1
|
Bescos R, Gallardo-Alfaro L, Ashor A, Rizzolo-Brime L, Siervo M, Casas-Agustench P. Nitrate and nitrite bioavailability in plasma and saliva: their association with blood pressure - A systematic review and meta-analysis. Free Radic Biol Med 2024:S0891-5849(24)01033-5. [PMID: 39522567 DOI: 10.1016/j.freeradbiomed.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, we conducted a systematic review and meta-analysis to determine plasma and salivary nitrate (NO3-) and nitrite (NO2-) concentrations under resting and fasting conditions in different type of individuals and their association with blood pressure levels. A total of 77 studies, involving 1,918 individuals aged 19 to 74 years (males= 906; females = 1012), which measured plasma and/or salivary NO3- and NO2- using the chemiluminescence technique, were included. Mean plasma NO3- and NO2- concentrations were 33.9 μmol/L and 158.3 nmol/L, respectively. Subgroup analyses revealed lower plasma NO3- and NO2- concentrations in individuals with cardiometabolic risk (NO3-: 21.2 μmol/L; 95% CI, 13.4 - 29.0; NO2-: 122.8 nmol/L; 95% CI, 75.3 - 138.9) compared to healthy (NO3-: 33.9 μmol/L; 95% CI, 29.9 - 37.9; NO2-: 159.5 nmol/L; 95% CI, 131.8 - 187.1; P < 0.01) and trained individuals (NO3-: 43.0 μmol/L; 95% CI, 13.2 - 72.9; NO2-: 199.3 nmol/L; 95% CI, 117.6 - 281; P < 0.01). Mean salivary NO3- and NO2- concentrations were 546.2 μmol/L and 197.8 μmol/L, respectively. Salivary NO3-, but no NO2-, concentrations were higher in individuals with cardiometabolic risk (680.0 μmol/L; 95% CI, 510.2 - 849.8; P = 0.001) compared to healthy individuals (535.9 μmol/L; 95% CI, 384.2 - 687.6). A significant positive association (coefficient, 15.4 [95% CI, 0.255 to 30.5], P = 0.046) was observed between salivary NO3- and diastolic blood pressure (DBP). These findings suggest that the health status is positively associated with plasma NO3- and NO2- concentrations, but the circulatory levels of these anions are not associated with blood pressure. Only salivary NO3- showed a significant positive association with DBP.
Collapse
Affiliation(s)
- Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom
| | - Laura Gallardo-Alfaro
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; RICAPPS- Red de Investigación Cooperativa de Atención Primaria y Promoción de la Salud - Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Ammar Ashor
- Department of Internal Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Lucia Rizzolo-Brime
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, 08908 L'Hospitalet de Llobregat, Barcelona, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Patricia Casas-Agustench
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom
| |
Collapse
|
2
|
Bowles EF, Burleigh M, Mira A, Van Breda SGJ, Weitzberg E, Rosier BT. Nitrate: "the source makes the poison". Crit Rev Food Sci Nutr 2024:1-27. [PMID: 39213282 DOI: 10.1080/10408398.2024.2395488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in the role of dietary nitrate in human health and disease has grown exponentially in recent years. However, consensus is yet to be reached as to whether consuming nitrate from various food sources is beneficial or harmful to health. Global authorities continue to recommend an acceptable daily intake (ADI) of nitrate of 3.7 mg/kg-bw/day due to concerns over its carcinogenicity. This is despite evidence showing that nitrate consumption from vegetable sources, exceeding the ADI, is associated with decreased cancer prevalence and improvements in cardiovascular, oral, metabolic and neurocognitive health. This review examines the paradox between dietary nitrate and health and disease and highlights the key role of the dietary source and food matrix in moderating this interaction. We present mechanistic and epidemiological evidence to support the notion that consuming vegetable-derived nitrate promotes a beneficial increase in nitric oxide generation and limits toxic N-nitroso compound formation seen with high intakes of nitrate added during food processing or present in contaminated water. We demonstrate the need for a more pragmatic approach to nitrate-related nutritional research and guidelines. Ultimately, we provide an overview of our knowledge in this field to facilitate the various therapeutic applications of dietary nitrate, whilst maintaining population safety.
Collapse
Affiliation(s)
- E F Bowles
- Department of Human Nutrition, School of Medicine, University of Glasgow, Glasgow, UK
| | - M Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - A Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - S G J Van Breda
- Department of Toxicogenomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - B T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
3
|
Rowland SN, O'Donnell E, James LJ, Da Boit M, Fujii N, Arnold JT, Lloyd AB, Eglin CM, Shepherd AI, Bailey SJ. Nitrate ingestion blunts the increase in blood pressure during cool air exposure: a double-blind, placebo-controlled, randomized, crossover trial. J Appl Physiol (1985) 2024; 136:1364-1375. [PMID: 38572540 PMCID: PMC11365552 DOI: 10.1152/japplphysiol.00593.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Cold exposure increases blood pressure (BP) and salivary flow rate (SFR). Increased cold-induced SFR would be hypothesized to enhance oral nitrate delivery for reduction to nitrite by oral anaerobes and to subsequently elevate plasma [nitrite] and nitric oxide bioavailability. We tested the hypothesis that dietary nitrate supplementation would increase plasma [nitrite] and lower BP to a greater extent in cool compared with normothermic conditions. Twelve males attended the laboratory on four occasions. Baseline measurements were completed at 28°C. Subsequently, participants ingested 140 mL of concentrated nitrate-rich (BR; ∼13 mmol nitrate) or nitrate-depleted (PL) beetroot juice. Measurements were repeated over 3 h at either 28°C (Norm) or 20°C (Cool). Mean skin temperature was lowered compared with baseline in PL-Cool and BR-Cool. SFR was greater in BR-Norm, PL-Cool, and BR-Cool than PL-Norm. Plasma [nitrite] at 3 h was higher in BR-Cool (592 ± 239 nM) versus BR-Norm (410 ± 195 nM). Systolic BP (SBP) at 3 h was not different between PL-Norm (117 ± 6 mmHg) and BR-Norm (113 ± 9 mmHg). SBP increased above baseline at 1, 2, and 3 h in PL-Cool but not BR-Cool. These results suggest that BR consumption is more effective at increasing plasma [nitrite] in cool compared with normothermic conditions and blunts the rise in BP following acute cool air exposure, which might have implications for attenuating the increased cardiovascular strain in the cold.NEW & NOTEWORTHY Compared with normothermic conditions, acute nitrate ingestion increased plasma [nitrite], a substrate for oxygen-independent nitric oxide generation, to a greater extent during cool air exposure. Systolic blood pressure was increased during cool air exposure in the placebo condition with this cool-induced blood pressure increase attenuated after acute nitrate ingestion. These findings improve our understanding of environmental factors that influence nitrate metabolism and the efficacy of nitrate supplementation to lower blood pressure.
