1
|
Indrati AR, Horian E, Dewi NS, Suraya N, Tiara MR, Djauhari H, Alisjahbana B. The Protection Level of S-RBD SARS-CoV-2 Immunoglobulin G Antibodies Using the Chemiluminescent Immunoassay Compared to the Surrogate Virus Neutralization Test Method. Diagnostics (Basel) 2024; 14:1776. [PMID: 39202264 PMCID: PMC11353806 DOI: 10.3390/diagnostics14161776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
COVID-19 infection in high-risk populations is fatal and has a poor prognosis, necessitating a test to determine the protectiveness of immune response. Antibody testing is necessary to determine the body's immune response to COVID-19 infection and also vaccination strategies. Among the various methods available, the chemiluminescent immunoassay (CLIA) test is more widely used and accessible to determine antibody levels. This study aimed to determine the protection level of S-RBD SARS-CoV-2 IgG using CLIA compared to the Surrogate Virus Neutralization Test (SVNT). The population of this study comprised all healthcare professionals who experienced S-RBD SARS-CoV-2 IgG antibody level examinations. S-RBD SARS-CoV-2 IgG antibody levels were examined using CLIA and SVNT. The cut-off was determined using a receiver operating characteristic (ROC) curve, and area under the curve (AUC) measurements were evaluated. The result showed a strong positive correlation between S-RBD SARS-CoV-2 IgG CLIA and SVNT, with a value of r = 0.933 and p < 0.001. The value ≥ 37.29 BAU/mL was determined as the cut-off based on SVNT 30% inhibition level with sensitivity, specificity, and positive and negative predictive values of 96.5%, 90.9%, 96.5%, and 90.9%, respectively. A titer of antibodies greater than or equal to 37.29 BAU/mL with CLIA showed the presence of protective antibodies compared to SVNT.
Collapse
Affiliation(s)
- Agnes Rengga Indrati
- Departement of Clinical Pathology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia; (E.H.); (N.S.D.); (N.S.)
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia; (M.R.T.); (H.D.); (B.A.)
| | - Erinca Horian
- Departement of Clinical Pathology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia; (E.H.); (N.S.D.); (N.S.)
| | - Nina Susana Dewi
- Departement of Clinical Pathology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia; (E.H.); (N.S.D.); (N.S.)
| | - Nida Suraya
- Departement of Clinical Pathology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia; (E.H.); (N.S.D.); (N.S.)
| | - Marita Restie Tiara
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia; (M.R.T.); (H.D.); (B.A.)
| | - Hofiya Djauhari
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia; (M.R.T.); (H.D.); (B.A.)
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia; (M.R.T.); (H.D.); (B.A.)
- Departement of Internal Medicine, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
| |
Collapse
|
2
|
Purves K, Brown H, Haverty R, Ryan A, Griffin LL, McCormack J, O'Reilly S, Mallon PW, Gautier V, Cassidy JP, Fabre A, Carr MJ, Gonzalez G, Ciuti S, Fletcher NF. SARS-CoV-2 Seropositivity in Urban Population of Wild Fallow Deer, Dublin, Ireland, 2020-2022. Emerg Infect Dis 2024; 30:1609-1620. [PMID: 39043403 PMCID: PMC11286063 DOI: 10.3201/eid3008.231056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2 can infect wildlife, and SARS-CoV-2 variants of concern might expand into novel animal reservoirs, potentially by reverse zoonosis. White-tailed deer and mule deer of North America are the only deer species in which SARS-CoV-2 has been documented, raising the question of whether other reservoir species exist. We report cases of SARS-CoV-2 seropositivity in a fallow deer population located in Dublin, Ireland. Sampled deer were seronegative in 2020 when the Alpha variant was circulating in humans, 1 deer was seropositive for the Delta variant in 2021, and 12/21 (57%) sampled deer were seropositive for the Omicron variant in 2022, suggesting host tropism expansion as new variants emerged in humans. Omicron BA.1 was capable of infecting fallow deer lung type-2 pneumocytes and type-1-like pneumocytes or endothelial cells ex vivo. Ongoing surveillance to identify novel SARS-CoV-2 reservoirs is needed to prevent public health risks during human-animal interactions in periurban settings.
