1
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
2
|
Liu H, Shen C, Li H, Hou T, Yang Y. Discovery of Potent Covalent CRM1 Inhibitors Via a Customized Structure-Based Virtual Screening Pipeline and Bioassays. J Chem Inf Model 2024; 64:7422-7431. [PMID: 39361942 DOI: 10.1021/acs.jcim.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
CRM1 (chromosomal region maintenance 1, also referred to as exportin 1 or XPO1) plays a crucial role in maintaining the appropriate nuclear levels of tumor suppressor proteins (TSPs), growth regulatory proteins (GRPs), and antiapoptotic proteins, thereby contributing significantly to their anticancer effects. Dysregulation of CRM1-mediated nuclear transport, observed in a range of cancers such as colon cancer as well as autoimmune diseases, highlights its significance in various disease processes. In this paper, we employed a customized structure-based virtual screening campaign to search for novel covalent CRM1 inhibitors and purchased 50 potentially active compounds for in vitro bioassays. Among these candidates, AN-988 displayed a notably higher binding affinity (KD = 615 nM) toward CRM1, as determined by the biolayer interferometry (BLI) assay. Furthermore, AN-988 exhibited a strong suppression of colorectal cancer cell proliferation and remarkable anti-inflammatory effects. Notably, AN-988 induced cell apoptosis and cell cycle arrest in a time- and dose-dependent manner by effectively inhibiting the translocation of FOXO3a from the nucleus to the cytosol, thereby preserving the activity of FOXO3a. Collectively, our study identified AN-988 as a promising CRM1 inhibitor, underscoring its potential as a preclinical colon cancer therapy candidate.
Collapse
Affiliation(s)
- He Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chao Shen
- Innovation Institute for Articial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haonan Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Tingjun Hou
- Innovation Institute for Articial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongliang Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
- Affiliated Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| |
Collapse
|
3
|
Matei C, Nicolae I, Mitran MI, Mitran CI, Ene CD, Nicolae G, Georgescu SR, Tampa M. Biomolecular Dynamics of Nitric Oxide Metabolites and HIF1α in HPV Infection. Biomolecules 2024; 14:1172. [PMID: 39334938 PMCID: PMC11429777 DOI: 10.3390/biom14091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Viral infections cause oxygen deprivation, leading to hypoxia or anoxia in certain tissues. The limitation of mitochondrial respiration is one of the major events during hypoxia that induces alternative metabolic activities and increased levels of certain biomolecules such as nitric oxide (NO) metabolites. In this study, we aimed to investigate the role of NO metabolites and hypoxia in HPV infection. MATERIALS AND METHODS We included 36 patients with palmoplantar warts and 36 healthy subjects and performed serum determinations of NO metabolites (direct nitrite, total nitrite, nitrate, and 3-nitrotyrosine) and HIF1α, a marker of hypoxia. RESULTS We found elevated serum levels in NO metabolites and HIF1α, and decreased direct nitrite/nitrate ratios in patients with warts versus controls. Additionally, we identified statistically significant positive correlations between NO metabolites and HIF1α levels, except for 3-nitrotyrosine. CONCLUSIONS Our findings show that HPV infection causes hypoxia and alterations in NO metabolism and suggest a link between wart development and cellular stress. Our research could provide new insights for a comprehensive understanding of the pathogenesis of cutaneous HPV infections.
Collapse
Affiliation(s)
- Clara Matei
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- Department of Dermatology, 'Victor Babes' Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Madalina Irina Mitran
- Department of Microbiology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Iulia Mitran
- Department of Microbiology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Corina Daniela Ene
- Departments of Nephrology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Nephrology, 'Carol Davila' Nephrology Hospital, 010731 Bucharest, Romania
| | - Gheorghe Nicolae
- Faculty of Psychology, Babeș-Bolyai University, 400347 Cluj-Napoca, Romania
| | - Simona Roxana Georgescu
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, 'Victor Babes' Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, 'Victor Babes' Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
4
|
Li Z, Gan H, Ji K, Yang M, Pan T, Meng X, Liu T, Wang Z, Gong B, Liu K, Qi D, Fan H. Protopanaxadiol improves lupus nephritis by regulating the PTX3/MAPK/ERK1/2 pathway. J Nat Med 2024; 78:474-487. [PMID: 38431911 DOI: 10.1007/s11418-023-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/25/2023] [Indexed: 03/05/2024]
Abstract
Lupus nephritis (LN) is a kidney disease that occurs after systemic lupus erythematosus (SLE) affects the kidneys. Pentraxin 3 (PTX3) is highly expressed in the serum of patients with LN. Renal PTX3 deposition is directly related to clinical symptoms such as proteinuria and inflammation. The excessive proliferation of mesangial cells (MCs) is one of the representative pathological changes in the progression of LN, which is closely related to its pathogenesis. Protopanaxadiol (PPD) is the main component of ginsenoside metabolism and has not been reported in LN. The aim of this study was to investigate the relationship between PTX3 and mesangial cell proliferation and to evaluate the potential role and mechanism of PPD in improving LN. PTX3 is highly expressed in the kidneys of LN patients and LN mice and is positively correlated with renal pathological indicators, including proteinuria and PCNA. The excessive expression of PTX3 facilitated the proliferation of MCs, facilitated the activation of the MAPK/ERK1/2 signaling pathway, and increased the expression of HIF-1α. Further studies showed that PPD can effectively inhibit the abnormal proliferation of MCs with high expression of PTX3 and significantly improve LN symptoms such as proteinuria in MRL/lpr mice. The mechanism may be related to the inhibition of the PTX3/MAPK/ERK1/2 pathway. In this study, both in vitro, in vivo, and clinical sample results show that PTX3 is involved in the regulation of MCs proliferation and the early occurrence of LN. Natural active compound PPD can improve LN by regulating the PTX3/MAPK/ERK1/2 pathway.
Collapse
Affiliation(s)
- Zhenyuan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Hailin Gan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Kai Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Mingyan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Tao Pan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Xiangting Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Teng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Zhixia Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Baifang Gong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China
| | - Ke Liu
- Shandong Boyuan Biomedical Co., Ltd, Yantai, 264003, People's Republic of China
| | - Dong Qi
- Department of Nephrology, Yu-Huang-Ding Hospital/Qingdao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong Province, People's Republic of China.
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, 264005, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Chellini F, Tani A, Parigi M, Palmieri F, Garella R, Zecchi-Orlandini S, Squecco R, Sassoli C. HIF-1α/MMP-9 Axis Is Required in the Early Phases of Skeletal Myoblast Differentiation under Normoxia Condition In Vitro. Cells 2023; 12:2851. [PMID: 38132171 PMCID: PMC10742321 DOI: 10.3390/cells12242851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxia-inducible factor (HIF)-1α represents an oxygen-sensitive subunit of HIF transcriptional factor, which is usually degraded in normoxia and stabilized in hypoxia to regulate several target gene expressions. Nevertheless, in the skeletal muscle satellite stem cells (SCs), an oxygen level-independent regulation of HIF-1α has been observed. Although HIF-1α has been highlighted as a SC function regulator, its spatio-temporal expression and role during myogenic progression remain controversial. Herein, using biomolecular, biochemical, morphological and electrophysiological analyses, we analyzed HIF-1α expression, localization and role in differentiating murine C2C12 myoblasts and SCs under normoxia. In addition, we evaluated the role of matrix metalloproteinase (MMP)-9 as an HIF-1α effector, considering that MMP-9 is involved in myogenesis and is an HIF-1α target in different cell types. HIF-1α expression increased after 24/48 h of differentiating culture and tended to decline after 72 h/5 days. Committed and proliferating mononuclear myoblasts exhibited nuclear HIF-1α expression. Differently, the more differentiated elongated and parallel-aligned cells, which are likely ready to fuse with each other, show a mainly cytoplasmic localization of the factor. Multinucleated myotubes displayed both nuclear and cytoplasmic HIF-1α expression. The MMP-9 and MyoD (myogenic activation marker) expression synchronized with that of HIF-1α, increasing after 24 h of differentiation. By means of silencing HIF-1α and MMP-9 by short-interfering RNA and MMP-9 pharmacological inhibition, this study unraveled MMP-9's role as an HIF-1α downstream effector and the fact that the HIF-1α/MMP-9 axis is essential in morpho-functional cell myogenic commitment.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| |
Collapse
|
6
|
Singh J, Srivastava A, Nigam AK, Kumari U, Mittal S, Mittal AK. Alterations in certain immunological parameters in the skin mucus of the carp, Cirrhinus mrigala, infected with the bacteria, Edwardsiella tarda. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1303-1320. [PMID: 37870724 DOI: 10.1007/s10695-023-01258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The bacterial fish pathogen Edwardsiella tarda causes heavy stock mortality, severely hampering fish production, resulting in great economic loss to the farming industry. The first biological barriers that confer immune protection against pathogen entry are the fish mucosal surfaces. The present study was undertaken to investigate the influence of E. tarda on certain enzymatic and non-enzymatic parameters in the skin mucous secretions of the fish Cirrhinus mrigala using spectrophotometry and zymography. Fish were randomly divided into three groups: control, vehicle control, and infected. A sublethal dose of E. tarda (2.2 × 106 CFU/fish) suspended in 50 μL of PBS was injected intra-peritoneally at 0 day (d). Subsequently, mucus samples were collected at 2 d, 4 d, 6 d and 8 d post-infection. The activities of lysozyme (LYZ), protease (PROT), alkaline phosphatase (ALP), acid phosphatase (ACP), catalase (CAT), peroxidase (PER), superoxide dismutase (SOD), and glutathione S-transferase (GST) decreased significantly in the skin mucus of the challenged fish, indicating the suppressed immune system and decreased antioxidant capacity of C. mrigala to E. tarda infection. Lipid peroxidation (LPO) and total nitrate-nitrite were significantly higher at several time points post-infection, suggesting that physiological functions have been impaired following pathogen challenge. The present findings could be relevant for fish aquaculture and underline the importance of skin mucus not only for assessing fish immune status but also for identifying early warning signals of disease caused by pathogens.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ayan Srivastava
- Department of Zoology, MSM Samta College (BR Ambedkar Bihar University), Jandaha, Vaishali, Bihar, 844505, India
| | - Ashwini Kumar Nigam
- Udai Pratap Autonomous College, Bhojubir, Varanasi, Uttar Pradesh, 221002, India
| | - Usha Kumari
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Swati Mittal
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Ajay Kumar Mittal
- Department of Zoology, Banaras Hindu University, Present Address: 9, Mani Nagar, Near Asha Modern School, Kandawa road, Near Chitaipur, Varanasi, Uttar Pradesh, 221106, India
| |
Collapse
|
7
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Dutra M, Covas da Silva S, da Silva Beggiora Marques P, Oliveira Amaral I, Funo de Souza SN, Dutra LA, Volpon Santos M, Machado HR, da Silva Lopes L. Celecoxib attenuates neuroinflammation, reactive astrogliosis and promotes neuroprotection in young rats with experimental hydrocephalus. J Chem Neuroanat 2023; 133:102344. [PMID: 37777093 DOI: 10.1016/j.jchemneu.2023.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Hydrocephalus is a neurological condition with altered cerebrospinal fluid flow (CSF). The treatment is surgical and the most commonly used procedure is ventricle-peritoneal shunt. However, not all patients can undergo immediate surgery or achieve complete lesion reversal. Neuroprotective measures are valuable in such cases. It was evaluated whether the use of celecoxib, a selective inhibitor of COX-2, associated or not with ventricular-subcutaneous derivation, could offer benefits to the brain structures affected by experimental hydrocephalus. Seven-day-old male Wistar Hannover rats induced by intracisternal injection of kaolin 15% were used, divided into five groups with ten animals each: intact control (C), untreated hydrocephalus (H), hydrocephalus treated with celecoxib 20 mg/kg intraperitoneal (HTC), hydrocephalus treated with shunt (HTS) and hydrocephalus treated with shunt and celecoxib 20 mg/kg intraperitoneal (HTCS). Celecoxib was administered for 21 consecutive days, starting the day after hydrocephalus induction and continuing until the end of the experimental period. The surgery was performed seven days after inducing hydrocephalus. Multiple assessment methods were used, such as behavioral tests (water maze and open field), histological analysis (hematoxylin and eosin), immunohistochemistry (caspase-3, COX-2, and GFAP), and ELISA analysis of GFAP. The results of the behavioral and memory tests indicated that celecoxib improves the neurobehavioral response. The improvement can be attributed to the reduced neuroinflammation (p < 0.05), and astrogliosis (p < 0.05) in different brain regions. In conclusion, the results suggest that celecoxib holds great potential as an adjuvant neuroprotective drug for the treatment of experimental hydrocephalus.
