- VZV, varicella-zoster virus
- WD, Wilson disease
- Wilson disease (WD)
- YP, yellow phosphorus
- acute liver failure
- autoimmune hepatitis (AIH)
- drug-induced liver injury
- elevated liver enzymes, low platelets
- sALI, severe acute liver injury
- viral hepatitis
Collapse
Affiliation(s)
- Anil C. Anand
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bhaskar Nandi
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Anil Arora
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sethu Babu
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
| | - Yogesh Batra
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
| | - Ashok Chaoudhuri
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Eapen C. Eapen
- Department of Hepatology, Christian Medical College, Vellore, India
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
| | - RadhaKrishan Dhiman
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ajay Duseja
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
| | | | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Mohamad S. Khuroo
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Kaushal Madan
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
| | - Bipadabhanjan Mallick
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Rakhi Maiwall
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
| | - Aabha Nagral
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Preetam Nath
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Sarat C. Panigrahi
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Ankush Pawar
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
| | - Cyriac A. Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
| | - Dibyalochan Prahraj
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Pankaj Puri
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
| | - Amit Rastogi
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Sanjiv Saigal
- Department of Hepatology, Department of Liver Transplantation, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Thomas Verghese
- Department of Gastroenterology, Government Medical College, Kozikhode, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| | - The INASL Task-Force on Acute Liver Failure
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Hepatology, Christian Medical College, Vellore, India
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
- Gleneagles Global Hospitals, Hyderabad, Telangana, India
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
- Department of Hepatology, Department of Liver Transplantation, India
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
- Department of Gastroenterology, Government Medical College, Kozikhode, India
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| |
Collapse
|
15
|
Jaeger V, DeMorrow S, McMillin M. The Direct Contribution of Astrocytes and Microglia to the Pathogenesis of Hepatic Encephalopathy. J Clin Transl Hepatol 2019; 7:352-361. [PMID: 31915605 PMCID: PMC6943208 DOI: 10.14218/jcth.2019.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy is a neurological complication resulting from loss of hepatic function and is associated with poor clinical outcomes. During acute liver failure over 20% of mortality can be associated with the development of hepatic encephalopathy. In patients with liver cirrhosis, 1-year survival for those that develop overt hepatic encephalopathy is under 50%. The pathogenesis of hepatic encephalopathy is complicated due to the multiple disruptions in homeostasis that occur following a reduction in liver function. Of these, elevations of ammonia and neuroinflammation have been shown to play a significant contributing role to the development of hepatic encephalopathy. Disruption of the urea cycle following liver dysfunction leads to elevations of circulating ammonia, which enter the brain and disrupt the functioning of astrocytes. This results in dysregulation of metabolic pathways in astrocytes, oxidative stress and cerebral edema. Besides ammonia, circulating chemokines and cytokines are increased following liver injury, leading to activation of microglia and a subsequent neuroinflammatory response. The combination of astrocyte dysfunction and microglia activation are significant contributing factors to the pathogenesis of hepatic encephalopathy.
Collapse
Affiliation(s)
- Victoria Jaeger
- Baylor Scott & White Health, Department of Internal Medicine, Temple, TX, USA
| | - Sharon DeMorrow
- Texas A&M University Health Science Center, Department of Medical Physiology, Temple, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, TX, USA
- University of Texas at Austin, College of Pharmacy, Austin, TX, USA
| | - Matthew McMillin
- Texas A&M University Health Science Center, Department of Medical Physiology, Temple, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, TX, USA
- Correspondence to: Matthew McMillin, University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78701, USA. Tel: +1-512-495-5037, Fax: +1-512-495-5839, E-mail:
| |
Collapse
|
16
|
Sun X, Han R, Cheng T, Zheng Y, Xiao J, So KF, Zhang L. Corticosterone-mediated microglia activation affects dendritic spine plasticity and motor learning functions in minimal hepatic encephalopathy. Brain Behav Immun 2019; 82:178-187. [PMID: 31437533 DOI: 10.1016/j.bbi.2019.08.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 01/20/2023] Open
Abstract
Minimal hepatic encephalopathy (MHE) is characterized as cognitive deficits including memory and learning dysfunctions after liver injuries or hepatic diseases. Our understandings of neurological mechanisms of MHE-associated cognitive syndromes, however, are far from complete. In the current study we generated a mouse MHE model by repetitive administrations of thioacetamide (TAA), which induced hyperammonemia plus elevated proinflammatory cytokines in both the general circulation and motor cortex. MHE mice presented prominent motor learning deficits, which were associated with excess dendritic spine pruning in the motor cortex under 2-photon in vivo microscopy. The pharmaceutical blockade of glucocorticoid receptor or suppression of its biosynthesis further rescued motor learning deficits and synaptic protein loss. Moreover, MHE mice presented microglial activation, which can be alleviated after glucocorticoid pathway inhibition. In sum, our data demonstrates corticosterone-induced microglial activation, synaptic over-pruning and motor learning impairments in MHE, providing new insights for MHE pathogenesis and potential targets of clinical interventions.
Collapse
Affiliation(s)
- Xiaoming Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Rui Han
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Tong Cheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Yuhan Zheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Jia Xiao
- Laboratory of Neuroendocrinology, College of Life Sciences, Fujian Normal University, Fuzhou, PR China; Institute of Clinical Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, PR China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macau Greater Bay Area, Guangzhou, PR China.
| | - Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macau Greater Bay Area, Guangzhou, PR China.
| |
Collapse
|
17
|
Sun W, Suzuki K, Toptunov D, Stoyanov S, Yuzaki M, Khiroug L, Dityatev A. In vivo Two-Photon Imaging of Anesthesia-Specific Alterations in Microglial Surveillance and Photodamage-Directed Motility in Mouse Cortex. Front Neurosci 2019; 13:421. [PMID: 31133777 PMCID: PMC6513965 DOI: 10.3389/fnins.2019.00421] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/12/2019] [Indexed: 11/15/2022] Open
Abstract
Two-photon imaging of fluorescently labeled microglia in vivo provides a direct approach to measure motility of microglial processes as a readout of microglial function that is crucial in the context of neurodegenerative diseases, as well as to understand the neuroinflammatory response to implanted substrates and brain-computer interfaces. In this longitudinal study, we quantified surveilling and photodamage-directed microglial processes motility in both acute and chronic cranial window preparations and compared the motility under isoflurane and ketamine anesthesia to an awake condition in the same animal. The isoflurane anesthesia increased the length of surveilling microglial processes in both acute and chronic preparations, while ketamine increased the number of microglial branches in acute preparation only. In chronic (but not acute) preparation, the extension of microglial processes toward the laser-ablated microglial cell was faster under isoflurane (but not ketamine) anesthesia than in awake mice, indicating distinct effects of anesthetics and of preparation type. These data reveal potentiating effects of isoflurane on microglial response to damage, and provide a framework for comparison and optimal selection of experimental conditions for quantitative analysis of microglial function using two-photon microscopy in vivo.