Collapse
Affiliation(s)
- Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mariasole Da Boit
- Health and Life Sciences, School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Ibaraki, Japan
| | - Josh T Arnold
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Alex B Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Clare M Eglin
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony I Shepherd
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
4
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on peak power output: Influence of supplementation strategy and population. Nitric Oxide 2023; 138-139:105-119. [PMID: 37438201 DOI: 10.1016/j.niox.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
5
|
da Silva DVT, Baião DDS, Almeida CC, Paschoalin VMF. A Critical Review on Vasoactive Nutrients for the Management of Endothelial Dysfunction and Arterial Stiffness in Individuals under Cardiovascular Risk. Nutrients 2023; 15:nu15112618. [PMID: 37299579 DOI: 10.3390/nu15112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.
Collapse
Affiliation(s)
- Davi Vieira Teixeira da Silva
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Diego Dos Santos Baião
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cristine Couto Almeida
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Instituto de Química, Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
6
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on muscular power output: Influence of supplementation strategy and population. Nitric Oxide 2023:S1089-8603(23)00047-2. [PMID: 37244391 DOI: 10.1016/j.niox.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
7
|
López-Samanes Á, Pérez-Lopez A, Morencos E, Muñoz A, Kühn A, Sánchez-Migallón V, Moreno-Pérez V, González-Frutos P, Bach-Faig A, Roberts J, Domínguez R. Beetroot juice ingestion does not improve neuromuscular performance and match-play demands in elite female hockey players: a randomized, double-blind, placebo-controlled study. Eur J Nutr 2023; 62:1123-1130. [PMID: 36401662 DOI: 10.1007/s00394-022-03052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/03/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Beetroot juice is a dietary supplement that contains high levels of inorganic nitrate (NO3-) and that its intake has proven effective at increasing blood nitric oxide (NO) concentrations improving endurance performance. However, the effect of this supplement in team sport performance, especially in female athletes, has been barely studied. This study aimed to compare the acute effects of beetroot juice supplementation on neuromuscular performance and match-play demands in elite female field hockey players. METHODS Eleven elite female hockey players (22.8 ± 5.1 years) belonging to a bronze team medal in Eurohockey Club Champions Cup participated in this study. Participants were randomly divided into two groups undergoing a test battery with beetroot juice (70 mL, 6.4 mmol NO3-) or placebo (70 mL, 0.04 mmol NO3-) in two different days with one week between protocols. The neuromuscular test battery consisted of a countermovement jump, isometric handgrip strength (i.e., dominant hand), 20 m-sprint and repeated sprint ability test (RSA). Afterward, a simulated hockey match play (2 × 12.5 min) was performed and recorded by Global Positioning System (GPS). RESULTS No statistically significant improvements were observed in any physical parameters analysed comparing beetroot juice compared to placebo ingestion, countermovement jump (p = 0.776, ES = 0.16), isometric handgrip strength (p = 0.829; ES = - 0.08), 20 m sprint test (p = 0.227; ES = - 0.23), mean repeated sprint ability (p = 0.955, ES = 0.03) and in any physical match demands measured by GPS (p = 0.243-1.000; ES = 0.02-0.47). CONCLUSION Acute beetroot juice supplementation did not produce any statistically significant improvement in neuromuscular performance or match-play demands in elite female field hockey players. TRIAL REGISTRATION The study was registered in ClinicalTrials.gov with the following ID: NCT05209139. The study was retrospectively registered by 26 January 2022.
Collapse
Affiliation(s)
- Álvaro López-Samanes
- Exercise Physiology Group, School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria Carretera Pozuelo a Majadahonda, Km 1.800, 28223, Pozuelo de Alarcón, Madrid, Spain.
| | - Alberto Pérez-Lopez
- Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Universidad de Alcalá, Madrid, Spain
| | - Esther Morencos
- Exercise and Sport Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Alejandro Muñoz
- Exercise Physiology Group, School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria Carretera Pozuelo a Majadahonda, Km 1.800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Adriaan Kühn
- Institute of International Politics, Universidad Francisco de Vitoria, Madrid, Spain
| | - Violeta Sánchez-Migallón
- Exercise Physiology Group, School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria Carretera Pozuelo a Majadahonda, Km 1.800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Víctor Moreno-Pérez
- Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Universidad Miguel Hernández, San Juan, Spain
| | - Pablo González-Frutos
- Exercise and Sport Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Anna Bach-Faig
- FoodLab Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
8
|
Dietary nitrate supplementation increases nitrate and nitrite concentrations in human skin interstitial fluid. Nitric Oxide 2023; 134-135:10-16. [PMID: 36889537 DOI: 10.1016/j.niox.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Acute dietary nitrate (NO3-) supplementation can increase [NO3-], but not nitrite ([NO2-]), in human skeletal muscle, though its effect on [NO3-] and [NO2-] in skin remains unknown. In an independent group design, 11 young adults ingested 140 mL of NO3--rich beetroot juice (BR; 9.6 mmol NO3-), and 6 young adults ingested 140 mL of a NO3--depleted placebo (PL). Skin dialysate, acquired through intradermal microdialysis, and venous blood samples were collected at baseline and every hour post-ingestion up to 4 h to assess dialysate and plasma [NO3-] and [NO2-]. The relative recovery rate of NO3- and NO2- through the microdialysis probe (73.1% and 62.8%), determined in a separate experiment, was used to estimate skin interstitial [NO3-] and [NO2-]. Baseline [NO3-] was lower, whereas baseline [NO2-] was higher in the skin interstitial fluid relative to plasma (both P < 0.001). Acute BR ingestion increased [NO3-] and [NO2-] in the skin interstitial fluid and plasma (all P < 0.001), with the magnitude being smaller in the skin interstitial fluid (e.g., 183 ± 54 vs. 491 ± 62 μM for Δ[NO3-] from baseline and 155 ± 190 vs. 217 ± 204 nM for Δ[NO2-] from baseline at 3 h post BR ingestion, both P ≤ 0.037). However, due to the aforementioned baseline differences, skin interstitial fluid [NO2-] post BR ingestion was higher, whereas [NO3-] was lower relative to plasma (all P < 0.001). These findings extend our understanding of NO3- and NO2- distribution at rest and indicate that acute BR supplementation increases [NO3-] and [NO2-] in human skin interstitial fluid.