Collapse
Affiliation(s)
- Maurício Dutra
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, Brazil.
| | - Stephanya Covas da Silva
- Department of Morphology and Pathology, Division of Anatomy, Federal University of Sao Carlos, Washington Luiz Hig., Monjolinho, Sao Carlos, SP, Brazil.
| | - Pâmella da Silva Beggiora Marques
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, Brazil
| | - Izadora Oliveira Amaral
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, Brazil.
| | - Stephanie Naomi Funo de Souza
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, Brazil
| | - Luiz Antônio Dutra
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marcelo Volpon Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, Brazil.
| | - Hélio Rubens Machado
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, Brazil
| | - Luiza da Silva Lopes
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av, 3900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Popazova O, Belenichev I, Yadlovskyi O, Oksenych V, Kamyshnyi A. Altered Blood Molecular Markers of Cardiovascular Function in Rats after Intrauterine Hypoxia and Drug Therapy. Curr Issues Mol Biol 2023; 45:8704-8715. [PMID: 37998724 PMCID: PMC10670299 DOI: 10.3390/cimb45110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
Many children and adults who have suffered prenatal hypoxia at an early age develop many serious diseases. This disease is an actual problem of pediatric cardiology and little studied. The aim was to analyze the cardioprotective effect of L-arginine, Thiotriazoline, Angioline, and Mildronate on the cardiovascular system of rats after prenatal hypoxia. Methods: The experiments were carried out on 50 female white rats; intraperitoneal sodium nitrite solution was administered daily to pregnant female rats after 16 days at a dose of 50 mg/kg. Control pregnant rats received saline. The offspring were divided into groups: 1-intact; 2-the control group of rat pups after PH, treated daily with physiological saline; 3-six groups of rat pups after PH, treated daily from the 1st to the 30th day after birth. Heat shock protein HSP70 was determined by enzyme immunoassay, ST2 Nitrotyrosine, and eNOS was observed by ELISA. Results: Angiolin showed a high cardioprotective effect even a month after discontinuation of the drug, and after introduction, the highest decrease in ST2 nitrotyrosine was revealed. Thiotriazoline and L-arginine have an antioxidant effect and a positive effect on eNOS expression, increasing the concentration of HSP70. Mildronate increased the expression of eNOS and the concentration of HSP70 in the blood of experimental rats after a course of administration, but did not show an antioxidant effect and did not reduce the concentration of nitrotyrosine. The results obtained indicate the cardioprotective effect of modulators of the NO system with different mechanisms of action of drugs after prenatal hypoxia.
Collapse
Affiliation(s)
- Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Oleh Yadlovskyi
- Institute of Pharmacology and Toxicology, National Medical Academy of Ukraine, 03057 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
10
|
Silberstein E, Chung CC, Debrabant A. The transcriptome landscape of 3D-cultured placental trophoblasts reveals activation of TLR2 and TLR3/7 in response to low Trypanosoma cruzi parasite exposure. Front Microbiol 2023; 14:1256385. [PMID: 37799608 PMCID: PMC10548471 DOI: 10.3389/fmicb.2023.1256385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Vertical transmission of Trypanosoma cruzi (T. cruzi) become a globalized health problem accounting for 22% of new cases of Chagas disease (CD). Congenital infection is now considered the main route of CD spread in non-endemic countries where no routine disease testing of pregnant women is implemented. The main mechanisms that lead to fetal infection by T. cruzi remain poorly understood. Mother-to-child transmission may occur when bloodstream trypomastigotes interact with the syncytiotrophoblasts (SYNs) that cover the placenta chorionic villi. These highly specialized cells function as a physical barrier and modulate immune responses against pathogen infections. To model the human placenta environment, we have previously used a three-dimensional (3D) cell culture system of SYNs that exhibits differentiation characteristics comparable to placental trophoblasts. Further, we have shown that 3D-grown SYNs are highly resistant to T. cruzi infection. In this work, we used RNA sequencing and whole transcriptome analysis to explore the immunological signatures that drive SYNs' infection control. We found that the largest category of differentially expressed genes (DEGs) are associated with inflammation and innate immunity functions. Quantitative RT-PCR evaluation of selected DEGs, together with detection of cytokines and chemokines in SYNs culture supernatants, confirmed the transcriptome data. Several genes implicated in the Toll-like receptors signaling pathways were upregulated in 3D-grown SYNs. In fact, TLR2 blockade and TLR3/7 knockdown stimulated T. cruzi growth, suggesting that these molecules play a significant role in the host cell response to infection. Ingenuity Pathway Analysis of DEGs predicted the activation of canonical pathways such as S100 protein family, pathogen induced cytokine storm, wound healing, HIF1α signaling and phagosome formation after T. cruzi exposure. Our findings indicate that SYNs resist infection by eliciting a constitutive pro-inflammatory response and modulating multiple defense mechanisms that interfere with the parasite's intracellular life cycle, contributing to parasite killing and infection control.
Collapse
Affiliation(s)
- Erica Silberstein
- Laboratory of Emerging Pathogens, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Charles C. Chung
- High-performance Integrated Virtual Environment Team, Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Alain Debrabant
- Laboratory of Emerging Pathogens, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
11
|
Pinky, Neha, Salman M, Kumar P, Khan MA, Jamal A, Parvez S. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia. Ageing Res Rev 2023; 90:102022. [PMID: 37490963 DOI: 10.1016/j.arr.2023.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by an adverse cellular environment and pathological alterations in distinct brain regions. The development is triggered or facilitated by a condition such as hypoxia or ischemia, or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Increasing evidence suggests that hypoxia may affect many pathological aspects of AD, including oxidative stress, mitochondrial dysfunction, ER stress, amyloidogenic processing of APP, and Aβ accumulation, which may collectively result in neurodegeneration. Further investigation into the relationship between hypoxia and AD may provide an avenue for the effective preservation and pharmacological treatment of this neurodegenerative disease. This review summarizes the effects of normoxia and hypoxia on AD pathogenesis and discusses the underlying mechanisms. Regulation of HIF-1α and the role of its key players, including P53, VEGF, and GLUT1, are also discussed.
Collapse
Affiliation(s)
- Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohd Salman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Pratika Kumar
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Sharma P, Sri Swetha Victoria V, Praneeth Kumar P, Karmakar S, Swetha M, Reddy A. Cross-talk between insulin resistance and nitrogen species in hypoxia leads to deterioration of tissue and homeostasis. Int Immunopharmacol 2023; 122:110472. [PMID: 37392570 DOI: 10.1016/j.intimp.2023.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Hypoxia has been linked with insulin resistance as it produces changes in the metabolism of the cell; in which the adipocytes impede the insulin receptor tyrosine, phosphorylation, directing at decreased levels of transport of glucose. At this juncture, we are focusing on cross-talk between insulin resistance and nitrogen species in hypoxia, leading to the deterioration of tissue and homeostasis. Physiological levels of nitric oxide play a very crucial role in acting as a priority effector and signaling molecule, arbitrating the body's responses to hypoxia. Both ROS and RNS are associated with a reduction in IRS1 phosphorylation in tyrosine, which leads to reduced levels of IRS1 content and insulin response, which further leads to insulin resistance. Cellular hypoxia is a trigger to inflammatory mediators which signal tissue impairment and initiate survival requirements. But, hypoxia-mediated inflammation act as a protective role by an immune response and promotes wound healing during infection. In this review, we abridge the crosstalk between the inflammation and highlight the dysregulation in physiological consequences due to diabetes mellitus. Finally, we review various treatments available for its related physiological complications.