Collapse
Affiliation(s)
- Weilun Sun
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Kunimichi Suzuki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Stoyan Stoyanov
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, Japan
| | - Leonard Khiroug
- Neurotar Ltd., Helsinki, Finland.,HiLIFE/Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
18
|
Stern RA, Mozdziak PE. Differential ammonia metabolism and toxicity between avian and mammalian species, and effect of ammonia on skeletal muscle: A comparative review. J Anim Physiol Anim Nutr (Berl) 2019; 103:774-785. [PMID: 30860624 DOI: 10.1111/jpn.13080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Comparative aspects of ammonia toxicity, specific to liver and skeletal muscle and skeletal muscle metabolism between avian and mammalian species are discussed in the context of models for liver disease and subsequent skeletal muscle wasting. The purpose of this review is to present species differences in ammonia metabolism and to specifically highlight observed differences in skeletal muscle response to excess ammonia in avian species. Ammonia, which is produced during protein catabolism and is an essential component of nucleic acid and protein biosynthesis, is detoxified mainly in the liver. While the liver is consistent as the main organ responsible for ammonia detoxification, there are evolutionary differences in ammonia metabolism and nitrogen excretory products between avian and mammalian species. In patients with liver disease and all mammalian models, inadequate ammonia detoxification and successive increased circulating ammonia concentration, termed hyperammonemia, leads to severe skeletal muscle atrophy, increased apoptosis and reduced protein synthesis, altogether having deleterious effects on muscle size and strength. Previously, an avian embryonic model, designed to determine the effects of increased circulating ammonia on muscle development, revealed that ammonia elicits a positive myogenic response. Specifically, induced hyperammonemia in avian embryos resulted in a reduction in myostatin, a well-known inhibitor of muscle growth, expression, whereas myostatin expression is significantly increased in mammalian models of hyperammonemia. These interesting findings imply that species differences in ammonia metabolism allow avians to utilize ammonia for growth. Understanding the intrinsic physiological mechanisms that allow for ammonia to be utilized for growth has potential to reveal novel approaches to muscle growth in avian species and will provide new targets for preventing muscle degeneration in mammalian species.
Collapse
Affiliation(s)
- Rachel A Stern
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| | - Paul E Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
19
|
Coppens V, Morrens M, Destoop M, Dom G. The Interplay of Inflammatory Processes and Cognition in Alcohol Use Disorders-A Systematic Review. Front Psychiatry 2019; 10:632. [PMID: 31572234 PMCID: PMC6751886 DOI: 10.3389/fpsyt.2019.00632] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Of late, evidence emerges that the pathophysiology of psychiatric diseases and their affiliated symptomatologies are at least partly contributable to inflammatory processes. Also in alcohol use disorders (AUD), this interaction is strongly apparent, with severely immunogenic liver cirrhosis being one of the most critical sequelae of chronic abusive drinking. This somatic immune system activation negatively impacts brain functioning, and additionally, alcohol abuse appears to have a direct detrimental effect on the brain by actively stimulating its immune cells and responses. As cognitive decline majorly contributes to AUD's debility, it is important to know to what extent impairment of cognitive functioning is due to these (neuro-)inflammatory aberrations. Method: We hereby summarize the current existing literature on the interplay between AUD, inflammation, and cognition in a systematic review according to the PRISMA-P guidelines for the systematic review. Main findings: Although literature on the role of inflammation in alcohol use-related cognitive deficiency remains scarce, current findings indicate that pro-inflammatory processes indeed result in exacerbation of several domains of cognitive deterioration. Interestingly, microglia, the immune cells of the brain, appear to exert initial compensatory neuroprotective functionalities upon acute ethanol exposure while chronic alcohol intake seems to attenuate these responses and overall microglial activity. Conclusion: As these results indicate inflammation to be of importance in cognitive impairment following alcohol consumption and might as such provide alternate therapeutic avenues, a considerable increase in research efforts in this domain is urgently required.
Collapse
Affiliation(s)
- Violette Coppens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Department of Psychiatry, Duffel, Belgium
| | - Manuel Morrens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Department of Psychiatry, Duffel, Belgium
| | - Marianne Destoop
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Department of Addiction, Psychiatric Hospital Multiversum, Boechout, Belgium
| | - Geert Dom
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Department of Addiction, Psychiatric Hospital Multiversum, Boechout, Belgium
| |
Collapse
|
20
|
Gabbi P, Nogueira V, Haupental F, Rodrigues FS, do Nascimento PS, Barbosa S, Arend J, Furian AF, Oliveira MS, Dos Santos ARS, Royes LFF, Fighera MR. Ammonia role in glial dysfunction in methylmalonic acidemia. Toxicol Lett 2018; 295:237-248. [PMID: 30008432 DOI: 10.1016/j.toxlet.2018.06.1070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
Abstract
Hyperammonemia is a common finding in patients with methylmalonic acidemia. However, its contribution to methylmalonate (MMA)-induced neurotoxicity is poorly understood. The aim of this study was evaluate whether an acute metabolic damage to brain during the neonatal period may disrupt cerebral development, leading to neurodevelopmental disorders, as memory deficit. Mice received a single intracerebroventricular dose of MMA and/or NH4Cl, administered 12 hs after birth. The maze tests showed that MMA and NH4Cl injected animals (21 and 40 days old) exhibited deficit in the working memory test, but not in the reference memory test. Furthermore, MMA and NH4Cl increased the levels of 2',7'-dichlorofluorescein-diacetate (DCF), TNF-α, IL-1β in the cortex, hippocampus and striatum of mice. MMA and NH4Cl also increased glial proliferation in all structures. Since the treatment of MMA and ammonia increased cytokines levels, we suggested that it might be a consequence of the glial activation induced by the acid and ammonia, leading to delay in the developing brain and contributing to behavioral alterations. However, this hypothesis is speculative in nature and more studies are needed to clarify this possibility.
Collapse
Affiliation(s)
- Patricia Gabbi
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Viviane Nogueira
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Fernanda Haupental
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Fernanda Silva Rodrigues
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Patricia Severo do Nascimento
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Departamento de Ciências Morfológicas, Laboratório de Histofisiologia Comparada, UFRGS, Brazil
| | - Sílvia Barbosa
- Departamento de Ciências Morfológicas, Laboratório de Histofisiologia Comparada, UFRGS, Brazil
| | - Josi Arend
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil
| | - Adair Roberto Soares Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil.