Collapse
|
9
|
Kadach S, Park JW, Stoyanov Z, Black MI, Vanhatalo A, Burnley M, Walter PJ, Cai H, Schechter AN, Piknova B, Jones AM. 15 N-labeled dietary nitrate supplementation increases human skeletal muscle nitrate concentration and improves muscle torque production. Acta Physiol (Oxf) 2023; 237:e13924. [PMID: 36606507 DOI: 10.1111/apha.13924] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Dietary nitrate (NO3 - ) supplementation increases nitric oxide bioavailability and can enhance exercise performance. We investigated the distribution and metabolic fate of ingested NO3 - at rest and during exercise with a focus on skeletal muscle. METHODS In a randomized, crossover study, 10 healthy volunteers consumed 12.8 mmol 15 N-labeled potassium nitrate (K15 NO3 ; NIT) or potassium chloride placebo (PLA). Muscle biopsies were taken at baseline, at 1- and 3-h post-supplement ingestion, and immediately following the completion of 60 maximal intermittent contractions of the knee extensors. Muscle, plasma, saliva, and urine samples were analyzed using chemiluminescence to determine absolute [NO3 - ] and [NO2 - ], and by mass spectrometry to determine the proportion of NO3 - and NO2 - that was 15 N-labeled. RESULTS Neither muscle [NO3 - ] nor [NO2 - ] were altered by PLA. Following NIT, muscle [NO3 - ] (but not [NO2 - ]) was elevated at 1-h (from ~35 to 147 nmol/g, p < 0.001) and 3-h, with almost all of the increase being 15 N-labeled. There was a significant reduction in 15 N-labeled muscle [NO3 - ] from pre- to post-exercise. Relative to PLA, mean muscle torque production was ~7% greater during the first 18 contractions following NIT. This improvement in torque was correlated with the pre-exercise 15 N-labeled muscle [NO3 - ] and the magnitude of decline in 15 N-labeled muscle [NO3 - ] during exercise (r = 0.66 and r = 0.62, respectively; p < 0.01). CONCLUSION This study shows, for the first time, that skeletal muscle rapidly takes up dietary NO3 - , the elevated muscle [NO3 - ] following NO3 - ingestion declines during exercise, and muscle NO3 - dynamics are associated with enhanced torque production during maximal intermittent muscle contractions.
Collapse
Affiliation(s)
- Stefan Kadach
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Ji Won Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Zdravko Stoyanov
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Matthew I Black
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Anni Vanhatalo
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter J Walter
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
10
|
Dorożyński B, Osowski M, Balwierz R, Biernat P, Jasicka-Misiak I. Application of beetroot's nitrates juice in team sports. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Miller GD, Collins S, Ives J, Williams A, Basu S, Kim-Shapiro DB, Berry MJ. Efficacy and Variability in Plasma Nitrite Levels during Long-Term Supplementation with Nitrate Containing Beetroot Juice. J Diet Suppl 2022; 20:885-910. [PMID: 36310089 PMCID: PMC10148922 DOI: 10.1080/19390211.2022.2137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long-term consumption of beetroot juice on efficacy of converting dietary nitrate to plasma nitrate and nitrite was investigated. Adults were randomized to consume either beetroot juice with 380 mg of nitrate (BR) or a beetroot juice placebo (PL) for 12-weeks. Plasma nitrate and nitrite were measured before and 90-minutes after consuming their intervention beverage. Percent change in nitrite across the 90 min was greater in BR (273.2 ± 39.9%) vs. PL (4.9 ± 36.9%). Long-term consumption of nitrate containing beetroot juice increased fasting nitrate and nitrite plasma levels compared to baseline.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Summer Collins
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - James Ives
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Allie Williams
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
12
|
Broxterman RM, La Salle DT, Zhao J, Reese VR, Kwon OS, Richardson RS, Trinity JD. Dietary Nitrate Supplementation and Small Muscle Mass Exercise Hemodynamics in Patients with Essential Hypertension. J Appl Physiol (1985) 2022; 133:506-516. [PMID: 35834624 PMCID: PMC9377785 DOI: 10.1152/japplphysiol.00218.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exaggerated blood pressure and diminished limb hemodynamics during exercise in patients with hypertension often are not resolved by antihypertensive medications. We hypothesized that, independent of antihypertensive medication status, dietary nitrate supplementation would increase limb blood flow, decrease mean arterial pressure (MAP), and increase limb vascular conductance during exercise in patients with hypertension. Patients with hypertension either abstained from (n=14, Off-Meds) or continued (n=12, On-Meds) antihypertensive medications. Within each group, patients consumed (cross-over design) nitrate-rich or nitrate-depleted (placebo) beetroot juice for 3-days before performing handgrip (HG) and knee-extensor exercise (KE). Blood flow and MAP were measured using Doppler ultrasound and an automated monitor, respectively. Dietary nitrate increased plasma-[nitrite] Off-Meds and On-Meds. There were no significant effects of dietary nitrate on blood flow, MAP, or vascular conductance during HG in Off-Meds or On-Meds. For KE, dietary nitrate decreased MAP (mean±SD across all three exercise intensities, 118±14 vs. 122±14 mmHg, p=0.024) and increased vascular conductance (26.2±6.1 vs. 24.7±7.0 ml/min/mmHg, p=0.024), but did not affect blood flow for Off-Meds, with no effects On-Meds. Dietary nitrate-induced changes in blood flow (r=-0.67, p<0.001), MAP (r=-0.43, p=0.009), and vascular conductance (r=-0.64, p<0.001) during KE, but only vascular conductance (r=-0.35, p=0.039) during HG, were significantly related to the magnitude of placebo values, with no differentiation between groups. Thus, the effects of dietary nitrate on limb hemodynamics and MAP during exercise in patients with hypertension are dependent on the values at baseline, independent of antihypertensive medication status, and dependent on whether exercise was performed by the forearm or quadriceps.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Jia Zhao
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Van R Reese
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States.,Department of Orthopedic Surgery and Center of Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Subclinical Hypothyroidism in Families Due to Chronic Consumption of Nitrate-Contaminated Water in Rural Areas with Intensive Livestock and Agricultural Practices in Durango, Mexico. WATER 2022. [DOI: 10.3390/w14030282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitrate is a widely disseminated water pollutant and has been linked to health disorders, including hypothyroidism. Here, we evaluated the relationship between thyroid function and chronic exposure to nitrates in rural zone families, in addition to the genetic and autoimmune factors. Exposure and effect biomarkers, thyroid hormones, and autoantibodies of tiroperoxidase were measured, as well the presence of two FOXE1 polymorphisms (rs965513, rs1867277). Pearson’s correlation, principal component analysis, Kruskal–Wallis, and chi-squared tests were used for statistical analysis. A total of 102 individuals were analyzed; 45% presented subclinical hypothyroidism, a negative correlation was observed between methemoglobin and the total T3 (r = −0.43, p = 0.001) and free T3 levels (r = −0.34, p = 0.001), as well as between TSH and the free T4 (r = −0.41, p = 0.0001) and total T4 (r = −0.36, p = 0.0001). A total of 15.7% had positive antithyroid ab-TPO, while the polymorphic genotype (AA) represented only 3% (rs965513) and 4% (rs1867277) among subjects with subclinical hypothyroidism. The high frequency of subclinical hypothyroidism in the population under study could be related, mainly, to chronic exposure through the consumption of nitrate-contaminated water.
