1
|
da Costa CS, de Oliveira TF, Dos Santos FCF, Padilha AS, Krause M, Carneiro MTWD, Miranda-Alves L, Graceli JB. Subacute cadmium exposure changes different metabolic functions, leading to type 1 and 2 diabetes mellitus features in female rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:4278-4297. [PMID: 38712533 DOI: 10.1002/tox.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Cadmium (Cd) is a heavy metal that acts as endocrine disrupting chemical (EDC). Few studies have investigated the effects of Cd exposure on metabolic dysfunctions, such as type 1 and 2 diabetes mellitus (T1DM and T2DM). Thus, we assessed whether subacute Cd exposure at occupational levels causes abnormalities in white adipose tissue (WAT), liver, pancreas, and skeletal muscle. We administered cadmium chloride (CdCl2) (100 ppm in drinking water for 30 days) to female rats and evaluated Cd levels in serum and metabolic organs, morphophysiology, inflammation, oxidative stress, fibrosis, and gene expression. High Cd levels were found in serum, WAT, liver, pancreas, and skeletal muscle. Cd-exposed rats showed low adiposity, dyslipidemia, insulin resistance, systemic inflammation, and oxidative stress compared to controls. Cd exposure reduced adipocyte size, hyperleptinemia, increased cholesterol levels, inflammation, apoptosis and fibrosis in WAT. Cd-exposed rats had increased liver cholesterol levels, insulin receptor beta (IRβ) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1α) expression, karyomegaly, inflammation, and fibrosis. Cd exposure reduced insulin levels and pancreatic islet size and increased inflammation and fibrosis. Cd exposure reduced skeletal muscle fiber diameter and increased IR expression and inflammation. Finally, strong positive correlations were observed between serum, tissue Cd levels, abnormal morphology, tissue inflammation and fibrosis. Thus, these data suggest that subacute Cd exposure impairs WAT, liver, pancreas and skeletal muscle function, leading to T1DM and T2DM features and other complications in female rats.
Collapse
Affiliation(s)
- Charles S da Costa
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | | | | | | | - Maiara Krause
- Department of Chemistry, Federal University of Espirito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
2
|
Vu N, Maile TM, Gollapudi S, Gaun A, Seitzer P, O'Brien JJ, Hackett SR, Zavala-Solorio J, McAllister FE, Kolumam G, Keyser R, Bennett BD. Automated preparation of plasma lipids, metabolites, and proteins for LC/MS-based analysis of a high-fat diet in mice. J Lipid Res 2024; 65:100607. [PMID: 39067520 PMCID: PMC11399584 DOI: 10.1016/j.jlr.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Blood plasma is one of the most commonly analyzed and easily accessible biological samples. Here, we describe an automated liquid-liquid extraction platform that generates accurate, precise, and reproducible samples for metabolomic, lipidomic, and proteomic analyses from a single aliquot of plasma while minimizing hands-on time and avoiding contamination from plasticware. We applied mass spectrometry to examine the metabolome, lipidome, and proteome of 90 plasma samples to determine the effects of age, time of day, and a high-fat diet in mice. From 25 μl of mouse plasma, we identified 907 lipid species from 16 different lipid classes and subclasses, 233 polar metabolites, and 344 proteins. We found that the high-fat diet induced only mild changes in the polar metabolome, upregulated apolipoproteins, and induced substantial shifts in the lipidome, including a significant increase in arachidonic acid and a decrease in eicosapentaenoic acid content across all lipid classes.
Collapse
Affiliation(s)
- Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Rob Keyser
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | |
Collapse
|
3
|
de Paiva IHR, da Silva RS, Mendonça IP, de Souza JRB, Peixoto CA. Semaglutide Attenuates Anxious and Depressive-Like Behaviors and Reverses the Cognitive Impairment in a Type 2 Diabetes Mellitus Mouse Model Via the Microbiota-Gut-Brain Axis. J Neuroimmune Pharmacol 2024; 19:36. [PMID: 39042202 DOI: 10.1007/s11481-024-10142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Newly conducted research suggests that metabolic disorders, like diabetes and obesity, play a significant role as risk factors for psychiatric disorders. This connection presents a potential avenue for creating novel antidepressant medications by repurposing drugs originally developed to address antidiabetic conditions. Earlier investigations have shown that GLP-1 (Glucagon-like Peptide-1) analogs exhibit neuroprotective qualities in various models of neurological diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, and stroke. Moreover, GLP-1 analogs have demonstrated the capability to enhance neurogenesis, a process recognized for its significance in memory formation and the cognitive and emotional aspects of information processing. Nonetheless, whether semaglutide holds efficacy as both an antidepressant and anxiolytic agent remains uncertain. To address this, our study focused on a mouse model of depression linked to type 2 diabetes induced by a High Fat Diet (HFD). In this model, we administered semaglutide (0.05 mg/Kg intraperitoneally) on a weekly basis to evaluate its potential as a therapeutic option for depression and anxiety. Diabetic mice had higher blood glucose, lipidic profile, and insulin resistance. Moreover, mice fed HFD showed higher serum interleukin (IL)-1β and lipopolysaccharide (LPS) associated with impaired humor and cognition. The analysis of behavioral responses revealed that the administration of semaglutide effectively mitigated depressive- and anxiety-like behaviors, concurrently demonstrating an enhancement in cognitive function. Additionally, semaglutide treatment protected synaptic plasticity and reversed the hippocampal neuroinflammation induced by HFD fed, improving activation of the insulin pathway, demonstrating the protective effects of semaglutide. We also found that semaglutide treatment decreased astrogliosis and microgliosis in the dentate gyrus region of the hippocampus. In addition, semaglutide prevented the DM2-induced impairments of pro-opiomelanocortin (POMC), and G-protein-coupled receptor 43 (GPR43) and simultaneously increased the NeuN + and Glucagon-like Peptide-1 receptor (GLP-1R+) neurons in the hippocampus. Our data also showed that semaglutide increased the serotonin (5-HT) and serotonin transporter (5-HTT) and glutamatergic receptors in the hippocampus. At last, semaglutide changed the gut microbiota profile (increasing Bacterioidetes, Bacteroides acidifaciens, and Blautia coccoides) and decreased leaky gut, improving the gut-brain axis. Taken together, semaglutide has the potential to act as a therapeutic tool for depression and anxiety.
Collapse
MESH Headings
- Animals
- Glucagon-Like Peptides/pharmacology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/psychology
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/prevention & control
- Cognitive Dysfunction/etiology
- Cognitive Dysfunction/metabolism
- Depression/drug therapy
- Depression/psychology
- Depression/metabolism
- Male
- Anxiety/drug therapy
- Anxiety/psychology
- Anxiety/etiology
- Gastrointestinal Microbiome/drug effects
- Mice, Inbred C57BL
- Brain-Gut Axis/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Experimental/metabolism
- Disease Models, Animal
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil.
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Recife, Brazil.
| |
Collapse
|
4
|
Bournot L, Payet T, Sicard F, Breniere T, Astier J, Roux J, Bariohay B, Landrier JF. Aging alone or combined with obesity increases white adipose tissue inflammatory status in male mice. Sci Rep 2024; 14:16268. [PMID: 39009694 PMCID: PMC11251036 DOI: 10.1038/s41598-024-67179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
White adipose tissue (WAT) has been recognized as a fundamental and crucial organ of interest in research focusing on inflammation during obesity or aging. WAT is also proposed as a significant component of cholecalciferol and 25-hydroxyvitamin D (25(OH)D) storage, which participates in the decrease of 25(OH)D plasma levels reported during aging and obesity. In the present study, we evaluated WAT and plasma cholecalciferol and 25(OH)D content together with inflammatory status to highlight the putative relationship between vitamin D status and inflammatory process during aging alone or combined with obesity. Circulating cholecalciferol and 25(OH)D and the stored quantity of cholecalciferol and 25(OH)D in WAT were quantified in young and old mice fed a control or obesogenic diet. The inflammation was assessed by measuring plasma inflammatory cytokines, mRNA, and microRNAs inflammatory-associated in WAT. The combination of aging and obesity decreased 25(OH)D plasma levels but did not modify circulating inflammatory markers. A cumulative effect of aging and obesity was observed in WAT, with rising mRNA inflammatory cytokines, notably Ccl5 and Tnf. Interestingly, aging and obesity-associated were also characterized by increased inflammatory microRNA expression. The inflammatory parameters in WAT were negatively correlated with the plasma 25(OH)D but positively correlated with the quantity of cholecalciferol and 25(OH)D in WAT. These results support the cumulative effect of obesity and aging in aggravation of WAT inflammation and suggest that accumulation of cholecalciferol and 25(OH)D in WAT could constitute a mechanism to counteract WAT inflammation during aging and obesity.
Collapse
Affiliation(s)
- Lorrine Bournot
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000, Marseille, France
- Biomeostasis, 13070, La Penne Sur Huveaune, France
| | - Thomas Payet
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000, Marseille, France
| | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000, Marseille, France
- PhenoMARS, CriBiom, Marseille, France
| | - Thomas Breniere
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000, Marseille, France
| | - Julien Astier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000, Marseille, France
| | - Julien Roux
- Biomeostasis, 13070, La Penne Sur Huveaune, France
| | | | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000, Marseille, France.
- PhenoMARS, CriBiom, Marseille, France.
- C2VN, UMR 1260 INRAE/1263 INSERM/Aix Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
5
|
Liu SH, Shangguan ZS, Maitiaximu P, Li ZP, Chen XX, Li CD. Estrogen restores disordered lipid metabolism in visceral fat of prediabetic mice. World J Diabetes 2024; 15:988-1000. [PMID: 38766434 PMCID: PMC11099359 DOI: 10.4239/wjd.v15.i5.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 05/10/2024] Open
Abstract
BACKGROUND Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes. Estrogen [17β-estradiol (E2)] is known to offer protection against obesity via diverse me-chanisms, while its specific effects on visceral adipose tissue (VAT) remain to be fully elucidated. AIM To investigate the impact of E2 on the gene expression profile within VAT of a mouse model of prediabetes. METHODS Metabolic parameters were collected, encompassing body weight, weights of visceral and subcutaneous adipose tissues (VAT and SAT), random blood glucose levels, glucose tolerance, insulin tolerance, and overall body composition. The gene expression profiles of VAT were quantified utilizing the Whole Mouse Genome Oligo Microarray and subsequently analyzed through Agilent Feature Extraction software. Functional and pathway analyses were conducted employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, respectively. RESULTS Feeding a high-fat diet (HFD) moderately increased the weights of both VAT and SAT, but this increase was mitigated by the protective effect of endogenous E2. Conversely, ovariectomy (OVX) led to a significant increase in VAT weight and the VAT/SAT weight ratio, and this increase was also reversed with E2 treatment. Notably, OVX diminished the expression of genes involved in lipid metabolism compared to HFD feeding alone, signaling a widespread reduction in lipid metabolic activity, which was completely counteracted by E2 administration. This study provides a comprehensive insight into E2's local and direct protective effects against visceral adiposity in VAT at the gene level. CONCLUSION In conclusion, the present study demonstrated that the HFD-induced over-nutritional challenge disrupted the gene expression profile of visceral fat, leading to a universally decreased lipid metabolic status in E2 deficient mice. E2 treatment effectively reversed this condition, shedding light on the mechanistic role and therapeutic potential of E2 in combating visceral obesity.