Collapse
|
3
|
Tan CS, Adrus M, Rahman SPH, Azman HIM, Abang RAA. Seroevidence of SARS-CoV-2 spillback to rodents in Sarawak, Malaysian Borneo. BMC Vet Res 2024; 20:161. [PMID: 38678268 PMCID: PMC11055293 DOI: 10.1186/s12917-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND SARS-CoV-2 is believed to have originated from a spillover event, where the virus jumped from bats to humans, leading to an epidemic that quickly escalated into a pandemic by early 2020. Despite the implementation of various public health measures, such as lockdowns and widespread vaccination efforts, the virus continues to spread. This is primarily attributed to the rapid emergence of immune escape variants and the inadequacy of protection against reinfection. Spillback events were reported early in animals with frequent contact with humans, especially companion, captive, and farmed animals. Unfortunately, surveillance of spillback events is generally lacking in Malaysia. Therefore, this study aims to address this gap by investigating the presence of SARS-CoV-2 neutralising antibodies in wild rodents in Sarawak, Malaysia. RESULTS We analysed 208 archived plasma from rodents collected between from 2018 to 2022 to detect neutralising antibodies against SARS-CoV-2 using a surrogate virus neutralisation test, and discovered two seropositive rodents (Sundamys muelleri and Rattus rattus), which were sampled in 2021 and 2022, respectively. CONCLUSION Our findings suggest that Sundamys muelleri and Rattus rattus may be susceptible to natural SARS-CoV-2 infections. However, there is currently no evidence supporting sustainable rodent-to-rodent transmission.
Collapse
Affiliation(s)
- Cheng Siang Tan
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia.
| | - Madinah Adrus
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | | | - Haziq Izzuddin Muhamad Azman
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | - Riz Anasthasia Alta Abang
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| |
Collapse
|
4
|
Haun BK, To A, Williams CA, Ball A, Fong K, Wong TAS, Shobayo B, Teahton J, Ching L, Kamara V, Tekah DM, Humphrey P, Berestecky J, Nerurkar VR, Lehrer AT. A Serological Multiplexed Immunoassay (MIA) Detects Antibody Reactivity to SARS-CoV-2 and Other Viral Pathogens in Liberia and Is Configurable as a Multiplexed Inhibition Test (MINT). IMMUNO 2024; 4:108-124. [PMID: 39391865 PMCID: PMC11465787 DOI: 10.3390/immuno4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The SARS-CoV-2 pandemic ignited global efforts to rapidly develop testing, therapeutics, and vaccines. However, the rewards of these efforts were slow to reach many low- to middle-income countries (LMIC) across the African continent and globally. Therefore, two bead-based multiplexed serological assays were developed to determine SARS-CoV-2 exposure across four counties in Liberia. This study was conducted during the summer of 2021 on 189 samples collected throughout Grand Bassa, Bong, Margibi, and Montserrado counties. Our multiplexed immunoassay (MIA) detected elevated exposure to SARS-CoV-2 and multiple variant antigens. Additionally, we detected evidence of exposure to Dengue virus serotype 2, Chikungunya virus, and the seasonal coronavirus NL63. Our multiplexed inhibition test (MINT) was developed from the MIA to observe antibody-mediated inhibition of SARS-CoV-2 spike protein binding to its cognate cellular receptor ACE-2. We detected inhibitory antibodies in the tested Liberian samples, which were collectively consistent with a convalescent serological profile. These complementary assays serve to supplement existing serological testing needs and may enhance the technical capacity of scientifically underrepresented regions globally.