| |
Collapse
|
21
|
Obara-Michlewska M, Ding F, Popek M, Verkhratsky A, Nedergaard M, Zielinska M, Albrecht J. Interstitial ion homeostasis and acid-base balance are maintained in oedematous brain of mice with acute toxic liver failure. Neurochem Int 2018; 118:286-291. [PMID: 29772253 DOI: 10.1016/j.neuint.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 01/25/2023]
Abstract
Acute toxic liver failure (ATLF) rapidly leads to brain oedema and neurological decline. We evaluated the ability of ATLF-affected brain to control the ionic composition and acid-base balance of the interstitial fluid. ATLF was induced in 10-12 weeks old male C57Bl mice by single intraperitoneal (i.p.) injection of 100 μg/g azoxymethane (AOM). Analyses were carried out in cerebral cortex of precomatous mice 20-24 h after AOM administration. Brain fluid status was evaluated by measuring apparent diffusion coefficient [ADC] using NMR spectroscopy, Evans Blue extravasation, and accumulation of an intracisternally-injected fluorescent tracer. Extracellular pH ([pH]e) and ([K+]e) were measured in situ with ion-sensitive microelectrodes. Cerebral cortical microdialysates were subjected to photometric analysis of extracellular potassium ([K+]e), sodium ([Na+]e) and luminometric assay of extracellular lactate ([Lac]e). Potassium transport in cerebral cortical slices was measured ex vivo as 86Rb uptake. Cerebral cortex of AOM-treated mice presented decreased ADC supporting the view that ATLF-induced brain oedema is primarily cytotoxic in nature. In addition, increased Evans blue extravasation indicated blood brain barrier leakage, and increased fluorescent tracer accumulation suggested impaired interstitial fluid passage. However, [K+]e, [Na+]e, [Lac]e, [pH]e and potassium transport in brain of AOM-treated mice was not different from control mice. We conclude that in spite of cytotoxic oedema and deregulated interstitial fluid passage, brain of mice with ATLF retains the ability to maintain interstitial ion homeostasis and acid-base balance. Tentatively, uncompromised brain ion homeostasis and acid-base balance may contribute to the relatively frequent brain function recovery and spontaneous survival rate in human patients with ATLF.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, NY, USA
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, NY, USA
| | - Magdalena Zielinska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| |
Collapse
|
22
|
Dhanda S, Gupta S, Halder A, Sunkaria A, Sandhir R. Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav Immun 2018. [PMID: 29518527 DOI: 10.1016/j.bbi.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease per se induces neuroinflammation that contributes to cognitive deficits in hepatic encephalopathy (HE). However, the processes by which pro-inflammatory molecules result in cognitive impairment still remains unclear. In the present study, a significant increase in the activity of liver function enzymes viz. alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) was observed along with increase in plasma ammonia levels after four weeks of bile duct ligation (BDL) in rats suggesting hepatocellular damage. A significant increase was observed in mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) in brain regions and liver of BDL rats. Concomitantly, IL-6, TNF-α and MCP-1 protein levels were also increased in brain regions, liver and serum of BDL rats suggesting the involvement of blood-brain-axis in inflammatory response. However, a significant decrease was observed in glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) expression at transcriptional and translation level in brain of BDL rats. Immunohistochemical and flowcytometric analysis revealed reduced number of GFAP-immunopositive astrocytes and Iba1-immunopositive microglia in the brain regions of BDL rats. Further, a significant decline was observed in cognitive functions in BDL rats assessed using Morris water maze and novel object recognition tests. Expression of pro and mature form of brain derived neurotrophic factor (BDNF) and its upstream transcription element showed significant reduction in brain of BDL rats. Taken together, the results of the present study suggest that systemic inflammation and reduced expression of BDNF and its upstream transcription factor plays a key role in cognitive decline in HE.
Collapse
Affiliation(s)
- Saurabh Dhanda
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Smriti Gupta
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Avishek Halder
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Aditya Sunkaria
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
23
|
McMillin M, Frampton G, Grant S, Khan S, Diocares J, Petrescu A, Wyatt A, Kain J, Jefferson B, DeMorrow S. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice. Front Cell Neurosci 2017; 11:191. [PMID: 28725183 PMCID: PMC5496949 DOI: 10.3389/fncel.2017.00191] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA), can activate sphingosine-1-phosphate receptor 2 (S1PR2), which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM)-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid levels or S1PR2 signaling are potential therapeutic strategies for the management of HE.
Collapse
Affiliation(s)
- Matthew McMillin
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Gabriel Frampton
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Stephanie Grant
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Shamyal Khan
- Department of Internal Medicine, Baylor Scott & White HealthTemple, TX, United States
| | - Juan Diocares
- Department of Internal Medicine, Baylor Scott & White HealthTemple, TX, United States
| | - Anca Petrescu
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Amy Wyatt
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Jessica Kain
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Brandi Jefferson
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Sharon DeMorrow
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| |
Collapse
|
24
|
Brawek B, Garaschuk O. Monitoring in vivo function of cortical microglia. Cell Calcium 2017; 64:109-117. [DOI: 10.1016/j.ceca.2017.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/01/2023]
|
25
|
Dasarathy S, Mookerjee RP, Rackayova V, Rangroo Thrane V, Vairappan B, Ott P, Rose CF. Ammonia toxicity: from head to toe? Metab Brain Dis 2017; 32:529-538. [PMID: 28012068 PMCID: PMC8839071 DOI: 10.1007/s11011-016-9938-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.
Collapse
Affiliation(s)
- Srinivasan Dasarathy
- Department of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| | - Rajeshwar P Mookerjee
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Hospital, London, UK
| | - Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vinita Rangroo Thrane
- Department of Ophthalmology, Haukeland University Hospital, 5021, Bergen, Norway
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Pondicherry, India
| | - Peter Ott
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus, Denmark
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
26
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Cai Q, Li Y, Mao J, Pei G. Neurogenesis-Promoting Natural Product α-Asarone Modulates Morphological Dynamics of Activated Microglia. Front Cell Neurosci 2016; 10:280. [PMID: 28018174 PMCID: PMC5145874 DOI: 10.3389/fncel.2016.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
α-Asarone is an active constituent of Acori Tatarinowii, one of the widely used traditional Chinese Medicine to treat cognitive defect, and recently is shown to promote neurogenesis. Here, we demonstrated that low level (3 μM) of α-asarone attenuated LPS-induced BV2 cell bipolar elongated morphological change, with no significant effect on the LPS-induced pro-inflammatory cytokine expressions. In addition, time-lapse analysis also revealed that α-asarone modulated LPS-induced BV2 morphological dynamics. Consistently a significant reduction in the LPS-induced Monocyte Chemoattractant Protein (MCP-1) mRNA and protein levels was also detected along with the morphological change. Mechanistic study showed that the attenuation effect to the LPS-resulted morphological modulation was also detected in the presence of MCP-1 antibodies or a CCR2 antagonist. This result has also been confirmed in primary cultured microglia. The in vivo investigation provided further evidence that α-asarone reduced the proportion of activated microglia, and reduced microglial tip number and maintained the velocity. Our study thus reveals α-asarone effectively modulates microglial morphological dynamics, and implies this effect of α-asarone may functionally relate to its influence on neurogenesis.
Collapse
Affiliation(s)
- Qing Cai
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Jianxin Mao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; School of Life Science and Technology, and the Collaborative Innovation Center for Brain Science, Tongji UniversityShanghai, China
| |
Collapse
|
28
|
Palenzuela L, Oria M, Romero-Giménez J, Garcia-Lezana T, Chavarria L, Cordoba J. Gene expression profiling of brain cortex microvessels may support brain vasodilation in acute liver failure rat models. Metab Brain Dis 2016; 31:1405-1417. [PMID: 27406245 DOI: 10.1007/s11011-016-9863-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/19/2016] [Indexed: 12/13/2022]
Abstract
Development of brain edema in acute liver failure can increase intracranial pressure, which is a severe complication of the disease. However, brain edema is neither entirely cytotoxic nor vasogenic and the specific action of the brain microvasculature is still unknown. We aimed to analyze gene expression of brain cortex microvessels in two rat models of acute liver failure. In order to identify global gene expression changes we performed a broad transcriptomic approach in isolated brain cortex microvessels from portacaval shunted rats after hepatic artery ligation (HAL), hepatectomy (HEP), or sham by array hybridization and confirmed changes in selected genes by RT-PCR. We found 157 and 270 up-regulated genes and 143 and 149 down-regulated genes in HAL and HEP rats respectively. Western blot and immunohistochemical assays were performed in cortex and ELISA assays to quantify prostaglandin E metabolites were performed in blood of the sagittal superior sinus. We Identified clusters of differentially expressed genes involving inflammatory response, transporters-channels, and homeostasis. Up-regulated genes at the transcriptional level were associated with vasodilation (prostaglandin-E synthetase, prostaglandin-E receptor, adrenomedullin, bradykinin receptor, adenosine transporter), oxidative stress (hemoxygenase, superoxide dismutase), energy metabolism (lactate transporter) and inflammation (haptoglobin). The only down-regulated tight junction protein was occludin but slightly. Prostaglandins levels were increased in cerebral blood with progression of liver failure. In conclusion, in acute liver failure, up-regulation of several genes at the level of microvessels might suggest an involvement of energy metabolism accompanied by cerebral vasodilation in the cerebral edema at early stages.