Collapse
Affiliation(s)
- Su-Huan Liu
- Research Base of Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Zhao-Shui Shangguan
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Paiziliya Maitiaximu
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Zhi-Peng Li
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Xin-Xin Chen
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Can-Dong Li
- Research Base of Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| |
Collapse
|
6
|
Lin W, Wall JD, Li G, Newman D, Yang Y, Abney M, VandeBerg JL, Olivier M, Gilad Y, Cox LA. Genetic regulatory effects in response to a high-cholesterol, high-fat diet in baboons. CELL GENOMICS 2024; 4:100509. [PMID: 38430910 PMCID: PMC10943580 DOI: 10.1016/j.xgen.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated loci identified through genome-wide association studies (GWASs), while eQTLs involved in gene-by-environment (GxE) interactions have rarely been characterized in humans due to experimental challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes associated with human metabolic traits, suggesting that context-responsive eQTLs with more complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of GWAS signals for human complex disease using non-human primate models.
Collapse
Affiliation(s)
- Wenhe Lin
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Deborah Newman
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78229, USA
| | - Yunqi Yang
- Committee on Genetics, Genomics and System Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Abney
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - John L VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Laura A Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Lin W, Wall JD, Li G, Newman D, Yang Y, Abney M, VandeBerg JL, Olivier M, Gilad Y, Cox LA. Genetic regulatory effects in response to a high cholesterol, high fat diet in baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551489. [PMID: 37577666 PMCID: PMC10418186 DOI: 10.1101/2023.08.01.551489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated loci identified through genome-wide association studies (GWAS), while eQTLs involved in gene-by-environment (GxE) interactions have rarely been characterized in humans due to experimental challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes associated with human metabolic traits, suggesting that context-responsive eQTLs with more complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of GWAS signals for human complex disease using nonhuman primate models.
Collapse
Affiliation(s)
- Wenhe Lin
- Department of Human Genetics, The University of Chicago, Chicago, USA
| | - Jeffrey D. Wall
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Present address: Galatea Bio, Hialeah, FL, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Deborah Newman
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Yunqi Yang
- Committee on Genetics, Genomics and System Biology, The University of Chicago, Chicago, USA
| | - Mark Abney
- Department of Human Genetics, The University of Chicago, Chicago, USA
| | - John L. VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grand Valley, Brownsville, TX, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, USA
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
- Lead contact
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
8
|
Silva RSD, Mendonça IP, Paiva IHRD, Souza JRBD, Peixoto CA. Fructooligosaccharides and galactooligosaccharides improve hepatic steatosis via gut microbiota-brain axis modulation. Int J Food Sci Nutr 2023; 74:760-780. [PMID: 37771001 DOI: 10.1080/09637486.2023.2262779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Studies have shown that gut dysbiosis is associated with the steatotic liver disease associated with metabolic dysfunction (MALSD) and its severity. This study evaluated the effects of two commercially available prebiotics fructooligosaccharides (FOS) and galactooligosaccharides(GOS) on hepatic adipogenesis, inflammation, and gut microbiota in high-fat diet-induced MALSD. The results indicated that FOS and GOS effectively reduced insulin resistance, hyperglycaemia, triglyceridemia, cholesterolaemia, and IL-1β serum levels. Moreover, FOS and GOS modulated the lipogenic (SREBP-1c, ACC, and FAS) and lipolytic (ATGL) signalling pathways, and reduced inflammatory markers such as p-NFκB-65, IL-6, iNOS, COX-2, TNF-α, IL-1β, and nitrotyrosine. FOS and GOS also enhanced the abundance of acetate producers' bacteria Bacteroides acidifaciens and Bacteroides dorei. FOS and GOS also induced positive POMC/GPR43 neurons at the arcuate nucleus, indicating hypothalamic signalling modulation. Our results suggest that FOS and GOS attenuated MALSD by reducing the hepatic lipogenic pathways and intestinal permeability through the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
9
|
de Paiva IHR, da Silva RS, Mendonça IP, Duarte-Silva E, Botelho de Souza JR, Peixoto CA. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Improve Neuroinflammation and Cognition By Up-regulating IRS/PI3K/AKT Signaling Pathway in Diet-induced Obese Mice. J Neuroimmune Pharmacol 2023; 18:427-447. [PMID: 37382830 DOI: 10.1007/s11481-023-10069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023]
Abstract
Increasing evidence has indicated that prebiotics as an alternative treatment for neuropsychiatric diseases. This study evaluated the prebiotics Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on the modulation of neuroinflammation and cognition in an experimental model of mice high-fat diet fed. Initially, mice were distributed in the following groups: (A) control standard diet (n = 15) and (B) HFD for 18 weeks (n = 30). In the 13th week, the mice were later divided into the following experimental groups: (A) Control (n = 15); (B) HFD (n = 14); and (C) HFD + Prebiotics (n = 14). From the 13th week, the HFD + Prebiotics group received a high-fat diet and a combination of FOS and GOS. In the 18th week, all animals performed the T-maze and Barnes Maze, and were later euthanized. Biochemical and molecular analyzes were performed to assess neuroinflammation, neurogenesis, synaptic plasticity, and intestinal inflammation. Mice fed HFD had higher blood glucose, triglyceridemia, cholesterolemia, and higher serum IL-1β associated with impaired learning and memory. These obese mice also showed activation of microglia and astrocytes and significant immunoreactivity of neuroinflammatory and apoptosis markers, such as TNF-α, COX-2, and Caspase-3, in addition to lower expression of neurogenesis and synaptic plasticity markers, such as NeuN, KI-67, CREB-p, and BDNF. FOS and GOS treatment significantly improved the biochemistry profile and decreased serum IL-1β levels. Treatment with FOS and GOS also reduced TNF-α, COX-2, Caspase-3, Iba-1, and GFAP-positive cells in the dentate gyrus, decreasing neuroinflammation and neuronal death caused by chronic HFD consumption. In addition, FOS and GOS promoted synaptic plasticity by increasing NeuN, p-CREB, BDNF, and KI-67, restoring spatial learning ability and memory. Moreover, FOS and GOS on HFD modulated the insulin pathway, which was proved by up-regulating IRS/PI3K/AKT signaling pathway, followed by a decreasing Aβ plate and Tau phosphorylation. Furthermore, the prebiotic intervention reshaped the HFD-induced imbalanced gut microbiota by modulating the composition of the bacterial community, markedly increasing Bacteroidetes. In addition, prebiotics decreased intestinal inflammation and leaky gut. In conclusion, FOS and GOS significantly modulated the gut microbiota and IRS/PI3K/AKT signaling pathway, decreased neuroinflammation, and promoted neuroplasticity improving spatial learning and memory. Schematic summarizing of the pathways by FOS and GOS improves memory and learning through the gut-brain axis. FOS and GOS improve the microbial profile, reducing intestinal inflammation and leaky gut in the distal colon. Specifically, the administration of FOS and GOS decreases the expression of TLR4, TNF-α, IL-1β, and MMP9 and increases the expression of occludin and IL-10. Prebiotics inhibit neuroinflammation, neuronal apoptosis, and reactive gliosis in the hippocampus but restore synaptic plasticity, neuronal proliferation, and neurogenesis.
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil.
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Rodrigo Soares da Silva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
| | - Ingrid Prata Mendonça
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Eduardo Duarte-Silva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil.
- Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Luengo-Mateos M, González-Vila A, Vicente Dragano NR, Ohinska N, Silveira-Loureiro M, González-Domínguez M, Estévez-Salguero Á, Novelle-Rodríguez P, López M, Barca-Mayo O. Hypothalamic astrocytic-BMAL1 regulates energy homeostasis in a sex-dependent manner. Cell Rep 2023; 42:112949. [PMID: 37542717 DOI: 10.1016/j.celrep.2023.112949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Here, we demonstrate that hypothalamic astrocytic BMAL1 computes cyclic metabolic information to optimize energetic resources in a sexually dimorphic manner. Knockdown of BMAL1 in female astrocytes leads to negative energy balance and alters basal metabolic cycles without affecting circadian locomotor activity. Thus, astrocytic BMAL1 contributes to the control of energy balance through the modulation of the metabolic rate, hepatic and white adipose tissue lipogenesis, and the activity of brown adipose tissue. Importantly, most of these alterations are specific to hypothalamic astrocytic BMAL1. Moreover, female mice with BMAL1 knockdown in astrocytes exhibited a "male-like" metabolic obese phenotype when fed a high-fat diet. Overall, our results suggest a sexually dimorphic effect of astrocytic BMAL1 on the regulation of energy homeostasis, which may be of interest in the physiopathology of obesity and related comorbidities.
Collapse
Affiliation(s)
- María Luengo-Mateos
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antía González-Vila
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nathalia Romanelli Vicente Dragano
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Nataliia Ohinska
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - María Silveira-Loureiro
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco González-Domínguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paula Novelle-Rodríguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel López
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Dos-Santos A, do Nascimento Carvalho B, Da Costa-Santos N, Mello-Silva FQD, Pereira ADA, Jesus NRD, De Angelis K, Irigoyen MC, Bernardes N, Caperuto EC, Scapini KB, Sanches IC. Effects of Exercise Intensity on Cardiometabolic Parameters of Ovariectomized Obese Mice. Int J Sports Med 2023. [PMID: 37146639 DOI: 10.1055/a-2044-8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The aim of this study was to compare the effects of continuous-moderate vs. high-intensity interval aerobic training on cardiovascular and metabolic parameters in ovariectomized high-fat-fed mice. C57BL/6 female ovariectomized were divided into four groups (n=8): low-fat-fed sedentary (SLF); high-fat-fed sedentary (SHF); high-fat-fed moderate-intensity continuous trained (MICT-HF); and high-fat-fed high-intensity interval aerobic trained (HIIT-HF). The high-fat diet lasted 10 weeks. Ovariectomy was performed in the fourth week. The exercise training was carried out in the last four weeks of protocol. Fasting glycemia, oral glucose tolerance, arterial pressure, baroreflex sensitivity, and cardiovascular autonomic modulation were evaluated. Moderate-intensity continuous training prevented the increase in arterial pressure and promoted a reduction in HR at rest, associated with an improvement in the sympathovagal balance in MICT-HF vs. SHF. The high-intensity interval training reduced blood glucose and glucose intolerance in HIIT-HF vs. SHF and MICT-HF. In addition, it improved sympathovagal balance in HIIT-HF vs. SHF. Moderate-intensity continuous training was more effective in promoting cardiovascular benefits, while high-intensity interval training was more effective in promoting metabolic benefits.