Collapse
Affiliation(s)
- Priyanshy Sharma
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - V Sri Swetha Victoria
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - P Praneeth Kumar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Sarbani Karmakar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Mudduluru Swetha
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Amala Reddy
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India.
| |
Collapse
|
13
|
Ene CD, Nicolae I. The Inflammatory Profile Orchestrated by Inducible Nitric Oxide Synthase in Systemic Lupus Erythematosus. J Pers Med 2023; 13:934. [PMID: 37373923 PMCID: PMC10304544 DOI: 10.3390/jpm13060934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: The pathogenesis of systemic lupus erythematosus (SLE) involves complicated and multifactorial interactions. Inducible nitric oxide synthase overactivation (iNOS or NOS2) could be involved in SLE pathogenesis and progression. This study explored the relationship between NOS2-associated inflammation profiles and SLE phenotypes. (2) Methods: We developed a prospective, case control study that included a group of 86 SLE subjects, a group of 73 subjects with lupus nephritis, and a control group of 60 people. Laboratory determinations included serum C reactive protein (CRP-mg/L), enzymatic activity of NOS2 (U/L), serum levels of inducible factors of hypoxia 1 and 2 (HIF1a-ng/mL, HIF2a-ng/mL), vascular endothelial growth factor VEGF (pg/mL), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9-ng/mL), thrombospondin 1 (TSP-1-ng/mL), and soluble receptor of VEGF (sVEGFR-ng/mL). (3) Results: CRP, NOS2, HIF-1a, HIF-2a, VEGF, MMP-2, and MMP-9 were significantly increased, while TSP-1 and sVEGFR were decreased in the SLE and lupus nephritis groups compared with the control group. The variations in these biomarkers were strongly associated with the decrease in eGFR and increase in albuminuria. (4) Conclusions: The inflammatory phenotype of SLE patients, with or without LN, is defined by NOS2 and hypoxia over-expression, angiogenesis stimulation, and inactivation of factors that induce resolution of inflammation in relation with eGFR decline.
Collapse
Affiliation(s)
- Corina Daniela Ene
- Internal Medicine and Nephrology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Nephrology Department, Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Ilinca Nicolae
- Dermatology Department, Victor Babes Clinical Hospital of Tropical and Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
14
|
Jin J, Chowdhury MHU, Hafizur Rahman M, Choi KY, Adnan M. Bioactive Compounds and Signaling Pathways of Wolfiporia extensa in Suppressing Inflammatory Response by Network Pharmacology. Life (Basel) 2023; 13:life13040893. [PMID: 37109422 PMCID: PMC10142087 DOI: 10.3390/life13040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Wolfiporia extensa (WE) is a medicinal mushroom and an excellent source of naturally occurring anti-inflammatory substances. However, the particular bioactive compound(s) and mechanism(s) of action against inflammation have yet to be determined. Here, we studied anti-inflammatory bioactive compounds and their molecular mechanisms through network pharmacology. Methanol (ME) extract of WE (MEWE) was used for GC-MS analysis to identify the bioactives, which were screened by following Lipinski’s rules. Public databases were used to extract selected bioactives and inflammation-related targets, and Venn diagrams exposed the common targets. Then, STRING and Cytoscape tools were used to construct protein-protein (PPI) network and mushroom-bioactives-target (M-C-T) networks. Gene Ontology and KEGG pathway analysis were performed by accessing the DAVID database and molecular docking was conducted to validate the findings. The chemical reactivity of key compounds and standard drugs was explored by the computational quantum mechanical modelling method (DFT study). Results from GC-MS revealed 27 bioactives, and all obeyed Lipinski’s rules. The public databases uncovered 284 compound-related targets and 7283 inflammation targets. A Venn diagram pointed to 42 common targets which were manifested in the PPI and M-C-T networks. KEGG analysis pointed to the HIF-1 signaling pathway and, hence, the suggested strategy for preventing the onset of inflammatory response was inhibition of downstream NFKB, MAPK, mTOR, and PI3K-Akt signaling cascades. Molecular docking revealed the strongest binding affinity for “N-(3-chlorophenyl) naphthyl carboxamide” on five target proteins associated with the HIF-1 signaling pathway. Compared to the standard drug utilized in the DFT (Density Functional Theory) analysis, the proposed bioactive showed a good electron donor component and a reduced chemical hardness energy. Our research pinpoints the therapeutic efficiency of MEWE and this work suggests a key bioactive compound and its action mechanism against inflammation.
Collapse
|
15
|
The Circadian Clocks, Oscillations of Pain-Related Mediators, and Pain. Cell Mol Neurobiol 2023; 43:511-523. [PMID: 35179680 DOI: 10.1007/s10571-022-01205-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/07/2023]
Abstract
The circadian clock is a biochemical oscillator that is synchronized with solar time. Normal circadian rhythms are necessary for many physiological functions. Circadian rhythms have also been linked with many physiological functions, several clinical symptoms, and diseases. Accumulating evidence suggests that the circadian clock appears to modulate the processing of nociceptive information. Many pain conditions display a circadian fluctuation pattern clinically. Thus, the aim of this review is to summarize the existing knowledge about the circadian clocks involved in diurnal rhythms of pain. Possible cellular and molecular mechanisms regarding the connection between the circadian clocks and pain are discussed.
Collapse
|
16
|
Pappas G, Wilkinson ML, Gow AJ. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy. Nitric Oxide 2023; 131:8-17. [PMID: 36470373 PMCID: PMC9839556 DOI: 10.1016/j.niox.2022.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide can interact with a wide range of proteins including many that are involved in metabolism. In this review we have summarized the effects of NO on glycolysis, fatty acid metabolism, the TCA cycle, and oxidative phosphorylation with reference to skeletal muscle. Low to moderate NO concentrations upregulate glucose and fatty acid oxidation, while higher NO concentrations shift cellular reliance toward a fully glycolytic phenotype. Moderate NO production directly inhibits pyruvate dehydrogenase activity, reducing glucose-derived carbon entry into the TCA cycle and subsequently increasing anaploretic reactions. NO directly inhibits aconitase activity, increasing reliance on glutamine for continued energy production. At higher or prolonged NO exposure, citrate accumulation can inhibit multiple ATP-producing pathways. Reduced TCA flux slows NADH/FADH entry into the ETC. NO can also inhibit the ETC directly, further limiting oxidative phosphorylation. Moderate NO production improves mitochondrial efficiency while improving O2 utilization increasing whole-body energy production. Long-term bioenergetic capacity may be increased because of NO-derived ROS, which participate in adaptive cellular redox signaling through AMPK, PCG1-α, HIF-1, and NF-κB. However, prolonged exposure or high concentrations of NO can result in membrane depolarization and opening of the MPT. In this way NO may serve as a biochemical rheostat matching energy supply with demand for optimal respiratory function.
Collapse
Affiliation(s)
- Gregory Pappas
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Melissa L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Andrew J Gow
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| |
Collapse
|
17
|
Chirumbolo S, Tirelli U, Franzini M, Pandolfi S, Ricevuti G, Vaiano F, Valdenassi L. Ozone in the adjunct medical treatment. The round personality of a molecule with hormetic properties. Hum Exp Toxicol 2023; 42:9603271231218926. [PMID: 38073286 DOI: 10.1177/09603271231218926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Ozone, an allotrope of oxygen, is enjoying an increasing interest in the setting and management of the medical adjunct treatment, which is called, maybe too simplistically, "ozone therapy". Ozone is not a medicine, so the word therapy does not properly fit this gaseous molecule. Like many natural compounds, for example plant flavonoids, even ozone interacts with aryl hydrocarbon receptors (AhRs) and, at low doses, it works according to the paradoxical mechanism of hormesis, involving mitochondria (mitohormesis). Ozone, in the hormetic range, exerts cell protective functions via the Nrf2-mediated activation of the anti-oxidant system, then leading to anti-inflammatory effects, also via the triggering of low doses of 4-HNE. Moreover, its interaction with plasma and lipids forms reactive oxygen species (ROS) and lipoperoxides (LPOs), generally called ozonides, which are enabled to rule the major molecular actions of ozone in the cell. Ozone behaves as a bioregulator, by activating a wide population of reactive intermediates, which usually target mitochondria and their turnover/biogenesis, often leading to a pleiotropic spectrum of actions and behaving as a tuner of the fundamental mechanisms of survival in the cell. In this sense, ozone can be considered a novelty in the medical sciences and in the clinical approach to pharmacology and medical therapy, due to its ability to target complex regulatory systems and not simple receptors.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | | | - Marianno Franzini
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Sergio Pandolfi
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | | | - Francesco Vaiano
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Luigi Valdenassi
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Glutamine-dependent effects of nitric oxide on cancer cells subjected to hypoxia-reoxygenation. Nitric Oxide 2023; 130:22-35. [PMID: 36414197 DOI: 10.1016/j.niox.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Limited O2 availability can decrease essential processes in energy metabolism. However, cancers have developed distinct metabolic adaptations to these conditions. For example, glutaminolysis can maintain energy metabolism and hypoxia signaling. Additionally, it has been observed that nitric oxide (NO) possesses concentration-dependent, biphasic effects in cancer. NO has potent anti-tumor effects through modulating events such as angiogenesis and metastasis at low physiological concentrations and inducing cell death at higher concentrations. In this study, Ewing Sarcoma cells (A-673), MIA PaCa, and SKBR3 cells were treated with DetaNONOate (DetaNO) in a model of hypoxia (1% O2) and reoxygenation (21% O2). All 3 cell types showed NO-dependent inhibition of cellular O2 consumption which was enhanced as O2-tension decreased. L-Gln depletion suppressed the mitochondrial response to decreasing O2 tension in all 3 cell types and resulted in inhibition of Complex I activity. In A-673 cells the O2 tension dependent change in mitochondrial O2 consumption and increase in glycolysis was dependent on the presence of L-Gln. The response to hypoxia and Complex I activity were restored by α-ketoglutarate. NO exposure resulted in the A-673 cells showing greater sensitivity to decreasing O2 tension. Under conditions of L-Gln depletion, NO restored HIF-1α levels and the mitochondrial response to O2 tension possibly through the increase of 2-hydroxyglutarate. NO also resulted in suppression of cellular bioenergetics and further inhibition of Complex I which was not rescued by α-ketoglutarate. Taken together these data suggest that NO modulates the mitochondrial response to O2 differentially in the absence and presence of L-Gln. These data suggest a combination of metabolic strategies targeting glutaminolysis and Complex I in cancer cells.
