1
|
Wu Q, Wu JH, Ye ZY, She W, Peng WJ, Zhang HX, Qi C, Tian T, Hou XY, Gao J. Exosomes from Hypoxia-treated Mesenchymal Stem Cells: Promoting Neuroprotection in Ischemic Stroke Through miR-214-3p/PTEN Mechanism. Mol Neurobiol 2024; 61:7611-7626. [PMID: 38418757 DOI: 10.1007/s12035-024-04056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Stroke stands as the second leading cause of death globally, surpassed only by ischemic heart disease. It accounts for 9% of total worldwide deaths. Given the swiftly evolving landscape, medical professionals and researchers are devoting increased attention to identifying more effective and safer treatments. Recent years have witnessed a focus on exosomes derived from mesenchymal stem cells cultivated under hypoxic conditions, referred to as Hypo-Exo. These specialized exosomes contain an abundance of components that facilitate the restoration of ischemic tissue, surpassing the content found in normal exosomes. Despite advancements, the precise role of Hypo-Exo in cases of cerebral ischemia remains enigmatic. Therefore, this study was designed to shed light on the potential efficacy of Hypo-Exo in stroke treatment. Our investigations unveiled promising outcomes, as the administration of Hypo-Exo led to improved behavioral deficits and reduced infarct areas in mice affected by ischemic conditions. Notably, these positive effects were hindered when Hypo-Exo loaded with anti-miR-214-3p were introduced, implying that the neuroprotective attributes of Hypo-Exo are reliant on miR-214-3p. This conclusion was substantiated by the high levels of miR-214-3p detected within Hypo-Exo. Furthermore, our examination of the ischemic penumbra zone revealed a gradual and sustained escalation in PTEN expression, a phenomenon effectively countered by Hypo-Exo treatment. Collectively, our findings suggest the existence of a regulatory pathway centered on miR-214-3p within Hypo-Exo. This pathway exerts a downregulating influence on the PTEN/Akt signaling pathway, thereby contributing to the amelioration of neurological function subsequent to ischemia-reperfusion events.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Neurology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Jia-Huan Wu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Rehabilitation Medical Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, Jiangsu, China
| | - Zhi-Yuan Ye
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wen She
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wen-Jie Peng
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hui-Xin Zhang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Cui Qi
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Tian Tian
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Jun Gao
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
| |
Collapse
|
2
|
Li J, Lin L, Yu Z, He J, Li Y, Jiang J, Xia Y. IL-1β-induced mesenchymal stem cell-derived exosomes inhibit neuronal ferroptosis in intracerebral hemorrhage through the HSPA5/GPX4 axis. Brain Res 2024; 1845:149219. [PMID: 39222871 DOI: 10.1016/j.brainres.2024.149219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Neuronal cell ferroptosis following intracerebral hemorrhage (ICH) is a crucial factor contributing to the poor prognosis of ICH patients. The objective of this investigation was to investigate the molecular mechanism of IL-1β-induced mesenchymal stem cell-derived exosomes (IL-1β-Exo) in mitigating ICH injury. METHODS Exo and IL-1β-Exo were obtained and identified. Hemin was used to induce an ICH model, and an ICH mouse model was established using Collagenase. Exo and IL-1β-Exo interventions were conducted to study their impact and molecular mechanisms on neuronal ferroptosis in ICH. RESULTS Vesicular structure Exo and IL-1β-Exo, with an average particle size of 141.7 ± 38.8 nm and 138.8 ± 37.5 nm, respectively, showed high expression of CD63, CD9 and CD81 could be taken up by SH-SY5Y cells. These Exos reversed Hemin-induced abnormalities in neuronal cells, including elevated iron, Fe2+, ROS, MDA, 4-HNE, and decreased SOD, GSH-Px, GSH, FTH1 levels, and cell vitality. The RNA content of IL-1β-Exo was linked to its ability to reduce iron accumulation. There was an interaction between HSPA5 and GPX4. Exo and IL-1β-Exo reversed Hemin-induced downregulation of HSPA5 and GPX4 expression. Overexpression and knockdown of HSPA5 respectively potentiate or counteract the impacts of Exo and IL-1β-Exo. IL-1β-Exo was more effective than Exo. These findings were further validated in ICH mice. Moreover, both Exo and IL-1β-Exo reduced the modified neurological severity score and brain water content, as well as alleviated pathological damage in ICH mice. CONCLUSION IL-1β-Exo inhibited neuronal ferroptosis in ICH through the HSPA5/GPX4 axis.
Collapse
Affiliation(s)
- Jiameng Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, 43 Renmin Avenue, Hainan Province, Haikou 570208, PR China
| | - Long Lin
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, 43 Renmin Avenue, Hainan Province, Haikou 570208, PR China
| | - Zhengtao Yu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, 43 Renmin Avenue, Hainan Province, Haikou 570208, PR China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, 43 Renmin Avenue, Hainan Province, Haikou 570208, PR China
| | - You Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, 43 Renmin Avenue, Hainan Province, Haikou 570208, PR China
| | - Junwen Jiang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, 43 Renmin Avenue, Hainan Province, Haikou 570208, PR China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, 43 Renmin Avenue, Hainan Province, Haikou 570208, PR China.
| |
Collapse
|
3
|
Trinh VH, Nguyen Huu T, Sah DK, Choi JM, Yoon HJ, Park SC, Jung YS, Lee SR. Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants (Basel) 2024; 13:199. [PMID: 38397797 PMCID: PMC10886030 DOI: 10.3390/antiox13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| |
Collapse
|
4
|
Packer JM, Bray CE, Beckman NB, Wangler LM, Davis AC, Goodman EJ, Klingele NE, Godbout JP. Impaired cortical neuronal homeostasis and cognition after diffuse traumatic brain injury are dependent on microglia and type I interferon responses. Glia 2024; 72:300-321. [PMID: 37937831 PMCID: PMC10764078 DOI: 10.1002/glia.24475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Neuropsychiatric complications including depression and cognitive decline develop in the years after traumatic brain injury (TBI), negatively affecting quality of life. Microglial and type 1 interferon (IFN-I) responses are associated with the transition from acute to chronic neuroinflammation after diffuse TBI in mice. Thus, the purpose of this study was to determine if impaired neuronal homeostasis and increased IFN-I responses intersected after TBI to cause cognitive impairment. Here, the RNA profile of neurons and microglia after TBI (single nucleus RNA-sequencing) with or without microglia depletion (CSF1R antagonist) was assessed 7 dpi. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and synaptic migration and increases in RhoGDI and PTEN signaling (Ingenuity Pathway Analysis). Microglial depletion reversed 50% of TBI-induced gene changes in cortical neurons depending on subtype. Moreover, the microglial RNA signature 7 dpi was associated with increased stimulator of interferon genes (STING) activation and IFN-I responses. Therefore, we sought to reduce IFN-I signaling after TBI using STING knockout mice and a STING antagonist, chloroquine (CQ). TBI-associated cognitive deficits in novel object location and recognition (NOL/NOR) tasks at 7 and 30 dpi were STING dependent. In addition, TBI-induced STING expression, microglial morphological restructuring, inflammatory (Tnf, Cd68, Ccl2) and IFN-related (Irf3, Irf7, Ifi27) gene expression in the cortex were attenuated in STINGKO mice. CQ also reversed TBI-induced cognitive deficits and reduced TBI-induced inflammatory (Tnf, Cd68, Ccl2) and IFN (Irf7, Sting) cortical gene expression. Collectively, reducing IFN-I signaling after TBI with STING-dependent interventions attenuated the prolonged microglial activation and cognitive impairment.
Collapse
Affiliation(s)
- Jonathan M Packer
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Chelsea E Bray
- College of Medicine, The Ohio State University, Columbus, United States
| | - Nicolas B Beckman
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Lynde M Wangler
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Amara C Davis
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Ethan J Goodman
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Nathaniel E Klingele
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- College of Medicine, The Ohio State University, Columbus, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Edwardson MA, Shivapurkar N, Li J, Khan M, Smith J, Giannetti ML, Fan R, Dromerick AW. Expansion of plasma MicroRNAs over the first month following human stroke. J Cereb Blood Flow Metab 2023; 43:2130-2143. [PMID: 37694957 PMCID: PMC10925862 DOI: 10.1177/0271678x231196982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/05/2023] [Accepted: 06/07/2023] [Indexed: 09/12/2023]
Abstract
Few have characterized miRNA expression during the transition from injury to neural repair and secondary neurodegeneration following stroke in humans. We compared expression of 754 miRNAs from plasma samples collected 5, 15, and 30 days post-ischemic stroke from a discovery cohort (n = 55) and 15-days post-ischemic stroke from a validation cohort (n = 48) to healthy control samples (n = 55 and 48 respectively) matched for age, sex, race and cardiovascular comorbidities using qRT-PCR. Eight miRNAs remained significantly altered across all time points in both cohorts including many described in acute stroke. The number of significantly dysregulated miRNAs more than doubled from post-stroke day 5 (19 miRNAs) to days 15 (50 miRNAs) and 30 (57 miRNAs). Twelve brain-enriched miRNAs were significantly altered at one or more time points (decreased expression, stroke versus controls: miR-107; increased expression: miR-99-5p, miR-127-3p, miR-128-3p, miR-181a-3p, miR-181a-5p, miR-382-5p, miR-433-3p, miR-491-5p, miR-495-3p, miR-874-3p, and miR-941). Many brain-enriched miRNAs were associated with apoptosis over the first month post-stroke whereas other miRNAs suggested a transition to synapse regulation and neuronal protection by day 30. These findings suggest that a program of decreased cellular proliferation may last at least 30 days post-stroke, and points to specific miRNAs that could contribute to neural repair in humans.