Collapse
|
14
|
Kadach S, Piknova B, Black MI, Park JW, Wylie LJ, Stoyanov Z, Thomas SM, McMahon NF, Vanhatalo A, Schechter AN, Jones AM. Time course of human skeletal muscle nitrate and nitrite concentration changes following dietary nitrate ingestion. Nitric Oxide 2022; 121:1-10. [PMID: 35032643 PMCID: PMC8860874 DOI: 10.1016/j.niox.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Dietary nitrate (NO3−) ingestion can be beneficial for health and exercise performance. Recently, based on animal and limited human studies, a skeletal muscle NO3− reservoir has been suggested to be important in whole body nitric oxide (NO) homeostasis. The purpose of this study was to determine the time course of changes in human skeletal muscle NO3− concentration ([NO3− ) following the ingestion of dietary NO3−. Sixteen participants were allocated to either an experimental group (NIT: n = 11) which consumed a bolus of ~1300 mg (12.8 mmol) potassium nitrate (KNO3), or a placebo group (PLA: n = 5) which consumed a bolus of potassium chloride (KCl). Biological samples (muscle (vastus lateralis), blood, saliva and urine) were collected shortly before NIT or PLA ingestion and at intervals over the course of the subsequent 24 h. At baseline, no differences were observed for muscle [NO3−] and [NO2−] between NIT and PLA (P > 0.05). In PLA, there were no changes in muscle [NO3−] or [NO2−] over time. In NIT, muscle [NO3−] was significantly elevated above baseline (54 ± 29 nmol/g) at 0.5 h, reached a peak at 3 h (181 ± 128 nmol/g), and was not different to baseline from 9 h onwards (P > 0.05). Muscle [NO2−] did not change significantly over time. Following ingestion of a bolus of dietary NO3− skeletal muscle [NO3−] increases rapidly, reaches a peak at ~3 h and subsequently declines towards baseline values. Following dietary NO3− ingestion, human m. vastus lateralis [NO3−] expressed a slightly delayed pharmacokinetic profile compared to plasma [NO3−].
Collapse
Affiliation(s)
- Stefan Kadach
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew I Black
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Ji Won Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lee J Wylie
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Zdravko Stoyanov
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Samantha M Thomas
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas F McMahon
- University of Queensland, School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Anni Vanhatalo
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew M Jones
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK.
| |
Collapse
|
15
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Gonzalez AM, Accetta MR, Spitz RW, Mangine GT, Ghigiarelli JJ, Sell KM. Red Spinach Extract Supplementation Improves Cycle Time Trial Performance in Recreationally Active Men and Women. J Strength Cond Res 2021; 35:2541-2545. [PMID: 31136549 DOI: 10.1519/jsc.0000000000003173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adam M Gonzalez
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| | - Matthew R Accetta
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| | - Robert W Spitz
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| | - Gerald T Mangine
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, Georgia
| | - Jamie J Ghigiarelli
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| | - Katie M Sell
- Department of Health Professions, Hofstra University, Hempstead, New York; and
| |
Collapse
|
17
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
18
|
Marshall AR, Rimmer JE, Shah N, Bye K, Kipps C, Woods DR, O'Hara J, Boos CJ, Barlow M. Marching to the Beet: The effect of dietary nitrate supplementation on high altitude exercise performance and adaptation during a military trekking expedition. Nitric Oxide 2021; 113-114:70-77. [PMID: 34051342 DOI: 10.1016/j.niox.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/19/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim was to investigate the effect of dietary nitrate supplementation (in the form of beetroot juice, BRJ) for 20 days on salivary nitrite (a potential precursor of bioactive nitric oxide), exercise performance and high altitude (HA) acclimatisation in field conditions (hypobaric hypoxia). METHODS This was a single-blinded randomised control study of 22 healthy adult participants (12 men, 10 women, mean age 28 ± 12 years) across a HA military expedition. Participants were randomised pre-ascent to receive two 70 ml dose per day of either BRJ (~12.5 mmol nitrate per day; n = 11) or non-nitrate calorie matched control (n = 11). Participants ingested supplement doses daily, beginning 3 days prior to departure and continued until the highest sleeping altitude (4800 m) reached on day 17 of the expedition. Data were collected at baseline (44 m altitude), at 2350 m (day 9), 3400 m (day 12) and 4800 m (day 17). RESULTS BRJ enhanced the salivary levels of nitrite (p = 0.007). There was a significant decrease in peripheral oxygen saturation and there were increases in heart rate, diastolic blood pressure, and rating of perceived exertion with increasing altitude (p=<0.001). Harvard Step Test fitness scores significantly declined at 4800 m in the control group (p = 0.003) compared with baseline. In contrast, there was no decline in fitness scores at 4800 m compared with baseline (p = 0.26) in the BRJ group. Heart rate recovery speed following exercise at 4800 m was significantly prolonged in the control group (p=<0.01) but was unchanged in the BRJ group (p = 0.61). BRJ did not affect the burden of HA illness (p = 1.00). CONCLUSIONS BRJ increases salivary nitrite levels and ameliorates the decline in fitness at altitude but does not affect the occurrence of HA illness.