Collapse
|
19
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
20
|
Monier MN, Abd El-Naby AS, Samir F, Abdel-Tawwab M. Positive effects of dietary nanosized sodium butyrate on growth performance, immune, antioxidant indices, and resistance of Nile tilapia to waterborne copper toxicity. AQUACULTURE REPORTS 2022; 26:101323. [DOI: 10.1016/j.aqrep.2022.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Makaritsis KP, Kotidis C, Papacharalampous K, Kouvaras E, Poulakida E, Tarantilis P, Asprodini E, Ntaios G, Koukoulis GΚ, Dalekos GΝ, Ioannou M. Mechanistic insights on the effect of crocin, an active ingredient of saffron, on atherosclerosis in apolipoprotein E knockout mice. Coron Artery Dis 2022; 33:394-402. [PMID: 35880561 DOI: 10.1097/mca.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We investigated the effect of crocin treatment on atherosclerosis and serum lipids in apolipoprotein E knockout (ApoE-/-) mice, focusing on the expression of endothelial nitric oxide synthase (eNOS) and hypoxia-induced factor-1 alpha (HIF-1α). METHODS Sixty-two animals were divided into two groups and randomly allocated to crocin (100 mg/kg/day) in drinking water or no crocin. All mice were maintained on standard chow diet containing 5% fat. Crocin was initiated at the 16th week of age and continued for 16 additional weeks. At 32 weeks of age, after blood sampling for plasma lipid determination and euthanasia, proximal aorta was removed and 3 μm sections were used to measure the atherosclerotic area and determine the expression of eNOS and HIF-1α by immunohistochemistry. RESULTS Each group consisted of 31 animals (17 males and 14 females in each group). Crocin significantly reduced the atherosclerotic area (mm2 ± SEM) in treated mice compared to controls, both in males (0.0798 ± 0.017 vs. 0.1918 ± 0.028, P < 0.002, respectively) and females (0.0986 ± 0.023 vs. 0.1765 ± 0.025, P < 0.03, respectively). eNOS expression was significantly increased in crocin-treated mice compared to controls, both in males (2.77 ± 0.24 vs. 1.50 ± 0.34, P=0.004, respectively) and females (3.41 ± 0.37 vs. 1.16 ± 0.44, P=0.003, respectively). HIF-1α expression was significantly decreased in crocin-treated mice compared to controls, both in males (21.25 ± 2.14 vs. 156.5 ± 6.67, P < 0.001, respectively) and females (35.3 ± 7.20 vs. 113.3 ± 9.0, P < 0.01, respectively). No difference was noticed in total, low- and high-density lipoprotein cholesterol between treated and control mice. CONCLUSION Crocin reduces atherosclerosis possibly by modulation of eNOS and HIF-1α expression in ApoE-/- mice without affecting plasma cholesterol.
Collapse
Affiliation(s)
- Konstantinos P Makaritsis
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Charalampos Kotidis
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- East Midlands Congenital Heart Centre, University Hospitals of Leicester, Leicester, UK
| | | | - Evangelos Kouvaras
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| | - Eirini Poulakida
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Petros Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens
| | - Eftichia Asprodini
- Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - George Ntaios
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - George Κ Koukoulis
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| | - George Ν Dalekos
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| |
Collapse
|
22
|
Kamel R, El Morsy EM, Elsherbiny ME, Nour-Eldin M. Chrysin promotes angiogenesis in rat hindlimb ischemia: Impact on PI3K/Akt/mTOR signaling pathway and autophagy. Drug Dev Res 2022; 83:1226-1237. [PMID: 35662099 DOI: 10.1002/ddr.21954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Limb ischemia occurs due to obstruction of blood perfusion to lower limbs, a manifestation that is associated with peripheral artery disease (PAD). Angiogenesis is important for adequate oxygen delivery. The present study investigated a potential role for chrysin, a naturally occurring flavonoid, in promoting angiogenesis in hindlimb ischemia (HLI) rat model. Rats were allocated into four groups: (1) sham-operated control, (2) HLI: subjected to unilateral femoral artery ligation, (3) HLI + chrysin: received 100 mg/kg, i.p. chrysin immediately after HLI, and (4) HLI + chrysin + rapamycin: received 6 mg/kg/day rapamycin i.p. for 5 days then subjected to HLI and dosed with 100 mg/kg chrysin, i.p. Rats were killed 18 h later and gastrocnemius muscles were collected and divided into parts for (1) immunohistochemistry detection of CD31 and CD105, (2) qRT-PCR analysis of eNOS and VEGFR2, (3) colorimetric analysis of NO, (4) ELISA estimation of TGF-β, VEGF, ATG5 and Beclin-1, and (5) Western blot analysis of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and HIF-1α. Chrysin significantly enhanced microvessels growth in HLI muscles as indicated by increased CD31 and CD105 levels and decreased TGF-β. Chrysin's proangiogenic effect is potentially mediated by increased VEGF, VEGFR2 and activation of PI3K/AKT/mTOR pathway, which promoted eNOS and NO levels as it was reversed by the mTOR inhibitor, rapamycin. Chrysin also inhibited autophagy as it decreased ATG5 and Beclin-1. The current study shows that chrysin possesses a proangiogenic effect in HLI rats and might be useful in patients with PAD.
Collapse
Affiliation(s)
- Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Engy M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mahmoud Nour-Eldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
23
|
An ACE2-Alamandine Axis Modulates the Cardiac Performance of the Goldfish Carassius auratus via the NOS/NO System. Antioxidants (Basel) 2022; 11:antiox11040764. [PMID: 35453449 PMCID: PMC9026556 DOI: 10.3390/antiox11040764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Alamandine is a peptide of the Renin Angiotensin System (RAS), either generated from Angiotensin A via the Angiotensin Converting Enzyme 2 (ACE2), or directly from Ang-(1-7). In mammals, it elicits cardioprotection via Mas-related G-protein-coupled receptor D (MrgD), and the NOS/NO system. In teleost fish, RAS is known to modulate heart performance. However, no information is available on the presence of a cardioactive ACE2/Alamandine axis. To fill this gap, we used the cyprinid teleost Carassius auratus (goldfish) for in silico and in vitro analyses. Via the NCBI Blast P suite we found that in cyprinids ace2 is phylogenetically detectable in a subcluster of proteins including ace2-like isoforms, and is correlated with a hypoxia-dependent pathway. By real-time PCR, Western Blotting, and HPLC, ACE2 and Alamandine were identified in goldfish heart and plasma, respectively. Both increased after chronic exposure to low O2 (2.6 mg O2 L-1). By using an ex-vivo working goldfish-heart preparation, we observed that in vitro administration of exogenous Alamandine dose-dependently stimulates myocardial contractility starting from 10-11 M. The effect that involved Mas-related receptors and PKA occurred via the NOS/NO system. This was shown by exposing the perfused heart to the NOS inhibitor L-NMMA (10-5 M) that abolished the cardiac effect of Alamandine and was supported by the increased expression of the phosphorylated NOS enzyme in the extract from goldfish heart exposed to 10-10 M Alamandine. Our data are the first to show that an ACE2/Alamandine axis is present in the goldfish C. auratus and, to elicit cardiac modulation, requires the obligatory involvement of the NOS/NO system.
Collapse
|
24
|
Zhen D, Xuan TQ, Hu B, Bai X, Fu DN, Wang Y, Wu Y, Yang J, Ma Q. Pteryxin attenuates LPS-induced inflammatory responses and inhibits NLRP3 inflammasome activation in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114753. [PMID: 34662667 DOI: 10.1016/j.jep.2021.114753] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pteryxin is a natural coumarin compound that is found in "Qianhu", a traditional Chinese medicine, which possesses heat-clearing and detoxifying functions according to the theory of Traditional Chinese Medicine. Despite its medicinal effects, its anti-inflammatory and mechanisms of actions have not been established. AIM OF THIS STUDY This study aims to evaluate the anti-inflammatory property and reveal the possible anti-inflammatory mechanisms of pteryxin. MATERIAL AND METHODS LPS-induced RAW 264.7 macrophages and LPS-induced zebrafish model were used for the anti-inflammatory activity determination of pteryxin. The level of NO, PEG2, TNF-α and IL-6 were measured by ELISA. The accumulation of NO and ROS was stained and observed by a fluorescence microscopy. The nuclear translocation of NF-κB p65 and formation of NLRP3 inflammasome complex in LPS-induced RAW 264.7 macrophage cells were analyzed by immunofluorescence assay. The expression level of iNOS, IL-6, COX-2, TNF-α, p-p38, p38, ERK, JNK, p-ERK, p-JNK, IKK, IκB-α, p-IKK, p-IκB-α, p65, NLRP3, p-p65, Caspase 1 (p 20), ASC, and GAPDH were determined by Western blotting. RESULTS Lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) and nitric oxide (NO) secretions were found to be downregulated by pteryxin. Moreover, pteryxin significantly suppressed inflammatory factor secretion in LPS-treated RAW 264.7 cells. Mechanistically, pteryxin significantly downregulated NF-κB/MAPK activation. Moreover, pteryxin inhibited caspase-1 and NLRP3 activation and formation of ASC specks in RAW 264.7 cells, implying that pteryxin inhibits inflammasome assembly, which is a signal for NLRP3 inflammasome activation. In conclusion, pteryxin blocks NF-κB/MAPK signaling, and suppresses the initiation and activation of NLRP3 thereby preventing inflammation. CONCLUSION Pteryxin is a potential treatment option for inflammatory-related diseases.