Collapse
Affiliation(s)
- Matthew A Edwardson
- Department of Neurology, Georgetown University, Washington, DC, USA
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| | | | - James Li
- Department of Biostatistics, Bioinformatics, and Mathematics, Georgetown University, Washington, DC, USA
| | - Muhib Khan
- Spectrum Health, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Jamal Smith
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Margot L Giannetti
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Ruzong Fan
- Department of Biostatistics, Bioinformatics, and Mathematics, Georgetown University, Washington, DC, USA
| | - Alexander W Dromerick
- Department of Neurology, Georgetown University, Washington, DC, USA
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC, USA
| |
Collapse
|
6
|
Gong L, Jiang S, Tian J, Li Y, Yu W, Zhang L, Xiao D. STZ-induced gestational diabetes exposure alters PTEN/AKT/mTOR-mediated autophagy signaling pathway leading to increase the risk of neonatal hypoxic-ischemic encephalopathy. Reprod Toxicol 2023; 123:108494. [PMID: 39491223 PMCID: PMC11068333 DOI: 10.1016/j.reprotox.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 05/07/2024]
Abstract
Exposure to gestational diabetes mellitus (GDM) during pregnancy has significant consequences for the unborn baby and newborn infant. However, whether and how GDM exposure induces the development of neonatal brain hypoxia/ischemia-sensitive phenotype and the underlying molecular mechanisms remain unclear. In this study, we used a late GDM rat model induced by administration of streptozotocin (STZ) on gestational day 12 and investigated its effects of GDM on neonatal brain development. The pregnant rats exhibited increased blood glucose levels in a dose-dependent manner after STZ administration. STZ-induced maternal hyperglycemia led to reduced blood glucose levels in neonatal offspring, resulting in growth restriction and an increased brain to body weight ratio. Importantly, GDM exposure increased susceptibility to hypoxia/ischemia (HI)-induced brain infarct sizes compared to the controls in both male and female neonatal offspring. Further molecular analysis revealed alterations in the PTEN/AKT/mTOR/autophagy signaling pathway in neonatal male offspring brains, along with increased ROS production and autophagy-related proteins (Atg5 and LC3-II). Treatment with the PTEN inhibitor bisperoxovanadate (BPV) eliminated the differences in HI-induced brain infarct sizes between the GDM-exposed and the control groups. These findings provide novel evidence of the development of a brain hypoxia/ischemia-sensitive phenotype in response to GDM exposure and highlight the role of the PTEN/AKT/mTOR/autophagy signaling pathway in this process.
Collapse
Affiliation(s)
- Lei Gong
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA; Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Siyi Jiang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA; Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jia Tian
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Wansu Yu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
7
|
Xiong L, Liu S, Liu C, Guo T, Huang Z, Li L. The protective effects of melatonin in high glucose environment by alleviating autophagy and apoptosis on primary cortical neurons. Mol Cell Biochem 2023; 478:1415-1425. [PMID: 36348200 PMCID: PMC10209297 DOI: 10.1007/s11010-022-04596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
Cognitive dysfunction has been regarded as a complication of diabetes. Melatonin (MLT) shows a neuroprotective effect on various neurological diseases. However, its protective effect on cortical neurons in high glucose environment has not been reported. Our present study aims to observe the protective effect of melatonin on rat cortical neurons and its relationship with autophagy in high glucose environment. The rat primary cortical neurons injury model was induced by high glucose. The CCK-8, flow cytometry, Western blot and immunofluorescence methods were used to examine the cell viability, apoptosis rate and proteins expression. Our results showed that there were no differences in cell viability, apoptosis rate, and protein expression among the control, MLT and mannitol group. The cell viability of the glucose group was significantly lower than that of the control group, and the apoptosis rate of the glucose group was significantly higher than that of the control group. Compared with the glucose group, the glucose + melatonin group showed a significant increase in cell viability and a notable decrease in apoptosis rate. Melatonin concentration of 0.1-1 mmol/L can significantly alleviate the injury of cortical neurons caused by high glucose. Compared with the control group, the glucose group showed a significant reduction of B-cell lymphoma 2 (Bcl-2) protein expression, while remarkable elevations of Bcl2-associated X protein (Bax), cleaved Caspase-3, coiled-coil, myosin-like Bcl2-interacting protein (Beclin-1) and microtubule-associated protein 1 light chain-3B type II (LC3B-II) levels. The neurons pre-administered with melatonin obtained significantly reversed these changes induced by high glucose. The phosphorylation levels of protein kinase B (Akt), mechanistic target of rapamycin kinase (mTOR) and Unc-51 like autophagy activating kinase 1(ULK1) were decreased in the glucose group compared with the control group, whereas significant increase were observed in the glucose + MLT group, compared with the glucose group. These data indicated that melatonin has a neuroprotective effect on cortical neurons under high glucose environment, which may work by activating Akt/mTOR/ULK1 pathway and may be deeply associated with the downregulation of autophagy.
Collapse
Affiliation(s)
- Lijiao Xiong
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Song Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
- Xiamen Haicang Biological Science and Technology Development, Xiamen, 361000, China
| | - Chaoming Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
- Department of Physiology, Gannan Medical University, Ganzhou, 341000, China
| | - Tianting Guo
- Department of Orthopedics, Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China
| | - Zhihua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
- Department of Physiology, Gannan Medical University, Ganzhou, 341000, China.
| | - Liangdong Li
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Sun J, Xu G. Mesenchymal Stem Cell-Derived Exosomal miR-150-3p Affects Intracerebral Hemorrhage By Regulating TRAF6/NF-κB Axis, Gut Microbiota and Metabolism. Stem Cell Rev Rep 2023:10.1007/s12015-023-10541-1. [PMID: 37099039 DOI: 10.1007/s12015-023-10541-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/27/2023]
Abstract
Intracerebral hemorrhage (ICH) is a severe subtype of stroke for which there is no effective treatment. Stem cell and exosome (Exo) therapies have great potential as new approaches for neuroprotection and neurorestoration in treating ICH. We aimed to investigate whether Exo affects ICH by regulating the ecology of gut microbiota and metabolism and the mechanisms involved. First, differential miRNAs in ICH were screened by bioinformatics and verified by qRT-PCR. Then, Exo was extracted from mouse bone marrow mesenchymal stem cells (MSCs) and identified. Dual-luciferase reporter gene assay was utilized to verify the binding relationship between miR-150-3p and TRAF6. A mouse ICH model was constructed and treated with Exo. Next, we knocked down miR-150-3p and performed fecal microbiota transplantation (FMT). Then changes in gut microbiota and differential metabolites were detected by 16S rRNA sequencing and metabolomics analysis. We found that miR-150-3p expression was lowest in the brain tissue of the ICH group compared to the Sham group. Besides, low miR-150-3p level in ICH was encapsulated by MSC-derived Exo. Moreover, miR-150-3p bound to TRAF6 and was negatively correlated. With the addition of ExomiR-150-3p inhibitor, we found that MSC-derived exosomal miR-150-3p may affect ICH injury via TRAF6/NLRP3 axis. MSC-derived exosomal miR-150-3p caused changes in gut microbiota, including Proteobacteria, Muribaculaceae, Lachnospiraceae_NK4A136_group, and Acinetobacter. Moreover, MSC-derived exosomal miR-150-3p caused changes in metabolism. After further FMT, gut microbiota-mediated MSC-derived Exo affected ICH with reduced apoptosis and reduced levels of inflammatory factors. In conclusion, MSC-derived exosomal miR-150-3p affected ICH by regulating TRAF6/NF-κB axis, gut microbiota and metabolism.
Collapse
Affiliation(s)
- Jingchi Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Guangzhi Xu
- Department of Neurosurgery, The Air Force Hospital of Northern Theater PLA, Shenyang, 110042, Liaoning Province, China.
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an City, 710032, Shaanxi Province, China.
| |
Collapse
|
9
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
10
|
Seillier C, Lesept F, Toutirais O, Potzeha F, Blanc M, Vivien D. Targeting NMDA Receptors at the Neurovascular Unit: Past and Future Treatments for Central Nervous System Diseases. Int J Mol Sci 2022; 23:ijms231810336. [PMID: 36142247 PMCID: PMC9499580 DOI: 10.3390/ijms231810336] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The excitatory neurotransmission of the central nervous system (CNS) mainly involves glutamate and its receptors, especially N-methyl-D-Aspartate receptors (NMDARs). These receptors have been extensively described on neurons and, more recently, also on other cell types. Nowadays, the study of their differential expression and function is taking a growing place in preclinical and clinical research. The diversity of NMDAR subtypes and their signaling pathways give rise to pleiotropic functions such as brain development, neuronal plasticity, maturation along with excitotoxicity, blood-brain barrier integrity, and inflammation. NMDARs have thus emerged as key targets for the treatment of neurological disorders. By their large extracellular regions and complex intracellular structures, NMDARs are modulated by a variety of endogenous and pharmacological compounds. Here, we will present an overview of NMDAR functions on neurons and other important cell types involved in the pathophysiology of neurodegenerative, neurovascular, mental, autoimmune, and neurodevelopmental diseases. We will then discuss past and future development of NMDAR targeting drugs, including innovative and promising new approaches.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
| | - Flavie Lesept
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Olivier Toutirais
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU, 14000 Caen, France
| | - Fanny Potzeha
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Manuel Blanc
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, 14000 Caen, France
- Correspondence:
| |
Collapse
|
11
|
Su K, Hao W, Lv Z, Wu M, Li J, Hu Y, Zhang Z, Gao J, Feng X. Electroacupuncture of Baihui and Shenting ameliorates cognitive deficits via Pten/Akt pathway in a rat cerebral ischemia injury model. Front Neurol 2022; 13:855362. [PMID: 36062010 PMCID: PMC9437581 DOI: 10.3389/fneur.2022.855362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cerebral ischemic stroke is a huge threat to the health and life of many people. Electroacupuncture (EA) at Baihui (GV20) and Shenting (GV24) acupoints can notably alleviate cerebral ischemia/reperfusion injury (CIRI). However, the molecular basis underlying the effectiveness of EA at the GV20 and GV24 acupoints for CIRI remains largely unknown. Our present study demonstrated that EA treatment at the GV20 and GV24 acupoints markedly alleviated middle cerebral artery occlusion/reperfusion (MCAO/R)-induced cognitive deficits and cerebral infarction in rats. Proteomics analysis revealed that 195 and 218 proteins were dysregulated in rat hippocampal tissues in the MCAO/R vs. sham group and thhhe EA vs. MCAO/R group, respectively. Moreover, 62 proteins with converse alteration trends in MCAO/R vs. sham and EA vs. MCAO/R groups were identified. These proteins might be implicated in the EA-mediated protective effect against MCAO/R-induced cerebral injury. GO enrichment analysis showed that 39 dysregulated proteins in the MCAO/R vs. sham group and 40 dysregulated proteins in the EA vs. MCAO/R group were related to brain and nerve development. Protein–protein interaction analysis of the abovementioned dysregulated proteins associated with brain and nerve development suggested that Pten/Akt pathway-related proteins might play major roles in regulating EA-mediated protective effects against MCAO/R-induced brain and nerve injury. Western blot assays demonstrated that Pak4, Akt3, and Efnb2 were expressed at low levels in the MCAO/R group vs. the sham group but at high levels in the EA group vs. the MCAO/R group. In conclusion, multiple proteins related to the protective effect of EA at the GV20 and GV24 acupoints against CIRI were identified in our study.