Collapse
Affiliation(s)
- Lluis Palenzuela
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Oria
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center for Fetal, Cellular and Mollecular Therapy, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.
| | - Jordi Romero-Giménez
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Garcia-Lezana
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Chavarria
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Cordoba
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Wright G, Swain M, Annane D, Saliba F, Samuel D, Arroyo V, DeMorrow S, Witt A. Neuroinflammation in liver disease: sessional talks from ISHEN. Metab Brain Dis 2016; 31:1339-1354. [PMID: 27726053 DOI: 10.1007/s11011-016-9918-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
At the recent ISHEN ('International Symposium of Hepatic Encephalopathy & Nitrogen Metabolism') conference in London, a whole session was dedicated to our increasing awareness of the importance of inflammation in the brain - termed 'neuroinflammation', in the development of Hepatic Encephalopathy (HE) - the neurological manifestations of advanced liver disease. In this review our ISHEN speakers further discuss the content of their sessional presentations and more broadly we discuss our understanding of the role of neuroinflammation in HE pathogenesis.
Collapse
Affiliation(s)
- Gavin Wright
- Gastroenterology Department, Basildon & Thurrock University Hospitals, Basildon, UK.
- Hepatology and Hepatobiliary Medicine, The Royal Free Hospital, Pond Street, London, NW3 2QG, UK.
- University College London, Gower Street, London, WC1E 6BT, UK.
| | - Mark Swain
- Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Canada
| | - Djillali Annane
- INSERM CIC IT 805, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, 92380, Garches, France
| | - Faouzi Saliba
- Centre Hépato-Biliaire, Hôpital Paul Brousse, 12, avenue Paul vaillant Couturier, 94800, Villejuif, France
| | - Didier Samuel
- GHU Paris-Sud - Hôpital Paul Brousse, 12 avenue Paul Vaillant-Couturier, 94804, Villejuif Cedex, France
| | - Vicente Arroyo
- Liver Unit, Instiute of Digestive and Metabolic Diseases, Hopsital Clinic, University of Barcelona, Barcelona, Spain
| | - Sharon DeMorrow
- Department of Internal Medicine, Central Texas Veterans Healthcare System, VA Bld 205, 1901 South 1st Street, Temple, TX, 76504, USA
| | - Anne Witt
- Departement of Hepatology, Rigshospitalet, Blegdamsvej 9, 2100 København Ø, Copenhagen, Denmark
| |
Collapse
|
30
|
Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, Gu S, Wang W, He X, Nedergaard M, Huang JH. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct 2016; 222:1543-1556. [PMID: 27586142 PMCID: PMC5368191 DOI: 10.1007/s00429-016-1292-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 08/16/2016] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is not only a leading cause for morbidity and mortality in young adults (Bruns and Hauser, Epilepsia 44(Suppl 10):210, 2003), but also a leading cause of seizures. Understanding the seizure-inducing mechanisms of TBI is of the utmost importance, because these seizures are often resistant to traditional first- and second-line anti-seizure treatments. The early post-traumatic seizures, in turn, are a contributing factor to ongoing neuropathology, and it is critically important to control these seizures. Many of the available anti-seizure drugs target gamma-aminobutyric acid (GABAA) receptors. The inhibitory activity of GABAA receptor activation depends on low intracellular Cl−, which is achieved by the opposing regulation of Na+–K+–Cl− cotransporter 1 (NKCC1) and K+–Cl−–cotransporter 2 (KCC2). Up-regulation of NKCC1 in neurons has been shown to be involved in neonatal seizures and in ammonia toxicity-induced seizures. Here, we report that TBI-induced up-regulation of NKCC1 and increased intracellular Cl− concentration. Genetic deletion of NKCC1 or pharmacological inhibition of NKCC1 with bumetanide suppresses TBI-induced seizures. TGFβ expression was also increased after TBI and competitive antagonism of TGFβ reduced NKKC1 expression, ameliorated reactive astrocytosis, and inhibited seizures. Thus, TGFβ might be an important pathway involved in NKCC1 up-regulation after TBI. Our findings identify neuronal up-regulation of NKCC1 and its mediation by TGFβ, as a potential and important mechanism in the early post-traumatic seizures, and demonstrate the therapeutic potential of blocking this pathway.
Collapse
Affiliation(s)
- Fushun Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA.,Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA.,Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA
| | - Xiaowei Wang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA.,Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA
| | - Lee A Shapiro
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA.
| | - Maria L Cotrina
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Weimin Liu
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Ernest W Wang
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA
| | - Simeng Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, 4th Military Medical University, Xi'an, China
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Jason H Huang
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA. .,Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA.
| |
Collapse
|
31
|
McMillin M, Grant S, Frampton G, Andry S, Brown A, DeMorrow S. Fractalkine suppression during hepatic encephalopathy promotes neuroinflammation in mice. J Neuroinflammation 2016; 13:198. [PMID: 27561705 PMCID: PMC5000400 DOI: 10.1186/s12974-016-0674-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
Background Acute liver failure is associated with numerous systemic consequences including neurological dysfunction, termed hepatic encephalopathy, which contributes to mortality and is a challenge to manage in the clinic. During hepatic encephalopathy, microglia activation and neuroinflammation occur due to dysregulated cell signaling and an increase of toxic metabolites in the brain. Fractalkine is a chemokine that is expressed primarily in neurons and through signaling with its receptor CX3CR1 on microglia, leads to microglia remaining in a quiescent state. Fractalkine is often suppressed during neuropathies that are characterized by neuroinflammation. However, the expression and subsequent role of fractalkine on microglia activation and the pathogenesis of hepatic encephalopathy due to acute liver failure is unknown. Methods Hepatic encephalopathy was induced in mice via injection of azoxymethane (AOM) or saline for controls. Subsets of these mice were implanted with osmotic minipumps that infused soluble fractalkine or saline into the lateral ventricle of the brain. Neurological decline and the latency to coma were recorded in these mice, and brain, serum, and liver samples were collected. Neurons or microglia were isolated from whole brain samples using immunoprecipitation. Liver damage was assessed using hematoxylin and eosin staining and by measuring serum liver enzyme concentrations. Fractalkine and CX3CR1 expression were assessed by real-time PCR, and proinflammatory cytokine expression was assessed using ELISA assays. Results Following AOM administration, fractalkine expression is suppressed in the cortex and in isolated neurons compared to vehicle-treated mice. CX3CR1 is suppressed in isolated microglia from AOM-treated mice. Soluble fractalkine infusion into the brain significantly reduced neurological decline in AOM-treated mice compared to saline-infused AOM-treated mice. Infusion of soluble fractalkine into AOM-treated mice reduced liver damage, lessened microglia activation, and suppressed expression of chemokine ligand 2, interleukin-6, and tumor necrosis factor alpha compared to saline-infused mice. Conclusions These findings suggest that fractalkine-mediated signaling is suppressed in the brain following the development of hepatic encephalopathy. Supplementation of AOM-treated mice with soluble fractalkine led to improved outcomes, which identifies this pathway as a possible therapeutic target for the management of hepatic encephalopathy following acute liver injury.