Collapse
Affiliation(s)
- Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Tian-Qi Xuan
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Boqin Hu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Xue Bai
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dan-Ni Fu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yu Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yun Wu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Jingfeng Yang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
25
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
26
|
Yang Y, Yuan H, Liu X, Wang Z, Li Y, Ren Y, Gao C, Jiao T, Cai Y, Zhao S. Transcriptome and Metabolome Integration Provides New Insights Into the Regulatory Networks of Tibetan Pig Alveolar Type II Epithelial Cells in Response to Hypoxia. Front Genet 2022; 13:812411. [PMID: 35126479 PMCID: PMC8814526 DOI: 10.3389/fgene.2022.812411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Tibetan pigs show a widespread distribution in plateau environments and exhibit striking physiological and phenotypic differences from others pigs for adaptation to hypoxic conditions. However, the regulation of mRNAs and metabolites as well as their functions in the alveolar type II epithelial (ATII) cells of Tibetan pigs remain undefined. Herein, we carried out integrated metabolomic and transcriptomic profiling of ATII cells between Tibetan pigs and Landrace pigs across environments with different oxygen levels to delineate their signature pathways. We observed that the differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) profiles displayed marked synergy of hypoxia-related signature pathways in either Tibetan pigs or Landrace pigs. A total of 1,470 DEGs shared between normoxic (TN, ATII cells of Tibetan pigs were cultured under 21% O2; LN, ATII cells of Landrace pigs were cultured under 21% O2) and hypoxic (TL, ATII cells of Tibetan pigs were cultured under 2% O2; LL, ATII cells of Landrace pigs were cultured under 2% O2) groups and 240 DAMs were identified. Functional enrichment assessment indicated that the hypoxia-related genes and metabolites were primarily involved in glycolysis and aldosterone synthesis and secretion. We subsequently constructed an interaction network of mRNAs and metabolites related to hypoxia, such as guanosine-3′, 5′-cyclic monophosphate, Gly-Tyr, and phenylacetylglycine. These results indicated that mitogen-activated protein kinase (MAPK) signaling, aldosterone synthesis and secretion, and differences in the regulation of MCM and adenosine may play vital roles in the better adaptation of Tibetan pigs to hypoxic environments relative to Landrace pigs. This work provides a new perspective and enhances our understanding of mRNAs and metabolites that are activated in response to hypoxia in the ATII cells of Tibetan pigs.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhengwen Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Ürümqi, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Shengguo Zhao,
| |
Collapse
|
27
|
Affiliation(s)
- Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Binru Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Jian Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| |
Collapse
|
28
|
Ong HM, Ahmad Azmi AF, Leong SW, Abas F, Perimal EK, Farouk AAO, Israf DA, Sulaiman MR. The Involvement of l-Arginine-Nitric Oxide-cGMP-ATP-Sensitive K + Channel Pathway in Antinociception of BBHC, a Novel Diarylpentanoid Analogue, in Mice Model. Molecules 2021; 26:molecules26247431. [PMID: 34946513 PMCID: PMC8705496 DOI: 10.3390/molecules26247431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/05/2022] Open
Abstract
The present study focuses on the possible involvement of l-arginine-nitric oxide-cGMP-ATP-sensitive K+ channel pathway in the antinociceptive activity of a novel diarylpentanoid analogue, 2-benzoyl-6-(3-bromo-4-hydroxybenzylidene)cyclohexen-1-ol (BBHC) via a chemical nociceptive model in mice. The antinociceptive action of BBHC (1 mg/kg, i.p.) was attenuated by the intraperitoneal pre-treatment of l-arginine (a nitric oxide synthase precursor) and glibenclamide (an ATP-sensitive K+ channel blocker) in acetic acid-induced abdominal constriction tests. Interestingly, BBHC’s antinociception was significantly enhanced by the i.p. pre-treatment of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a selective inhibitor of soluble guanylyl cyclase (p < 0.05). Altogether, these findings suggest that the systemic administration of BBHC is able to establish a significant antinociceptive effect in a mice model of chemically induced pain. BBHC’s antinociception is shown to be mediated by the involvement of l-arginine-nitric oxide-cGMP-ATP-sensitive K+ channel pathway, without any potential sedative or muscle relaxant concerns.
Collapse
Affiliation(s)
- Hui Ming Ong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.O.); (A.F.A.A.); (E.K.P.); (A.A.O.F.); (D.A.I.)
| | - Ahmad Farhan Ahmad Azmi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.O.); (A.F.A.A.); (E.K.P.); (A.A.O.F.); (D.A.I.)
| | - Sze Wei Leong
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Faridah Abas
- Department of Food Sciences, Faculty of Food Science & Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.O.); (A.F.A.A.); (E.K.P.); (A.A.O.F.); (D.A.I.)
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.O.); (A.F.A.A.); (E.K.P.); (A.A.O.F.); (D.A.I.)
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.O.); (A.F.A.A.); (E.K.P.); (A.A.O.F.); (D.A.I.)
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.M.O.); (A.F.A.A.); (E.K.P.); (A.A.O.F.); (D.A.I.)
- Correspondence: ; Tel.: +60-389-472-346
| |
Collapse
|
29
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
30
|
Nguyen H, Koh JY, Li H, Islas-Robles A, Meda Venkata SP, Wang JM, Monks TJ. A novel imidazolinone metformin-methylglyoxal metabolite promotes endothelial cell angiogenesis via the eNOS/HIF-1α pathway. FASEB J 2021; 35:e21645. [PMID: 34105824 PMCID: PMC8237315 DOI: 10.1096/fj.202002674rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
Peripheral arterial disease (PAD) is one of the major complications of diabetes due to an impairment in angiogenesis. Since there is currently no drug with satisfactory efficacy to enhance blood vessel formation, discovering therapies to improve angiogenesis is critical. An imidazolinone metabolite of the metformin‐methylglyoxal scavenging reaction, (E)‐1,1‐dimethyl‐2‐(5‐methyl‐4‐oxo‐4,5‐dihydro‐1H‐imidazol‐2‐yl) guanidine (IMZ), was recently characterized and identified in the urine of type‐2 diabetic patients. Here, we report the pro‐angiogenesis effect of IMZ (increased aortic sprouting, cell migration, network formation, and upregulated multiple pro‐angiogenic factors) in human umbilical vein endothelial cells. Using genetic and pharmacological approaches, we showed that IMZ augmented angiogenesis by activating the endothelial nitric oxide synthase (eNOS)/hypoxia‐inducible factor‐1 alpha (HIF‐1α) pathway. Furthermore, IMZ significantly promoted capillary density in the in vivo Matrigel plug angiogenesis model. Finally, the role of IMZ in post‐ischemic angiogenesis was examined in a chronic hyperglycemia mouse model subjected to hind limb ischemia. We observed improved blood perfusion, increased capillary density, and reduced tissue necrosis in mice receiving IMZ compared to control mice. Our data demonstrate the pro‐angiogenic effects of IMZ, its underlying mechanism, and provides a structural basis for the development of potential pro‐angiogenic agents for the treatment of PAD.
Collapse
Affiliation(s)
- Huong Nguyen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jia Yi Koh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Sai Pranathi Meda Venkata
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Centers for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Chirumbolo S, Valdenassi L, Simonetti V, Bertossi D, Ricevuti G, Franzini M, Pandolfi S. Insights on the mechanisms of action of ozone in the medical therapy against COVID-19. Int Immunopharmacol 2021; 96:107777. [PMID: 34020394 PMCID: PMC8112288 DOI: 10.1016/j.intimp.2021.107777] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
An increasing amount of reports in the literature is showing that medical ozone (O3) is used, with encouraging results, in treating COVID-19 patients, optimizing pain and symptoms relief, respiratory parameters, inflammatory and coagulation markers and the overall health status, so reducing significantly how much time patients underwent hospitalization and intensive care. To date, aside from mechanisms taking into account the ability of O3 to activate a rapid oxidative stress response, by up-regulating antioxidant and scavenging enzymes, no sound hypothesis was addressed to attempt a synopsis of how O3 should act on COVID-19. The knowledge on how O3 works on inflammation and thrombosis mechanisms is of the utmost importance to make physicians endowed with new guns against SARS-CoV2 pandemic. This review tries to address this issue, so to expand the debate in the scientific community.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Luigi Valdenassi
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Vincenzo Simonetti
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Dario Bertossi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology Unit of Maxillo-Facial Surgery University of Verona, Verona, Italy
| | | | - Marianno Franzini
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Sergio Pandolfi
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy; Villa Mafalda Clinics via Monte delle Gioie, Rome, Italy
| |
Collapse
|
32
|
Gilmore AC, Flaherty SJ, Somasundaram V, Scheiblin DA, Lockett SJ, Wink DA, Heinz WF. An in vitro tumorigenesis model based on live-cell-generated oxygen and nutrient gradients. Commun Biol 2021; 4:477. [PMID: 33859337 PMCID: PMC8050328 DOI: 10.1038/s42003-021-01954-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
The tumor microenvironment (TME) is multi-cellular, spatially heterogenous, and contains cell-generated gradients of soluble molecules. Current cell-based model systems lack this complexity or are difficult to interrogate microscopically. We present a 2D live-cell chamber that approximates the TME and demonstrate that breast cancer cells and macrophages generate hypoxic and nutrient gradients, self-organize, and have spatially varying phenotypes along the gradients, leading to new insights into tumorigenesis.
Collapse
Affiliation(s)
- Anne C Gilmore
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sarah J Flaherty
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Veena Somasundaram
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - David A Scheiblin
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David A Wink
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
33
|
Shin YY, An SM, Jeong JS, Yang SY, Lee GS, Hong EJ, Jeung EB, Kim SC, An BS. Comparison of steroid hormones in three different preeclamptic models. Mol Med Rep 2021; 23:252. [PMID: 33537808 PMCID: PMC7893799 DOI: 10.3892/mmr.2021.11891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia (PE) is a complication of pregnancy and is characterized by hypertension and proteinuria, threatening both the mother and the fetus. However, the etiology of PE has not yet been fully understood. Since the imbalance of steroid hormones is associated with the pathogenesis of PE, investigating steroidogenic mechanisms under various PE conditions is essential to understand the entire spectrum of pregnancy disorders. Therefore, the current study established three PE in vitro and in vivo models, and compared the levels of steroid hormones and steroidogenic enzymes within them. In cellular PE models induced by hypoxia, N‑nitro‑L‑arginine methyl ester hydrocholride (L‑NAME) and catechol‑o‑methyltransferase inhibitor, the levels of steroid hormones, including pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA) and testosterone tended to decrease during steroidogenesis. Injection of L‑NAME in pregnant rats led to a reduction in the levels of estradiol and P4 through regulation of cholesterol side‑chain cleavage enzyme (CYP11A1) and 3β‑hydroxysteroid dehydrogenase/δ5 4‑isomerase type 1 (HSD3B1), whereas rats treated with COMT‑I exhibited elevated levels of P5 and DHEA by regulation of the CYP11A1 and aromatase cytochrome P450 (CYP19A1) in the placenta and plasma. The reduced uterine perfusion pressure operation decreased CYP11A1 and increased CYP19A1 expression in placental tissues, whereas steroid hormone levels were not altered. In conclusion, the results of the present study suggest that the induction of PE conditions dysregulates the steroid hormones via regulation of steroidogenic enzymes, depending on specific PE symptoms. These findings can contribute to the development of novel diagnostic and therapeutic modalities for PE, by monitoring and supplying appropriate levels of steroid hormones.