Collapse
Affiliation(s)
- Brien K. Haun
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Caitlin A. Williams
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Aquena Ball
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Karalyn Fong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Bode Shobayo
- National Public Health Institute of Liberia, Monrovia 1000, Liberia
| | - Julius Teahton
- National Public Health Institute of Liberia, Monrovia 1000, Liberia
| | - Lauren Ching
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Varney Kamara
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - Davidetta M. Tekah
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - Peter Humphrey
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - John Berestecky
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
- Math Science Department, Kapiolani Community College, University of Hawaii, Honolulu, HI 96816, USA
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Axel T. Lehrer
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Hüttl J, Reitt K, Meli ML, Meili T, Bönzli E, Pineroli B, Ginders J, Schoster A, Jones S, Tyson GB, Hosie MJ, Pusterla N, Wernike K, Hofmann-Lehmann R. Serological and Molecular Investigation of SARS-CoV-2 in Horses and Cattle in Switzerland from 2020 to 2022. Viruses 2024; 16:224. [PMID: 38400000 PMCID: PMC10892882 DOI: 10.3390/v16020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Horses and cattle have shown low susceptibility to SARS-CoV-2, and there is no evidence of experimental intraspecies transmission. Nonetheless, seropositive horses in the US and seropositive cattle in Germany and Italy have been reported. The current study investigated the prevalence of antibodies against SARS-CoV-2 in horses and cattle in Switzerland. In total, 1940 serum and plasma samples from 1110 horses and 830 cattle were screened with a species-specific ELISA based on the SARS-CoV-2 receptor-binding domain (RBD) and, in the case of suspect positive results, a surrogate virus neutralization test (sVNT) was used to demonstrate the neutralizing activity of the antibodies. Further confirmation of suspect positive samples was performed using either a pseudotype-based virus neutralization assay (PVNA; horses) or an indirect immunofluorescence test (IFA; cattle). The animals were sampled between February 2020 and December 2022. Additionally, in total, 486 bronchoalveolar lavage (BAL), oropharyngeal, nasal and rectal swab samples from horses and cattle were analyzed for the presence of SARS-CoV-2 RNA via reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Six horses (0.5%; 95% CI: 0.2-1.2%) were suspect positive via RBD-ELISA, and neutralizing antibodies were detected in two of them via confirmatory sVNT and PVNA tests. In the PVNA, the highest titers were measured against the Alpha and Delta SARS-CoV-2 variants. Fifteen cattle (1.8%; 95% CI: 1.0-3.0%) were suspect positive in RBD-ELISA; 3 of them had SARS-CoV-2-specific neutralizing antibodies in sVNT and 4 of the 15 were confirmed to be positive via IFA. All tested samples were RT-qPCR-negative. The results support the hypotheses that the prevalence of SARS-CoV-2 infections in horses and cattle in Switzerland was low up to the end of 2022.
Collapse
Affiliation(s)
- Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland;
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland;
| | - Marina L. Meli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Theres Meili
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Eva Bönzli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Benita Pineroli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Julia Ginders
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Angelika Schoster
- Clinic for Equine Internal Medicine, Equine Department, University of Zurich, 8057 Zurich, Switzerland;
| | - Sarah Jones
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.)
| | - Grace B. Tyson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.)
- MRC-University of Glasgow, Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK;
| | - Margaret J. Hosie
- MRC-University of Glasgow, Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK;
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| |
Collapse
|
6
|
von Possel R, Menge B, Deschermeier C, Fritzsche C, Hemmer C, Geerdes-Fenge H, Loebermann M, Schulz A, Lattwein E, Steinhagen K, Tönnies R, Ahrendt R, Emmerich P. Performance Analysis of Serodiagnostic Tests to Characterize the Incline and Decline of the Individual Humoral Immune Response in COVID-19 Patients: Impact on Diagnostic Management. Viruses 2024; 16:91. [PMID: 38257792 PMCID: PMC10820597 DOI: 10.3390/v16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Serodiagnostic tests for antibody detection to estimate the immunoprotective status regarding SARS-CoV-2 support diagnostic management. This study aimed to investigate the performance of serological assays for COVID-19 and elaborate on test-specific characteristics. Sequential samples (n = 636) of four panels (acute COVID-19, convalescent COVID-19 (partly vaccinated post-infection), pre-pandemic, and cross-reactive) were tested for IgG by indirect immunofluorescence test (IIFT) and EUROIMMUN EUROLINE Anti-SARS-CoV-2 Profile (IgG). Neutralizing antibodies were determined by a virus neutralization test (VNT) and two surrogate neutralization tests (sVNT, GenScript cPass, and EUROIMMUN SARS-CoV-2 NeutraLISA). Analysis of the acute and convalescent panels revealed high positive (78.3% and 91.6%) and negative (91.6%) agreement between IIFT and Profile IgG. The sVNTs revealed differences in their positive (cPass: 89.4% and 97.0%, NeutraLISA: 71.5% and 72.1%) and negative agreement with VNT (cPass: 92.3% and 50.0%, NeutraLISA: 95.1% and 92.5%) at a diagnostic specificity of 100% for all tests. The cPass showed higher inhibition rates than NeutraLISA at VNT titers below 1:640. Cross-reactivities were only found by cPass (57.1%). Serodiagnostic tests, which showed substantial agreement and fast runtime, could provide alternatives for cell-based assays. The findings of this study suggest that careful interpretation of serodiagnostic results obtained at different times after SARS-CoV-2 antigen exposure is crucial to support decision-making in diagnostic management.