Collapse
Affiliation(s)
- Kaiqi Su
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxue Hao
- Department of Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuan Lv
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingli Wu
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jieying Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanchao Hu
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenhua Zhang
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Jing Gao
| | - Xiaodong Feng
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Xiaodong Feng
| |
Collapse
|
12
|
Wang X, Wang Q, Wang K, Ni Q, Li H, Su Z, Xu Y. Is Immune Suppression Involved in the Ischemic Stroke? A Study Based on Computational Biology. Front Aging Neurosci 2022; 14:830494. [PMID: 35250546 PMCID: PMC8896355 DOI: 10.3389/fnagi.2022.830494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Objective To identify the genetic mechanisms of immunosuppression-related genes implicated in ischemic stroke. Background A better understanding of immune-related genes (IGs) involved in the pathophysiology of ischemic stroke may help identify drug targets beneficial for immunomodulatory approaches and reducing stroke-induced immunosuppression complications. Methods Two datasets related to ischemic stroke were downloaded from the GEO database. Immunosuppression-associated genes were obtained from three databases (i.e., DisGeNET, HisgAtlas, and Drugbank). The CIBERSORT algorithm was used to calculate the mean proportions of 22 immune-infiltrating cells in the stroke samples. Differential gene expression analysis was performed to identify the differentially expressed genes (DEGs) involved in stroke. Immunosuppression-related crosstalk genes were identified as the overlapping genes between ischemic stroke-DEGs and IGs. Feature selection was performed using the Boruta algorithm and a classifier model was constructed to evaluate the prediction accuracy of the obtained immunosuppression-related crosstalk genes. Functional enrichment analysis, gene-transcriptional factor and gene-drug interaction networks were constructed. Results Twenty two immune cell subsets were identified in stroke, where resting CD4 T memory cells were significantly downregulated while M0 macrophages were significantly upregulated. By overlapping the 54 crosstalk genes obtained by feature selection with ischemic stroke-related genes obtained from the DisGenet database, 17 potentially most valuable immunosuppression-related crosstalk genes were obtained, ARG1, CD36, FCN1, GRN, IL7R, JAK2, MAFB, MMP9, PTEN, STAT3, STAT5A, THBS1, TLR2, TLR4, TLR7, TNFSF10, and VASP. Regulatory transcriptional factors targeting key immunosuppression-related crosstalk genes in stroke included STAT3, SPI1, CEPBD, SP1, TP53, NFIL3, STAT1, HIF1A, and JUN. In addition, signaling pathways enriched by the crosstalk genes, including PD-L1 expression and PD-1 checkpoint pathway, NF-kappa B signaling, IL-17 signaling, TNF signaling, and NOD-like receptor signaling, were also identified. Conclusion Putative crosstalk genes that link immunosuppression and ischemic stroke were identified using bioinformatics analysis and machine learning approaches. These may be regarded as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, China
| | - Kun Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian City Central Hospital, Taian, China
| | - Hu Li
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Zhiqiang Su
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Yuzhen Xu,
| |
Collapse
|
13
|
Zhang HT, Wang XZ, Zhang QM, Zhao H. Neuroprotection of chromobox 7 knockout in the mouse after cerebral ischemia-reperfusion injury via nuclear factor E2-related factor 2/hemeoxygenase-1 signaling pathway. Hum Exp Toxicol 2022; 41:9603271221094660. [PMID: 35435747 DOI: 10.1177/09603271221094660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To explore the mechanism of chromobox 7 (CBX7)-mediated nuclear factor E2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway in the cerebral ischemia/reperfusion (I/R) injury. METHODS The experimental wild-type (WT) and CBX7-/- mice were used to establish cerebral I/R models using the middle cerebral artery occlusion (MCAO) surgery to determine CBX7 levels at different time points after MCAO injury. For all mice, neurological behavior, infarct size, water content, and oxidative stress-related indicators were determined, and transferase (TdT)-mediated dUTP-biotin nick-end labeling (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)) staining method was employed to observe cell apoptosis, while Western blot to measure the expression of CBX7 and Nrf/HO-1 pathway-related proteins. RESULTS At 6 h, 12 h, 24 h, 3 days, and 7 days after mice with MCAO, CBX7 expression was gradually up-regulated and the peak level was reached at 24 h. Mice in the WT + MCAO group had increased infarct size, with significant increases in the modified neurological severity scores and water content in the brain, as well as the quantity of TUNEL-positive cells. For the oxidative stress-indicators, an increase was seen in the content of MDA (malondial dehyde), but the activity of SOD (superoxide dismutase) and content of GSH-PX (glutathione peroxidase) and CAT (catalase) were decreased; meanwhile, the protein expression of CBX7, HO-1, and nuclear Nrf2 was up-regulated, while the cytoplasmic Nrf2 was down-regulated. Moreover, CBX7 knockout attenuated I/R injury in mice. CONCLUSION Knockout of CBX7 may protect mice from cerebral I/R injury by reducing cell apoptosis and oxidative stress, possibly via activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xi-Zeng Wang
- The Third Department of Surgery, Xintai Hospital of Traditional Chinese Medicine, Xintai, China
| | - Qing-Mei Zhang
- Department of Nursing, Shandong Liaocheng Veteran Hospital, Liaocheng City, China
| | - Han Zhao
- Department of Neurosurgery, 230965Taian Central Hospital, Taian, China
| |
Collapse
|
14
|
AMPK inhibitor BML-275 induces neuroprotection through decreasing cyt c and AIF expression after transient brain ischemia. Bioorg Med Chem 2021; 52:116522. [PMID: 34837819 DOI: 10.1016/j.bmc.2021.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
Stroke is a major public health problem with an imperative need for a more effective and tolerated therapy. Neuroprotective therapy may be an effective therapeutic intervention for stroke. The morbidity and mortality of stroke-induced secondary brain injury is mainly caused by neuronal apoptosis, which can be executed in a caspase-dependent or apoptosis inducing factor (AIF)-dependent manner. As apoptosis is an energy-dependent process with a relative time delay, abnormal energy metabolism could be a significant and fundamental pathophysiological basis of stroke. To our knowledge, convincible evidences that AMPK inhibition exerts neuroprotection in cerebral ischemia injury via anti-apoptosis remain to be investigated. Accordingly, the aims of this study were to investigate the protective effects of AMPK inhibitor BML-275 on cerebral ischemic/reperfusion (I/R) injury and to elucidate the underlying mechanisms. Cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) in male C57BL/6 mice. The therapeutic effects of BML-275 were evaluated by infarct sizes, neurological scores and the proportion of apoptotic neurons after 24 h of reperfusion. The cell apoptosis markers cyt c and AIF were also evaluated. The results showed that intraperitoneally administration of BML-275 alleviate the cerebral infarction, neurological deficit and neuronal apoptosis induced by MCAO. BML-275 simultaneously induces anti-apoptosis and decreases the expression of cyt c and AIF. This study supports the hypothesis that anti-apoptosis is one of potential neuroprotective strategies for the treatment of stroke.