Collapse
Affiliation(s)
- Ye Young Shin
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Sung-Min An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| |
Collapse
|
34
|
Nitric Oxide and S-Nitrosylation in Cardiac Regulation: G Protein-Coupled Receptor Kinase-2 and β-Arrestins as Targets. Int J Mol Sci 2021; 22:ijms22020521. [PMID: 33430208 PMCID: PMC7825736 DOI: 10.3390/ijms22020521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiac diseases including heart failure (HF), are the leading cause of morbidity and mortality globally. Among the prominent characteristics of HF is the loss of β-adrenoceptor (AR)-mediated inotropic reserve. This is primarily due to the derangements in myocardial regulatory signaling proteins, G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins (β-Arr) that modulate β-AR signal termination via receptor desensitization and downregulation. GRK2 and β-Arr2 activities are elevated in the heart after injury/stress and participate in HF through receptor inactivation. These GPCR regulators are modulated profoundly by nitric oxide (NO) produced by NO synthase (NOS) enzymes through S-nitrosylation due to receptor-coupled NO generation. S-nitrosylation, which is NO-mediated modification of protein cysteine residues to generate an S-nitrosothiol (SNO), mediates many effects of NO independently from its canonical guanylyl cyclase/cGMP/protein kinase G signaling. Herein, we review the knowledge on the NO system in the heart and S-nitrosylation-dependent modifications of myocardial GPCR signaling components GRKs and β-Arrs.
Collapse
|
35
|
Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y, Sun M. Nitric Oxide (NO) and NO Synthases (NOS)-Based Targeted Therapy for Colon Cancer. Cancers (Basel) 2020; 12:E1881. [PMID: 32668616 PMCID: PMC7408898 DOI: 10.3390/cancers12071881] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignancies worldwide and CRC therapy remains unsatisfactory. In recent decades, nitric oxide (NO)-a free-radical gas-plus its endogenous producer NO synthases (NOS), have attracted considerable attention. NO exerts dual effects (pro- and anti-tumor) in cancers. Endogenous levels of NO promote colon neoplasms, whereas exogenously sustained doses lead to cytotoxic functions. Importantly, NO has been implicated as an essential mediator in many signaling pathways in CRC, such as the Wnt/β-catenin and extracellular-signal-regulated kinase (ERK) pathways, which are closely associated with cancer initiation, metastasis, inflammation, and chemo-/radio-resistance. Therefore, NO/NOS have been proposed as promising targets in the regulation of CRC carcinogenesis. Clinically relevant NO-donating agents have been developed for CRC therapy to deliver a high level of NO to tumor sites. Notably, inducible NOS (iNOS) is ubiquitously over-expressed in inflammatory-associated colon cancer. The development of iNOS inhibitors contributes to targeted therapies for CRC with clinical benefits. In this review, we summarize the multifaceted mechanisms of NO-mediated networks in several hallmarks of CRC. We review the clinical manifestation and limitations of NO donors and NOS inhibitors in clinical trials. We also discuss the possible directions of NO/NOS therapies in the immediate future.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Shuang Zhou
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yan Li
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yue Zhou
- Department of Statistics, North Dakota University, Fargo, ND 58105, USA;
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| |
Collapse
|
36
|
Affective dimensions of pain and region -specific involvement of nitric oxide in the development of empathic hyperalgesia. Sci Rep 2020; 10:10141. [PMID: 32576847 PMCID: PMC7311399 DOI: 10.1038/s41598-020-66930-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023] Open
Abstract
Empathy for pain depends on the ability to feel, recognize, comprehend and share painful emotional conditions of others. In this study, we investigated the role of NO in a rat model of empathic pain. Pain was socially transferred from the sibling demonstrator (SD) who experienced five formalin injection to the naïve sibling observer (SO) through observation. SO rats received L-NAME (a nonspecific NO synthase inhibitor) or L-arginine (a precursor of NO) prior to observing the SD. Nociception, and concentrations of NO metabolites (NOx) in the serum, left and right hippocampus, prefrontal cortex, and cerebellum were evaluated. Nociceptive responses were significantly increased in the pain-observing groups. NOx levels measured 24 h after the last pain observation using the Griess method, were indicative of NOx concentration decreases and increases in the left hippocampus and cerebellum, respectively. There was an increase in tissue concentration of NOx in cerebellum and prefrontal cortex in both pain and observer groups 7 days after the fifth formalin injection. Our results suggest that NO is involved in development of empathic hyperalgesia, and observation of sibling’s pain can change NO metabolites in different brain regions in observer rats.
Collapse
|
37
|
Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem 2020; 295:10493-10505. [PMID: 32503843 DOI: 10.1074/jbc.rev120.011188] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is a highly proliferative and regenerative tissue. The intestine also harbors a large and diverse microbial population collectively called the gut microbiome (microbiota). The microbiome-intestine cross-talk includes a dynamic exchange of gaseous signaling mediators generated by bacterial and intestinal metabolisms. Moreover, the microbiome initiates and maintains the hypoxic environment of the intestine that is critical for nutrient absorption, intestinal barrier function, and innate and adaptive immune responses in the mucosal cells of the intestine. The response to hypoxia is mediated by hypoxia-inducible factors (HIFs). In hypoxic conditions, the HIF activation regulates the expression of a cohort of genes that promote adaptation to hypoxia. Physiologically, HIF-dependent genes contribute to the aforementioned maintenance of epithelial barrier function, nutrient absorption, and immune regulation. However, chronic HIF activation exacerbates disease conditions, leading to intestinal injury, inflammation, and colorectal cancer. In this review, we aim to outline the major roles of physiological and pathological hypoxic conditions in the maintenance of intestinal homeostasis and in the onset and progression of disease with a major focus on understanding the complex pathophysiology of the intestine.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA .,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Catala A, Youssef LA, Reisz JA, Dzieciatkowska M, Powers NE, Marchetti C, Karafin M, Zimring JC, Hudson KE, Hansen KC, Spitalnik SL, D'Alessandro A. Metabolic Reprogramming of Mouse Bone Marrow Derived Macrophages Following Erythrophagocytosis. Front Physiol 2020; 11:396. [PMID: 32425810 PMCID: PMC7204509 DOI: 10.3389/fphys.2020.00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/02/2020] [Indexed: 01/24/2023] Open
Abstract
Reticuloendothelial macrophages engulf ∼0.2 trillion senescent erythrocytes daily in a process called erythrophagocytosis (EP). This critical mechanism preserves systemic heme-iron homeostasis by regulating red blood cell (RBC) catabolism and iron recycling. Although extensive work has demonstrated the various effects on macrophage metabolic reprogramming by stimulation with proinflammatory cytokines, little is known about the impact of EP on the macrophage metabolome and proteome. Thus, we performed mass spectrometry-based metabolomics and proteomics analyses of mouse bone marrow-derived macrophages (BMDMs) before and after EP of IgG-coated RBCs. Further, metabolomics was performed on BMDMs incubated with free IgG to ensure that changes to macrophage metabolism were due to opsonized RBCs and not to free IgG binding. Uniformly labeled tracing experiments were conducted on BMDMs in the presence and absence of IgG-coated RBCs to assess the flux of glucose through the pentose phosphate pathway (PPP). In this study, we demonstrate that EP significantly alters amino acid and fatty acid metabolism, the Krebs cycle, OXPHOS, and arachidonate-linoleate metabolism. Increases in levels of amino acids, lipids and oxylipins, heme products, and RBC-derived proteins are noted in BMDMs following EP. Tracing experiments with U-13C6 glucose indicated a slower flux through glycolysis and enhanced PPP activation. Notably, we show that it is fueled by glucose derived from the macrophages themselves or from the extracellular media prior to EP, but not from opsonized RBCs. The PPP-derived NADPH can then fuel the oxidative burst, leading to the generation of reactive oxygen species necessary to promote digestion of phagocytosed RBC proteins via radical attack. Results were confirmed by redox proteomics experiments, demonstrating the oxidation of Cys152 and Cys94 of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hemoglobin-β, respectively. Significant increases in early Krebs cycle and C5-branched dibasic acid metabolites (α-ketoglutarate and 2-hydroxyglutarate, respectively) indicate that EP promotes the dysregulation of mitochondrial metabolism. Lastly, EP stimulated aminolevulinic acid (ALA) synthase and arginase activity as indicated by significant accumulations of ALA and ornithine after IgG-mediated RBC ingestion. Importantly, EP-mediated metabolic reprogramming of BMDMs does not occur following exposure to IgG alone. In conclusion, we show that EP reprograms macrophage metabolism and modifies macrophage polarization.