Collapse
Affiliation(s)
- Matthew McMillin
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA.,Central Texas Veterans Healthcare System, 1901 S. 1st Street, Building 205, Temple, TX, 76504, USA
| | - Stephanie Grant
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA.,Central Texas Veterans Healthcare System, 1901 S. 1st Street, Building 205, Temple, TX, 76504, USA
| | - Gabriel Frampton
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA.,Central Texas Veterans Healthcare System, 1901 S. 1st Street, Building 205, Temple, TX, 76504, USA
| | - Sarah Andry
- Department of Internal Medicine, Baylor Scott & White Health, 2401 S. 31st Street, Temple, TX, 76508, USA
| | - Adam Brown
- Department of Internal Medicine, Baylor Scott & White Health, 2401 S. 31st Street, Temple, TX, 76508, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA. .,Central Texas Veterans Healthcare System, 1901 S. 1st Street, Building 205, Temple, TX, 76504, USA.
| |
Collapse
|
32
|
Bartolić M, Vovk A, Šuput D. Effects of NH 4CL application and removal on astrocytes and endothelial cells. Cell Mol Biol Lett 2016; 21:13. [PMID: 28536616 PMCID: PMC5414667 DOI: 10.1186/s11658-016-0011-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background Hepatic encephalopathy (HE) is a complex disorder associated with increased ammonia levels in the brain. Although astrocytes are believed to be the principal cells affected in hyperammonemia (HA), endothelial cells (ECs) may also play an important role by contributing to the vasogenic effect of HA. Methods Following acute application and removal of NH4Cl on astrocytes and endothelial cells, we analyzed pH changes, using fluorescence imaging with BCECF/AM, and changes in intracellular Ca2+ concentration ([Ca2+]i), employing fluorescence imaging with Fura-2/AM. Using confocal microscopy, changes in cell volume were observed accompanied by changes of [Ca2+]i in astrocytes and ECs. Results Exposure of astrocytes and ECs to 1 – 20 mM NH4Cl resulted in rapid concentration-dependent alkalinization of cytoplasm followed by slow recovery. Removal of the NH4Cl led to rapid concentration-dependent acidification, again followed by slow recovery. Following the application of NH4Cl, a transient, concentration-dependent rise in [Ca2+]i in astrocytes was observed. This was due to the release of Ca2+ from intracellular stores, since the response was abolished by emptying intracellular stores with thapsigargin and ATP, and was still present in the Ca2+-free bathing solution. The removal of NH4Cl also led to a transient concentration-dependent rise in [Ca2+]i that resulted from Ca2+ release from cytoplasmic proteins, since removing Ca2+ from the bathing solution and emptying intracellular Ca2+ stores did not eliminate the rise. Similar results were obtained from experiments on ECs. Following acute application and removal of NH4Cl no significant changes in astrocyte volume were detected; however, an increase of EC volume was observed after the administration of NH4Cl, and EC shrinkage was demonstrated after the acute removal of NH4Cl. Conclusions This study reveals new data which may give a more complete insight into the mechanism of development and treatment of HE.
Collapse
Affiliation(s)
- Miha Bartolić
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Andrej Vovk
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Verdonk F, Roux P, Flamant P, Fiette L, Bozza FA, Simard S, Lemaire M, Plaud B, Shorte SL, Sharshar T, Chrétien F, Danckaert A. Phenotypic clustering: a novel method for microglial morphology analysis. J Neuroinflammation 2016; 13:153. [PMID: 27317566 PMCID: PMC4912769 DOI: 10.1186/s12974-016-0614-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022] Open
Abstract
Background Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex “dendritic-like” aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Methods Using the knock-in mouse model CX3CR1GFP/+, we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Results Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Conclusions Our results counteract the classical view of a homogenous regional resting state of the microglial cells within the brain. Microglial cells are distributed in different defined sub-populations that present specific behaviour after pathological challenge, allowing postulating for a cellular and functional specialization. Moreover, this new experimental approach will provide a support not only to neuropathological diagnosis but also to study microglial function in various disease models while reducing the number of animals needed to approach the international ethical statements. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0614-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franck Verdonk
- Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France.,Air Liquide Santé International, World Business Line Healthcare, Medical R&D, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, Jouy-en-Josas, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,TRIGGERSEP, F-CRIN Network, Toulouse, France
| | - Pascal Roux
- Imagopole - CITech, Institut Pasteur, Paris, France
| | - Patricia Flamant
- Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - Laurence Fiette
- Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - Fernando A Bozza
- ICU, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Marc Lemaire
- Air Liquide Santé International, World Business Line Healthcare, Medical R&D, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, Jouy-en-Josas, France
| | - Benoit Plaud
- Department of Anaesthesiology and Surgical Intensive Care, Saint-Louis University Hospital of Paris, Paris, France.,Paris Diderot University, Paris, France
| | | | - Tarek Sharshar
- Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France.,Department of Intensive Care, Raymond Poincare University Hospital, Garches, France.,Versailles Saint Quentin University, Versailles, France.,TRIGGERSEP, F-CRIN Network, Toulouse, France
| | - Fabrice Chrétien
- Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France. .,Laboratoire hospitalo-universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France. .,Paris Descartes University, Sorbonne Paris Cité, Paris, France. .,TRIGGERSEP, F-CRIN Network, Toulouse, France.
| | | |
Collapse
|
34
|
Zielińska M, Milewski K, Skowrońska M, Gajos A, Ziemińska E, Beręsewicz A, Albrecht J. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter. J Neurochem 2015; 135:1272-81. [PMID: 26448619 DOI: 10.1111/jnc.13387] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+)L amino acid transport system, by activation of its member, a heteromeric y(+)LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+)LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+)L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+)LAT2 protein, or antibody to y(+)LAT2, indicating their strict coupling to y(+)LAT2 activity. Moreover, induction of y(+)LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+)LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+)LAT2 expression nor y(+)L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+)LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+)) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+)LAT2 in cultured rat cortical astrocytes by a mechanism involving activation (nuclear translocation) of the transcription factor nuclear factor-Nuclear factor-κB (Nf-κB-p65). Up-regulation of y(+)LAT2 transporter is coupled with increased inducible nitric oxide synthase (iNOS) expression, which leads to increase nitric oxide (NO) synthesis and protein nitration.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Gajos
- Medical Center of Postgraduate Education, Warsaw, Poland
| | - Elżbieta Ziemińska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Butterworth RF. Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure. J Clin Exp Hepatol 2015; 5:S96-S103. [PMID: 26041966 PMCID: PMC4442857 DOI: 10.1016/j.jceh.2014.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/07/2014] [Indexed: 12/12/2022] Open
Abstract
Neuropathologic investigations in acute liver failure (ALF) reveal significant alterations to neuroglia consisting of swelling of astrocytes leading to cytotoxic brain edema and intracranial hypertension as well as activation of microglia indicative of a central neuroinflammatory response. Increased arterial ammonia concentrations in patients with ALF are predictors of patients at risk for the development of brain herniation. Molecular and spectroscopic techniques in ALF reveal alterations in expression of an array of genes coding for neuroglial proteins involved in cell volume regulation and mitochondrial function as well as in the transport of neurotransmitter amino acids and in the synthesis of pro-inflammatory cytokines. Liver-brain pro-inflammatory signaling mechanisms involving transduction of systemically-derived cytokines, ammonia neurotoxicity and exposure to increased brain lactate have been proposed. Mild hypothermia and N-Acetyl cysteine have both hepato-protective and neuro-protective properties in ALF. Potentially effective anti-inflammatory agents aimed at control of encephalopathy and brain edema in ALF include etanercept and the antibiotic minocycline, a potent inhibitor of microglial activation. Translation of these potentially-interesting findings to the clinic is anxiously awaited.