Collapse
|
15
|
Zhao H, Liu ZD, Zhang YB, Gao XY, Wang C, Liu Y, Wang XF. NEP1‑40 promotes myelin regeneration via upregulation of GAP‑43 and MAP‑2 expression after focal cerebral ischemia in rats. Mol Med Rep 2021; 24:844. [PMID: 34643252 PMCID: PMC8524407 DOI: 10.3892/mmr.2021.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 01/26/2023] Open
Abstract
Axon regeneration after lesions to the central nervous system (CNS) is largely limited by the presence of growth inhibitory molecules expressed in myelin. Nogo‑A is a principal inhibitor of neurite outgrowth, and blocking the activity of Nogo‑A can induce axonal sprouting and functional recovery. However, there are limited data on the expression of Nogo‑A after CNS lesions, and the mechanism underlying its influences on myelin growth remains unknown. The aim of the present study was to observe the time course of Nogo‑A after cerebral ischemia/reperfusion in rats using immunohistochemistry and western blot techniques, and to test the effect of its inhibitor Nogo extracellular peptide 1‑40 (NEP1‑40) on neural plasticity proteins, growth‑associated binding protein 43 (GAP‑43) and microtubule associated protein 2 (MAP‑2), as a possible mechanism underlying myelin suppression. A classic model of middle cerebral artery occlusion (MCAO) was established in Sprague‑Dawley rats, which were divided into three groups: i) MCAO model group; ii) MCAO + saline group; and iii) MCAO + NEP1‑40 group. Rats of each group were divided into five subgroups by time points as follows: days 1, 3, 7, 14 and 28. Animals that only received sham operation were used as controls. The Nogo‑A immunoreactivity was located primarily in the cytoplasm of oligodendrocytes. The number of Nogo‑A immunoreactive cells significantly increased from day 1 to day 3 after MCAO, nearly returning to the control level at day 7, increased again at day 14 and decreased at day 28. Myelin basic protein (MBP) immunoreactivity in the ipsilateral striatum gradually decreased from day 1 to day 28 after ischemia, indicating myelin loss appeared at early time points and continuously advanced during ischemia. Then, intracerebroventricular infusion of NEP1‑40, which is a Nogo‑66 receptor antagonist peptide, was administered at days 1, 3 and 14 after MCAO. It was observed that GAP‑43 considerably increased from day 1 to day 7 and then decreased to a baseline level at day 28 compared with the control. MAP‑2 expression across days 1‑28 significantly decreased after MCAO. Administration of NEP1‑40 attenuated the reduction of MBP, and upregulated GAP‑43 and MAP‑2 expression at the corresponding time points after MCAO compared with the MCAO + saline group. The present results indicated that NEP1‑40 ameliorated myelin damage and promoted regeneration by upregulating the expression of GAP‑43 and MAP‑2 related to neuronal and axonal plasticity, which may aid with the identification of a novel molecular mechanism of restriction in CNS regeneration mediated by Nogo‑A after ischemia in rats.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China,Correspondence to: Professor Hong Zhao, Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, 826 Xi Nan Road, Dalian, Liaoning 116033, P.R. China, E-mail:
| | - Zhen-Dong Liu
- Department of General Medicine, Central Hospital Affiliated to Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yong-Bo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiao-Yu Gao
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Xun-Fen Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
16
|
Nieuwenhuis B, Eva R. Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling. Neural Regen Res 2021; 17:1172-1182. [PMID: 34782551 PMCID: PMC8643051 DOI: 10.4103/1673-5374.327324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system. Axons in the central nervous system fail to regenerate, meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences. In 2008, genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve. PTEN is a phosphatase that opposes the actions of PI3-kinase, a family of enzymes that function to generate the membrane phospholipid PIP3 from PIP2 (phosphatidylinositol (3,4,5)-trisphosphate from phosphatidylinositol (4,5)-bisphosphate). Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase, and was initially demonstrated to promote axon regeneration by signaling through mTOR. More recently, additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability. This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3, and considers them in relation to both developmental and regenerative axon growth. We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability, and describe how these are affected by signaling through PI3-kinase. We highlight the recent finding of a developmental decline in the generation of PIP3 as a key reason for regenerative failure, and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system. Finally, we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard Eva
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Huo Y, Feng X, Niu M, Wang L, Xie Y, Wang L, Ha J, Cheng X, Gao Z, Sun Y. Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J Neurosci Res 2021; 99:3204-3221. [PMID: 34676594 DOI: 10.1002/jnr.24937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Much evidence has proved that excitotoxicity induced by excessive release of glutamate contributes largely to damage caused by ischemia. In view of the key role played by NMDA receptors in mediating excitotoxicity, compounds against NMDA receptors signaling pathways have become the most promising type of anti-stroke candidate compounds. However, the limited therapeutic time window for neuroprotection is a key factor preventing NMDA receptor-related compounds from showing efficacy in all clinical trials for ischemic stroke. In this perspective, the determination of therapeutic time windows of these kinds of compounds is useful in ensuring a therapeutic effect and accelerating clinical application. This mini-review discussed the therapeutic time windows of compounds against NMDA receptors signaling pathways, described related influence factors and the status of clinical studies. The purpose of this review is to look for compounds with wide therapeutic time windows and better clinical application prospect.
Collapse
Affiliation(s)
- Yuexiang Huo
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xue Feng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.,Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, CA, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
18
|
Zhang HT, Wang XZ, Zhang QM, Zhao H. Neuroprotection of chromobox 7 knockout in the mouse after cerebral ischemia-reperfusion injury via nuclear factor E2-related factor 2/hemeoxygenase-1 signaling pathway. Hum Exp Toxicol 2021; 40:S178-S186. [PMID: 34353139 DOI: 10.1177/09603271211036122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the mechanism of chromobox 7 (CBX7)-mediated nuclear factor E2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway in the cerebral ischemia/reperfusion (I/R) injury. METHODS The experimental wild-type (WT) and CBX7-/- mice were used to establish cerebral I/R models using the middle cerebral artery occlusion (MCAO) surgery to determine CBX7 levels at different time points after MCAO injury. For all mice, neurological behavior, infarct size, water content, and oxidative stress-related indicators were determined, and transferase (TdT)-mediated dUTP-biotin nick-end labeling (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)) staining method was employed to observe cell apoptosis, while Western blot to measure the expression of CBX7 and Nrf/HO-1 pathway-related proteins. RESULTS At 6 h, 12 h, 24 h, 3 days, and 7 days after mice with MCAO, CBX7 expression was gradually up-regulated and the peak level was reached at 24 h. Mice in the WT + MCAO group had increased infarct size, with significant increases in the modified neurological severity scores and water content in the brain, as well as the quantity of TUNEL-positive cells. For the oxidative stress-indicators, an increase was seen in the content of MDA (malondial dehyde), but the activity of SOD (superoxide dismutase) and content of GSH-PX (glutathione peroxidase) and CAT (catalase) were decreased; meanwhile, the protein expression of CBX7, HO-1, and nuclear Nrf2 was up-regulated, while the cytoplasmic Nrf2 was down-regulated. Moreover, CBX7 knockout attenuated I/R injury in mice. CONCLUSION Knockout of CBX7 may protect mice from cerebral I/R injury by reducing cell apoptosis and oxidative stress, possibly via activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xi-Zeng Wang
- The Third Department of Surgery, Xintai Hospital of Traditional Chinese Medicine, Xintai, China
| | - Qing-Mei Zhang
- Department of Nursing, Shandong Liaocheng Veteran Hospital, Liaocheng City, China
| | - Han Zhao
- Department of Neurosurgery, 230965Taian Central Hospital, Taian, China
| |
Collapse
|
19
|
Yi X, Tang X. Exosomes From miR-19b-3p-Modified ADSCs Inhibit Ferroptosis in Intracerebral Hemorrhage Mice. Front Cell Dev Biol 2021; 9:661317. [PMID: 34307348 PMCID: PMC8293677 DOI: 10.3389/fcell.2021.661317] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives: Effective treatments for intracerebral hemorrhage (ICH) are limited until now. Ferroptosis, a novel form of iron-dependent cell death, is implicated in neurodegeneration diseases. Here, we attempted to investigate the impact of exosomes from miR-19b-3p-modified adipose-derived stem cells (ADSCs) on ferroptosis in ICH. Methods: Collagenase was used to induce a mouse model of ICH and hemin was used to induce ferroptosis in cultured neurons. Exosomes were isolated from mimic NC- or miR-19b-3p mimic-transfected ADSCs (ADSCs-MNC-Exos or ADSCs-19bM-Exos, respectively) and then administered to ICH mice or hemin-treated neurons. ICH damage was evaluated by assessing the neurological function of ICH mice and cell viability of neurons. Ferroptosis was evaluated in mouse brains or cultured neurons. The interaction between miR-19b-3p and iron regulatory protein 2 (IRP2) 3′-UTR was analyzed by performing luciferase reporter assay. Results: Ferroptosis occurred in ICH mice, which also exhibited decreased miR-19b-3p and increased IRP2 expression. IRP2 was a direct target of miR-19b-3p, and IRP2 expression was repressed by ADSCs-19bM-Exos. Importantly, ADSCs-19bM-Exos effectively attenuated hemin-induced cell injury and ferroptosis. Moreover, ADSCs-19bM-Exos administration significantly improved neurologic function and inhibited ferroptosis in ICH mice. Conclusion: Exosomes from miR-19b-3p-modified ADSCs inhibit ferroptosis in ICH mice.
Collapse
Affiliation(s)
- Xia Yi
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Zhao J, Yin L, Jiang L, Hou L, He L, Zhang C. PTEN nuclear translocation enhances neuronal injury after hypoxia-ischemia via modulation of the nuclear factor-κB signaling pathway. Aging (Albany NY) 2021; 13:16165-16177. [PMID: 34114972 PMCID: PMC8266328 DOI: 10.18632/aging.203141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 11/25/2022]
Abstract
The occurrence of hypoxia-ischemia (HI) in the developing brain is closely associated with neuronal injury and even death. However, the underlying molecular mechanism is not fully understood. This study was designed to investigate phosphatase and tensin homolog (PTEN) nuclear translocation and its possible role in rat cortical neuronal damage following oxygen-glucose deprivation (OGD) in vitro. An in vitro OGD model was established using primary cortical neurons dissected from newborn Sprague-Dawley rats to mimic HI conditions. The PTENK13R mutant plasmid, which contains a lysine-to-arginine mutation at the lysine 13 residue, was constructed. The nuclei and cytoplasm of neurons were separated. Neuronal injury following OGD was evidenced by increased lactate dehydrogenase (LDH) release and apoptotic cell counts. In addition, PTEN expression was increased and the phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2) and activation of nuclear factor kappa B (NF-κB) were decreased following OGD. PTENK13R transfection prevented PTEN nuclear translocation; attenuated the effect of OGD on nuclear p-ERK1/2 and NF-κB, apoptosis, and LDH release; and increased the expression of several anti-apoptotic proteins. We conclude that PTEN nuclear translocation plays an essential role in neuronal injury following OGD via modulation of the p-ERK1/2 and NF-κB pathways. Prevention of PTEN nuclear translocation might be a candidate strategy for preventing brain injury following HI.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Linlin Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Lin Jiang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Li Hou
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Ling He
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Chunyan Zhang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| |
Collapse
|
21
|
Zhu X, Li J, Wang H, Gasior FM, Lee C, Lin S, Zhu Z, Wang Y, Justice CN, O'Donnell JM, Vanden Hoek TL. TAT delivery of a PTEN peptide inhibitor has direct cardioprotective effects and improves outcomes in rodent models of cardiac arrest. Am J Physiol Heart Circ Physiol 2021; 320:H2034-H2043. [PMID: 33834871 DOI: 10.1152/ajpheart.00513.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that pharmacologic inhibition of PTEN significantly increases cardiac arrest survival in a mouse model, however, this protection required pretreatment 30 min before the arrest. To improve the onset of PTEN inhibition during cardiac arrest treatment, we have designed a TAT fused cell-permeable peptide (TAT-PTEN9c) based on the C-terminal PDZ binding motif of PTEN for rapid tissue delivery and protection. Western blot analysis demonstrated that TAT-PTEN9c peptide significantly enhanced Akt activation in mouse cardiomyocytes in a concentration- and time-dependent manner. Mice were subjected to 8 min asystolic arrest followed by CPR, and 30 mice with successful CPR were then randomly assigned to receive either saline or TAT-PTEN9c treatment. Survival was significantly increased in TAT-PTEN9c-treated mice compared with that of saline control at 4 h after CPR. The treated mice had increased Akt phosphorylation at 30 min resuscitation with significantly decreased sorbitol content in heart or brain tissues and reduced release of taurine and glutamate in blood, suggesting improved glucose metabolism. In an isolated rat heart Langendorff model, direct effects of TAT-PTEN9c on cardiac function were measured for 20 min following 20 min global ischemia. Rate pressure product was reduced by >20% for both TAT vehicle and nontreatment groups following arrest. Cardiac contractile function was completely recovered with TAT-PTEN9c treatment given at the start of reperfusion. We conclude that TAT-PTEN9c enhances Akt activation and decreases glucose shunting to the polyol pathway in critical organs, thereby preventing osmotic injury and early cardiovascular collapse and death.NEW & NOTEWORTHY We have designed a cell-permeable peptide, TAT-PTEN9c, to improve cardiac arrest survival. It blocked endogenous PTEN binding to its adaptor and enhanced Akt signaling in mouse cardiomyocytes. It improved mouse survival after cardiac arrest, which is related to improved glucose metabolism and reduced glucose shunting to sorbitol in critical organs.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Jing Li
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Huashan Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | | - Chunpei Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Shaoxia Lin
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Zhiyi Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Youhua Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Cody N Justice
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois.,Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - J Michael O'Donnell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | |
Collapse
|
22
|
Lv SQ, Wu W. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury. Neural Regen Res 2021; 16:1598-1605. [PMID: 33433490 PMCID: PMC8323685 DOI: 10.4103/1673-5374.294565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Both intracellular sigma peptide (ISP) and phosphatase and tensin homolog agonist protein (PAP4) promote nerve regeneration and motor functional recovery after spinal cord injury. However, the role of these two small peptides in peripheral nerve injury remains unclear. A rat model of brachial plexus injury was established by crush of the C6 ventral root. The rats were then treated with subcutaneous injection of PAP4 (497 µg/d, twice per day) or ISP (11 µg/d, once per day) near the injury site for 21 successive days. After ISP and PAP treatment, the survival of motoneurons was increased, the number of regenerated axons and neuromuscular junctions was increased, muscle atrophy was reduced, the electrical response of the motor units was enhanced and the motor function of the injured upper limbs was greatly improved in rats with brachial plexus injury. These findings suggest that ISP and PAP4 promote the recovery of motor function after peripheral nerve injury in rats. The animal care and experimental procedures were approved by the Laboratory Animal Ethics Committee of Jinan University of China (approval No. 20111008001) in 2011.