Collapse
Affiliation(s)
- Alexis Catala
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States.,Program in Structural Biology and Biochemistry, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Lyla A Youssef
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Nicholas E Powers
- Department of Medicine - Division of Infectious Diseases, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Carlo Marchetti
- Department of Medicine - Division of Infectious Diseases, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Matthew Karafin
- Medical Sciences Institute, Blood Center of Wisconsin (Versiti), Milwaukee, WI, United States
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine - Division of Hematology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
39
|
Guan R, Wang J, Li D, Li Z, Liu H, Ding M, Cai Z, Liang X, Yang Q, Long Z, Chen L, Liu W, Sun D, Yao H, Lu W. Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1α/MAPK signaling pathway. Int Immunopharmacol 2020; 81:105979. [PMID: 31771816 DOI: 10.1016/j.intimp.2019.105979] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/28/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary fibrosis (COPD) is a chronic and fatal lung disease with few treatment options. Sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2S), was found to alleviate cigarette smoke (CS)-induced emphysema in mice, however, the underlying mechanisms have not yet been clarified. In this study, we investigated its effects on COPD in a CS-induced mouse model in vivo and in cigarette smoke extract (CSE)-stimulated alveolar epithelial A549 cells in vitro. The results showed that NaHS not only relieved emphysema, but also improved pulmonary function in CS-exposed mice. NaHS significantly increased the expressions of tight junction proteins (i.e., ZO-1, Occludin and claudin-1), and reduced apoptosis and secretion of pro-inflammatory cytokines (i.e., TNF-α, IL-6 and IL-1β) in CS-exposed mouse lungs and CSE-incubated A549 cells, indicating H2S inhibits CS-induced inflammation, injury and apoptosis in alveolar epithelial cells. NaHS also upregulated prolyl hydroxylase (PHD)2, and suppressed hypoxia-inducible factor (HIF)-1α expression in vivo and in vitro, suggesting H2S inhibits CS-induced activation of PHD2/HIF-1α axis. Moreover, NaHS inhibited CS-induced phosphorylation of ERK, JNK and p38 MAPK in vivo and in vitro, and treatment with their inhibitors reversed CSE-induced ZO-1 expression and inflammation in A549 cells. These results suggest that NaHS may prevent emphysema via the suppression of PHD2/HIF-1α/MAPK signaling pathway, and subsequently inhibition of inflammation, epithelial cell injury and apoptosis, and may be a novel strategy for the treatment of COPD.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanwei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingjing Ding
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Departments of Respiratory and Critical Diseases, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xue Liang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Yang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhen Long
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingzhu Chen
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejun Sun
- Departments of Respiratory and Critical Diseases, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Pharmacological enrichment of polygenic risk for precision medicine in complex disorders. Sci Rep 2020; 10:879. [PMID: 31964963 PMCID: PMC6972917 DOI: 10.1038/s41598-020-57795-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022] Open
Abstract
Individuals with complex disorders typically have a heritable burden of common variation that can be expressed as a polygenic risk score (PRS). While PRS has some predictive utility, it lacks the molecular specificity to be directly informative for clinical interventions. We therefore sought to develop a framework to quantify an individual’s common variant enrichment in clinically actionable systems responsive to existing drugs. This was achieved with a metric designated the pharmagenic enrichment score (PES), which we demonstrate for individual SNP profiles in a cohort of cases with schizophrenia. A large proportion of these had elevated PES in one or more of eight clinically actionable gene-sets enriched with schizophrenia associated common variation. Notable candidates targeting these pathways included vitamins, antioxidants, insulin modulating agents, and cholinergic drugs. Interestingly, elevated PES was also observed in individuals with otherwise low common variant burden. The biological saliency of PES profiles were observed directly through their impact on gene expression in a subset of the cohort with matched transcriptomic data, supporting our assertion that this gene-set orientated approach could integrate an individual’s common variant risk to inform personalised interventions, including drug repositioning, for complex disorders such as schizophrenia.
Collapse
|
41
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
42
|
Abdel-Razek N, Awad SM, Abdel-Tawwab M. Effect of dietary purslane (Portulaca oleracea L.) leaves powder on growth, immunostimulation, and protection of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1907-1917. [PMID: 31350647 DOI: 10.1007/s10695-019-00685-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
A feeding trial was conducted to assess the effect of inclusion of dried powder of purslane, Portulaca oleracea, leaves in diets on growth, antioxidant, and immunological responses of Nile tilapia, Oreochromis niloticus, as well as its resistance to pathogenic bacteria, Aeromonas hydrophila. Fresh leaves of purslane were collected, dried, and mixed thoroughly with a basal fish diet at levels of 0.0 (control), 1.0, 2.0, and 3%. Fish (18.2 ± 0.4 g) fed one of the experimental diets up to apparent satiation twice a day for 7 weeks. At the end of the feeding trial, fish were intraperitoneally injected with pathogenic bacteria, A. hydrophila, and fish mortalities were observed and recorded up to 10 days post-challenge. Fish growth, weight gain, and specific growth rate were retarded significantly with increasing purslane levels in fish diets as compared to the control group. On the other hand, significant (P < 0.05) increases in plasmatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities accompanied with significant decreases in malondialdehyde (MDA) were observed with increasing purslane levels in fish diets. The respiratory burst (RB) activity and lysozyme value were significantly enhanced, while nitrous oxide (NO) decreased significantly with increasing purslane levels in fish diets over those of the control fish. After 10 days of the bacterial infection, no significant changes of MDA and SOD levels were observed, whereas CAT and GPX activities were significantly elevated. Additionally, RB and lysozyme activities were lower, while NO levels were elevated more than those before bacterial infection. Fish survival before and after bacterial infection was significantly affected by dietary purslane supplements, bacterial infection, and their interaction where dietary purslane improved the fish resistance to A. hydrophila infection in a dose-dependent manner. Purslane-fed fish showed highest relative percent of survival especially at an inclusion level of 3% (81.25%), whereas the control fish group showed lowest relative percent of survival (0.0%).
Collapse
Affiliation(s)
- Nashwa Abdel-Razek
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Somayah M Awad
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| |
Collapse
|
43
|
Macan AM, Harej A, Cazin I, Klobučar M, Stepanić V, Pavelić K, Pavelić SK, Schols D, Snoeck R, Andrei G, Raić-Malić S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur J Med Chem 2019; 184:111739. [PMID: 31586832 PMCID: PMC7115614 DOI: 10.1016/j.ejmech.2019.111739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/30/2022]
Abstract
Two series of 6-(1,2,3-triazolyl)-2,3-dibenzyl-l-ascorbic acid derivatives with the hydroxyethylene (8a−8u) and ethylidene linkers (10c−10p) were synthesized and evaluated for their antiproliferative activity against seven malignant tumor cell lines and antiviral activity against a broad range of viruses. Conformationally unrestricted spacer between the lactone and 1,2,3-triazole units in 8a−8u series had a profound effect on antitumor activity. Besides, the introduction of a long side chain at C-4 of 1,2,3-triazole that led to the synthesis of decyl-substituted 2,3-dibenzyl-l-ascorbic acid 8m accounted for a selective and potent antiproliferative activity on breast cancer MCF-7 cells cells in the nM range. Further analysis showed that compound 8m strongly enhanced expression of hypoxia inducible transcription factor 1 α (HIF-1α) and to some extent decreased expression of nitric oxide synthase 2 (NOS2) suggesting its role in regulating HIF-1α signalling pathway. The p-methoxyphenyl-substituted derivative 10g displayed specific anti-cytomegalovirus (CMV) potential, whereas aliphatic-substituted derivatives 8l and 8m had the most potent, yet relatively non-specific, anti-varicella-zoster (VZV) activity. Two series of 1,2,3-triazolyl 2,3-dibenzyl-l-ascorbic acid conjugates were synthesized. Conformationally unrestricted spacer had a major effect on antitumor activities. Decyl-substituted l-ascorbic acid 8m caused inhibition of breast cancer MCF-7 cells in the nM range. 8m increased the expression of hypoxia inducible transcription factor HIF-1α. p-Methoxyphenyl-substituted derivative 10g had specific anti-CMV activity.
Collapse
Affiliation(s)
- Andrijana Meščić Macan
- University of Zagreb, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, Marulićev Trg 20, HR-10000, Zagreb, Croatia
| | - Anja Harej
- University of Rijeka, Department of Biotechnology, Centre for High-throughput Technologies Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| | - Ines Cazin
- University of Zagreb, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, Marulićev Trg 20, HR-10000, Zagreb, Croatia
| | - Marko Klobučar
- University of Rijeka, Department of Biotechnology, Centre for High-throughput Technologies Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Krešimir Pavelić
- Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for High-throughput Technologies Radmile Matejčić 2, HR-51000, Rijeka, Croatia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Silvana Raić-Malić
- University of Zagreb, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, Marulićev Trg 20, HR-10000, Zagreb, Croatia.
| |
Collapse
|
44
|
Harej A, Macan AM, Stepanić V, Klobučar M, Pavelić K, Pavelić SK, Raić-Malić S. The Antioxidant and Antiproliferative Activities of 1,2,3-Triazolyl-L-Ascorbic Acid Derivatives. Int J Mol Sci 2019; 20:ijms20194735. [PMID: 31554245 PMCID: PMC6801448 DOI: 10.3390/ijms20194735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
The novel 4-substituted 1,2,3-triazole L-ascorbic acid (L-ASA) conjugates with hydroxyethylene spacer as well as their conformationally restricted 4,5-unsaturated analogues were synthesized as potential antioxidant and antiproliferative agents. An evaluation of the antioxidant activity of novel compounds showed that the majority of the 4,5-unsaturated L-ASA derivatives showed a better antioxidant activity compared to their saturated counterparts. m-Hydroxyphenyl (7j), p-pentylphenyl (7k) and 2-hydroxyethyl (7q) substituted 4,5-unsaturated 1,2,3-triazole L-ASA derivatives exhibited very efficient and rapid (within 5 min) 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity (7j, 7k: IC50 = 0.06 mM; 7q: IC50 = 0.07 mM). In vitro scavenging activity data were supported by in silico quantum-chemical modelling. Thermodynamic parameters for hydrogen-atom transfer and electron-transfer radical scavenging pathways of anions deprotonated at C2-OH or C3-OH groups of L-ASA fragments were calculated. The structure activity analysis (SAR) through principal component analysis indicated radical scavenging activity by the participation of OH group with favorable reaction parameters: the C3-OH group of saturated C4-C5(OH) derivatives and the C2-OH group of their unsaturated C4=C5 analogues. The antiproliferative evaluation showed that p-bromophenyl (4e: IC50 = 6.72 μM) and p-pentylphenyl-substituted 1,2,3-triazole L-ASA conjugate (4k: IC50 = 26.91 μM) had a selective cytotoxic effect on breast adenocarcinoma MCF-7 cells. Moreover, compound 4e did not inhibit the growth of foreskin fibroblasts (IC50 > 100 μM). In MCF-7 cells treated with 4e, a significant increase of hydroxylated hypoxia-inducible transcription factor 1 alpha (HIF-1α) expression and decreased expression of nitric oxide synthase 2 (NOS2) were observed, suggesting the involvement of 4e in the HIF-1α signaling pathway for its strong growth-inhibition effect on MCF-7 cells.
Collapse
Affiliation(s)
- Anja Harej
- Centre for High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Andrijana Meščić Macan
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia.
| | - Višnja Stepanić
- Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Marko Klobučar
- Centre for High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Krešimir Pavelić
- Faculty of medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
| | - Sandra Kraljević Pavelić
- Centre for High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia.
| |
Collapse
|
45
|
Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019; 9:1213-1247. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.