Collapse
Affiliation(s)
- Ronald von Possel
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Babett Menge
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Carlos Fritzsche
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Christoph Hemmer
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Hilte Geerdes-Fenge
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Micha Loebermann
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| | - Anette Schulz
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Erik Lattwein
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | - Katja Steinhagen
- Institute for Experimental Immunology, EUROIMMUN Medizinische Labordiagnostika AG, 23560 Lübeck, Germany
| | | | | | - Petra Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
7
|
Cordero-Ortiz M, Reséndiz-Sandoval M, Dehesa-Canseco F, Solís-Hernández M, Pérez-Sánchez J, Martínez-Borges C, Mata-Haro V, Hernández J. Development of a Multispecies Double-Antigen Sandwich ELISA Using N and RBD Proteins to Detect Antibodies against SARS-CoV-2. Animals (Basel) 2023; 13:3487. [PMID: 38003105 PMCID: PMC10668785 DOI: 10.3390/ani13223487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
SARS-CoV-2 infects humans and a broad spectrum of animal species, such as pets, zoo animals, and nondomestic animals. Monitoring infection in animals is important in terms of the risk of interspecies transmission and the emergence of new viral variants. Economical, fast, efficient, and sensitive diagnostic tests are needed to analyze animal infection. Double-antigen sandwich ELISA has the advantage of being multispecies and can be used for detecting infections caused by pathogens that infect several animal hosts. This study aimed to develop a double-antigen sandwich ELISA using two SARS-CoV-2 proteins, N and RBD. We compared its performance, when using these proteins separately, with an indirect ELISA and with a surrogate virus neutralization test. Positive and negative controls from a cat population (n = 31) were evaluated to compare all of the tests. After confirming that double-antigen sandwich ELISA with both RBD and N proteins had the best performance (AUC= 88%), the cutoff was adjusted using positive and negative samples from cats, humans (n = 32) and guinea pigs (n = 3). The use of samples from tigers (n = 2) and rats (n = 51) showed good agreement with the results previously obtained using the microneutralization test. Additionally, a cohort of samples from dogs with unknown infection status was evaluated. These results show that using two SARS-CoV-2 proteins in the double-antigen sandwich ELISA increases its performance and turns it into a valuable assay with which to monitor previous infection caused by SARS-CoV-2 in different animal species.
Collapse
Affiliation(s)
- Maritza Cordero-Ortiz
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| | - Freddy Dehesa-Canseco
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Secretaría de Agricultura y Desarrollo Rural (SADER), Ciudad de Mexico 05110, Mexico State, Mexico; (F.D.-C.); (M.S.-H.)
| | - Mario Solís-Hernández
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Secretaría de Agricultura y Desarrollo Rural (SADER), Ciudad de Mexico 05110, Mexico State, Mexico; (F.D.-C.); (M.S.-H.)