Collapse
Affiliation(s)
- Shi-Qin Lv
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Wutian Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province; Re-Stem Biotechnology Co., Ltd., Suzhou, Jiangsu Province, China
| |
Collapse
|
23
|
Evaluation of PTEN Inhibitor Following Spinal Cord Injury on Recovery of Voiding Efficiency and Motor Function Observed by Regeneration in Spinal Cord. Int Neurourol J 2020; 24:104-110. [PMID: 33271007 PMCID: PMC7731877 DOI: 10.5213/inj.2040448.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Neurogenic bladder (NB) associated with spinal cord injury (SCI) is a serious health problem. However, no effective treatment has been developed for SCI patients with NB. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitors have been proposed as a promising option for inducing neural regeneration. Therefore, we investigated the effects of a tissue gene nerve (TGN), PTEN inhibitor, on voiding function, motor function, and the expression of growth factors after SCI. METHODS In this experiment, female rats were randomly divided into 3 groups (n=10 in each group): the sham-operation group, the SCI-induced group, and the SCI-induced and TGN-treated group. Cystometry; the Basso, Beattie, and Bresnahan (BBB) scale test; the ladder walking test; hematoxylin and eosin staining; and Western blotting for brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF) were performed to evaluate functional and molecular changes. RESULTS After SCI, the rats exhibited decreased walking ability according to the BBB scale test and impaired coordinative function according to the ladder walking test. The PTEN inhibitor promoted enhanced walking ability and coordinative function. Cystometry showed voiding impairment after SCI and improved voiding function was observed after PTEN treatment. Overexpression of VEGF, BDNF, and NGF were observed after SCI. Administration of PTEN inhibitors significantly attenuated the overexpression of growth factors due to SCI. CONCLUSION PTEN inhibitor treatment diminished the overexpression of growth factors and promoted the repair of damaged tissue. PTEN inhibitor-treated rats also showed improved motor function and improved voiding function. Therefore, we suggest TGN as a new therapeutic agent that can be applied after SCI.
Collapse
|
24
|
YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death Dis 2020; 11:977. [PMID: 33188203 PMCID: PMC7666223 DOI: 10.1038/s41419-020-03186-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
YTH Domain Containing 1 (YTHDC1) is one of the m6A readers that is essential for oocyte development and tumor progression. The role of YTHDC1 in neuronal survival and ischemic stroke is unknown. Here, we found that YTHDC1 was unregulated in the early phase of ischemic stroke. Knockdown of YTHDC1 exacerbated ischemic brain injury and overexpression of YTHDC1 protected rats against brain injury. Mechanistically, YTHDC1 promoted PTEN mRNA degradation to increase Akt phosphorylation, thus facilitating neuronal survival in particular after ischemia. These data identify YTHDC1 as a novel regulator of neuronal survival and modulating m6A reader YTHDC1 may provide a potential therapeutic target for ischemic stroke.
Collapse
|
25
|
Pinosylvin provides neuroprotection against cerebral ischemia and reperfusion injury through enhancing PINK1/Parkin mediated mitophagy and Nrf2 pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Xu H, Shen J, Xiao J, Chen F, Wang M. Neuroprotective effect of cajaninstilbene acid against cerebral ischemia and reperfusion damages by activating AMPK/Nrf2 pathway. J Adv Res 2020; 34:199-210. [PMID: 35024191 PMCID: PMC8655138 DOI: 10.1016/j.jare.2020.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction Ischemic stroke is one of the leading causes of death worldwide. Recently, neuroprotection is regarded as an important preventative and therapeutic strategy for ischemic stroke. Cajaninstilbene acid (CSA), a unique stilbenoid with a styryl group, is a potential neuroprotective agent. Objectives Hence, this study aimed to evaluate the neuroprotective effect and molecular mechanism of CSA against cerebral ischemia/reperfusion (I/R) damages. Methods Cerebral ischemia was modeled by oxygen and glucose deprivation (OGD) in SH-SY5Y cells or transient intraluminal suture middle cerebral artery occlusion (MCAO) in rats, and tert-butyl hydroperoxide (t-BHP) was used to induce oxidative stress in SH-SY5Y cells. CSA (2.5, 5 mg/kg) was intraperitoneally given upon reperfusion after 2 h of MCAO. The signaling pathways were analyzed by Western blotting and inhibitor blocking. Results CSA possessed significant neuroprotective activity, as evidenced by the reduced cell death in OGD/R or t-BHP injured SH-SY5Y cells, and decreased infarct volume and neurological deficits in MCAO/R rats. Further studies indicated that the protective effect was achieved via the antioxidant activity of CSA, which decreased the oxidative stress and its related mitochondrial dysfunction in SH-SY5Y cells. Notably, Nrf2 was activated in SH-SY5Y cells and MCAO/R rats by CSA, and the inhibition of Nrf2 by brusatol weakened CSA-mediated neuroprotection. Furthermore, after applying a series of kinase inhibitors, CSA-induced Nrf2 activation was markedly inhibited by BML-275 (an AMPK inhibitor), implying that AMPK was the dominant kinase to regulate the Nrf2 pathway for CSA’s neuroprotective effects with enhanced AMPK phosphorylation observed both in vivo and in vitro. Conclusion CSA exerted neuroprotection via activating the AMPK/Nrf2 pathway to reduce I/R-induced cellular oxidative stress and mitochondrial disfunction. CSA could be a potential neuroprotective drug candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
27
|
Moses C, Hodgetts SI, Nugent F, Ben-Ary G, Park KK, Blancafort P, Harvey AR. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing. Sci Rep 2020; 10:11393. [PMID: 32647121 PMCID: PMC7347541 DOI: 10.1038/s41598-020-68257-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
After damage to the adult mammalian central nervous system (CNS), surviving neurons have limited capacity to regenerate and restore functional connectivity. Conditional genetic deletion of PTEN results in robust CNS axon regrowth, while PTEN repression with short hairpin RNA (shRNA) improves regeneration but to a lesser extent, likely due to suboptimal PTEN mRNA knockdown using this approach. Here we employed the CRISPR/dCas9 system to repress PTEN transcription in neural cells. We targeted the PTEN proximal promoter and 5' untranslated region with dCas9 fused to the repressor protein Krüppel-associated box (KRAB). dCas9-KRAB delivered in a lentiviral vector with one CRISPR guide RNA (gRNA) achieved potent and specific PTEN repression in human cell line models and neural cells derived from human iPSCs, and induced histone (H)3 methylation and deacetylation at the PTEN promoter. The dCas9-KRAB system outperformed a combination of four shRNAs targeting the PTEN transcript, a construct previously used in CNS injury models. The CRISPR system also worked more effectively than shRNAs for Pten repression in rat neural crest-derived PC-12 cells, and enhanced neurite outgrowth after nerve growth factor stimulation. PTEN silencing with CRISPR/dCas9 epigenetic editing may provide a new option for promoting axon regeneration and functional recovery after CNS trauma.
Collapse
Affiliation(s)
- C Moses
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia
| | - S I Hodgetts
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA, 6009, Australia
| | - F Nugent
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - G Ben-Ary
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - K K Park
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - P Blancafort
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia.
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - A R Harvey
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA, 6009, Australia.
| |
Collapse
|
28
|
Xu J, Zheng Y, Lv S, Kang J, Yu Y, Hou K, Li Y, Chi G. Lactate Promotes Reactive Astrogliosis and Confers Axon Guidance Potential to Astrocytes under Oxygen-Glucose Deprivation. Neuroscience 2020; 442:54-68. [PMID: 32634533 DOI: 10.1016/j.neuroscience.2020.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
During cerebral ischemia, brain lactate concentration increases, and astrogliosis is triggered. Herein, we investigated lactate's role in astrogliosis and explored the functions of lactate-activated astrocytes in vitro. In rat models of cerebral ischemia, we observed increased glial fibrillary acidic protein (GFAP) expression, reflecting astrogliosis, and increased lactate levels in the ischemic brain region. Lactate upregulated GFAP and SRY-box transcription factor 9 (SOX9) expression and activated Akt and signal transducer and activator of transcription 3 (STAT3) signaling pathways in astrocytes cultured under oxygen-glucose deprivation (OGD); these effects were abrogated upon monocarboxylate transporter 1 (MCT1) knockdown. RNA-Seq analysis revealed 221 differentially expressed genes (DEGs) between lactate-treated and untreated astrocytes. Genes upregulated by lactate treatment included those regulating astrogliosis and axon guidance. Consistently, lactate-treated astrocytes induced neuronal outgrowth upon coculture. Our results suggest that lactate promotes reactive astrogliosis and confers axon guidance potential to astrocytes under OGD.