Collapse
Affiliation(s)
- Adriano Dos-Santos
- Human Movement Laboratory, Sao Judas Tadeu University, Sao Paulo, Brazil
| | | | | | | | | | | | | | - Maria Claudia Irigoyen
- Heart Institute, department of hypertension, University of Sao Paulo, Faculty of Medicine, Sao Paulo, Brazil
| | - Nathalia Bernardes
- Human Movement Laboratory, Sao Judas Tadeu University, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
12
|
Jo D, Yoon G, Lim Y, Kim Y, Song J. Profiling and Cellular Analyses of Obesity-Related circRNAs in Neurons and Glia under Obesity-like In Vitro Conditions. Int J Mol Sci 2023; 24:ijms24076235. [PMID: 37047207 PMCID: PMC10094513 DOI: 10.3390/ijms24076235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence indicates that the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease, is associated with metabolic disorders such as diabetes and obesity. Various circular RNAs (circRNAs) have been found in brain tissues and recent studies have suggested that circRNAs are related to neuropathological mechanisms in the brain. However, there is a lack of interest in the involvement of circRNAs in metabolic imbalance-related neuropathological problems until now. Herein we profiled and analyzed diverse circRNAs in mouse brain cell lines (Neuro-2A neurons, BV-2 microglia, and C8-D1a astrocytes) exposed to obesity-related in vitro conditions (high glucose, high insulin, and high levels of tumor necrosis factor-alpha, interleukin 6, palmitic acid, linoleic acid, and cholesterol). We observed that various circRNAs were differentially expressed according to cell types with many of these circRNAs conserved in humans. After suppressing the expression of these circRNAs using siRNAs, we observed that these circRNAs regulate genes related to inflammatory responses, formation of synaptic vesicles, synaptic density, and fatty acid oxidation in neurons; scavenger receptors in microglia; and fatty acid signaling, inflammatory signaling cyto that may play important roles in metabolic disorders associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yeonghwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Youngkook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| |
Collapse
|
13
|
Inhibitory Effects of Loganin on Adipogenesis In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24054752. [PMID: 36902181 PMCID: PMC10003152 DOI: 10.3390/ijms24054752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Obesity is characterized by the excessive accumulation of mature adipocytes that store surplus energy in the form of lipids. In this study, we investigated the inhibitory effects of loganin on adipogenesis in mouse preadipocyte 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) in vitro and in mice with ovariectomy (OVX)- and high-fat diet (HFD)-induced obesity in vivo. For an in vitro study, loganin was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs, lipid droplets were evaluated by oil red O staining, and adipogenesis-related factors were assessed by qRT-PCR. For in vivo studies, mouse models of OVX- and HFD-induced obesity were orally administered with loganin, body weight was measured, and hepatic steatosis and development of excessive fat were evaluated by histological analysis. Loganin treatment reduced adipocyte differentiation by accumulating lipid droplets through the downregulation of adipogenesis-related factors, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), perilipin 2 (Plin2), fatty acid synthase (Fasn), and sterol regulatory element binding transcription protein 1 (Srebp1). Loganin administration prevented weight gain in mouse models of obesity induced by OVX and HFD. Further, loganin inhibited metabolic abnormalities, such as hepatic steatosis and adipocyte enlargement, and increased the serum levels of leptin and insulin in both OVX- and HFD-induced obesity models. These results suggest that loganin is a potential candidate for preventing and treating obesity.
Collapse
|
14
|
Nascimento‐Carvalho B, Dos‐Santos A, Da Costa‐Santos N, Carvalho SL, de Moraes OA, Santos CP, De Angelis K, Caperuto EC, Irigoyen M, Scapini K, Sanches IC. Food readjustment plus exercise training improves cardiovascular autonomic control and baroreflex sensitivity in high-fat diet-fed ovariectomized mice. Physiol Rep 2023; 11:e15609. [PMID: 36898722 PMCID: PMC10005889 DOI: 10.14814/phy2.15609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 03/12/2023] Open
Abstract
Despite consensus on the benefits of food readjustment and/or moderate-intensity continuous exercise in the treatment of cardiometabolic risk factors, there is little evidence of the association between these two cardiovascular risk management strategies after menopause. Thus, the objective of this study was to evaluate the effects of food readjustment and/or exercise training on metabolic, hemodynamic, autonomic, and inflammatory parameters in a model of loss of ovarian function with diet-induced obesity. Forty C57BL/6J ovariectomized mice were divided into the following groups: high-fat diet-fed - 60% lipids throughout the protocol (HF), food readjustment - 60% lipids for 5 weeks, readjusted to 10% for the next 5 weeks (FR), high-fat diet-fed undergoing moderate-intensity exercise training (HFT), and food readjustment associated with moderate-intensity exercise training (FRT). Blood glucose evaluations and oral glucose tolerance tests were performed. Blood pressure was assessed by direct intra-arterial measurement. Baroreflex sensitivity was tested using heart rate phenylephrine and sodium nitroprusside induced blood pressure changes. Cardiovascular autonomic modulation was evaluated in time and frequency domains. Inflammatory profile was evaluated by IL-6, IL-10 cytokines, and TNF-alpha measurements. Only the exercise training associated with food readjustment strategy induced improved functional capacity, body composition, metabolic parameters, inflammatory profile, and resting bradycardia, while positively changing cardiovascular autonomic modulation and increasing baroreflex sensitivity. Our findings demonstrate that the association of these strategies seems to be effective in the management of cardiometabolic risk in a model of loss of ovarian function with diet-induced obesity.
Collapse
Affiliation(s)
- Bruno Nascimento‐Carvalho
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de MedicinaUniversidade de Sao Paulo (InCor‐HCFMUSP)São PauloBrazil
- Human Movement LabSão Judas Tadeu University (USJT)São PauloBrazil
| | | | | | | | - Oscar A. de Moraes
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de MedicinaUniversidade de Sao Paulo (InCor‐HCFMUSP)São PauloBrazil
| | - Camila P. Santos
- Department of MedicineFederal University of São Paulo (Unifesp)São PauloBrazil
| | - Katia De Angelis
- Department of MedicineFederal University of São Paulo (Unifesp)São PauloBrazil
| | | | - Maria‐Claudia Irigoyen
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de MedicinaUniversidade de Sao Paulo (InCor‐HCFMUSP)São PauloBrazil
| | - Katia B. Scapini
- Human Movement LabSão Judas Tadeu University (USJT)São PauloBrazil
| | - Iris C. Sanches
- Human Movement LabSão Judas Tadeu University (USJT)São PauloBrazil
| |
Collapse
|
15
|
Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, Færgeman N, Rauch A, Tencerova M, Kassem M. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell 2022; 21:e13726. [PMID: 36217558 PMCID: PMC9741509 DOI: 10.1111/acel.13726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022] Open
Abstract
Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high-fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD-OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD-OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT-scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (-15.6 ± 0.48% in HFD and -37.5 ± 0.235% in HFD-OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD-OVX, p < 0.005). Mechanistically, HFD-OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD-OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Atenisa Caci
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Clarissa Schmal
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Greet Kerckhofs
- Biomechanics Section, Department of Mechanical EngineeringKU LeuvenHeverleeBelgium
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Nils Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Alexander Rauch
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Molecular Physiology of Bone, Institute of PhysiologyCzech Academy of SciencesPragueCzech Republic
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Department of Cellular and Molecular Medicine, Danish Stem Cell Centre (DanStem)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
16
|
Zanol JF, Niño OMS, da Costa CS, Zimerman J, Silva NP, Oliveira TM, Maas EMSWD, Dos Santos FCF, Miranda-Alves L, Graceli JB. High-refined carbohydrate diet alters different metabolic functions in female rats. Mol Cell Endocrinol 2022; 558:111774. [PMID: 36096379 DOI: 10.1016/j.mce.2022.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022]
Abstract
A diet containing refined carbohydrate (HCD) caused obesity and white adipose tissue (WAT) abnormalities, but it is unclear if HCD is linked with other metabolic dysfunctions in female models. Thus, we assessed whether HCD results in WAT, pancreas, liver, skeletal muscle (SM) and thyroid (TH) abnormalities in female rats. Female rats were fed with HCD for 15 days and metabolic morphophysiology, inflammation, oxidative stress (OS), and fibrosis markers were assessed. HCD rats presented large adipocytes, hyperleptinemia, and WAT OS. HCD caused irregular glucose metabolism, low insulin levels, and large pancreatic isle. Granulomas, reduced glycogen, and OS were observed in HCD livers. HCD caused hypertrophy and increased in glycogen in SM. HCD caused irregular TH morphophysiology, reduced colloid area and high T3 levels. In all selected tissues, inflammation and fibrosis were observed in HCD rats. Collectively, these data suggest that the HCD impairs metabolic function linked with irregularities in WAT, pancreas, liver, SM and TH in female rats.
Collapse
Affiliation(s)
- Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio-Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Natalia P Silva
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Thalita M Oliveira
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Edgar M S W D Maas
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, RJ, UFRJ, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
17
|
Gheit REAE, Younis RL, El-Saka MH, Emam MN, Soliman NA, El-Sayed RM, Hafez YM, AbuoHashish NA, Radwan DA, Khaled HE, Kamel S, Zaitone SA, Badawi GA. Irisin improves adiposity and exercise tolerance in a rat model of postmenopausal obesity through enhancing adipo-myocyte thermogenesis. J Physiol Biochem 2022; 78:897-913. [PMID: 35996069 PMCID: PMC9684260 DOI: 10.1007/s13105-022-00915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
The prevalence of obesity and its associated metabolic disorders, along with their healthcare costs, is rising exponentially. Irisin, an adipomyokine, may serve as a critical cross-organ messenger, linking skeletal muscle with adipose tissue and the liver to integrate the energy homeostasis under diet-induced obesity. We aimed to explore the putative role of irisin in the protection against obesity in a postmenopausal rat model by modulating energy expenditure (EE). Bilateral ovariectomy (OVX) was performed. After 3 weeks of recovery, the OVX rats were classified according to their dietary protocol into rats maintained on normal diets (ND) (OVX) or high-fat diet (HFD) groups. The HFD-fed animals were equally divided into OVX/HFD, or irisin-treated OVX/HFD groups. Sham rats, maintained on ND, were selected as the control group. We evaluated anthropometric, EE, and molecular biomarkers of browning and thermogenesis in inguinal white adipose tissue and skeletal muscle, and the activity of the proteins related to mitochondrial long chain fatty acid transport, oxidation, and glycolysis. HFD of OVX further deteriorated the disturbed glucose homeostasis, lipid profile, and the reduced irisin, thermogenic parameters in adipose tissue and skeletal muscle, and EE. Irisin treatment improved the lipid profile and insulin resistance. That was associated with reduced hepatic gluconeogenic enzyme activities and restored hepatic glycogen content. Irisin reduced ectopic lipid infiltration. Irisin augmented EE by activating non-shivering thermogenesis in muscle and adipose tissues and decreasing metabolic efficiency. Our experimental evidence suggests irisin's use as a potential thermogenic agent, therapeutically targeting obesity in postmenopausal patients. Irisin modulates the non-shivering thermogenesis in skeletal muscle and adipose tissue in postmenopausal model.
Collapse
Affiliation(s)
- Rehab E Abo El Gheit
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt.
| | - Reham L Younis
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| | - Mervat H El-Saka
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| | - Marwa N Emam
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| | - Nema A Soliman
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, North Sinai, El-Arish, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Doaa A Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howayda E Khaled
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Samar Kamel
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, 71451, Saudi Arabia
| | - Ghada A Badawi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, North Sinai, El-Arish, Egypt
| |
Collapse
|
18
|
Tsai SH, Tseng YH, Chiou WF, Chen SM, Chung Y, Wei WC, Huang WC. The Effects of Whole-Body Vibration Exercise Combined With an Isocaloric High-Fructose Diet on Osteoporosis and Immunomodulation in Ovariectomized Mice. Front Nutr 2022; 9:915483. [PMID: 35795589 PMCID: PMC9251498 DOI: 10.3389/fnut.2022.915483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOsteoporosis and immune-associated disorders are highly prevalent among menopausal women, and diet control and exercise exert beneficial effects on physiological modulation in this population. A controlled diet with a low fat content and a balanced caloric intake improves menopausal health, but the health effects of excessive fructose consumption on menopausal women are yet to be confirmed. In addition, whole-body vibration (WBV), a safe passive-training method, has been shown to have multiple beneficial effects on metabolism regulation, obesity, and bone health.MethodsThe ovariectomized (OVX) C57BL/6J model was used to verify the effects of WBV combined with a high-fructose diet (HFrD) for 16 weeks on physiological modulation and immune responses. The mice were randomly allocated to sham, OVX, OVX+HFrD, and OVX+HFrD+WBV groups, which were administered with the indicated ovariectomy, dietary and WBV training treatments. We conducted growth, dietary intake, glucose homeostasis, body composition, immunity, inflammation, histopathology, and osteoporotic assessments (primary outcomes).ResultsOur results showed that the isocaloric HFrD in OVX mice negated estrogen-deficiency–associated obesity, but that risk factors such as total cholesterol, glucose intolerance, osteoporosis, and liver steatosis still contributed to the development of metabolic diseases. Immune homeostasis in the OVX mice was also negatively affected by the HFrD diet, via the comprehensive stimulation of T cell activation, causing inflammation. The WBV intervention combined with the HFrD model significantly ameliorated weight gain, glucose intolerance, total cholesterol, and inflammatory cytokines (interferon gamma [IFN-γ], interleukin [IL]-17, and IL-4) in the OVX mice, although osteoporosis and liver steatosis were not affected compared to the negative control group. These findings indicate that an isocaloric high-fructose diet alone may not result in menopausal obesity, but that some deleterious physiological impacts still exist.ConclusionThe WBV method may modulate the physiological impacts of menopause and the HFrD diet, and should be considered as an alternative exercise prescription for people with poor compliance or who are unable or unwilling to use traditional methods to improve their health. In future studies, using the WBV method as a preventive or therapeutic strategy, combined with nutritional interventions, medication, and other exercise prescriptions, may prove beneficial for maintaining health in menopausal women.