Collapse
Key Words
- ALF, acute liver failure
- ATP, adenosine triphosphate
- BBB, blood-brain barrier
- CCL2, chemokine ligand-2
- CMRO2, cerebral metabolic rate for oxygen
- CNS, central nervous system
- EEG, electroencephalography
- GABA, gamma-aminobutyric acid
- GFAP, glial fibrillary acidic protein
- IgG, immunoglobulin
- MRS, magnetic resonance spectroscopy
- NAC, N-Acetyl cysteine
- NMDA, N-methyl-d-aspartate
- SIRS, systemic inflammatory response syndrome
- SNATs, several neutral amino acid transport systems
- TLP, translocator protein
- TNFα, tumor necrosis factor alpha
- acute liver failure
- hepatic encephalopathy
- intracranial hypertension
- microglial activation
- neuroinflammation
Collapse
Affiliation(s)
- Roger F. Butterworth
- Neuroscience Research Unit, Hopital St-Luc (CHUM) and Department of Medicine, University of Montreal, Montreal, QC H2W 3J4, Canada,Address for correspondence: Roger F. Butterworth, Neuroscience Research Unit, Hospital St-Luc (CHUM) and Department of Medicine, University of Montreal, 1058 St Denis, Montreal, QC H2W 3J4, Canada. Tel.: +1 902 929 2470.
| |
Collapse
|
36
|
Jayakumar AR, Rama Rao KV, Norenberg MD. Neuroinflammation in hepatic encephalopathy: mechanistic aspects. J Clin Exp Hepatol 2015; 5:S21-8. [PMID: 26041953 PMCID: PMC4442850 DOI: 10.1016/j.jceh.2014.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a major neurological complication of severe liver disease that presents in acute and chronic forms. While elevated brain ammonia level is known to be a major etiological factor in this disorder, recent studies have shown a significant role of neuroinflammation in the pathogenesis of both acute and chronic HE. This review summarizes the involvement of ammonia in the activation of microglia, as well as the means by which ammonia triggers inflammatory responses in these cells. Additionally, the role of ammonia in stimulating inflammatory events in brain endothelial cells (ECs), likely through the activation of the toll-like receptor-4 and the associated production of cytokines, as well as the stimulation of various inflammatory factors in ECs and in astrocytes, are discussed. This review also summarizes the inflammatory mechanisms by which activation of ECs and microglia impact on astrocytes leading to their dysfunction, ultimately contributing to astrocyte swelling/brain edema in acute HE. The role of microglial activation and its contribution to the progression of neurobehavioral abnormalities in chronic HE are also briefly presented. We posit that a better understanding of the inflammatory events associated with acute and chronic HE will uncover novel therapeutic targets useful in the treatment of patients afflicted with HE.
Collapse
Key Words
- AHE, acute hepatic encephalopathy
- ALF, acute liver failure
- BBB, blood–brain barrier
- BDL, bile duct ligation
- COX2, cyclooxygenase-2
- ECs, endothelial cells
- FHF, fulminant hepatic failure
- HE, hepatic encephalopathy
- HO, hemoxygenase
- IL, interleukin
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinases
- NF-κB, nuclear factor-kappaB
- NOX, NADPH oxidase
- ONS, oxidative/nitrative stress
- PLA2, phospholipase-A2
- RONS, reactive oxygen and nitrogen species
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-alpha
- Tg, transgenic
- WT, wild type
- ammonia
- cNOS, constitutive nitric oxide synthase
- hepatic encephalopathy
- iNOS, inducible nitric oxide synthase
- neuroinflammation
Collapse
Affiliation(s)
| | | | - Michael D. Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA,Department of Pathology, University of Miami School of Medicine, Miami, FL, USA,Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA,Address for correspondence: Michael D. Norenberg, Department of Pathology (D-33), PO Box 016960, University of Miami School of Medicine, Miami, FL 33101. Tel.: +1 305 575 7000x4018.
| |
Collapse
|
37
|
Dennis CV, Sheahan PJ, Graeber MB, Sheedy DL, Kril JJ, Sutherland GT. Microglial proliferation in the brain of chronic alcoholics with hepatic encephalopathy. Metab Brain Dis 2014; 29:1027-39. [PMID: 24346482 PMCID: PMC4063896 DOI: 10.1007/s11011-013-9469-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022]
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic alcoholism and patients show neurological symptoms ranging from mild cognitive dysfunction to coma and death. The HE brain is characterized by glial changes, including microglial activation, but the exact pathogenesis of HE is poorly understood. During a study investigating cell proliferation in the subventricular zone of chronic alcoholics, a single case with widespread proliferation throughout their adjacent grey and white matter was noted. This case also had concomitant HE raising the possibility that glial proliferation might be a pathological feature of the disease. In order to explore this possibility fixed postmortem human brain tissue from chronic alcoholics with cirrhosis and HE (n = 9), alcoholics without HE (n = 4) and controls (n = 4) were examined using immunohistochemistry and cytokine assays. In total, 4/9 HE cases had PCNA- and a second proliferative marker, Ki-67-positive cells throughout their brain and these cells co-stained with the microglial marker, Iba1. These cases were termed 'proliferative HE' (pHE). The microglia in pHEs displayed an activated morphology with hypertrophied cell bodies and short, thickened processes. In contrast, the microglia in white matter regions of the non-proliferative HE cases were less activated and appeared dystrophic. pHEs were also characterized by higher interleukin-6 levels and a slightly higher neuronal density . These findings suggest that microglial proliferation may form part of an early neuroprotective response in HE that ultimately fails to halt the course of the disease because underlying etiological factors such as high cerebral ammonia and systemic inflammation remain.