Collapse
Affiliation(s)
- Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Juanjuan Kang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China.
| |
Collapse
|
29
|
Mahale A, Kumar R, Sarode LP, Gakare S, Prakash A, Ugale RR. Dapsone prolong delayed excitotoxic neuronal cell death by interacting with proapoptotic/survival signaling proteins. J Stroke Cerebrovasc Dis 2020; 29:104848. [PMID: 32689584 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Dapsone prevents ischemic injury, inhibits apoptosis and shows functional improvement post-ischemia. However, its effect on proapoptotic or survival proteins in delayed ischemia remains unclear. METHODS Male adult Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 90 min followed by 24 h of ischemic reperfusion (I/R). Dapsone [9.375 or 12.5 mg/kg, intraperitoneally (IP)] was administered at 3, 6 and 12 h of I/R followed by behavioural assessment, brain infarction, histological alteration and cell viability study. Further, dapsone (25 and 50 µM) was added at 3, 6 and 12 h after L-glutamate (100 µM) in primary cortical culture (DIV 14) and cell viability, cytotoxicity, apoptosis was observed. Proteins expression were observed using immunocytochemistry. All experiments were performed after 24 h of I/R (In-Vivo) and 24 h of recovery post glutamate insult (In-Vitro). RESULTS Reduced brain infarction, improved neurobehavioural functions in addition to reduction in abnormal morphological structures of ischemic brain and improvement in cell viability was observed with treatment of dapsone (12.5 mg/kg) administered upto 6 h. Similarly, dapsone (25, 50 µM) increased cell survival post glutamate insult in cortical culture (In-vitro). Further, dapsone treatment at delayed hours (6 h) reduced apoptotic nuclei and proapoptotic proteins JNK, PTEN, Calpain, Caspase 3 expression along with activation of prosurvival protein BDNF expression post-glutamate insult. CONCLUSION Our results suggest that dapsone has the potential to limit the neuronal damage post-glutamate insult in delayed hours (6 h) through repressing proapoptotic proteins JNK, PTEN, Calpain, Caspase-3 of cerebral ischemia along with activation of pro-survival protein BDNF.
Collapse
Affiliation(s)
- Ashutosh Mahale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, Maharashtra, India
| | - Rakesh Kumar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, Maharashtra, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, Maharashtra, India
| | - Sukanya Gakare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, Maharashtra, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, Maharashtra, India.
| |
Collapse
|
30
|
Borges GA, Webber LP, M Marques AE, Guerra EN, Castilho RM, Squarize CH. Pharmacological PTEN inhibition: potential clinical applications and effects in tissue regeneration. Regen Med 2020; 15:1329-1344. [PMID: 32223643 DOI: 10.2217/rme-2019-0065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the human body can heal, it takes time, and slow healing and chronic wounds often occur. Thus, identifying novel therapies to aid regeneration is needed. Here, we conducted a systematic review following the Preferred Reporting Items for Systematic Reviews guidelines and assessed preclinical studies on phosphatase and tensin homolog (PTEN) inhibitors and their effects on tissue repair and regeneration. In conditions associated with neurodegeneration, tissue injury and ischemia, the PTEN-regulated PI3K/AKT signaling pathway is activated. The use of PTEN inhibitors resulted in better tissue response by reducing the healing time and lesion sizes or inducing neuronal regeneration. Notably, all studies included in this systematic review indicated that pharmacological inhibition of PTEN enhanced the repair process of the eye, lung, muscle and nervous system.
Collapse
Affiliation(s)
- Gabriel A Borges
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Liana P Webber
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Ana Elizia M Marques
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Eliete Ns Guerra
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Walker CL, Wu X, Liu NK, Xu XM. Bisperoxovanadium Mediates Neuronal Protection through Inhibition of PTEN and Activation of PI3K/AKT-mTOR Signaling after Traumatic Spinal Injuries. J Neurotrauma 2019; 36:2676-2687. [PMID: 30672370 DOI: 10.1089/neu.2018.6294] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mechanisms involved in progression of cell death in spinal cord injury (SCI) have been studied extensively, few are clear targets for translation to clinical application. One of the best-understood mechanisms of cell survival in SCI is phosphatidylinositol-3-kinase (PI3K)/Akt and associated downstream signaling. Clear therapeutic efficacy of a phosphatase and tensin homologue (PTEN) inhibitor called bisperoxovanadium (bpV) has been shown in SCI, traumatic brain injury, stroke, and other neurological disease models in both neuroprotection and functional recovery. The present study aimed to elucidate mechanistic influences of bpV activity in neuronal survival in in vitro and in vivo models of SCI. Treatment with 100 nM bpV(pic) reduced cell death in a primary spinal neuron injury model (p < 0.05) in vitro, and upregulated both Akt and ribosomal protein S6 (pS6) activity (p < 0.05) compared with non-treated injured neurons. Pre-treatment of spinal neurons with a PI3K inhibitor, LY294002 or mammalian target of rapamycin (mTOR) inhibitor, rapamycin blocked bpV activation of Akt and ribosomal protein S6 activity, respectively. Treatment with bpV increased extracellular signal-related kinase (Erk) activity after scratch injury in vitro, and rapamycin reduced influence by bpV on Erk phosphorylation. After a cervical hemicontusive SCI, Akt phosphorylation decreased in total tissue via Western blot analysis (p < 0.01) as well as in penumbral ventral horn motor neurons throughout the first week post-injury (p < 0.05). Conversely, PTEN activity appeared to increase over this period. As observed in vitro, bpV also increased Erk activity post-SCI (p < 0.05). Our results suggest that PI3K/Akt signaling is the likely primary mechanism of bpV action in mediating neuroprotection in injured spinal neurons.
Collapse
Affiliation(s)
- Chandler L Walker
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana.,Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
32
|
Polymeric nanoparticles decorated with BDNF-derived peptide for neuron-targeted delivery of PTEN inhibitor. Eur J Pharm Sci 2018; 124:37-45. [DOI: 10.1016/j.ejps.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 01/15/2023]
|
33
|
Xue L, Huang J, Zhang T, Wang X, Fu J, Geng Z, Zhao Y, Chen H. PTEN inhibition enhances angiogenesis in an in vitro model of ischemic injury by promoting Akt phosphorylation and subsequent hypoxia inducible factor-1α upregulation. Metab Brain Dis 2018; 33:1679-1688. [PMID: 29936638 DOI: 10.1007/s11011-018-0276-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/19/2018] [Indexed: 11/26/2022]
Abstract
Angiogenesis is an important pathophysiological response to cerebral ischemia. PTEN is a lipid phosphatase whose loss activates PI3K/Akt signaling, which is related to HIF-1α upregulation and enhanced angiogenesis in human cancer cells. However, the specific roles of PTEN in endothelial cell functions and angiogenesis after cerebral ischemia remain unknown. Therefore, we sought to examine the potential effects of PTEN inhibition on post-ischemic angiogenesis in human blood vessel cells and to determine the underlying mechanism. In this present study, human umbilical vein endothelial cells (HUVECs) were exposed to oxygen-glucose deprivation (OGD), cell proliferation, migration and apoptosis, in vitro tube formation and expression of PTEN/Akt pathway and angiogenic factors were examined in HUVECs after treatment with PTEN inhibitor bisperoxovanadium (bpV) at different doses. The results showed that bpV significantly increased the cell proliferation and reduced cell apoptosis indicating that the drug exerts a cytoprotective effect on HUVECs with OGD exposure. bpV also enhanced cell migration and tube formation in HUVECs following OGD, and upregulated HIF-1α and VEGF expressions, but attenuated endostatin expression. Additionally, western blotting analysis demonstrated that Akt phosphorylation in HUVECs was significantly increased after bpV treatment. These findings suggest that PTEN inhibition promotes post-ischemic angiogenesis in HUVECs after exposure to OGD and this enhancing effect might be achieved through activation of the Akt signal cascade.
Collapse
Affiliation(s)
- Lixia Xue
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiankang Huang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhi Geng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hao Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai, 20033, China.
| |
Collapse
|
34
|
Yang X, Zhong M, Chen J, Li T, Cheng Q, Dai Y. HIF-1<alpha> Repression of PTEN Transcription Mediates Protective Effects of BMSCs on Neurons During Hypoxia. Neuroscience 2018; 392:57-65. [PMID: 30267829 DOI: 10.1016/j.neuroscience.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 01/14/2023]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a cerebral hypoxic-ischemic disease caused by a variety of insults during the perinatal period, leading to varying degrees of cognitive dysfunction. Mesenchymal stem cells play an important role in functional recovery, but the mechanism is not yet clear. It has been reported that HIF-1<alpha> and PTEN are involved in the process of hypoxia-ischemia, but the specific roles that these proteins play remains to be understood. In this study, we performed oxygen glucose deprivation (OGD) or CoCl2 preconditioning on hippocampal neurons to simulate a hypoxic environment in vitro, and then co-cultured them with BMSCs, to observe the effect of BMSCs and the role of HIF-1<alpha>. In addition, bpV, an inhibitor of PTEN was added to OGD neurons to determine the role of PTEN during hypoxia. We found that the levels of cell damage and apoptosis in OGD neurons decreased significantly after co-culture with BMSCs. Apoptosis was increased when HIF-1<alpha> was inhibited, but neurons remained protected when PTEN was suppressed. We further established that HIF-1<alpha> was enriched at the PTEN promoter both in BMSCs and hippocampal neurons, with increased enrichment under hypoxic conditions, leading to reduced transcription of PTEN. Our findings support the conclusion that CoCl2 preconditioning of BMSCs can simulate hypoxic conditions and can protect OGD neurons, an effect that is mediated through activation of the HIF-1<alpha> system and repression of PTEN transcription.