Collapse
Affiliation(s)
- Anna R Marshall
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK.
| | | | - Nishma Shah
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK
| | - Kyo Bye
- Defence Medical Services, Lichfield, WS14 9PY, UK
| | - Courtney Kipps
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK
| | - David R Woods
- Defence Medical Services, Lichfield, WS14 9PY, UK; Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK; Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, NE66 2NS, UK
| | - John O'Hara
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK
| | - Christopher J Boos
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK; Department of Cardiology, Poole Hospital NHS Foundation Trust, Poole, BH15 2JB, UK; Department of Postgraduate Medical Education, Bournemouth University, Bournemouth, BH1 3LT, UK
| | - Matthew Barlow
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK
| |
Collapse
|
19
|
Potential of Beetroot and Blackcurrant Compounds to Improve Metabolic Syndrome Risk Factors. Metabolites 2021; 11:metabo11060338. [PMID: 34070362 PMCID: PMC8228969 DOI: 10.3390/metabo11060338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MetS) is a group of metabolic abnormalities, which together lead to increased risk of coronary heart disease (CHD) and type 2 diabetes mellitus (T2DM), as well as reduced quality of life. Dietary nitrate, betalains and anthocyanins may improve risk factors for MetS and reduce the risk of development of CHD and T2DM. Beetroot is a rich source of dietary nitrate, and anthocyanins are present in high concentrations in blackcurrants. This narrative review considers the efficacy of beetroot and blackcurrant compounds as potential agents to improve MetS risk factors, which could lead to decreased risk of CHD and T2DM. Further research is needed to establish the mechanisms through which these outcomes may occur, and chronic supplementation studies in humans may corroborate promising findings from animal models and acute human trials.
Collapse
|
20
|
Cherukuri L, Birudaraju D, Kinninger A, Chaganti BT, Shekar C, Hamal S, Shaikh K, Flores F, Roy SK, Sotka W, Green SJ, Budoff MJ. Effect of a plant-based bioequivalent inorganic nitrate (NO3−) complex with vitamins, antioxidants and phytophenol rich food extracts in hypertensive individuals - A randomized, double-blind, placebo-controlled study. Clin Nutr ESPEN 2020; 40:327-335. [DOI: 10.1016/j.clnesp.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023]
|
21
|
Moazeni M, Heidari Z, Golipour S, Ghaisari L, Sillanpää M, Ebrahimi A. Dietary intake and health risk assessment of nitrate, nitrite, and nitrosamines: a Bayesian analysis and Monte Carlo simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45568-45580. [PMID: 32803593 DOI: 10.1007/s11356-020-10494-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 05/21/2023]
Abstract
Nitrate, nitrite, and nitrosamines intake from the diet creates human health risks. In this study, nitrate/nitrite intake from diet and its association with nitric oxide (NO) level in humans have been surveyed. Besides nitrate/nitrite, nitrosamines risks were also determined from the diet. This study was conducted as a pilot study; 33 heathy adults participated in and completed the Food Frequency Questionnaire (FFQ) for 3 days. Then, concentrations of nitrate, nitrite, and nitrosamines were studied by the literature review. Also, the association between the intake of nitrate and nitrite with salivary and urinary NO was evaluated by Bayesian bi-variate analysis. Then, the health risk was assessed for nitrate/nitrite from food groups and drinking water, and nitrosamines from food groups based on hazard index (HI) and cancer risk with the Monte Carlo simulation. The nitrate/nitrite intakes had no association with NO level in the saliva and urine samples. The mean of HI value for the mean of 3 days was 3.57 and 0.32 from food groups and drinking water, respectively. The cancer risk amount of nitrosamines from food groups was (1.74 to 2.22) × 10-3 based on 95% confidence interval (CI 95%) values. This study showed the Iranian diet had a high risk, but drinking water consumption was safe based on nitrate/nitrite and nitrosamines for humans. There is a need to determine the concentration of nitrosamines in drinking water in Iran and to recommend for decrease risk of nitrate, nitrite, and nitrosamines exposure by food groups.
Collapse
Affiliation(s)
- Malihe Moazeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golipour
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Leila Ghaisari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| | - Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Simultaneous Pharmacokinetic Analysis of Nitrate and its Reduced Metabolite, Nitrite, Following Ingestion of Inorganic Nitrate in a Mixed Patient Population. Pharm Res 2020; 37:235. [PMID: 33140122 DOI: 10.1007/s11095-020-02959-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE The pharmacokinetic properties of plasma NO3- and its reduced metabolite, NO2-, have been separately described, but there has been no reported attempt to simultaneously model their pharmacokinetics following NO3- ingestion. This report describes development of such a model from retrospective analyses of concentrations largely obtained from primary endpoint efficacy trials. METHODS Linear and non-linear mixed effects analyses were used to statistically define concentration dependency on time, dose, as well as patient and study variables, and to integrate NO3- and NO2- concentrations from studies conducted at different times, locations, patient groups, and several studies in which sample range was limited to a few hours. Published pharmacokinetic studies for both substances were used to supplement model development. RESULTS A population pharmacokinetic model relating NO3- and NO2- concentrations was developed. The model incorporated endogenous levels of the two entities, and determined these were not influenced by exogenous NO3- delivery. Covariate analysis revealed intersubject variability in NO3- exposure was partially described by body weight differences influencing volume of distribution. The model was applied to visualize exposure versus response (muscle contraction performance) in individual patients. CONCLUSIONS Extension of the present first-generation model, to ultimately optimize NO3- dose versus pharmacological effects, is warranted.
Collapse
|
23
|
Effects of Dietary Nitrates on Time Trial Performance in Athletes with Different Training Status: Systematic Review. Nutrients 2020; 12:nu12092734. [PMID: 32911636 PMCID: PMC7551808 DOI: 10.3390/nu12092734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Much research has been done in sports nutrition in recent years as the demand for performance-enhancing substances increases. Higher intake of nitrates from the diet can increase the bioavailability of nitric oxide (NO) via the nitrate-nitrite-NO pathway. Nevertheless, the increased availability of NO does not always lead to improved performance in some individuals. This review aims to evaluate the relationship between the athlete's training status and the change in time trial performance after increased dietary nitrate intake. Articles indexed by Scopus and PubMed published from 2015 to 2019 were reviewed. Thirteen articles met the eligibility criteria: clinical trial studies on healthy participants with different training status (according to VO2max), conducting time trial tests after dietary nitrate supplementation. The PRISMA guidelines were followed to process the review. We found a statistically significant relationship between VO2max and ergogenicity in time trial performance using one-way ANOVA (p = 0.001) in less-trained athletes (VO2 < 55 mL/kg/min). A strong positive correlation was observed in experimental situations using a chronic supplementation protocol but not in acute protocol situations. In the context of our results and recent histological observations of muscle fibres, there might be a fibre-type specific role in nitric oxide production and, therefore, supplement of ergogenicity.