| | - Jahir Pérez-Sánchez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd., Reynosa 88710, Tamaulipas, Mexico;
| | | | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico;
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| |
Collapse
|
8
|
Santos da Silva E, Servais JY, Kohnen M, Arendt V, Staub T, Krüger R, Fagherazzi G, Wilmes P, Hübschen JM, Ollert M, Perez-Bercoff D, Seguin-Devaux C. Validation of a SARS-CoV-2 Surrogate Neutralization Test Detecting Neutralizing Antibodies against the Major Variants of Concern. Int J Mol Sci 2023; 24:14965. [PMID: 37834413 PMCID: PMC10573711 DOI: 10.3390/ijms241914965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
SARS-CoV-2 infection and/or vaccination elicit a broad range of neutralizing antibody responses against the different variants of concern (VOC). We established a new variant-adapted surrogate virus neutralization test (sVNT) and assessed the neutralization activity against the ancestral B.1 (WT) and VOC Delta, Omicron BA.1, BA.2, and BA.5. Analytical performances were compared against the respective VOC to the reference virus neutralization test (VNT) and two CE-IVD labeled kits using three different cohorts collected during the COVID-19 waves. Correlation analyses showed moderate to strong correlation for Omicron sub-variants (Spearman's r = 0.7081 for BA.1, r = 0.7205 for BA.2, and r = 0.6042 for BA.5), and for WT (r = 0.8458) and Delta-sVNT (r = 0.8158), respectively. Comparison of the WT-sVNT performance with two CE-IVD kits, the "Icosagen SARS-CoV-2 Neutralizing Antibody ELISA kit" and the "Genscript cPass, kit" revealed an overall good correlation ranging from 0.8673 to -0.8773 and a midway profile between both commercial kits with 87.76% sensitivity and 90.48% clinical specificity. The BA.2-sVNT performance was similar to the BA.2 Genscript test. Finally, a correlation analysis revealed a strong association (r = 0.8583) between BA.5-sVNT and VNT sVNT using a double-vaccinated cohort (n = 100) and an Omicron-breakthrough infection cohort (n = 91). In conclusion, the sVNT allows for the efficient prediction of immune protection against the various VOCs.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Jean-Yves Servais
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Michel Kohnen
- National Service of Infectious Diseases, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg; (M.K.); (V.A.); (T.S.)
| | - Vic Arendt
- National Service of Infectious Diseases, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg; (M.K.); (V.A.); (T.S.)
| | - Therese Staub
- National Service of Infectious Diseases, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg; (M.K.); (V.A.); (T.S.)
| | | | | | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health; Centre Hospitalier de Luxembourg, 4 rue Ernest Barblé, L-1210 Luxembourg, Luxembourg;
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Guy Fagherazzi
- Department of Precision Health, Luxembourg Institute of Health, 1AB Rue Thomas Edison, L-1445 Strassen, Luxembourg;
| | - Paul Wilmes
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Judith M. Hübschen
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Danielle Perez-Bercoff
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (E.S.d.S.); (J.-Y.S.); (J.M.H.); (M.O.); (D.P.-B.)