Collapse
Affiliation(s)
- Xin Yang
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qian Cheng
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| | - Ying Dai
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| |
Collapse
|
35
|
Feng J, Chen X, Lu S, Li W, Yang D, Su W, Wang X, Shen J. Naringin Attenuates Cerebral Ischemia-Reperfusion Injury Through Inhibiting Peroxynitrite-Mediated Mitophagy Activation. Mol Neurobiol 2018; 55:9029-9042. [DOI: 10.1007/s12035-018-1027-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
|
36
|
Van Skike CE, Jahrling JB, Olson AB, Sayre NL, Hussong SA, Ungvari Z, Lechleiter JD, Galvan V. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2018; 314:H693-H703. [PMID: 29351469 PMCID: PMC5966773 DOI: 10.1152/ajpheart.00570.2017] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023]
Abstract
An intact blood-brain barrier (BBB) limits entry of proinflammatory and neurotoxic blood-derived factors into the brain parenchyma. The BBB is damaged in Alzheimer's disease (AD), which contributes significantly to the progression of AD pathologies and cognitive decline. However, the mechanisms underlying BBB breakdown in AD remain elusive, and no interventions are available for treatment or prevention. We and others recently established that inhibition of the mammalian/mechanistic target of rapamycin (mTOR) pathway with rapamycin yields significant neuroprotective effects, improving cerebrovascular and cognitive function in mouse models of AD. To test whether mTOR inhibition protects the BBB in neurological diseases of aging, we treated hAPP(J20) mice modeling AD and low-density lipoprotein receptor-null (LDLR-/-) mice modeling vascular cognitive impairment with rapamycin. We found that inhibition of mTOR abrogates BBB breakdown in hAPP(J20) and LDLR-/- mice. Experiments using an in vitro BBB model indicated that mTOR attenuation preserves BBB integrity through upregulation of specific tight junction proteins and downregulation of matrix metalloproteinase-9 activity. Together, our data establish mTOR activity as a critical mediator of BBB breakdown in AD and, potentially, vascular cognitive impairment and suggest that rapamycin and/or rapalogs could be used for the restoration of BBB integrity. NEW & NOTEWORTHY This report establishes mammalian/mechanistic target of rapamycin as a critical mediator of blood-brain barrier breakdown in models of Alzheimer's disease and vascular cognitive impairment and suggests that drugs targeting the target of rapamycin pathway could be used for the restoration of blood-brain barrier integrity in disease states.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/enzymology
- Alzheimer Disease/pathology
- Alzheimer Disease/psychology
- Animals
- Behavior, Animal
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/enzymology
- Blood-Brain Barrier/pathology
- Cell Line
- Cognition
- Dementia, Vascular/drug therapy
- Dementia, Vascular/enzymology
- Dementia, Vascular/pathology
- Dementia, Vascular/psychology
- Disease Models, Animal
- Female
- Male
- Matrix Metalloproteinase 9/metabolism
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Kinase Inhibitors/pharmacology
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Tight Junction Proteins/metabolism
- Tight Junctions/drug effects
- Tight Junctions/enzymology
- Tight Junctions/pathology
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Jordan B Jahrling
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Angela B Olson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Naomi L Sayre
- Department of Neurosurgery, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| | - Stacy A Hussong
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| | - Zoltan Ungvari
- Department of Geriatric Medicine and Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - James D Lechleiter
- Department of Cellular and Structural Biology, South Texas Research Facility Neuroscience Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
37
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
38
|
Xie R, Li J, Zhao H. The underlying mechanisms involved in the protective effects of ischemic postconditioning. CONDITIONING MEDICINE 2018; 1:73-79. [PMID: 29782624 PMCID: PMC5959054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cerebral ischemic postconditioning (PostC) refers to a series of brief ischemia and reperfusion (I/R) cycles applied at the onset of reperfusion following an ischemic event. PostC has been shown to have neuroprotective effects, and represents a promising clinical strategy against cerebral ischemia-reperfusion injury. Many studies have indicated that cerebral PostC can effectively reduce neural cell death, cerebral edema and infarct size, improve cerebral circulation, and relieve inflammation, apoptosis and oxidative stress. In addition, several protective molecular pathways such as Akt, mTOR and MAPK have been shown to play a role in PostC-induced neuroprotection. PostC represents an attractive therapeutic option because of its ability to be induced rapidly or in a delayed fashion, as well as being inducible by pharmacological agents. As a potential clinical treatment, PostC is therapeutically translatable as it can be induced remotely. The underlying mechanisms of PostC have been systematically investigated, but still need to be comprehensively analyzed. As most PostC studies to date were conducted preclinically using animal models, future studies are needed to optimize protocols in order to accelerate the clinical translation of PostC.
Collapse
Affiliation(s)
- Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinquan Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| |
Collapse
|
39
|
Pan Y, Wang N, Xia P, Wang E, Guo Q, Ye Z. Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/Akt/mTOR pathway. Exp Neurol 2017; 300:149-166. [PMID: 29129468 DOI: 10.1016/j.expneurol.2017.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Although the neuroprotective effects of Rac1 inhibition have been reported in various cerebral ischemic models, the molecular mechanisms of action have not yet been fully elucidated. In this study, we investigated whether the inhibition of Rac1 provided neuroprotection in a diabetic rat model of focal cerebral ischemia and hyperglycemia-exposed PC-12 cells. Intracerebroventricular administration of lentivirus expressing the Rac1 small hairpin RNA (shRNA) and specific Rac1 inhibitor NSC23766 not only decreased the infarct volumes and improved neurologic deficits with a correlated significant activation of mitochondrial DNA specific proteins, such as OGG1 and POLG, but also elevated Bcl-2 S70 phosphorylation in mitochondria. Furthermore, the levels of p-PI3K, p-Akt and p-mTOR increased, while 8-OHdG, ROS production and Bcl-2/Rac1 complex formation in mitochondria reduced in both Rac1-shRNA- and NSC23766-treated rats. Moreover, to confirm our in vivo observations, inhibition of Rac1 activity by NSC23766 suppressed the interactions between Bcl-2 and Rac1 in the mitochondria of PC-12 cells cultured in high glucose conditions and protected PC-12 cells from high glucose-induced neurotoxicity. More importantly, these beneficial effects of Rac1 inhibition were abolished by PI3K inhibitor LY294002. In contrast to NSC23766 treatment, LY294002 had little effect on the decrement of p-PTEN level. Taken together, these findings revealed novel neuroprotective roles of Rac1 inhibition against cerebral ischemic reperfusion injury in vivo and high glucose-induced neurotoxicity in PC-12 cells in vitro, by reducing Bcl-2/Rac1 complex formation in mitochondria through the activation of PI3K/Akt/mTOR survival pathway.
Collapse
Affiliation(s)
- Yundan Pan
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Na Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Pingping Xia
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - E Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Qulian Guo
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Zhi Ye
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China.
| |
Collapse
|
40
|
Zhou J, Fan Y, Tang S, Wu H, Zhong J, Huang Z, Yang C, Chen H. Inhibition of PTEN activity aggravates cisplatin-induced acute kidney injury. Oncotarget 2017; 8:103154-103166. [PMID: 29262553 PMCID: PMC5732719 DOI: 10.18632/oncotarget.20790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Cisplatin (cis-Diamminedichloroplatinum II) has been widely and effectively used in chemotherapy against tumors. Nephrotoxicity due to cisplatin is one of the most common clinical causes of acute kidney injury (AKI), which has a poor prognosis and high mortality. The signaling mechanisms underlying cisplatin-induced AKI are not completely understood. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that negatively regulates the cell-survival pathway and is considered a double-edged sword in organ damage. In this study, we examined the effect that inhibiting PTEN activity in experimental models of cisplatin-induced AKI had on the degrees of AKI. Compared with vehicle mice, mice treated with bpV(pic) (specific inhibitor of PTEN) had exacerbated renal damage due to cisplatin-induced AKI. Furthermore, inhibition of PTEN activity increased cell apoptosis in the kidneys of mice induced by cisplatin. More inflammatory cytokines were activated after cisplatin treatment in mice of the bpV(pic)-treated group compared with vehicle mice, and these inflammatory cytokines may be partially derived from bone marrow cells. In addition, inhibiting PTEN activity decreased the phosphorylation of p53 in the pathogenesis of cisplatin-induced AKI. In summary, our study has demonstrated that inhibiting PTEN activity aggravates cisplatin-induced AKI via apoptosis, inflammatory reaction, and p53 signaling pathway. These results indicated that PTEN may serve as a novel therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, 511400, China
| | - Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Huiping Wu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Zhengxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Chengxiang Yang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Hongtao Chen
- Department of Anesthesiology, Eighth People's Hospital of Guangzhou, Guangzhou, Guangdong Province, 510060, China
| |
Collapse
|
41
|
Inhibition of PTEN Attenuates Endoplasmic Reticulum Stress and Apoptosis via Activation of PI3K/AKT Pathway in Alzheimer’s Disease. Neurochem Res 2017; 42:3052-3060. [DOI: 10.1007/s11064-017-2338-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022]
|
42
|
Egawa N, Lok J, Washida K, Arai K. Mechanisms of Axonal Damage and Repair after Central Nervous System Injury. Transl Stroke Res 2016; 8:14-21. [PMID: 27566737 DOI: 10.1007/s12975-016-0495-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 01/19/2023]
Abstract
Central nervous system (CNS) injury initiates spatial and temporal neurodegeneration. Under pathologic conditions, damaged glial cells cannot supply sufficient metabolites to neurons, leading to energy deficiency for neuronal axons. The widespread disruption of cellular membranes causes disturbed intracellular signaling via dysregulated ionic gradients in neurons. Although several deleterious cascades are activated during the acute phase of CNS injury, some compensatory responses may tend to promote axonal repair during the chronic/remodeling phase. Because it may not be easy to block all multifactorial neurodegenerative pathways after CNS injury, supporting or boosting endogenous regenerative mechanisms would be an important therapeutic approach for CNS diseases. In this mini-review, we briefly but broadly introduce basic mechanisms that trigger axonal degeneration and then discuss potential targets for promoting axonal regeneration after CNS injury.