Collapse
Affiliation(s)
- Syun-Hui Tsai
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | | | - Yi Chung
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Wen-Chi Wei
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- *Correspondence: Wen-Ching Huang
| |
Collapse
|
19
|
Chen H, Chan YL, Thorpe AE, Pollock CA, Saad S, Oliver BG. Inhaled or Ingested, Which Is Worse, E-Vaping or High-Fat Diet? Front Immunol 2022; 13:913044. [PMID: 35784293 PMCID: PMC9240210 DOI: 10.3389/fimmu.2022.913044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long term e-cigarette vaping induces inflammation, which is largely nicotine independent. High-fat diet (HFD) consumption is anoter cause of systemic low-grade inflammation. The likelihood of using e-cigarettes as a weight control strategy is concomitant with the increase in obesity. In Australia, only nicotine-free e-fluid is legal for sale. Therefore, this study aimed to investigate how nicotine-free e-cigarette vapour exposure affects inflammatory responses in mice with long term HFD consumption. Mice were fed a HFD for 16 weeks, while in the last 6 weeks, half of the chow and HFD groups were exposed to nicotine-free e-vapour, while the other half to ambient air. Serum, lung, liver and epididymal fat were collected to measure inflammatory markers. While both e-vapour exposure and HFD consumption independently increased serum IFN-γ, CX3CL1, IL-10, CCL20, CCL12, and CCL5 levels, the levels of IFN-γ, CX3CL1, and IL-10 were higher in mice exposed to e-vapour than HFD. The mRNA expression pattern in the epididymal fat mirrors that in the serum, suggesting the circulating inflammatory response to e-vapour is from the fat tissue. Of the upregulated cytokines in serum, none were found to change in the lungs. The anti-inflammatory cytokine IL-10 was increased by combining e-vapour and HFD in the liver. We conclude that short-term nicotine-free e-vapour is more potent than long term HFD consumption in causing systemic inflammation. Future studies will be needed to examine the long-term health impact of nicotine-free e-cigarettes.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Andrew E. Thorpe
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Carol A. Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Brian G. Oliver,
| |
Collapse
|
20
|
Kraynak M, Willging MM, Kuehlmann AL, Kapoor AA, Flowers MT, Colman RJ, Levine JE, Abbott DH. Aromatase Inhibition Eliminates Sexual Receptivity Without Enhancing Weight Gain in Ovariectomized Marmoset Monkeys. J Endocr Soc 2022; 6:bvac063. [PMID: 35592515 PMCID: PMC9113444 DOI: 10.1210/jendso/bvac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
Context Ovarian estradiol supports female sexual behavior and metabolic function. While ovariectomy (OVX) in rodents abolishes sexual behavior and enables obesity, OVX in nonhuman primates decreases, but does not abolish, sexual behavior, and inconsistently alters weight gain. Objective We hypothesize that extra-ovarian estradiol provides key support for both functions, and to test this idea, we employed aromatase inhibition to eliminate extra-ovarian estradiol biosynthesis and diet-induced obesity to enhance weight gain. Methods Thirteen adult female marmosets were OVX and received (1) estradiol-containing capsules and daily oral treatments of vehicle (E2; n = 5); empty capsules and daily oral treatments of either (2) vehicle (VEH, 1 mL/kg, n = 4), or (3) letrozole (LET, 1 mg/kg, n = 4). Results After 7 months, we observed robust sexual receptivity in E2, intermediate frequencies in VEH, and virtually none in LET females (P = .04). By contrast, few rejections of male mounts were observed in E2, intermediate frequencies in VEH, and high frequencies in LET females (P = .04). Receptive head turns were consistently observed in E2, but not in VEH and LET females. LET females, alone, exhibited robust aggressive rejection of males. VEH and LET females demonstrated increased % body weight gain (P = .01). Relative estradiol levels in peripheral serum were E2 >>> VEH > LET, while those in hypothalamus ranked E2 = VEH > LET, confirming inhibition of local hypothalamic estradiol synthesis by letrozole. Conclusion Our findings provide the first evidence for extra-ovarian estradiol contributing to female sexual behavior in a nonhuman primate, and prompt speculation that extra-ovarian estradiol, and in particular neuroestrogens, may similarly regulate sexual motivation in other primates, including humans.
Collapse
Affiliation(s)
- Marissa Kraynak
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Molly M Willging
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Center for Women’s Health, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Alex L Kuehlmann
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Amita A Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew T Flowers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
21
|
Shiffler JA, Goerger KA, Gorres‐Martens BK. Estrogen receptor α activation modulates the gut microbiome and type 2 diabetes risk factors. Physiol Rep 2022; 10:e15344. [PMID: 35698449 PMCID: PMC9193963 DOI: 10.14814/phy2.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Estradiol and exercise can decrease risk factors associated with type 2 diabetes (T2D) including total body weight gain and abdominal fat gain. Estradiol functions through estrogen receptor (ER) α and ERβ. Some studies suggest that activation of ERα may provide protection against T2D. Female Wistar rats were ovariectomized and fed a high-fat diet for 10 weeks and divided into the following 5 experimental groups: (1) no treatment (control), (2) exercise, (3) estradiol, (4) propylpyrazoletriyl (a selective ERα agonist), and (5) diarylpropionitrile (a selective ERβ agonist). ERα activation decreased the abundance of Firmicutes, and ERα and ERβ activation increased the abundance of Bacteroidetes. ERα activation decreased food consumption, and ERα and ERβ activation increased voluntary activity. Exercise was the only treatment to decrease the blood glucose and serum insulin levels. ERα activation, but not ERβ, increased hepatic protein expression of ACC and FAS and decreased hepatic protein expression of LPL. ERα activation also decreased hepatic mRNA expression of PPARα and PPARγ. This study elucidates the functions of estradiol by assessing specific activation of ERα and ERβ. As obesity increases the abundance of Firmicutes and decreases the abundance of Bacteroidetes, our study shows that ERα activation can restore the gut microbiome to non-obese abundances. This study further provides novel insights into ERα's role in hepatic fat metabolism via regulation of ACC, FAS, LPL, PPARα, and PPARγ.
Collapse
Affiliation(s)
- Janelle A. Shiffler
- Exercise and Sport Sciences DepartmentAugustana UniversitySioux FallsSouth DakotaUSA
| | - Krista A. Goerger
- Biology DepartmentUniversity of Sioux FallsSioux FallsSouth DakotaUSA
| | | |
Collapse
|
22
|
Habibi P, Ahmadiasl N, Nourazarian A, Yousefi H. Swimming exercise improves SIRT1, NF-κB, and IL-1β protein levels and pancreatic tissue injury in ovariectomized diabetic rats. Horm Mol Biol Clin Investig 2022; 43:345-352. [PMID: 35389569 DOI: 10.1515/hmbci-2021-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/12/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES In this study, we investigated the beneficial effects of swimming exercise on the SIRT1, NF-κB, IL-1β protein levels, and pancreatic tissue damage in an ovariectomized diabetic rat model based on the anti-inflammatory effect of exercise. METHODS Forty mature female Wistar rats were purchased and divided into sham (n=10) and OVX (bilateral ovariectomy) (n=30) groups. The ovariectomized rats were divided into 1-OVX, 2-ovariectomized diabetic (OVX.D), 3-OVX.D + exercise (OVX.D. E). After surgical recovery, animals in the diabetic group received a high-fat diet for one month. Swimming exercise (1 h/day) was performed concurrently with the start of the HFD diet for eight weeks. At the end of the high-fat diet, streptozotocin (30 mg/kg) was injected intraperitoneally. At the end of the second month, pancreatic tissue was collected from the animals after deep anesthesia for molecular evaluation and histology by Western blotting and hematoxylin-eosin, respectively. RESULTS Swimming exercise significantly decreased inflammatory cytokines and tissue damage, and this decrease in cytokine expression appears to be associated with SIRT1 expression. The increase in SIRT1 by training was associated with decreased NF-κB-p65 and IL-1β expression and preventing tissue damage. Induction of diabetes in the ovariectomized group (OVX.D) resulted in a significant increase in NF-κB-p65 and IL-1β proteins and a decrease in the expression of SIRT1 compared with the sham group. However, swimming training significantly reversed these effects compared with the OVX.D group. CONCLUSIONS Increased inflammation of β-cells impairs insulin secretion in estrogen insufficiency. Swimming exercise eliminates inflammation in post-menopausal diabetes and supports the potential to prevent pancreatic activity after menopause.
Collapse
Affiliation(s)
- Parisa Habibi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasser Ahmadiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
23
|
Farhadi Z, Khaksari M, Azizian H, Dabiri S. The brain neuropeptides and STAT3 mediate the inhibitory effect of 17-β Estradiol on central leptin resistance in young but not aged female high-fat diet mice. Metab Brain Dis 2022; 37:625-637. [PMID: 35031929 DOI: 10.1007/s11011-021-00884-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022]
Abstract
Aging and menopause effect on body composition and energy balance. Estrogen (E2) plays an important role in body's metabolism. The aim of the present study was to determine changes in leptin function in young intact and ovariectomized (OVX) animals in comparison to the aged animals treated with E2. Young (Intact and OVX 4 months) and aged (19-21 months) female mice were fed High-fat diet (HFD) for 12 weeks and, then they were divided into eight groups including: Intact + OIL, Intact + E2, Intact + Pair body weight (PBW), OVX + OIL, OVX + E2, OVX + PBW, Aged + OIL, and Aged + E2. E2 was administered subcutaneously every four days for four weeks. Responsiveness to leptin was assessed by measuring energy balance components. Results showed that eating HFD increased weight and calorie consumption in young mice, and chronic treatment with E2 decreased both these variables in young animals. E2 only improved the sensitivity to leptin in young animals. Treatment with E2 resulted in increased α-MSH neuropeptide, reduced NPY and AgRP neuropeptides in the brain, and decreased serum leptin in the young animals. Also, treatment with E2 increased the expression of p-STAT3 molecular level in the hypothalamic arcuate nucleus (ARC) in the young animals. Our results indicated that response to E2 depended on age and E2 protects young HFD fed mice from obesity and improves leptin sensitivity.