| |
Collapse
|
9
|
Earnest R, Hahn AM, Feriancek NM, Brandt M, Filler RB, Zhao Z, Breban MI, Vogels CBF, Chen NFG, Koch RT, Porzucek AJ, Sodeinde A, Garbiel A, Keanna C, Litwak H, Stuber HR, Cantoni JL, Pitzer VE, Olarte Castillo XA, Goodman LB, Wilen CB, Linske MA, Williams SC, Grubaugh ND. Survey of white-footed mice in Connecticut, USA reveals low SARS-CoV-2 seroprevalence and infection with divergent betacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559030. [PMID: 37808797 PMCID: PMC10557615 DOI: 10.1101/2023.09.22.559030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Diverse mammalian species display susceptibility to and infection with SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicole M Feriancek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicholas F G Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Abbey J Porzucek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Alexa Garbiel
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Claire Keanna
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Hannah Litwak
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Heidi R Stuber
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ximena A Olarte Castillo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Laura B Goodman
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
10
|
Ramasamy S, Gontu A, Neerukonda S, Ruggiero D, Morrow B, Gupta S, Amirthalingam S, Hardham JM, Lizer JT, Yon M, Nissly RH, Jakka P, Chothe SK, LaBella LC, Tewari D, Nair MS, Kuchipudi SV. SARS-CoV-2 Prevalence and Variant Surveillance among Cats in Pittsburgh, Pennsylvania, USA. Viruses 2023; 15:1493. [PMID: 37515180 PMCID: PMC10386599 DOI: 10.3390/v15071493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects many mammals, and SARS-CoV-2 circulation in nonhuman animals may increase the risk of novel variant emergence. Cats are highly susceptible to SARS-CoV-2 infection, and there were cases of virus transmission between cats and humans. The objective of this study was to assess the prevalence of SARS-CoV-2 variant infection of cats in an urban setting. We investigated the prevalence of SARS-CoV-2 variant infections in domestic and community cats in the city of Pittsburgh (n = 272). While no cats tested positive for SARS-CoV-2 viral RNA, 35 cats (12.86%) tested SARS-CoV-2-antibody-positive. Further, we compared a cat-specific experimental lateral flow assay (eLFA) and species-agnostic surrogate virus neutralization assay (sVNT) for SARS-CoV-2 antibody detection in cats (n = 71). The eLFA demonstrated 100% specificity compared to sVNT. The eLFA also showed 100% sensitivity for sera with >90% inhibition and 63.63% sensitivity for sera with 40-89% inhibition in sVNT. Using a variant-specific pseudovirus neutralization assay (pVNT) and antigen cartography, we found the presence of antibodies to pre-Omicron and Omicron SARS-CoV-2 variants. Hence, this approach proves valuable in identifying cat exposure to different SARS-CoV-2 variants. Our results highlight the continued exposure of cats to SARS-CoV-2 and warrant coordinated surveillance efforts.
Collapse
Affiliation(s)
- Santhamani Ramasamy
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abhinay Gontu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Diana Ruggiero
- S.R. Scientific LLC, 5854 Ellsworth Ave., Pittsburgh, PA 15232, USA
| | - Becky Morrow
- S.R. Scientific LLC, 5854 Ellsworth Ave., Pittsburgh, PA 15232, USA
- Frankie's Friends, 740 5th Ave, New Kensington, PA 15068, USA
| | - Sheweta Gupta
- S.R. Scientific LLC, 5854 Ellsworth Ave., Pittsburgh, PA 15232, USA
| | - Saranya Amirthalingam
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | - Michele Yon
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ruth H Nissly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Padmaja Jakka
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Shubhada K Chothe
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey C LaBella
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepanker Tewari
- Pennsylvania Department of Agriculture, Pennsylvania Veterinary Laboratory, Harrisburg, PA 17110, USA
| | - Meera Surendran Nair
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Suresh V Kuchipudi
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institute of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
12
|
Brnić D, Lojkić I, Krešić N, Zrnčić V, Ružanović L, Mikuletič T, Bosilj M, Steyer A, Keros T, Habrun B, Jemeršić L. Circulation of SARS-CoV-Related Coronaviruses and Alphacoronaviruses in Bats from Croatia. Microorganisms 2023; 11:microorganisms11040959. [PMID: 37110383 PMCID: PMC10143505 DOI: 10.3390/microorganisms11040959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Bats are natural hosts of various coronaviruses (CoVs), including human CoVs, via an assumed direct zoonotic spillover or intermediate animal host. The present study aimed to investigate the circulation of CoVs in a bat colony in the Mediterranean region of Croatia. Guano and individual droppings from four bat species were sampled and tested with the E-gene sarbecovirus RT-qPCR, the pan-CoV semi-nested RT-PCR targeting the RdRp gene and NGS. Furthermore, bat blood samples were investigated for the presence of sarbecovirus-specific antibodies with the surrogate virus neutralization test (sVNT). The initial testing showed E-gene Sarebeco RT-qPCR reactivity in 26% of guano samples while the bat droppings tested negative. The application of RdRp semi-nested RT-PCR and NGS revealed the circulation of bat alpha- and betaCoVs. Phylogenetic analysis confirmed the clustering of betaCoV sequence with SARS-CoV-related bat sarbecoviruses and alpha-CoV sequences with representatives of the Minunacovirus subgenus. The results of sVNT show that 29% of bat sera originated from all four species that tested positive. Our results are the first evidence of the circulation of SARS-CoV-related coronaviruses in bats from Croatia.