Collapse
Affiliation(s)
- Naohiro Egawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA.,Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kazuo Washida
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, MGH East 149-2401, Charlestown, MA, 02129, USA.
| |
Collapse
|
43
|
Lafourcade C, Ramírez JP, Luarte A, Fernández A, Wyneken U. MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity. J Exp Neurosci 2016; 10:1-9. [PMID: 27547038 PMCID: PMC4978198 DOI: 10.4137/jen.s39916] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs) are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system.
Collapse
Affiliation(s)
- Carlos Lafourcade
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Juan Pablo Ramírez
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Alejandro Luarte
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Anllely Fernández
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Ursula Wyneken
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| |
Collapse
|
44
|
Chen X, Du YM, Xu F, Liu D, Wang YL. Propofol Prevents Hippocampal Neuronal Loss and Memory Impairment in Cerebral Ischemia Injury Through Promoting PTEN Degradation. J Mol Neurosci 2016; 60:63-70. [DOI: 10.1007/s12031-016-0791-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
|
45
|
Kim MS, El-Fiqi A, Kim JW, Ahn HS, Kim H, Son YJ, Kim HW, Hyun JK. Nanotherapeutics of PTEN Inhibitor with Mesoporous Silica Nanocarrier Effective for Axonal Outgrowth of Adult Neurons. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18741-18753. [PMID: 27386893 DOI: 10.1021/acsami.6b06889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of therapeutic strategies such as effective drug delivery is an urgent and yet unmet need for repair of damaged nervous systems. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulates axonal regrowth of central and peripheral nervous systems; its inhibition, meanwhile, facilitates axonal outgrowth of injured neurons. Here we show that nanotherapeutics based on mesoporous silica nanoparticles loading PTEN-inhibitor bisperoxovanadium (BpV) are effective for delivery of drug molecules and consequent improvement of axonal outgrowth. Mesoporous nanocarriers loaded BpV drug at large amount (27 μg per 1 mg of carrier), and released sustainably over 10 d. Nanocarrier-BpV treatment of primary neurons from the dorsal root ganglions (DRGs) of rats and mice at various concentrations induced them to actively take up the nanocomplexes with an uptake efficiency as high as 85%. The nanocomplex-administered neurons exhibited significantly enhanced axonal outgrowth compared with those treated with free-BpV drug. The expression of a series of proteins involved in PTEN inhibition and downstream signaling was substantially up-/down-regulated by the nanocarrier-BpV system. Injection of the nanocarriers into neural tissues (DRG, brain cortex, and spinal cord), moreover, demonstrated successful integration into neurons, glial cells, oligodendrocytes, and macrophages, suggesting the possible nanotherapeutics applications in vivo. Together, PTEN-inhibitor delivery via mesoporous nanocarriers can be considered a promising strategy for stimulating axonal regeneration in central and peripheral nervous systems.
Collapse
Affiliation(s)
| | | | | | | | - Hyukmin Kim
- Shriners Hospital's Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine , Philadelphia, Pennsylvania 19140, United States
| | - Young-Jin Son
- Shriners Hospital's Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine , Philadelphia, Pennsylvania 19140, United States
| | | | | |
Collapse
|
46
|
Wang Y, Hersheson J, Lopez D, Hammer M, Liu Y, Lee KH, Pinto V, Seinfeld J, Wiethoff S, Sun J, Amouri R, Hentati F, Baudry N, Tran J, Singleton AB, Coutelier M, Brice A, Stevanin G, Durr A, Bi X, Houlden H, Baudry M. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep 2016; 16:79-91. [PMID: 27320912 DOI: 10.1016/j.celrep.2016.05.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Joshua Hersheson
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Dulce Lopez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Monia Hammer
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia; Laboratory of Neurogenetics, National Institutes of Health, Bethesda 20892, MD, USA
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ka-Hung Lee
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vanessa Pinto
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jeff Seinfeld
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Sarah Wiethoff
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Rim Amouri
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia
| | - Faycal Hentati
- Department of Molecular Neurobiology and Neuropathology, National Institute of Neurology, La Rabta, Tunis 1007, Tunisia
| | - Neema Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jennifer Tran
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda 20892, MD, USA
| | - Marie Coutelier
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Laboratory of Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, 75013 Paris, France
| | - Alexis Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Giovanni Stevanin
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research University, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Alexandra Durr
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013 Paris, France
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Henry Houlden
- The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
47
|
Liu H, Wang Y, Xiao Y, Hua Z, Cheng J, Jia J. Hydrogen Sulfide Attenuates Tissue Plasminogen Activator-Induced Cerebral Hemorrhage Following Experimental Stroke. Transl Stroke Res 2016; 7:209-19. [PMID: 27018013 DOI: 10.1007/s12975-016-0459-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/03/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022]
Abstract
Tissue plasminogen activator (tPA), the only approved drug for the treatment of ischemic stroke, increases the risk of cerebral hemorrhage. Here, we investigated whether the newly identified gaso-transmitter hydrogen sulfide (H2S), when used in combination with tPA, reduced the hemorrhagic transformation following stroke. In a mouse model of middle cerebral artery occlusion (MCAO), intravenous injection of tPA enhanced cerebral hemorrhage, which was significantly attenuated by the co-administration of two structurally unrelated H2S donors, ADT-OH and NaHS. By assessing extravasation of Evans blue into the ischemic hemisphere as well as brain edema following MCAO, we further showed that a tPA-exacerbated BBB disruption was significantly ameliorated by the co-administration of ADT-OH. In the mouse MCAO model, tPA upregulated Akt activation, vascular endothelial growth factor (VEGF) expression, and metalloproteinase 9 (MMP9) activity in the ischemic brain, which was remarkably attenuated by ADT-OH. In the in vitro glucose-oxygen deprivation (OGD) model, ADT-OH markedly attenuated tPA-enhanced Akt activation and VEGF expression in brain microvascular endothelial cells. Finally, ADT-OH improved functional outcomes in mice subjected to MCAO and tPA infusion. In conclusion, H2S donors reduced tPA-induced cerebral hemorrhage by possibly inhibiting the Akt-VEGF-MMP9 cascade. Administration of H2S donors has potential as a novel modality to improve the safety of tPA following stroke.
Collapse
Affiliation(s)
- Hui Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, 215123, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yi Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, 215123, China
| | - Yunqi Xiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, 215123, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jian Cheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, 215123, China. .,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Jia Jia
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
48
|
Chen CH, Sung CS, Huang SY, Feng CW, Hung HC, Yang SN, Chen NF, Tai MH, Wen ZH, Chen WF. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Exp Neurol 2016; 278:27-41. [PMID: 26828688 DOI: 10.1016/j.expneurol.2016.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Abstract
Several studies suggest that glial scars pose as physical and chemical barriers that limit neurite regeneration after spinal cord injury (SCI). Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. Therefore, inhibition of the PI3K/Akt/mTOR pathway may beneficially attenuate glial scar formation after SCI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates the PI3K/Akt/mTOR pathway. Therefore, we hypothesized that the overexpression of PTEN in the spinal cord will have beneficial effects after SCI. In the present study, we intrathecally injected a recombinant adenovirus carrying the pten gene (Ad-PTEN) to cause overexpression of PTEN in rats with contusion injured spinal cords. The results suggest overexpression of PTEN in spinal cord attenuated glial scar formation and led to improved locomotor function after SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycan expression, and improved axon regeneration into the lesion site. Furthermore, we suggest that the activation of the PI3K/Akt/mTOR pathway in astrocytes at 3 days after SCI may be involved in glial scar formation. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI, the results suggest that the best strategy to attenuate glial scar formation could be to introduce 3 days after SCI. This study's findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shi-Ying Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - San-Nan Yang
- I-Shou University, School of Medicine, College of Medicine and Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
49
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
50
|
Selective inhibition of PTEN preserves ischaemic post-conditioning cardioprotection in STZ-induced Type 1 diabetic rats: role of the PI3K/Akt and JAK2/STAT3 pathways. Clin Sci (Lond) 2015; 130:377-92. [PMID: 26666444 DOI: 10.1042/cs20150496] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022]
Abstract
Patients with diabetes are vulnerable to MI/R (myocardial ischaemia/reperfusion) injury, but are not responsive to IPostC (ischaemic post-conditioning) which activates PI3K (phosphoinositide 3-kinase)/Akt (also known as PKB or protein kinase B) and JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) pathways to confer cardioprotection. We hypothesized that increased cardiac PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K/Akt, is responsible for the loss of diabetic heart sensitivity to IPostC cardioprotecton. In STZ (streptozotocin)-induced Type 1 diabetic rats subjected to MI/R (30 min coronary occlusion and 120 min reperfusion), the post-ischaemic myocardial infarct size, CK-MB (creatine kinase-MB) and 15-F2t-isoprostane release, as well as cardiac PTEN expression were significantly higher than those in non-diabetic controls, concomitant with more severe cardiac dysfunction and lower cardiac Akt, STAT3 and GSK-3β (glycogen synthase kinase 3β) phosphorylation. IPostC significantly attenuated post-ischaemic infarct size, decreased PTEN expression and further increased Akt, STAT3 and GSK-3β phosphorylation in non-diabetic, but not in diabetic rats. Application of the PTEN inhibitor BpV (bisperoxovanadium) (1.0 mg/kg) restored IPostC cardioprotection in diabetic rats. HPostC (hypoxic post-conditioning) in combination with PTEN gene knockdown, but not HPostC alone, significantly reduced H/R (hypoxia/reoxygenation) injury in cardiac H9c2 cells exposed to high glucose as was evident from reduced apoptotic cell death and JC-1 monomer in cells, accompanied by increased phosphorylation of Akt, STAT3 and GSK-3β. PTEN inhibition/gene knockdown mediated restoration of IPostC/HPostC cardioprotection was completely reversed by the PI3K inhibitor wortmannin, and partially reversed by the JAK2 inhibitor AG490. Increased cardiac PTEN, by impairing PI3K/Akt and JAK2/STAT3 pathways, is a major mechanism that rendered diabetic hearts not responsive to post-conditioning cardioprotection.
Collapse
|