Collapse
|
24
|
Bahadoran Z, Mirmiran P, Carlström M, Norouzirad R, Jeddi S, Azizi F, Ghasemi A. Different Pharmacokinetic Responses to an Acute Dose of Inorganic Nitrate in Patients with Type 2 Diabetes. Endocr Metab Immune Disord Drug Targets 2020; 21:878-886. [PMID: 32787767 DOI: 10.2174/1871530320666200813135251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/21/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
AIM In this study, we aimed to compare the pharmacokinetics of nitrate (NO3) in patients with type 2 diabetes mellitus (T2DM) and healthy adults. Potential effects of salivary nitrate reductase (NR) activity on cardiometabolic responses to an acute dose of NO3 was also assessed. METHODS Nine healthy adults and nine T2DM patients were recruited to consume a NO3-rich breakfast (~410 mg NO3). Pharmacokinetics of NO3 were examined using repeated measurements of NOx (nitrate+ nitrite) concentrations of serum and saliva over 8 hours and NO3 concentrations of spot and 24-h urine samples. Cardiometabolic parameters, including serum levels of glucose, insulin, and triglycerides as well as blood pressure were also measured. RESULTS Compared to patients with T2DM, serum NOx concentration (Δ1= 16.7 vs. 4.4 μmol/L, P=0.057) of healthy subjects sharply increased within 1 hour after NO3 loading. Healthy subjects had a higher NR activity index, and higher peak salivary NO3 concentration with a lower time to peak. Diabetic patients with high- compared to low-NR values had a higher whole-body NOx exposure (103±31.4 vs. 58.9±22.1 μmol.h/L); they also showed a better glycemic response and more reduction of blood pressure following ingestion of a NO3-rich meal. CONCLUSION T2DM may be associated with a different pattern of NOx pharmacokinetics (especially salivary NOx metabolism). Salivary NR activity may have a critical role in postprandial metabolism of NO3, and diabetic patients with higher NR activity may take more advantages from NO3 supplementation.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Reza Norouzirad
- Department of Biochemistry, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
van der Avoort CM, Jonvik KL, Nyakayiru J, van Loon LJ, Hopman MT, Verdijk LB. A Nitrate-Rich Vegetable Intervention Elevates Plasma Nitrate and Nitrite Concentrations and Reduces Blood Pressure in Healthy Young Adults. J Acad Nutr Diet 2020; 120:1305-1317. [DOI: 10.1016/j.jand.2020.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/22/2020] [Indexed: 01/26/2023]
|
26
|
Siervo M, Shannon O, Kandhari N, Prabhakar M, Fostier W, Köchl C, Rogathi J, Temu G, Stephan BCM, Gray WK, Haule I, Paddick SM, Mmbaga BT, Walker R. Nitrate-Rich Beetroot Juice Reduces Blood Pressure in Tanzanian Adults with Elevated Blood Pressure: A Double-Blind Randomized Controlled Feasibility Trial. J Nutr 2020; 150:2460-2468. [PMID: 32729923 PMCID: PMC7467850 DOI: 10.1093/jn/nxaa170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/11/2020] [Accepted: 05/21/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In Sub-Saharan Africa, current strategies are struggling to control the burgeoning hypertension epidemic. Dietary interventions such as inorganic nitrate or folic acid supplementation could represent promising strategies for reducing blood pressure (BP) in this setting. OBJECTIVES This feasibility study explores the effects of dietary inorganic nitrate supplementation, alone or in combination with folic acid, on BP in Tanzanian adults with elevated BP in Tanzania. METHODS A placebo-controlled, double-blind, randomized controlled feasibility trial was conducted. Forty-seven middle-aged and older participants (age: 50-70 y, BMI: 26.3-29.1 kg/m2) were randomly assigned to 3 conditions for a period of 60 d: 1) high-nitrate beetroot juice (∼400 mg nitrate) and folic acid (∼5 mg folic acid) (N + F), 2) high-nitrate beetroot juice and placebo (N + P), or 3) nitrate-depleted beetroot juice and placebo (P + P). Clinic and 24-h ambulatory BP and measurements of compliance in plasma (nitrate and folate concentrations) and saliva (nitrate and nitrite) were obtained at baseline, 30 d, and 60 d. RESULTS Baseline resting systolic and diastolic BP (mean ± SD) was 151.0 ± 19.4 mm Hg and 91.8 ± 11.7 mm Hg, respectively. Compliance to the interventions was high (>90%) in all groups which was confirmed by the significant increase in nitrate and folic acid concentrations in plasma and saliva samples in the treatment arms. After 60 d, 24-h systolic BP dropped by -10.8 ± 9.8 mm Hg (P < 0.001), -6.1 ± 13.2 mm Hg (P = 0.03), and -0.3 ± 9.7 mm Hg (P = 0.83) in the N + P, N + F, and P + P groups, respectively. There was a significant decrease in 24-h diastolic BP in the N + P group (-5.4 ± 5.0 mm Hg, P = 0.004), whereas changes were not significant in the N + F (-1.8 ± 8.1 mm Hg, P = 0.32) and P + P (1.6 ± 8.3 mm Hg, P = 0.43) groups. CONCLUSIONS Dietary inorganic nitrate represents a potential nutritional strategy to lessen the hypertension epidemic in Sub-Saharan Africa. These findings support the rationale for future long-term investigations exploring the efficacy of dietary nitrate for lowering BP and attenuating cardiovascular disease risk in this setting.This trial was registered at isrctn.com as ISRCTN67978523.