Collapse
Affiliation(s)
- Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Nina Krešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Vida Zrnčić
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Lea Ružanović
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Tina Mikuletič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Martin Bosilj
- National Laboratory of Health, Environment and Food, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Tomislav Keros
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Boris Habrun
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Lorena Jemeršić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Ellis J, Sniatynski M, Rapin N, Lacoste S, Erickson N, Haines D. SARS coronavirus 2-reactive antibodies in bovine colostrum. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2023; 64:337-343. [PMID: 37008643 PMCID: PMC10031788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Objective To determine if bovine colostrum and sera have antibodies that react with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Animals Dairy and beef cattle from North America and Europe, sampled before and after the SARS-CoV-2 pandemic. Procedures Indirect ELISAs using whole bovine coronavirus (BCoV) and SARS-CoV-2; whole SARS-CoV-2 Spike 1, Spike 2, and nucleocapsid proteins; and SARS-CoV-2-specific nucleocapsid peptide as antigens. Virus neutralization assay for BCoV. Surrogate virus neutralization assay for SARS-CoV-2. Results Antibodies reactive to BCoV were highly prevalent in samples collected from cattle before and after the SARS-CoV-2 pandemic. Antibodies reactive with SARS-CoV-2 were present in the same samples, and apparently increased in prevalence after the SARS-CoV-2 pandemic. These antibodies had variable reactivity with the spike and nucleocapsid proteins of SARS-CoV-2 but were apparently not specific for SARS-CoV-2. Conclusions Bovine coronavirus continues to be endemic in cattle populations, as indicated by the high prevalence of antibodies to the virus in colostrum and serum samples. Also, the prevalent antibodies to SARS-CoV-2 in bovine samples, before and after the pandemic, are likely the result of responses to epitopes on the spike and nucleocapsid proteins that are shared between the 2 betacoronaviruses. Cross-reactive antibodies in bovine colostrum could be examined for prophylactic or therapeutic effects on SARS-CoV-2 infections in humans.
Collapse
Affiliation(s)
- John Ellis
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Michelle Sniatynski
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Noreen Rapin
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Stacey Lacoste
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Nathan Erickson
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Deborah Haines
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| |
Collapse
|
14
|
The Luciferase Immunoprecipitation System (LIPS) Targeting the Spike Protein of SARS-CoV-2 Is More Accurate than Nucleoprotein-Based LIPS and ELISAs for Mink Serology. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/1318901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Since anthropo-zoonotic outbreaks of SARS-CoV-2 have been reported in mink farms, it is important to monitor the seroprevalence within this population. To investigate the accuracy of nucleo (N) or spike (S) protein-based assays to detect anti-SARS-CoV-2 antibodies in animal serum, we compared four assays, two commercial N-based enzyme-linked immunosorbent assays (ELISA) validated for animal sera and two luciferase immunoprecipitation systems (LIPS-N and LIPS-S), to the reference standard plaque reduction neutralisation test (PRNT). Samples included in this study were derived from a naturally infected mink population. For the first time in this study, serum samples of mink were collected over a 307-day period, at different time points, thus providing an overview of performances of four different rapid serological tests over time. The assays were compared by performing a correlation analysis using R2, Spearman’s rank-order correlation coefficient, and Fleiss’ and Cohen’s kappa for analysis of agreement to PRNT, and an UpSet chart was created to visualize the number of shared positive samples between assays. Cohen’s kappa test on categorical data showed an excellent agreement between PRNT and LIPS-S, while agreements between PRNT and N-based methods decreased from fair for LIPS-N to poor agreements for the ELISA kits. In addition, LIPS-S revealed the highest number of true-positive SARS-CoV-2 samples compared to N-based methods. Despite an excellent agreement between LIPS-S and PRNT, a weak correlation was detectable between PRNT titres and relative light units. This study shows that the LIPS-S assay can be used for serological surveillance within a naturally exposed mink population, while N-based serological assays are less accurate providing a higher number of false-negative results, especially at a later stage of infection, thus indicating that N antibodies are less persistent in naturally exposed mink. Our findings provide crucial information for veterinarians and competent authorities involved in surveillance and outbreak investigation in wild and farmed minks.