Collapse
Affiliation(s)
- Zeinab Farhadi
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hossein Azizian
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
24
|
Ye Y, Zhang B, Li Y, Xu HD, Liu XM, Huang SM, Wang R, Li D. Yin Huo Tang, a traditional Chinese herbal formula, relives ovariectomy and empty bottle stimulation-induced menopause-like symptoms in mice. Front Endocrinol (Lausanne) 2022; 13:994642. [PMID: 36339416 PMCID: PMC9627159 DOI: 10.3389/fendo.2022.994642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Yin Huo Tang (YHT), a traditional Chinese herbal formula, is effectively used for the clinical treatment of menopause-like symptoms in China. This study aimed to investigate its efficacy on menopause-like symptoms in mice using behavioral tests and histopathological assessment, and to determine its possible mechanism of action based on network pharmacology. METHODS Liquid chromatography-mass spectrometry (LC-MS) technology was used to identify the potential active ingredients of YHT. In mice, menopause-like symptoms were induced by combination of bilateral ovariectomy and empty bottle stimulation. The mice were then treated with the YHT aqueous extract for three weeks. Behavior, sleep state, body weight, organ index, and histomorphology were analyzed separately. Additionally, network pharmacology and molecular docking were used to predict the mechanisms underlying the action of YHT. Finally, serum estradiol was quantified to preliminarily verify the results of network pharmacology. RESULTS YHT not only improved the behavior of mice (attack and explore behavior reduced; modify behavior increased) but also ameliorated the sleep state (sleep time increased and incubation time reduced). YHT reduced body weight, increased uterine weight, and improved the histomorphology of some organs. Network pharmacology and molecular docking analyses revealed that the estrogen signaling pathway might play a key role in attenuating menopause-like symptoms. Furthermore, YHT treatment reversed the reduction in serum estradiol levels. CONCLUSIONS YHT alleviates menopause-like symptoms in a mouse model, providing a rationale for using it as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Bo Zhang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Li
- Department of Integrated Traditional Chinese and Western Medicine, College of Medicine, Yangzhou University, Yangzhou, China
| | - Hong-Dan Xu
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, China
| | - Xiu-Min Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Wang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- *Correspondence: Rui Wang, ; Dong Li,
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Rui Wang, ; Dong Li,
| |
Collapse
|
25
|
Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Sci Rep 2021; 11:14750. [PMID: 34285301 PMCID: PMC8292317 DOI: 10.1038/s41598-021-94189-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Menopause is associated with a redistribution of adipose tissue towards central adiposity, known to cause insulin resistance. In this cross-sectional study of 33 women between 45 and 60 years, we assessed adipose tissue inflammation and morphology in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) across menopause and related this to menopausal differences in adipose tissue distribution and insulin resistance. We collected paired SAT and VAT biopsies from all women and combined this with anthropometric measurements and estimated whole-body insulin sensitivity. We found that menopause was associated with changes in adipose tissue phenotype related to metabolic dysfunction. In SAT, postmenopausal women showed adipocyte hypertrophy, increased inflammation, hypoxia and fibrosis. The postmenopausal changes in SAT was associated with increased visceral fat accumulation. In VAT, menopause was associated with adipocyte hypertrophy, immune cell infiltration and fibrosis. The postmenopausal changes in VAT phenotype was associated with decreased insulin sensitivity. Based on these findings we suggest, that menopause is associated with changes in adipose tissue phenotype related to metabolic dysfunction in both SAT and VAT. Whereas increased SAT inflammation in the context of menopause is associated with VAT accumulation, VAT morphology is related to insulin resistance.
Collapse
|
26
|
Chiarella SE, Cardet JC, Prakash YS. Sex, Cells, and Asthma. Mayo Clin Proc 2021; 96:1955-1969. [PMID: 34218868 PMCID: PMC8262071 DOI: 10.1016/j.mayocp.2020.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
There are marked sex differences in asthma prevalence and severity. Sex hormones play a central role in these sex biases and directly interact with multiple key cells involved in the pathogenesis of asthma. Here we review the known effects of estrogen, progesterone, and testosterone on airway epithelial cells, airway smooth muscle cells, the mononuclear phagocyte system, innate lymphoid cells, eosinophils, mast cells, T cells, and B cells, all in the context of asthma. Furthermore, we explore unresolved clinical questions, such as the role of sex hormones in the link between asthma and obesity.
Collapse
Affiliation(s)
- Sergio E Chiarella
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.
| |
Collapse
|
27
|
Yeh JH, Tung YT, Yeh YS, Chien YW. Effects of Dietary Fatty Acid Composition on Lipid Metabolism and Body Fat Accumulation in Ovariectomized Rats. Nutrients 2021; 13:nu13062022. [PMID: 34208400 PMCID: PMC8231186 DOI: 10.3390/nu13062022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Obesity is a state of excess energy storage resulting in body fat accumulation, and postmenopausal obesity is a rising issue. In this study using ovariectomized (OVX) rats, we mimicked low estrogen levels in a postmenopausal state in order to investigate the effects of different amounts and types of dietary fatty acids on body fat accumulation and body lipid metabolism. Methods: At 9 weeks of age, rats (n = 40) were given an ovariectomy, eight of which were sham-operated to serve as a control group (S). We then divided OVX rats into four different intervention groups: diet with 5% soybean oil (C), and diet with 5% (L), 15% (M), and 20% (H) (w/w) experimental oil, containing 60% monounsaturated fatty acids (MUFAs) and with a polyunsaturated/saturated fatty acid (P/S) ratio of 5. Results: After OVX, compared to the S group, the C group showed significantly higher body weight, and insulin and leptin levels. Compared to the C group, the H group had lower hepatic triglyceride level and FAS enzyme activity, and higher hepatic ACO and CPT-1 gene expressions and enzyme activities. Conclusions: An OVX leads to severe weight gain and lipid metabolism abnormalities, while according to previous studies, high fat diet may worsen the situation. However, during our experiment, we discovered that the experimental oil mixture with 60% MUFAs and P/S = 5 may ameliorate these imbalances.
Collapse
Affiliation(s)
- Jhih-Han Yeh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Sheng Yeh
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63112, USA;
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6556); Fax: +886-2-2737-3112
| |
Collapse
|
28
|
Zanol JF, Niño OMS, da Costa CS, Freitas-Lima LC, Miranda-Alves L, Graceli JB. Tributyltin and high-refined carbohydrate diet lead to metabolic and reproductive abnormalities, exacerbating premature ovary failure features in the female rats. Reprod Toxicol 2021; 103:108-123. [PMID: 34102259 DOI: 10.1016/j.reprotox.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
Exposure to the obesogen tributyltin (TBT) alone or high carbohydrate diet (HCD) alone leads to obesity and reproductive complications, such as premature ovary failure (POF) features. However, little is known about interactions between TBT and nutrition and their combined impact on reproduction. In this study, we assessed whether acute TBT and HCD exposure results in reproductive and metabolic irregularities. Female rats were treated with TBT (100 ng/kg/day) and fed with HCD for 15 days and metabolic and reproductive outcomes were assessed. TBT and HCD rats displayed metabolic impairments, such as increased adiposity, abnormal lipid profile and triglyceride and glucose (TYG) index, worsening adipocyte hypertrophy in HCD-TBT rats. These metabolic consequences were linked with reproductive disorders. Specifically, HCD-TBT rats displayed irregular estrous cyclicity, high follicle-stimulating hormone (FSH) levels, low anti-Müllerian hormone (AMH) levels, reduction in ovarian reserve, and corpora lutea (CL) number, with increases in atretic follicles, suggesting that HCD-TBT exposure exacerbated POF features. Further, strong negative correlations were observed between adipocyte hypertrophy and ovarian reserve, CL number and AMH levels. HCD-TBT exposure resulted in reproductive tract inflammation and fibrosis. Collectively, these data suggest that TBT plus HCD exposure leads to metabolic and reproductive abnormalities, exacerbating POF features in female rats.
Collapse
Affiliation(s)
- Jordana F Zanol
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Oscar M S Niño
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil; Bachelor of Physical Education and Sports, Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio-Meta, Colombia.
| | - Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Leandro C Freitas-Lima
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, RJ, UFRJ, Brazil.
| | - Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| |
Collapse
|
29
|
Rodgers A, Sferruzzi-Perri AN. Developmental programming of offspring adipose tissue biology and obesity risk. Int J Obes (Lond) 2021; 45:1170-1192. [PMID: 33758341 PMCID: PMC8159749 DOI: 10.1038/s41366-021-00790-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
Obesity is reaching epidemic proportions and imposes major negative health crises and an economic burden in both high and low income countries. The multifaceted nature of obesity represents a major health challenge, with obesity affecting a variety of different organs and increases the risk of many other noncommunicable diseases, such as type 2 diabetes, fatty liver disease, dementia, cardiovascular diseases, and even cancer. The defining organ of obesity is the adipose tissue, highlighting the need to more comprehensively understand the development and biology of this tissue to understand the pathogenesis of obesity. Adipose tissue is a miscellaneous and highly plastic endocrine organ. It comes in many different sizes and shades and is distributed throughout many different locations in the body. Though its development begins prenatally, quite uniquely, it has the capacity for unlimited growth throughout adulthood. Adipose tissue is also a highly sexually dimorphic tissue, patterning men and women in different ways, which means the risks associated with obesity are also sexually dimorphic. Recent studies show that environmental factors during prenatal and early stages of postnatal development have the capacity to programme the structure and function of adipose tissue, with implications for the development of obesity. This review summarizes the evidence for a role for early environmental factors, such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during gestation in the programming of adipose tissue and obesity in the offspring. We will also discuss the complexity of studying adipose tissue biology and the importance of appreciating nuances in adipose tissue, such as sexual dimorphism and divergent responses to metabolic and endocrine stimuli. Given the rising levels of obesity worldwide, understanding how environmental conditions in early life affects adipose tissue phenotype and the subsequent development of obesity is of absolute importance.