Collapse
Affiliation(s)
| | - Oliver Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Navneet Kandhari
- Faculty of Medical Sciences, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Meghna Prabhakar
- Faculty of Medical Sciences, Newcastle University, Newcastle on Tyne, United Kingdom
| | - William Fostier
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Christina Köchl
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Jane Rogathi
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Gloria Temu
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Blossom C M Stephan
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
| | - William K Gray
- Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom
| | - Irene Haule
- District Medical Officer, Hai District Hospital, Bomangombe, Tanzania
| | - Stella-Maria Paddick
- Clinical and Translational Medicine, Newcastle University, Newcastle on Tyne, United Kingdom
| | | | - Richard Walker
- Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom,Population of Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| |
Collapse
|
27
|
Zamani H, de Joode MEJR, Hossein IJ, Henckens NFT, Guggeis MA, Berends JE, de Kok TMCM, van Breda SGJ. The benefits and risks of beetroot juice consumption: a systematic review. Crit Rev Food Sci Nutr 2020; 61:788-804. [PMID: 32292042 DOI: 10.1080/10408398.2020.1746629] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beetroot juice (BRJ) has become increasingly popular amongst athletes aiming to improve sport performances. BRJ contains high concentrations of nitrate, which can be converted into nitric oxide (NO) after consumption. NO has various functions in the human body, including a vasodilatory effect, which reduces blood pressure and increases oxygen- and nutrient delivery to various organs. These effects indicate that BRJ may have relevant applications in prevention and treatment of cardiovascular disease. Furthermore, the consumption of BRJ also has an impact on oxygen delivery to skeletal muscles, muscle efficiency, tolerance and endurance and may thus have a positive impact on sports performances. Aside from the beneficial aspects of BRJ consumption, there may also be potential health risks. Drinking BRJ may easily increase nitrate intake above the acceptable daily intake, which is known to stimulate the endogenous formation of N-nitroso compounds (NOC's), a class of compounds that is known to be carcinogenic and that may also induce several other adverse effects. Compared to studies on the beneficial effects, the amount of data and literature on the negative effects of BRJ is rather limited, and should be increased in order to perform a balanced risk assessment.
Collapse
Affiliation(s)
- H Zamani
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M E J R de Joode
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - I J Hossein
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - N F T Henckens
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M A Guggeis
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J E Berends
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - T M C M de Kok
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S G J van Breda
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
28
|
Does Acute Beetroot Juice Supplementation Improve Neuromuscular Performance and Match Activity in Young Basketball Players? A Randomized, Placebo-Controlled Study. Nutrients 2020; 12:nu12010188. [PMID: 31936621 PMCID: PMC7019528 DOI: 10.3390/nu12010188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Whereas beetroot juice (BJ) supplementation is shown to increase physical performance in endurance activities, its benefits in team sports has been barely studied. In this randomized placebo-controlled study, we investigated the effects of BJ acute supplementation in improving neuromuscular performance and physical match activity in basketball. Ten young male competitive basketball players aged 15–16 years received 140 mL of BJ or placebo (PLA) on two separated days in a balanced cross-over design. Testing sessions comprised a neuromuscular test battery consisting of a countermovement jump (CMJ), isometric handgrip strength, 10-m/20-m sprint and agility T-test, followed by a 40-minute simulated basketball match. Physical match activity (distances, speeds, accelerations, and decelerations) was monitored using an inertial tracking system (Wimu ProTM) Results revealed no significant effects of BJ on CMJ (p = 0.304, ES = 0.13), isometric handgrip strength (p = 0.777, ES = 0.06), 10-m (p = 0.820, ES = 0.10), and 20-m sprint (p = 0.540, ES = 0.13), agility T-test (p = 0.979, ES ≤ 0.01) and any physical match demands (p > 0.151, ES = 0.13–0.48). Acute moderate doses of BJ (12.8 mmol of NO3−) was not effective in improving neuromuscular performance (jump height, isometric handgrip strength, sprint, and agility) or physical match requirements in young trained basketball players the day of the competition.
Collapse
|
29
|
Kashi DS, Shabir A, Da Boit M, Bailey SJ, Higgins MF. The Efficacy of Administering Fruit-Derived Polyphenols to Improve Health Biomarkers, Exercise Performance and Related Physiological Responses. Nutrients 2019; 11:nu11102389. [PMID: 31591287 PMCID: PMC6836214 DOI: 10.3390/nu11102389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Polyphenols are secondary metabolites involved in a myriad of critical processes in plants. Over recent decades, special attention has been paid to the anti-oxidative role of fruit-derived polyphenols in the human diet, with evidence supporting the contribution of polyphenols in the prevention of numerous non-communicable disease outcomes. However, due to the low concentration in biological fluids in vivo, the antioxidant properties of polyphenols seem to be related to an enhanced endogenous antioxidant capacity induced via signaling through the nuclear respiratory factor 2 pathway. Polyphenols also seem to possess anti-inflammatory and antioxidant properties and have been shown to enhance vascular function via nitric oxide mediated mechanisms. Consequently, there is rationale to support fruit-derived polyphenol supplementation to enhance exercise performance, possibly via improved muscle perfusion. Fruit-derived polyphenol supplementation in exercise studies have included a variety of fruits, e.g., New Zealand blackcurrant, pomegranate, and cherry, in the form of extracts (multicomponent or purified), juices and infusions to varying degrees of benefit. For example, research has yet to link the health-related benefits of black elderberry (Sambucus nigra L.) ingestion to exercise performance in spite of the purported health benefits associated with black elderberry provision in vitro and in vivo models, which has been attributed to their high antioxidant capacity and polyphenol content. This review summarizes the existing evidence supporting a beneficial effect of fruit-derived polyphenols on various biological processes and outlines the potential for black elderberry ingestion to improve nitric oxide production, exercise performance, and the associated physiological responses before-, during- and post-exercise.
Collapse
Affiliation(s)
- Daniel S Kashi
- School of Human Sciences, Derby University, Kedleston Road, Derby DE22 1GB, UK.
| | - Akbar Shabir
- School of Human Sciences, Derby University, Kedleston Road, Derby DE22 1GB, UK.
| | - Mariasole Da Boit
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK.
| | - Matthew F Higgins
- School of Human Sciences, Derby University, Kedleston Road, Derby DE22 1GB, UK.
| |
Collapse
|
30
|
Babateen AM, Shannon OM, Mathers JC, Siervo M. Validity and reliability of test strips for the measurement of salivary nitrite concentration with and without the use of mouthwash in healthy adults. Nitric Oxide 2019; 91:15-22. [DOI: 10.1016/j.niox.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
|
31
|
Nitric Oxide Metabolites and Lung Cancer Incidence: A Matched Case-Control Study Nested in the ESTHER Cohort. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6470950. [PMID: 31565153 PMCID: PMC6745103 DOI: 10.1155/2019/6470950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
Studies suggest that nitric oxide (NO) may have a possible role in lung carcinogenesis. This study is aimed to evaluate the association of the NO metabolites, namely, nitrite and nitrate, with lung cancer incidence. We conducted a matched case-control study (n = 245 incident lung cancer cases and n = 735 controls) based on the German ESTHER cohort (n = 9,940). Controls were matched to cases on age, sex, smoking status (never/former/current smoking), and pack-years of smoking. The sum of nitrite and nitrate was measured in urine samples using a colorimetric assay and was standardized for renal function by urinary creatinine. Conditional logistic regression models, adjusted for lifestyle factors, asthma prevalence, and family history of lung cancer, were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CI). Among incident lung cancer cases, high nitrite/nitrate levels were statistically significantly associated with current smoking, a low BMI, and the oxidative stress biomarker 8-isoprostane levels. Nitrite/nitrate levels in the top quintile were statistically significantly associated with lung cancer incidence: the OR (95% CI) was 1.37 (1.04-1.82) for comparison with the bottom quintile. This association was unaltered after additional adjustment for 8-isoprostane levels and C-reactive protein (CRP). In conclusion, this large cohort study suggested that subjects with high urinary nitrite/nitrate concentrations had an increased risk of lung cancer and this association was independent of smoking, CRP, 8-isoprostane levels, and other established lung cancer risk factors. Further studies are needed to validate these findings and to confirm the hypothesis that pathologically high levels of NO are involved in lung cancer development.