Collapse
Affiliation(s)
- Claude V Dennis
- Discipline of Pathology, Sydney Medical School, Camperdown, NSW, 2050, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Torres-Vega MA, Vargas-Jerónimo RY, Montiel-Martínez AG, Muñoz-Fuentes RM, Zamorano-Carrillo A, Pastor AR, Palomares LA. Delivery of glutamine synthetase gene by baculovirus vectors: a proof of concept for the treatment of acute hyperammonemia. Gene Ther 2014; 22:58-64. [DOI: 10.1038/gt.2014.89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/26/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
|
39
|
Wright GAK, Sharifi Y, Newman TA, Davies N, Vairappan B, Perry HV, Jalan R. Characterisation of temporal microglia and astrocyte immune responses in bile duct-ligated rat models of cirrhosis. Liver Int 2014; 34:1184-91. [PMID: 24528887 DOI: 10.1111/liv.12481] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/31/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Microglia and astrocyte related pro-inflammatory responses are thought to underpin cerebral sequelae of acute liver failure. Conversely, despite background pro-inflammatory responses in cirrhosis, overt brain swelling and coma associated with acute-on-chronic liver failure, is infrequent unless precipitated (e.g. sepsis). Moreover in other chronic neurodegenerative disorders and sepsis, the brain is protected from recurrent microbial insults by compensatory microglial-associated immune responses. To characterise longitudinal cerebral immune responses in a bile duct-ligated (BDL) rat model of cirrhosis. METHOD Rats underwent BDL or sham operation before sacrifice at either 1-day, 1, 2 and 4 weeks post-surgery. We analysed consciousness, brain water, biochemistry and immunohistochemistry to assess activation of microglia (ED-1, OX6 and Iba-1), astrocytes (Glial fibrillary acidic protein - GFAP), cellular stress (Heat shock protein - Hsp 25) and pro-inflammatory mediator expression (inducible nitric oxide synthase (iNOS), interleukin-1beta (IL-1β) and tumour growth factor-beta (TGF-β)). RESULTS BDL significantly increased ammonia and bilirubin (P < 0.01 respectively). The classical microglial markers OX6, ED1 and Iba-1 and pro-inflammatory IL-1β and iNOS were not significantly increased. However, the alternative microglial marker and regulatory cytokine TGF-β was elevated from day 1 to 4 weeks post-BDL. GFAP expression was significantly increased in corpus callosum in all groups. In BDL rats, Hsp 25 was also increased in the corpus callosum, peaking at 2 weeks. CONCLUSION BDL triggers early alternative, but not classical, microglial activation. There was a correlation between astrocyte activation and cellular stress. These findings indicate early cerebral immune responses, which may be associated with immune tolerance to further challenge.
Collapse
Affiliation(s)
- Gavin A K Wright
- Institute of Hepatology, University College London, Royal Free Hospital London, London, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Faleiros BE, Miranda AS, Campos AC, Gomides LF, Kangussu LM, Guatimosim C, Camargos ERS, Menezes GB, Rachid MA, Teixeira AL. Up-regulation of brain cytokines and chemokines mediates neurotoxicity in early acute liver failure by a mechanism independent of microglial activation. Brain Res 2014; 1578:49-59. [PMID: 25017944 DOI: 10.1016/j.brainres.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/07/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022]
Abstract
The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation.
Collapse
Affiliation(s)
- Bruno E Faleiros
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil.
| | - Aline S Miranda
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Alline C Campos
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Lindisley F Gomides
- Department of Morphology, Institute of Biological Sciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Lucas M Kangussu
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Institute of Biological Sciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Elizabeth R S Camargos
- Department of Morphology, Institute of Biological Sciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Gustavo B Menezes
- Department of Morphology, Institute of Biological Sciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Milene A Rachid
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Antônio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil.
| |
Collapse
|
41
|
Plog BA, Moll KM, Kang H, Iliff JJ, Dashnaw ML, Nedergaard M, Vates GE. A novel technique for morphometric quantification of subarachnoid hemorrhage-induced microglia activation. J Neurosci Methods 2014; 229:44-52. [PMID: 24735531 DOI: 10.1016/j.jneumeth.2014.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/24/2014] [Accepted: 04/05/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a neurologic catastrophe and poor outcome is typically attributed to vasospasm; however, there is also evidence that SAH causes a pro-inflammatory state and these two phenomena may be interrelated. SAH causes activation of microglia, but the time course and degree of microglial activation after SAH and its link to poor patient outcome and vasospasm remains unknown. NEW METHOD Transgenic mice expressing eGFP under the control of the CX3CR1 locus, in which microglia are endogenously fluorescent, were randomly assigned to control or SAH groups. Immunohistochemistry for CD-68 and CD-31 was performed at different time points after SAH. Using confocal microscopy and MatLab software, we have developed a novel technique to detect and quantify the stages of microglial activation and return to quiescence using an automated computerized morphometric analysis. RESULTS We detected a statistically significant decrease in microglial process complexity 2 and 7 days following SAH. In addition, we detected a statistically significant increase in microglial domain volume 1 day following SAH; however, microglial domain volume returned to baseline by 2 days. COMPARISON WITH EXISTING METHOD Most techniques for microglia assessment are qualitative, not quantitative, and are therefore inadequate to address the effects of anti-inflammatory drug treatment or other therapies after SAH. CONCLUSIONS Using novel image analysis techniques we were able to reproducibly quantify activation of microglia following SAH, which will improve our ability to study the biology of microglial activation, and may ultimately improve management of disease progression and response to therapies directed at microglial activation.
Collapse
Affiliation(s)
- Benjamin A Plog
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Katherine M Moll
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Hongyi Kang
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Jeffrey J Iliff
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Matthew L Dashnaw
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Maiken Nedergaard
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - G Edward Vates
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
42
|
Chastre A, Bélanger M, Nguyen BN, Butterworth RF. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-brain barrier permeability in mice with acute liver failure. Liver Int 2014; 34:353-61. [PMID: 23910048 DOI: 10.1111/liv.12252] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/16/2013] [Accepted: 05/31/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) is frequently complicated by infection leading to precipitation of central nervous system complications such as hepatic encephalopathy (HE) and increased mortality. There is evidence to suggest that when infection occurs in ALF patients, the resulting pro-inflammatory mechanisms may be amplified that could, in turn, have a major impact on blood-brain barrier (BBB) function. The aim of this study was to investigate the role of endotoxemia on the progression of encephalopathy in relation to BBB permeability during ALF. METHODS Adult male C57-BL6 mice with ALF resulting from azoxymethane-induced toxic liver injury were administered trace amounts of the endotoxin component lipopolysaccharide (LPS). Effects on the magnitude of the systemic inflammatory response, liver pathology and BBB integrity were measured as a function of progression of HE, defined as time to loss of corneal reflex (coma). RESULTS Lipopolysaccharide caused additional two- to seven-fold (P < 0.001) increases in circulating pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), worsening liver pathology and associated increases of circulating transaminases as well as increased hyperammonaemia consistent with a further loss of viable hepatocytes. LPS treatment of ALF mice led to a rapid precipitation of hepatic coma and the BBB became permeable to the 25-kDa protein immunoglobulin G (IgG). This extravasation of IgG was accompanied by ignificant up-regulation of matrix metalloproteinase-9 (MMP-9), an endopeptidase known to modulate opening of the BBB in a wide range of neurological disorders. CONCLUSIONS These findings represent the first direct evidence of inflammation-related BBB permeability changes in ALF.
Collapse
Affiliation(s)
- Anne Chastre
- Neuroscience Research Unit, Saint-Luc Hospital, CRCHUM, Montreal, QC, Canada
| | | | | | | |
Collapse
|
43
|
Sturgeon JP, Shawcross DL. Recent insights into the pathogenesis of hepatic encephalopathy and treatments. Expert Rev Gastroenterol Hepatol 2014; 8:83-100. [PMID: 24236755 DOI: 10.1586/17474124.2014.858598] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) encompasses a spectrum of neuropsychiatric disorders related to liver failure. The development of HE can have a profound impact on mortality as well as quality of life for patients and carers. Ammonia is central in the disease process contributing to alteration in neurotransmission, oxidative stress, and cerebral edema and astrocyte swelling in acute liver failure. Inflammation in the presence of ammonia coactively worsens HE. Inflammation can result from hyperammonemic responses, endotoxemia, innate immune dysfunction or concurrent infection. This review summarizes the current processes implicated in the pathogenesis of HE, as well as current and potential treatments. Treatments currently focus on reducing inflammation and/or blood ammonia levels and provide varying degrees of success. Optimization of current treatments and initial testing of novel therapies will provide the basis of improvement of care in the near future.