Collapse
Affiliation(s)
| | - Xinggui Shen
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - John Glawe
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Gopi K Kolluru
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Christopher G Kevil
- Departments of Pathology, LSU Health Sciences Center, Shreveport.,Departments of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport.,Departments of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport
| |
Collapse
|
46
|
Hung YL, Wang SC, Suzuki K, Fang SH, Chen CS, Cheng WC, Su CC, Yeh HC, Tu HP, Liu PL, Huang MY, Li CY. Bavachin attenuates LPS-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152785. [PMID: 31009850 DOI: 10.1016/j.phymed.2018.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/22/2018] [Accepted: 12/09/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Bavachin is a natural product isolated from Psoralea corylifolia L. that has been applied as a traditional medicine in Asian countries. However, the anti-inflammatory effects of bavachin on LPS-induced inflammation and NLRP3 inflammasome activation by macrophages remain unclear. PURPOSE We investigated the anti-inflammatory effects of bavachin on LPS-activated murine macrophage cell line J774A.1 cells and murine peritoneal macrophages. METHODS J774A.1 cells and murine peritoneal macrophages were pre-treated with bavachin following LPS treatment. The concentrations of NO, PGE2, IL-6 and IL-12p40 in cell culture supernatant were analyzed. The expressions of iNOS, COX-2, mPGES-1 and MAPKs were analyzed using Western blotting, while NF-κB activity was detected using promoter reporter assay. To examine the activation of NLRP3 inflammasome, J774A.1 cells were incubated with LPS, and then treated with bavachin following treatment with ATP. The concentration of IL-1β in the cell culture supernatant was measured. The expressions of NLRP3, ASC, caspase-1 and IL-1β were analyzed using Western blotting. The formation of inflammasome complex was observed by immunofluorescence microscopy. RESULTS Bavachin suppressed LPS-induced NO and PGE2 production, and decreased iNOS and mPGES-1 expression. Bavachin also reduced LPS-induced IL-6 and IL-12p40 production and decreased the activation of MAPKs and NF-κB. Additionally, bavachin suppressed NLRP3 inflammasome-derived IL-1β secretion, decreased caspase-1 activation, repressed mature IL-1β expression, and inhibited inflammasome complex formation. Furthermore, bavachin also suppressed the production of NO, IL-6 and IL-12p40 by LPS-stimulated murine peritoneal macrophages. CONCLUSION Our experimental results indicated anti-inflammatory effects of bavachin exhibit attenuation of LPS-induced inflammation and inhibit activation of NLRP3 inflammasome in macrophages. These results suggest that bavachin might have potential in treating inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yung-Li Hung
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shih-Hua Fang
- Institute of Athletics, National Taiwan University of Sport, Taichung 40404, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chia-Cheng Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan; Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Hsin-Chih Yeh
- Department of Urology, Kaohsiung Medical University Hospital and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
47
|
Iwasaki J, Afify M, Bleilevens C, Klinge U, Weiskirchen R, Steitz J, Vogt M, Yagi S, Nagai K, Uemoto S, Tolba RH. The Impact of a Nitric Oxide Synthase Inhibitor (L-NAME) on Ischemia⁻Reperfusion Injury of Cholestatic Livers by Pringle Maneuver and Liver Resection after Bile Duct Ligation in Rats. Int J Mol Sci 2019; 20:ijms20092114. [PMID: 31035686 PMCID: PMC6539833 DOI: 10.3390/ijms20092114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
The Pringle maneuver (PM) has been widely used to control blood loss during liver resection. However, hepatic inflow occlusion can also result in hepatic ischemia–reperfusion injury (IRI), especially in patients with a cholestatic, fibrotic, or cirrhotic liver. Here we investigate a nitric oxide synthase (NOS) inhibitor N-Nitroarginine methyl ester (L-NAME) on IRI after the PM and partial hepatectomy of cholestatic livers induced by bile duct ligation (BDL) in rats. Control group (non-BDL/no treatment), BDL + T group (BDL/L-NAME treatment) and BDL group (BDL/no treatment) were analyzed. Cholestasis was induced by BDL in the L-NAME and BDL group and a 50% partial hepatectomy with PM was performed. L-NAME was injected before PM in the BDL + T group. Hepatocellular damage, portal venous flow, microcirculation, endothelial lining, and eNOS, iNOS, interleukin (IL)-6, and transforming growth factor-β (TGF-β) were evaluated. Microcirculation of the liver in the BDL + T group tended to be higher. Liver damage and apoptotic index were significantly lower and Ki-67 labeling index was higher in the BDL + T group while iNOS and TGF-β expression was decreased. This was corroborated by a better preserved endothelial lining. L-NAME attenuated IRI following PM and improved proliferation/regeneration of cholestatic livers. These positive effects were considered as the result of improved hepatic microcirculation, prevention of iNOS formation, and TGF-β mRNA upregulation.
Collapse
Affiliation(s)
- Junji Iwasaki
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Two Photon Imaging Facility of the Interdisciplinary Center for Clinical Research (IZKF), RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Mamdouh Afify
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza Square 12211, Egypt.
| | - Christian Bleilevens
- Department of Anesthesiology, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Uwe Klinge
- Department of General, Visceral and Transplantation Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Julia Steitz
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Michael Vogt
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Two Photon Imaging Facility of the Interdisciplinary Center for Clinical Research (IZKF), RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Shintaro Yagi
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Kazuyuki Nagai
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Shinji Uemoto
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Rene H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| |
Collapse
|
48
|
The Unique Lifestyle of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. J Mol Biol 2019; 431:2970-2981. [PMID: 31029703 DOI: 10.1016/j.jmb.2019.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Escherichia coli is one of the most genetically and phenotypically diverse species of bacteria. This remarkable diversity produces a plethora of clinical outcomes following infection and has informed much of what we currently know about host-pathogen interactions for a wide range of bacteria-host relationships. In studying the role of microbes in disease, adherent-invasive E. coli (AIEC) has emerged as having a strong association with Crohn's disease (CD). Thus, there has been an equally strong effort to uncover the root origins of AIEC, to appreciate how AIEC differs from other well-known pathogenic E. coli variants, and to understand its connection to disease. Emerging from a growing body of research on AIEC is the understanding that AIEC itself is remarkably diverse, both in phylogenetic origins, genetic makeup, and behavior in the host setting. Here, we describe the unique lifestyle of CD-associated AIEC and review recent research that is uncovering the inextricable link between AIEC and its host in the context of CD.
Collapse
|
49
|
Baldissera MD, Souza CF, Descovi SN, Petrolli TG, da Silva AS, Baldisserotto B. Caffeine modulates brain purinergic signaling in Nile tilapia (Oreochromis niloticus) under hypoxia conditions: improvement of immune and inflammatory responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:551-560. [PMID: 30515653 DOI: 10.1007/s10695-018-0592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Purinergic signaling is linked to neurodegenerative and proinflammatory damage during pathological conditions such as hypoxia, but involvement of this pathway in brain damage in fish exposed to environmental hypoxia remains unknown, and we propose dietary supplementation with caffeine in order to improve the immune response. Therefore, the aim of the study was to evaluate whether the enzymatic purinergic signaling pathway is associated with inflammatory brain damage in Nile tilapia (Oreochromis niloticus) exposed to environmental hypoxia and whether dietary supplementation with caffeine (5% and 8%) can prevent these changes in purinergic signaling. Animals were randomly divided into six groups (A-F, n = 6 per group, in triplicate), as follows: groups A-C were submitted to normoxia, while groups D-F were submitted to hypoxia. Groups A and D received the basal diet, while groups B and D and groups C and F received a diet containing 5% and 8% caffeine, respectively, and fed with their respective diets for 21 days. After 21 days, aeration was disconnected (groups D-F) and the dissolved oxygen levels were maintained as follows: group A (6.55 ± 0.23 mg/L), group B (6.51 ± 0.24 mg/L), group C (6.58 ± 0.22 mg/L), group D (1.23 ± 0.11 mg/L), group E (1.20 ± 0.15 mg/L), and group F (1.18 ± 0.13 mg/L). Cerebral triphosphate diphosphohydrolase (NTPDase) using adenosine triphosphate (ATP) as a substrate and 5'-nucleotidase activities decreased in fish exposed to 72 h of hypoxia compared with the normoxia group, while adenosine deaminase (ADA) activity and levels of nitric oxide (NOx) metabolites were higher. Dietary supplementation with 5% and 8% caffeine prevented all alterations elicited by hypoxia, with the exception of ADA activity in the case of 5% caffeine. Based on this evidence, our findings reveal that nucleotide/nucleoside hydrolysis is modified in the brains of fish exposed to 72 h of hypoxia, contributing to inflammatory damage, which apparently is mediated by excessive ATP content in the extracellular medium and by excessive NOx production. Also, the use of a diet containing 5% and 8% caffeine prevented these alterations (except 5% of dietary caffeine on ADA activity) and can be considered an interesting approach to preventing the impairment of immune and inflammatory responses elicited by hypoxia, principally the inclusion of 8% caffeine.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine N Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tiago G Petrolli
- Postgraduate Program in Veterinary Medicine, Universidade do Oeste de Santa Catarina, Xanxerê, SC, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
50
|
Ajith TA. Current insights and future perspectives of hypoxia-inducible factor-targeted therapy in cancer. J Basic Clin Physiol Pharmacol 2018; 30:11-18. [PMID: 30260792 DOI: 10.1515/jbcpp-2017-0167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that are expressed in the hypoxic tumor microenvironment. They are involved in the cellular adaptations by improving the metabolism of glucose and enhance the expression of vascular endothelial growth factor, platelet-derived growth factor and angiopoietin, thereby they play a pivotal role in the angiogenesis. Hypoxia can increase the expression of nuclear factor-kappa B which promotes the pro-inflammatory status. Abnormally high angiogenesis, inflammation, antiapoptosis and anaerobic glycolysis can augment the progression and metastasis of tumor. Hence, HIFs remain one of the promising antiangiogenic agents as well as a direct target for interfering with the energetic of cancer cells in order to regulate the tumor growth. Previous studies found agents like topotecan, acriflavine and benzophenone-1B etc. to block the HIF-α mediated angiogenesis. The effect is mediated through interfering any one of the processes in the activation of HIF such as nuclear translocation of HIF-1α; dimerization of HIF-1α with β in the nucleus; HIF-1α/HIF-2α mediated induction of VEGF or translation of HIF-1α mRNA. Despite the experimental studies on the inhibitory molecules of HIFs, none of them are available for the clinical use. This review article discusses the recent update on the HIF-targeted therapy in cancer.
Collapse
Affiliation(s)
- Thekkuttuparambil A Ajith
- Professor Biochemistry, Department of Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur-680 555, Kerala, India
| |
Collapse
|