Collapse
Affiliation(s)
- Amanda Rodgers
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Chen Q, Wang B, Wang S, Qian X, Li X, Zhao J, Zhang H, Chen W, Wang G. Modulation of the Gut Microbiota Structure with Probiotics and Isoflavone Alleviates Metabolic Disorder in Ovariectomized Mice. Nutrients 2021; 13:1793. [PMID: 34070274 PMCID: PMC8225012 DOI: 10.3390/nu13061793] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The decrease in ovarian hormone secretion that occurs during menopause results in an increase in body weight and adipose tissue mass. Probiotics and soy isoflavones (SIFs) could affect the gut microbiota and exert anti-obesity effects. The objective of this study was to investigate the effects of probiotics and a diet containing SIF (SIF diet) on ovariectomized mice with menopausal obesity, including the gut microbiome. The results demonstrate that Bifidobacterium longum 15M1 can reverse menopausal obesity, whilst the combination of Lactobacillus plantarum 30M5 and a SIF diet was more effective in alleviating menopausal lipid metabolism disorder than either components alone. Probiotics and SIFs play different anti-obesity roles in menopausal mice. Furthermore, 30M5 alters the metabolites of the gut microbiota that increase the circulating estrogen level, upregulates the expression of estrogen receptor α in abdominal adipose tissue and improves the production of short-chain fatty acids (SCFAs). A SIF diet can significantly alter the structure of the fecal bacterial community and enrich the pathways related to SCFAs production. Moreover, 30M5 and a SIF diet acted synergistically to effectively resolve abnormal serum lipid levels in ovariectomized mice, and these effects appear to be associated with regulation of the diversity and structure of the intestinal microbiota to enhance SCFAs production and promote estrogen circulation.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
31
|
Price TR, Baskaran SA, Moncada KL, Minamoto Y, Klemashevich C, Jayuraman A, Sucholdoski JS, Tedeschi LO, Steiner JM, Pillai SD, Walzem RL. Whole and Isolated Protein Fractions Differentially Affect Gastrointestinal Integrity Markers in C57Bl/6 Mice Fed Diets with a Moderate-Fat Content. Nutrients 2021; 13:nu13041251. [PMID: 33920187 PMCID: PMC8069602 DOI: 10.3390/nu13041251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a “chow-type” nutritionally adequate non-PD. Additional variables within a diet’s matrix appear to affect routine indicators or gastrointestinal health.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Sangeetha A. Baskaran
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Kristin L. Moncada
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Yasushi Minamoto
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Cory Klemashevich
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Arul Jayuraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Jan S. Sucholdoski
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Suresh D. Pillai
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
32
|
Mishima MDV, Ladeira LCM, da Silva BP, Toledo RCL, de Oliveira TV, Costa NMB, Martino HSD. Cardioprotective action of chia (Salvia hispanica L.) in ovariectomized rats fed a high fat diet. Food Funct 2021; 12:3069-3082. [PMID: 33720242 DOI: 10.1039/d0fo03206a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reduction in estrogen levels is associated with the increased risk factors for cardiovascular disease development. The present study aimed to evaluate the effect of chia consumption in a standard diet (SD) or high fat diet (HFD) on ovariectomized (OVX) and non-ovariectomized (SHAM) rats, in relation to biometric measurements, oxidative stress, mineral content and ATPase enzymes in the heart. The study was conducted with 80 female Wistar rats, which received a SD or HFD for 18 weeks. During the first 7 weeks, the animals received the SD or HFD. Then, 40 rats were ovariectomized and 40 rats were SHAM operated. After recovery from surgery, the animals were allocated to 8 groups (n = 10) and they received one of the following diets for 8 weeks: SD, SD + chia, HFD and HFD + chia. In the OVX group, HFD increased weight gain, adiposity, cardiac hypertrophy, and nitric oxide (NO) and K concentration and decreased the Na+/K+ATPase activity. In combination with HFD, ovariectomy decreased the catalase activity, Mg, Cu and Zn concentration, total ATPase activity, and Na+/K+ATPase and Mg2 + ATPase activities; this group also presented higher NO, Ca, K, Fe and Mn concentration in the heart. The SHAM group fed chia presented a lower fat content in the heart. In the OVX group fed HFD, chia increased the activity of superoxide dismutase, decreased NO and maintained the content of minerals and ATPase enzymes. Thus, chia improved the biometric parameters of the heart, the antioxidant activity and maintained the content of minerals and ATPase enzymes, showing a cardioprotective action, but without reversing the deleterious effects of ovariectomy.
Collapse
Affiliation(s)
- Marcella Duarte Villas Mishima
- Department of Nutrition and Health. Universidade Federal de Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sucedaram Y, Johns EJ, Husain R, Abdul Sattar M, H Abdulla M, Nelli G, Rahim NS, Khalilpourfarshbafi M, Abdullah NA. Exposure to High-Fat Style Diet Induced Renal and Liver Structural Changes, Lipid Accumulation and Inflammation in Intact and Ovariectomized Female Rats. J Inflamm Res 2021; 14:689-710. [PMID: 33716510 PMCID: PMC7944944 DOI: 10.2147/jir.s299083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose We hypothesized that low estrogen levels aggravate obesity-related complications. Diet-induced obesity can cause distinct pathologies, including impaired glucose tolerance, inflammation, and organ injury that leads to fatty liver and chronic kidney diseases. To test this hypothesis, ovariectomized (OVX) rats were fed a high-fat style diet (HFSD), and we examined structural changes and inflammatory response in the kidney and liver. Methods Sprague-Dawley female rats were ovariectomized or sham-operated and divided into four groups: sham-operated rats fed a normal diet (ND); ovariectomized rats fed a normal diet (OVX-ND); sham-operated rats fed a HFSD; ovariectomized rats fed a high-fat style diet (OVX-HFSD). Mean blood pressure and fasting blood glucose were measured on weeks 0 and 10. The rats were sacrificed 10 weeks after initiation of ND or HFSD, the kidney and liver were harvested for histological, immunohistochemical and immunofluorescence studies. Results HFSD-fed rats presented a significantly greater adiposity index compared to their ND counterparts. Liver index, fasting blood glucose and mean blood pressure was increased in OVX-HFSD rats compared to HFSD rats at study terminal. Histological and morphometric studies showed focal interstitial mononuclear cell infiltration in the kidney of HFSD rats with mesangial expansion being greater in the OVX-HFSD rats. Both HFSD fed groups showed increased expressions of renal inflammatory markers, namely TNF-alpha, IL-6 and MCP-1, and infiltrating M1 macrophages with some influence of ovarian hormonal status. HFSD-feeding also caused hepatocellular steatosis which was aggravated in ovariectomized rats fed the same diet. Furthermore, hepatocellular ballooning was observed only in the OVX-HFSD rats. Similarly, HFSD-fed rats showed increased expressions of the inflammatory markers and M1 macrophage infiltration in the liver; however, only IL-6 expression was magnified in the OVX-HFSD. Conclusion Our data suggest that some of the structural changes and inflammatory response in the kidney and liver of rats fed a HFSD are exacerbated by ovariectomy.
Collapse
Affiliation(s)
- Yamuna Sucedaram
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Edward James Johns
- Department of Physiology, University College Cork, Cork, T12 K8AF, Ireland
| | - Ruby Husain
- Department of Physiology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Munavvar Abdul Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Pulau Pinang, Malaysia
| | - Mohammed H Abdulla
- Department of Physiology, University College Cork, Cork, T12 K8AF, Ireland
| | - Giribabu Nelli
- Department of Physiology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nur Syahrina Rahim
- Faculty of Medicine & Health Science, Universiti Sains Islam Malaysia, Nilai, 71800, Malaysia
| | | | - Nor Azizan Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
34
|
Treatment with a dual amylin and calcitonin receptor agonist improves metabolic health in an old, obese, and ovariectomized rat model. ACTA ACUST UNITED AC 2021; 28:423-430. [PMID: 33399320 PMCID: PMC8284344 DOI: 10.1097/gme.0000000000001722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Menopause is often characterized by detrimental metabolic changes, such as obesity, insulin resistance, and impaired glucose tolerance, often requiring treatment. KeyBioscience Peptides (KBPs) are Dual Amylin and Calcitonin Receptor Agonists which have shown promising metabolic effects in rats. The objective of this study was to investigate the in vivo effect of KBP on the metabolic health in a model driven by unhealthy diet, age, and menopause. Methods: Female Sprague Dawley rats were fed a high-fat diet (HFD) for 3 months before the initiation of the study. At 6 months of age the rats were randomized into groups (n = 12) and subjected to ovariectomy surgery and treatment with KBP: (1) Lean-Sham, (2) HFD-Sham, (3) Lean-OVX, (4) HFD-OVX, (5) HFD-OVX-KBP (10 μg/kg/d), (6) HFD-OVX-KBP (20 μg/kg/d), (7) HFD-OVX-EE2 (30 μg/d 17a-ethynylestradiol). Body weight, food intake, oral glucose tolerance tests (OGTTs), subcutaneous fat, visceral fat, liver weight, and uterus weight were assessed during the 6-month study. Statistical analyses were conducted by one-way ANOVA with Tukey post-hoc test for multiple comparisons. Results: Combination of OVX and HFD led to significant induction of obesity (31% weight increase, P < 0.001) and insulin resistance (13% increase in tAUCglucose during OGTT P < 0.01) compared with the relevant control groups (P < 0.05), and this could be completely rescued by EE2 therapy confirming the model system (P < 0.05). Treatment of OVX-HFD rats with KBP for 26 weeks led to a significant reduction in body weight (13%, P < 0.001) in the high dose and 9% (P < 0.01) in the low dose, with corresponding improvements in fat depot sizes, all compared with HFD-OVX controls. As expected, food intake was suppressed, albeit mainly in the first 2 weeks of treatment, resulting in a reduction of overall caloric intake by 6.5% (P < 0.01) and 12.5% (P < 0.001) in the low and high doses respectively. Furthermore, treatment with KBP reduced the weight of visceral and subcutaneous fat tissues. Finally, KBP treatment significantly improved glucose tolerance, assessed using OGTTs at weeks 8, 16, and 24. Conclusions: The data presented here clearly indicate a positive and sustained effect of KBP treatment on body weight loss, fat depot size, and improved glucose tolerance, illustrating the potential of KBPs as treatments for metabolic complications of overweight and menopause.
Collapse
|
35
|
Caulerpa lentillifera Polysaccharides-Rich Extract Reduces Oxidative Stress and Proinflammatory Cytokines Levels Associated with Male Reproductive Functions in Diabetic Mice. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease that is positively correlated with reproductive dysfunction. Caulerpa lentillifera is an edible green alga with antioxidant and anti-diabetic properties. This study aims to evaluate the ameliorative effects of a polysaccharides-rich extract from C. lentillifera on the reproductive dysfunctions of diabetic male BALB/c mice induced by a high-fat diet (HFD) supplemented with intraperitoneal injections of streptozotocin (STZ). C. lentillifera was obtained from hot water and converted into a powder form (C. lentillifera extract (CLE)) by freeze drying. Mice were fed an HFD for 4 weeks before supplementing with STZ (30 mg/kg). The diabetic mice were divided into five groups, including a control group, a diabetic (DM) group, a DM with administration of a low-dose CLE treatment (DM+CLE1, 600 mg/kg), a DM with administration of a high-dose of CLE (DM+CLE2, 1000 mg/kg) and a DM with metformin treatment as a positive control (DM+Met, 200 mg/kg) for 6 weeks. The results showed that the CLE administration improved hyperglycemia and insulin resistance. Proinflammatory cytokines such as interleukin-1β and tumor necrosis factor-α were found to decrease in the CLE-treated groups. Additionally, CLE was shown to improve sperm motility and testis morphology. Based on the results, it was confirmed that the polysaccharides-rich extract from C. lentillifera extract was able to prevent diabetes-induced male reproductive dysfunction.
Collapse
|
36
|
Aldekwer S, Desiderio A, Farges MC, Rougé S, Le Naour A, Le Guennec D, Goncalves-Mendès N, Mille-Hamard L, Momken I, Rossary A, Diab-Assaf M, Vasson MP, Talvas J. Vitamin D supplementation associated with physical exercise promotes a tolerogenic immune environment without effect on mammary tumour growth in C57BL/6 mice. Eur J Nutr 2020; 60:2521-2535. [PMID: 33169226 DOI: 10.1007/s00394-020-02420-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE High plasma vitamin D (VitD) level and regular exercise (Ex) are known to have anti-cancer and immunomodulatory effects. This study aimed to evaluate the impact of VitD supplementation and imposed physical Ex on mammary tumour growth and immune response in ovariectomised mice fed high-fat (HF) diet. METHODS Ovariectomised 33-week-old mice C57BL/6 (n = 60), housed in enriched environment (EE), were fed HF diet (450 kcal/100 g) supplemented or not with VitD (HF/HF + D: 125/1225 IU/100 g) for 12 weeks and submitted or not to Ex (HF + Ex; HF + D + Ex) on treadmill (45 min/day, 5 days/week). At w8, syngeneic tumour cells EO771 were orthotopically injected into the 4th mammary gland. Spontaneous activity (SPA), maximal speed (MS) and forelimb grip strength (GS) were measured. Tumour immune cells infiltrate was phenotyped by FACS. Data (mean ± SEM) were analysed by two-way ANOVA + Tukey post-test. RESULTS Ex (p = 0.01) and VitD (p = 0.05) reduced body weight gain. Exercise decreased visceral fat mass [g: 1.5 ± 0.8 (HF); 1.2 ± 0.65 (HF + Ex); 0.9 ± 0.6 (HF + D + Ex); p = 0.03]. SPA (p < 0.0001) and GS (p = 0.01) were higher in HF + D + Ex mice vs others. No effect of Ex or VitD on tumour growth was detected. In tumour, VitD decreased the proportion of NK (p = 0.03), while Ex increased it (p = 0.03). The Th1/Th2 ratio is lowered by VitD (p = 0.05), while Tc/Treg ratio was not affected either by Exercise or VitD. CONCLUSION In our experimental conditions, VitD supplementation and physical exercise have synergetic effects reducing the weight gain under HF diet and improving the physical capacities of mice. VitD coupled with exercise induces an immunosuppressive response without effect on tumour growth.