Collapse
Affiliation(s)
- Jonathan P Sturgeon
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | | |
Collapse
|
44
|
Rangroo Thrane V, Thrane AS, Wang F, Cotrina ML, Smith NA, Chen M, Xu Q, Kang N, Fujita T, Nagelhus EA, Nedergaard M. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 2013; 19:1643-8. [PMID: 24240184 PMCID: PMC3899396 DOI: 10.1038/nm.3400] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 10/17/2013] [Indexed: 01/21/2023]
Abstract
Ammonia is a ubiquitous waste product of protein metabolism that can accumulate in numerous metabolic disorders, causing neurological dysfunction ranging from cognitive impairment to tremor, ataxia, seizures, coma and death. The brain is especially vulnerable to ammonia as it readily crosses the blood-brain barrier in its gaseous form, NH3, and rapidly saturates its principal removal pathway located in astrocytes. Thus, we wanted to determine how astrocytes contribute to the initial deterioration of neurological functions characteristic of hyperammonemia in vivo. Using a combination of two-photon imaging and electrophysiology in awake head-restrained mice, we show that ammonia rapidly compromises astrocyte potassium buffering, increasing extracellular potassium concentration and overactivating the Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1) in neurons. The consequent depolarization of the neuronal GABA reversal potential (EGABA) selectively impairs cortical inhibitory networks. Genetic deletion of NKCC1 or inhibition of it with the clinically used diuretic bumetanide potently suppresses ammonia-induced neurological dysfunction. We did not observe astrocyte swelling or brain edema in the acute phase, calling into question current concepts regarding the neurotoxic effects of ammonia. Instead, our findings identify failure of potassium buffering in astrocytes as a crucial mechanism in ammonia neurotoxicity and demonstrate the therapeutic potential of blocking this pathway by inhibiting NKCC1.
Collapse
Affiliation(s)
- Vinita Rangroo Thrane
- 1] Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, New York, USA. [2] Letten Centre, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway. [3] Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway. [4] Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway. [5]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gurocak S, Karabulut E, Karadag N, Ozgor D, Ozkeles N, Karabulut AB. Preventive effects of resveratrol against azoxymethane induced damage in rat liver. Asian Pac J Cancer Prev 2013; 14:2367-70. [PMID: 23725142 DOI: 10.7314/apjcp.2013.14.4.2367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In recent years, due to modern lifestyles and exposure to chemical carcinogens, cancer cases are steadily increasing. From this standpoint, azoxymethane (AOM), a chemical carcinogen which causes de novo liver damage, and resveratrol, which is an antioxidant found in foods and protects against oxidative stress damage, are of interest. We here aimed to evaluate whether resveratrol could protect the liver tissues from the effects of AOM. MATERIALS AND METHODS The study was conducted in 4 groups, each consisting of seven rats, the first receiving only AOM (2 times per week, 5 mg/kg), group 2 AOM and resveratrol (2 times a week, 20 mg/kg), group 3 assessed only as a control and group 4 administered only resveratrol. At the end of the seventh week, the rats were sacrificed. Rat liver MDA, NO, GSH levels were analyzed biochemically, as well as the tissues being evaluated histopathologically. RESULTS MDA and NO increased in AOM group as signs of increased oxidative stress. The group concomitantly administered resveratrol was been found to be significantly decreased in MDA and NO levels and increased in GSH activity. However, there were no significant findings on histopathological evaluation. CONCLUSIONS In the light of these results, resveratrol appears to exert protective effect on oxidative stress in the liver tissue due to deleterious effects of chemical carcinogens.
Collapse
Affiliation(s)
- Simay Gurocak
- Department of Radiation Oncology, Inonu University School of Medicine, Malatya, Turkey.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Systemic inflammation is common in liver failure and its acquisition is a predictor of hepatic encephalopathy severity. New studies provide convincing evidence for a role of neuroinflammation (inflammation of the brain per se) in liver failure; this evidence includes activation of microglia, together with increased synthesis in situ of the proinflammatory cytokines TNF, IL-1β and IL-6. Liver-brain signalling mechanisms in liver failure include: direct effects of systemic proinflammatory molecules, recruitment of monocytes after microglial activation, brain accumulation of ammonia, lactate and manganese, and altered permeability of the blood-brain barrier. Ammonia and cytokines might act synergistically. Existing strategies to reduce ammonia levels (including lactulose, rifaximin and probiotics) have the potential to dampen systemic inflammation, as does albumin dialysis, mild hypothermia and N-acetylcysteine, the latter two agents acting at both peripheral and central sites. Minocycline, an agent with potent central anti-inflammatory properties, reduces neuroinflammation, brain oedema and encephalopathy in liver failure, as does the anti-TNF agent etanercept.
Collapse
|
47
|
Sergeeva OA. GABAergic transmission in hepatic encephalopathy. Arch Biochem Biophys 2013; 536:122-30. [PMID: 23624382 DOI: 10.1016/j.abb.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/05/2023]
Abstract
Hepatic encephalopathy (HE)(1) is a neuropsychiatric disorder caused by chronic or acute liver failure. Nearly thirty years ago a hypothesis was formulated explaining the neuropathology of HE by increased GABAergic tone. Recent progress in the GABAA-receptor (GABAAR) molecular pharmacology and biochemistry as well as the physiology of GABAergic transmission provided better understanding of GABA's role in health and disease. A detailed analysis of neuronal populations and their GABAergic afferents affected in HE is still missing. The slow progress in understanding the pathology of GABAergic transmission in HE is due to the high complexity of brain circuitries controlled by multiple types of GABAergic interneurons and the large variety of GABAAR, which are differently affected by pathological conditions and not yet fully identified. The mechanisms of action of the GABAAR agonist taurine, allosteric positive modulators (inhibitory neurosteroids, anaesthetics, benzodiazepines and histamine) and inhibitors of the GABAAR (excitatory neurosteroids, Ro15-4513) are discussed with respect to HE pathophysiology. Perspectives for GABAergic drugs in the symptomatic treatment of HE are suggested.
Collapse
Affiliation(s)
- Olga A Sergeeva
- Department of Neurophysiology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
48
|
Sohet F, Daneman R. Genetic mouse models to study blood-brain barrier development and function. Fluids Barriers CNS 2013; 10:3. [PMID: 23305182 PMCID: PMC3675378 DOI: 10.1186/2045-8118-10-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022] Open
Abstract
The blood–brain barrier (BBB) is a complex physiological structure formed by the blood vessels of the central nervous system (CNS) that tightly regulates the movement of substances between the blood and the neural tissue. Recently, the generation and analysis of different genetic mouse models has allowed for greater understanding of BBB development, how the barrier is regulated during health, and its response to disease. Here we discuss: 1) Genetic mouse models that have been used to study the BBB, 2) Available mouse genetic tools that can aid in the study of the BBB, and 3) Potential tools that if generated could greatly aid in our understanding of the BBB.
Collapse
Affiliation(s)
- Fabien Sohet
- UCSF Department of Anatomy, 513 Parnassus Ave HSW1301, San Francisco, 94117, California, USA.
| | | |
Collapse
|