Collapse
|
32
|
Gallardo EJ, Coggan AR. What's in Your Beet Juice? Nitrate and Nitrite Content of Beet Juice Products Marketed to Athletes. Int J Sport Nutr Exerc Metab 2019; 29:345–349. [PMID: 30299195 PMCID: PMC8512783 DOI: 10.1123/ijsnem.2018-0223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Consumption of beetroot juice (BRJ) supplements has become popular among athletes, because beets tend to be rich in nitrate (NO3-), which can enhance exercise performance by increasing nitric oxide production. The NO3- content of beets can vary significantly, however, making it difficult to know how much NO3- any product actually contains. Samples from 45 different lots of 24 different BRJ products from 21 different companies were therefore analyzed for NO3- (and nitrite; NO2-) concentration using high performance liquid chromatography. The NO3- and NO2- content, i.e., amount per serving, was then calculated based on either 1) the manufacturer's recommended serving size (for prepackaged/single dose products) or 2) as used in previous studies, a volume of 500 mL (for BRJ sold in bulk containers). There was moderate-to-large variability in NO3- content between samples of the same product, with a mean coefficient of variation of 30±26% (range 2 to 83%). There was even greater variability between products, with a ~50-fold range in NO3- content between the lowest and highest. Only five products consistently provided ≥5 mmol of NO3- per serving, which seems to be the minimal dose required to enhance exercise performance in most individuals. NO2- contents were generally low (i.e., ≤0.5% compared to NO3-), although two products contained 10 and 14%. The present results may be useful to athletes and their support staff contemplating which (if any) BRJ product to utilize. These data may also offer insight into variability in the literature with respect to the effects of BRJ on exercise performance.
Collapse
Affiliation(s)
| | - Andrew R Coggan
- 1 Departments of Kinesiology
- 2 Cellular and Integrative Physiology, Indiana University Purdue University Indianapolis, Indianapolis, IN
| |
Collapse
|
33
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
34
|
McDonagh ST, Wylie LJ, Morgan PT, Vanhatalo A, Jones AM. A randomised controlled trial exploring the effects of different beverages consumed alongside a nitrate-rich meal on systemic blood pressure. Nutr Health 2018; 24:183-192. [PMID: 30099933 DOI: 10.1177/0260106018790428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Ingestion of nitrate (NO3-)-containing vegetables, alcohol and polyphenols, separately, can reduce blood pressure (BP). However, the pharmacokinetic response to the combined ingestion of NO3- and polyphenol-rich or low polyphenol alcoholic beverages is unknown. AIM: The aim of this study was to investigate how the consumption of low and high polyphenolic alcoholic beverages combined with a NO3--rich meal can influence NO3- metabolism and systemic BP. METHODS: In a randomised, crossover trial, 12 normotensive males (age 25 ± 5 years) ingested an acute dose of NO3- (∼6.05 mmol) in the form of a green leafy salad, in combination with either a polyphenol-rich red wine (NIT-RW), a low polyphenol alcoholic beverage (vodka; NIT-A) or water (NIT-CON). Participants also consumed a low NO3- salad and water as a control (CON; ∼0.69 mmol NO3-). BP and plasma, salivary and urinary [NO3-] and nitrite ([NO2-]) were determined before and up to 5 h post ingestion. RESULTS: Each NO3--rich condition elevated nitric oxide (NO) biomarkers when compared with CON ( P < 0.05). The peak rise in plasma [NO2-] occurred 1 h after NIT-RW (292 ± 210 nM) and 2 h after NIT-A (318 ± 186 nM) and NIT-CON (367 ± 179 nM). Systolic BP was reduced 2 h post consumption of NIT-RW (-4 mmHg), NIT-A (-3 mmHg) and NIT-CON (-2 mmHg) compared with CON ( P < 0.05). Diastolic BP and mean arterial pressure were also lower in NIT-RW and NIT-A compared with NIT-CON ( P < 0.05). CONCLUSIONS: A NO3--rich meal, consumed with or without an alcoholic beverage, increases plasma [NO2-] and lowers systemic BP for 2-3 h post ingestion.
Collapse
Affiliation(s)
| | - Lee J Wylie
- Sport and Health Sciences, University of Exeter, UK
| | | | | | | |
Collapse
|
35
|
McDonagh STJ, Wylie LJ, Thompson C, Vanhatalo A, Jones AM. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. Eur J Sport Sci 2018. [PMID: 29529987 DOI: 10.1080/17461391.2018.1445298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and beetroot, have been variously shown to promote nitric oxide bioavailability, reduce systemic blood pressure, enhance tissue blood flow, modulate muscle O2 utilisation and improve exercise tolerance both in normoxia and in hypoxia, as is commonly observed in a number of disease states. NO3- ingestion may, therefore, act as a natural means for augmenting performance and attenuating complications associated with limited O2 availability or transport, hypertension and the metabolic syndrome. Recent studies indicate that dietary NO3- might also augment intrinsic skeletal muscle contractility and improve the speed and power of muscle contraction. Moreover, several investigations suggest that NO3- supplementation may improve aspects of cognitive performance both at rest and during exercise. Collectively, these observations position NO3- as more than a putative ergogenic aid and suggest that increasing natural dietary NO3- intake may act as a prophylactic in countering the predations of senescence and certain cardiovascular-metabolic diseases.
Collapse
Affiliation(s)
- Sinead T J McDonagh
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Lee J Wylie
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Christopher Thompson
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Anni Vanhatalo
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Andrew M Jones
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| |
Collapse
|