Collapse
Affiliation(s)
- Sahar Aldekwer
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Adrien Desiderio
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Marie-Chantal Farges
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Stéphanie Rougé
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Augustin Le Naour
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Delphine Le Guennec
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Nicolas Goncalves-Mendès
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Laurence Mille-Hamard
- Integrative Biology of Exercise Adaptations Unit, Evry University, Paris Saclay University, 91000, Evry-Courcouronnes, France
| | - Iman Momken
- Integrative Biology of Exercise Adaptations Unit, Evry University, Paris Saclay University, 91000, Evry-Courcouronnes, France.,Faculty of Pharmacy, Inserm, UMR-S 1180, Paris-Saclay University, 92290, Châtenay-Malabry, France
| | - Adrien Rossary
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Molecular Tumourigenesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Marie-Paule Vasson
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France
| | - Jérémie Talvas
- Human Nutrition Unit, ECREIN Team, UMR 1019 INRAE/UCA, CRNH-Auvergne, BP 10448, 63000, Clermont-Ferrand, France.
| |
Collapse
|
37
|
Srebf2 Locus Overexpression Reduces Body Weight, Total Cholesterol and Glucose Levels in Mice Fed with Two Different Diets. Nutrients 2020; 12:nu12103130. [PMID: 33066385 PMCID: PMC7602228 DOI: 10.3390/nu12103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
Macronutrients represent risk factors for hyperlipidemia or diabetes. Lipid alterations and type 2 diabetes mellitus are global health problems. Overexpression of sterol regulatory element-binding factor (Srebf2) in transgenic animals is linked to elevated cholesterol levels and diabetes development. We investigated the impact of increased Srebf2 locus expression and the effects of control and high-fat, high-sucrose (HFHS) diets on body weight, glucose and lipid metabolisms in transgenic mice (S-mice). Wild type (WT) and S-mice were fed with both diets for 16 weeks. Plasma glucose, insulin and lipids were assessed (n = 25). Immunostainings were performed in liver, pancreas and fat (N = 10). Expression of Ldlr and Hmgcr in liver was performed by RT-PCR (N = 8). Control diet: S-mice showed reduced weight, insulin, total and HDL cholesterol and triglycerides (TG). HFHS diet widened differences in weight, total and HDL cholesterol, insulin and HOMA index but increased TG in S-mice. In S-mice, adipocyte size was lower while HFHS diet produced lower increase, pancreatic β-cell mass was lower with both diets and Srebf2, Ldlr and Hmgcr mRNA levels were higher while HFHS diet produced a rise in Srebf2 and Hmgcr levels. Srebf2 complete gene overexpression seems to have beneficial effects on metabolic parameters and to protect against HFHS diet effects.
Collapse
|
38
|
Sharma G, Hu C, Staquicini DI, Brigman JL, Liu M, Mauvais-Jarvis F, Pasqualini R, Arap W, Arterburn JB, Hathaway HJ, Prossnitz ER. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci Transl Med 2020; 12:12/528/eaau5956. [PMID: 31996464 DOI: 10.1126/scitranslmed.aau5956] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/23/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERβ, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Chelin Hu
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Daniela I Staquicini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery and Sex-Based Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.,Section of Endocrinology, Southeast Louisiana Veterans Administration Health Care System, New Orleans, LA 70112, USA
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA. .,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
39
|
Oliveira KM, Figueiredo LS, Araujo TR, Freitas IN, Silva JN, Boschero AC, Ribeiro RA. Prolonged bisphenol-A exposure decreases endocrine pancreatic proliferation in response to obesogenic diet in ovariectomized mice. Steroids 2020; 160:108658. [PMID: 32442623 DOI: 10.1016/j.steroids.2020.108658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022]
Abstract
Research on the deleterious actions of bisphenol (BP)-A have focused on its effects on insulin secretion during pre/perinatal periods or adulthood. Estrogens also modulate endocrine pancreas physiology in females during aging; however, the effects of BPA on islet morphophysiology after menopause have not been investigated. We evaluated the effects of BPA exposure on glucose homeostasis and islet morphofunction in ovariectomized (OVX) mice fed on a high-fat diet (HFD). Adult Swiss female mice were underwent to bilateral ovariectomy, and with the confirmation of the establishment of surgical menopause, the females were then submitted, or not,to a normolipidic diet or HFD [control (CTL) and HFD groups, respectively] without or with 1 μg/mL BPA in their drinking water (CBPA and HBPA groups) for 90 days. HFD females displayed obesity, hyperglycemia, hyperinsulinemia, glucose intolerance and insulin resistance. BPA did not modulate HFD-induced obesity or body glucose impairments in HBPA females, and islets isolated from both the HFD and HBPA groups exhibited insulin hypersecretion. The HBPA islets, however, displayed enlarged islet cells and reduced proliferation, in association with the downregulation of mRNAs encoding PDX-1, NGN3 and CCND2 and upregulation of mRNAs encoding ER-β, GPR30, TNF-α and IL-1β in HBPA islets. BPA consumption in OVX mice impaired the islet-cell hyperplasia response to the HFD, partly mediated by increased expression of ER-β and GPR30, which impaired the expression of major genes involved in islet-cell survival and functionality. Together with higher pro-inflammatory cytokines expression in the islet milieu, these alterations may accelerate β-cell failure in postmenopause.
Collapse
Affiliation(s)
- Kênia M Oliveira
- Federal University of Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | | | - Thiago R Araujo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Israelle N Freitas
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Juliana N Silva
- Federal University of Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Rosane A Ribeiro
- Federal University of Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil.
| |
Collapse
|
40
|
Elafin inhibits obesity, hyperglycemia, and liver steatosis in high-fat diet-treated male mice. Sci Rep 2020; 10:12785. [PMID: 32733043 PMCID: PMC7393145 DOI: 10.1038/s41598-020-69634-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
Elafin is an antimicrobial and anti-inflammatory protein. We hypothesize that elafin expression correlates with diabetes. Among non-diabetic and prediabetic groups, men have significantly higher serum elafin levels than women. Men with type 2 diabetes mellitus (T2DM) have significantly lower serum elafin levels than men without T2DM. Serum elafin levels are inversely correlated with fasting blood glucose and hemoglobin A1c levels in men with T2DM, but not women with T2DM. Lentiviral elafin overexpression inhibited obesity, hyperglycemia, and liver steatosis in high-fat diet (HFD)-treated male mice. Elafin-overexpressing HFD-treated male mice had increased serum leptin levels, and serum exosomal miR181b-5p and miR219-5p expression. Transplantation of splenocytes and serum exosomes from elafin-overexpressing HFD-treated donor mice reduced food consumption and fat mass, and increased adipose tissue leptin mRNA expression in HFD-treated recipient mice. Elafin improved leptin sensitivity via reduced interferon-gamma expression and induced adipose leptin expression via increased miR181b-5p and miR219-5p expression. Subcutaneous and oral administration of modified elafin inhibited obesity, hyperglycemia, and liver steatosis in the HFD-treated mice. Circulating elafin levels are associated with hyperglycemia in men with T2DM. Elafin, via immune-derived miRNAs and cytokine, activates leptin sensitivity and expression that subsequently inhibit food consumption, obesity, hyperglycemia, and liver steatosis in HFD-treated male mice.
Collapse
|
41
|
Sprouse JC, Sampath C, Gangula PR. Supplementation of 17β-Estradiol Normalizes Rapid Gastric Emptying by Restoring Impaired Nrf2 and nNOS Function in Obesity-Induced Diabetic Ovariectomized Mice. Antioxidants (Basel) 2020; 9:E582. [PMID: 32635208 PMCID: PMC7402187 DOI: 10.3390/antiox9070582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gastroparesis (Gp) is a multifactorial condition commonly observed in females and is characterized by delayed or rapid gastric emptying (GE). The role of ovarian hormones on GE in the pathogenesis of obesity induced type 2 diabetes mellitus (T2DM) is completely unknown. The aims of our study are to investigate whether supplementation of 17β-estradiol (E2) or progesterone (P4) restores impaired nuclear factor erythroid 2-related factor 2 (Nrf2, an oxidative stress-responsive transcription factor) and nitric oxide (NO)-mediated gastric motility in ovariectomized (OVX) mice consuming a high-fat diet (HFD, a model of T2DM). Groups of OVX+HFD mice were administered daily subcutaneous doses of either E2 or P4 for 12 weeks. The effects of E2 and P4 on body weight, metabolic homeostasis, solid GE, gastric antrum NO-mediated relaxation, total nitrite levels, neuronal nitric oxide synthase (nNOSα), and its cofactor expression levels were assessed in OVX+HFD mice. HFD exacerbated hyperglycemia and insulinemia while accelerating GE (p < 0.05) in OVX mice. Exogenous E2, but not P4, attenuated rapid gastric emptying and restored gastric nitrergic relaxation, total nitrite levels, nNOSα, and cofactor expression via normalizing Nrf2-Phase II enzymes, inflammatory response, and mitogen-activated protein kinase (MAPK) protein expression in OVX+HFD mice. We conclude that E2 is beneficial in normalizing metabolic homeostasis and gastric emptying in obese, diabetic OVX mice consuming a fat-rich diet.
Collapse
Affiliation(s)
- Jeremy C. Sprouse
- School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
| | - Chethan Sampath
- Department of ODS & Research, School of Dentistry, Nashville, TN 37208, USA;
| | - Pandu R. Gangula
- Department of ODS & Research, School of Dentistry, Nashville, TN 37208, USA;
| |
Collapse
|
42
|
Jacobs AJ, Roskam AL, Hummel FM, Ronan PJ, Gorres-Martens BK. Exercise improves high-fat diet- and ovariectomy-induced insulin resistance in rats with altered hepatic fat regulation. Curr Res Physiol 2020; 3:11-19. [PMID: 34746816 PMCID: PMC8562195 DOI: 10.1016/j.crphys.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
A high-fat diet (HFD) and loss of endogenous estrogens increases the risk for type 2 diabetes (T2D) and insulin resistance. Although exercise is known to prevent and manage insulin resistance, the cellular mechanisms remain largely unknown, especially in the context of a combined HFD and endogenous estrogen loss via ovariectomy (OVX). This study uses female Wistar rats to assess the effect of diet, endogenous estrogens, an exercise on insulin resistance, serum hormones, hepatic AMPK, hepatic regulators of fat metabolism, and expression of signaling molecules of the brain reward pathway. The combination of the HFD/OVX increased the homeostatic model assessment of insulin resistance (HOMA-IR), the glucose-insulin (G-I) index, and the serum adiponectin and leptin values, and exercise decreased these factors. The combination of the HFD/OVX decreased hepatic pAMPK, and exercise restored hepatic pAMPK, an important regulator of fat and glucose metabolism. Furthermore, consumption of the HFD by rats with intact ovaries (and endogenous estrogens) did not result in these drastic changes compared to intact rats fed a standard diet, suggesting that the presence of estrogens provides whole body benefits. Additionally, the HFD decreased the hepatic protein expression of acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), two proteins involved in de novo lipid synthesis and increased the hepatic protein expression of lipoprotein lipase (LPL), a protein involved in fat storage. Finally, exercise increased mRNA expression of the dopamine D2 receptor and tyrosine hydroxylase in the dopaminergic neuron cell body region of the ventral tegmental area, which is a key component of the brain reward pathway. Overall, this study demonstrates that exercise prevents insulin resistance even when a HFD is combined with OVX, despite hepatic changes in ACC, FAS, and LPL.
Collapse
Affiliation(s)
| | - Adam L Roskam
- Chemistry Department, Mount Marty College, Yankton, SD, USA
| | - Faith M Hummel
- Biology Department, Black Hills State University, Spearfish, SD, USA
| | - Patrick J Ronan
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, USA.,Department of Psychiatry and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
43
|
Hwang YH, Jang SA, Lee A, Cho CW, Song YR, Hong HD, Ha H, Kim T. Polysaccharides isolated from lotus leaves (LLEP) exert anti-osteoporotic effects by inhibiting osteoclastogenesis. Int J Biol Macromol 2020; 161:449-456. [PMID: 32531355 DOI: 10.1016/j.ijbiomac.2020.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Nelumbo nucifera, more commonly known as the Indian lotus, is an important plant that has been incorporated into traditional herbal remedies along the years. Even today, lotus leaves are considered reservoirs for bioactive compounds that can be used as nutritional supplements to treat various human diseases. However, despite the wide ranging biological activities of lotus polysaccharides, limited information is available regarding the anti-osteoporotic effects of these substances. The aim of this study was to investigate the beneficial effects of pectinase-assisted extractable polysaccharides from lotus leaves (LLEP) on estrogen deficiency-induced bone loss and osteoclast differentiation in bone marrow-derived macrophages. We found that LLEP markedly inhibited receptor activator of the nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in a dose-dependent manner. It also revoked RANKL-induced activation of osteoclastogenic signals such as the expression of key transcription factors (i.e., c-Fos and nuclear factor of activated T cells cytoplasmic 1), resulting in a decrement in osteoclast-specific marker gene expressions. Microcomputed tomography and morphometric analysis revealed that a four-week oral administration of LLEP notably decreased trabecular bone loss. Taken together, our results suggest that LLEP can mitigate estrogen deficiency-induced bone loss by suppressing osteoclastogenesis, which makes it an excellent candidate for combating osteoporosis.
Collapse
Affiliation(s)
- Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, Daejeon 34054, Republic of Korea
| | - Seon-A Jang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ami Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, Daejeon 34054, Republic of Korea
| | - Chang-Won Cho
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Young-Ran Song
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee-Do Hong
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
44
|
Sucedaram Y, Johns EJ, Husain R, Sattar MA, Abdulla M, Khalilpourfarshbafi M, Abdullah NA. Comparison of high-fat style diet-induced dysregulation of baroreflex control of renal sympathetic nerve activity in intact and ovariectomized female rats: Renal sympathetic nerve activity in high-fat style diet fed intact and ovariectomized female rats. Exp Biol Med (Maywood) 2020; 245:761-776. [PMID: 32212858 DOI: 10.1177/1535370220915673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
IMPACT STATEMENT Over activation of renal sensory nerve in obesity blunts the normal regulation of renal sympathetic nerve activity. To date, there is no investigation that has been carried out on baroreflex regulation of renal sympathetic nerve activity in obese ovarian hormones deprived rat model, and the effect of renal denervation on the baroreflex regulation of renal sympathetic nerve activity. Thus, we investigated the role of renal innervation on baroreflex regulation of renal sympathetic nerve activity in obese intact and ovariectomized female rats. Our data demonstrated that in obese states, the impaired baroreflex control is indistinguishable between ovarian hormones deprived and non-deprived states. This study will be of substantial interest to researchers working on the impact of diet-induced hypertension in pre- and postmenopausal women. This study provides insight into health risks amongst obese women regardless of their ovarian hormonal status and may be integrated in preventive health strategies.
Collapse
Affiliation(s)
- Yamuna Sucedaram
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Edward James Johns
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Ruby Husain
- Department of Physiology, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Munavvar Abdul Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM Pulau Pinang 11800, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
| | - Mohammed Abdulla
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | | | - Nor Azizan Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
45
|
A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158582. [DOI: 10.1016/j.bbalip.2019.158582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
46
|
Kim M, Han KD, Lee JH. Bodyweight variability and the risk of psoriasis: a nationwide population-based cohort study. J Eur Acad Dermatol Venereol 2020; 34:1019-1025. [PMID: 31747463 DOI: 10.1111/jdv.16099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bodyweight variability has been suggested to exacerbate chronic inflammation and increase the risk of adverse cardiovascular events. Little is known whether high variability in bodyweight affects the development of psoriasis. OBJECTIVE To investigate the association between weight variability and the risk of psoriasis. METHODS Using a representative cohort enrolled in the national health examination programme conducted by the Korean National Health Insurance Service, 8 016 907 people who were free of psoriasis and who underwent at least three health examinations between 2010 and 2015 were followed until the end of 2017. We classified participants numerically according to the variability indices and defined high variability (Q4) as the highest quartile of variability. Cox proportional hazard regression models were used to evaluate the risk of psoriasis according to the quartile groups of bodyweight variability. RESULTS In total, 187 128 (2.33%) participants developed psoriasis during a median follow-up of 3.4 years. There was an association between baseline body mass index and the risk of psoriasis. In the multivariable model adjusting for confounding variables, an incrementally increased risk of psoriasis was observed for higher quartiles compared with the lowest quartile group (Q1). The hazard ratio (HR) and 95% confidence intervals comparing the highest (Q4) and lowest quartiles (Q1) of bodyweight variability were 1.06 (1.05-1.07) for psoriasis. CONCLUSION High bodyweight variability was significantly associated with an increased risk of psoriasis. These findings imply that clinicians should encourage patients to maintain proper bodyweight to help prevent psoriasis.
Collapse
Affiliation(s)
- M Kim
- Department of Dermatology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - K-D Han
- Department of Medical Statistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - J H Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
47
|
Farhadi Z, Khaksari M, Azizian H, Dabiri S, Fallah H, Nozari M. Aging is associated with loss of beneficial effects of estrogen on leptin responsiveness in mice fed high fat diet: Role of estrogen receptor α and cytokines. Mech Ageing Dev 2020; 186:111198. [PMID: 31904410 DOI: 10.1016/j.mad.2019.111198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/27/2019] [Accepted: 12/19/2019] [Indexed: 01/25/2023]
Abstract
Aging causes changes in body composition and energy balance. Estrogen plays an important role in body's metabolism. The aim of this study was to determine whether estrogen has beneficial effects on leptin responsiveness in aged mice. Young 4 months and aged 19-21 female mice fed High Fat Diet (HFD) or Standard Diet (SD) for 12 weeks and following received estrogen for 4 weeks. Responsiveness to leptin was compared by measuring energy balance parameters. Results showed that HFD caused weight gain compared to SD in young, but had no effect on aged animals. Estrogen reduced body weight, energy intake and visceral fat in young, while none of these parameters was affected in aged animals. Although there was leptin sensitivity in aged compared to ovariectomized animals, estrogen only improved the sensitivity of young to leptin. Estrogen prevented increase in TNF-α and a decrease in IL-10 in HFD young and aged animals. Response to estrogen depended on age, and estrogen increased leptin sensitivity only in young animals. Determining the exact mechanism of this action is suggested in future studies.
Collapse
Affiliation(s)
- Zeinab Farhadi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hossein Azizian
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Fallah
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Nozari
- Neuroscience Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
48
|
Omotola O, Legan S, Slade E, Adekunle A, Pendergast JS. Estradiol regulates daily rhythms underlying diet-induced obesity in female mice. Am J Physiol Endocrinol Metab 2019; 317:E1172-E1181. [PMID: 31689145 PMCID: PMC6957379 DOI: 10.1152/ajpendo.00365.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The circadian system is a critical regulator of metabolism and obesity in males, but its role in regulating obesity in females is poorly understood. Because there are sex differences in the development of obesity and susceptibility to obesity-related disorders, we sought to determine the role of estrogens in regulating the circadian mechanisms underlying diet-induced obesity. When fed high-fat diet, C57BL/6J male mice gain weight, whereas females are resistant to diet-induced obesity. Here, we demonstrate that estradiol regulates circadian rhythms in females to confer resistance to diet-induced obesity. We found that ovariectomized females with undetectable circulating estrogens became obese and had disrupted daily rhythms of eating behavior and locomotor activity when fed a high-fat diet. The phase of the liver molecular circadian rhythm was also altered by high-fat diet feeding in ovariectomized mice. Estradiol replacement in ovariectomized females a fed high-fat diet rescued these behavioral and tissue rhythms. Additionally, restoring the daily rhythm of eating behavior in ovariectomized females with time-restricted feeding inhibited diet-induced obesity and insulin resistance. Together, these data suggest that the circadian system is a target for treating obesity and its comorbidities in women after menopause, when circulating levels of estrogens are too low to protect their circadian rhythms.
Collapse
Affiliation(s)
| | - Sandra Legan
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Emily Slade
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | | | | |
Collapse
|
49
|
Pakiet A, Jakubiak A, Czumaj A, Sledzinski T, Mika A. The effect of western diet on mice brain lipid composition. Nutr Metab (Lond) 2019; 16:81. [PMID: 31788013 PMCID: PMC6880556 DOI: 10.1186/s12986-019-0401-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background The appropriate fatty acids composition of brain lipids is critical for functioning of this organ. The alterations of brain fatty acids composition may lead to neurological and neurodegenerative diseases. Methods The aim of this work was to evaluate the effect of western diet containing high fat content on fatty acid composition of brain lipids. In this study we used mice fed high fat diet (HFD) for 19 weeks. Brain lipids were separated by SPE extraction and fatty acid composition in chow, mice serum, brain and other tissues was analyzed by GC-MS method. Results The body weight and adipose tissue weigh of mice after HFD increased significantly. The concentrations of most of fatty acids in serum of mice after HFD increased, due to their higher delivery from food. Unexpectedly the serum eicosapentaenoic acid (EPA) concentration was lower in mice after HFD than in controls. Also the brain, and other tissue EPA content was lower. Among studied groups of brain lipids EPA was significantly decreased in phospholipids and sphingolipids. Conclusions Considering important role of brain EPA including maintaining of appropriate composition of cell membrane lipids and anti-inflammatory properties we conclude that decrease of brain EPA after western diet may result in impaired brain function.
Collapse
Affiliation(s)
- Alicja Pakiet
- 1Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka Jakubiak
- 2Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Czumaj
- 3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Tomasz Sledzinski
- 3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Adriana Mika
- 1Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.,3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
50
|
17-DMAG, an Hsp90 inhibitor, ameliorates ovariectomy-induced obesity in rats. Life Sci 2019; 232:116672. [DOI: 10.1016/j.lfs.2019.116672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
|