Collapse
|
15
|
Klüpfel J, Paßreiter S, Rumpf M, Christa C, Holthoff HP, Ungerer M, Lohse M, Knolle P, Protzer U, Elsner M, Seidel M. Automated detection of neutralizing SARS-CoV-2 antibodies in minutes using a competitive chemiluminescence immunoassay. Anal Bioanal Chem 2023; 415:391-404. [PMID: 36346456 PMCID: PMC9643999 DOI: 10.1007/s00216-022-04416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
The SARS-CoV-2 pandemic has shown the importance of rapid and comprehensive diagnostic tools. While there are numerous rapid antigen tests available, rapid serological assays for the detection of neutralizing antibodies are and will be needed to determine not only the amount of antibodies formed after infection or vaccination but also their neutralizing potential, preventing the cell entry of SARS-CoV-2. Current active-virus neutralization assays require biosafety level 3 facilities, while virus-free surrogate assays are more versatile in applications, but still take typically several hours until results are available. To overcome these disadvantages, we developed a competitive chemiluminescence immunoassay that enables the detection of neutralizing SARS-CoV-2 antibodies within 7 min. The neutralizing antibodies bind to the viral receptor binding domain (RBD) and inhibit the binding to the human angiotensin-converting enzyme 2 (ACE2) receptor. This competitive binding inhibition test was characterized with a set of 80 samples, which could all be classified correctly. The assay results favorably compare to those obtained with a more time-intensive ELISA-based neutralization test and a commercial surrogate neutralization assay. Our test could further be used to detect individuals with a high total IgG antibody titer, but only a low neutralizing titer, as well as for monitoring neutralizing antibodies after vaccinations. This effective performance in SARS-CoV-2 seromonitoring delineates the potential for the test to be adapted to other diseases in the future.
Collapse
Affiliation(s)
- Julia Klüpfel
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Sandra Paßreiter
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Melina Rumpf
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Catharina Christa
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | | | - Martin Ungerer
- ISAR Bioscience GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Martin Lohse
- ISAR Bioscience GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology/Experimental Oncology, Technical University of Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany ,German Center for Infection Research (DZIF), 81675 Munich, Germany
| | - Martin Elsner
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael Seidel
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
16
|
Ng RWY, Boon SS, Chen Z, Ho WCS, Fung KSC, Wong BKC, Yeung ACM, Wong MCS, Chan PKS. Cross-Clade Memory Immunity in Adults Following SARS-CoV-1 Infection in 2003. JAMA Netw Open 2022; 5:e2247723. [PMID: 36538327 PMCID: PMC9856533 DOI: 10.1001/jamanetworkopen.2022.47723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Knowledge of the longevity and breath of immune response to coronavirus infection is crucial for the development of next-generation vaccines to control the COVID-19 pandemic. OBJECTIVES To determine the profile of SARS-CoV-2 antibodies among persons infected with the closely related virus, SARS-CoV-1, in 2003 (SARS03 survivors) and to characterize their antibody response soon after the first and second doses of COVID-19 vaccines. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study examined SARS-CoV-2 antibodies among SARS03 survivors compared with sex- and age-matched infection-naive controls. Participants received the COVID-19 vaccines between March 1 and September 30, 2021. INTERVENTIONS One of the 2 COVID-19 vaccines (inactivated [CoronaVac] or messenger RNA [BNT162b2]) available in Hong Kong. Two doses were given according to the recommended schedule. The vaccine type administered was known to both participants and observers. MAIN OUTCOMES AND MEASURES SARS-CoV-2 antibodies were measured prevaccination, 7 days after the first dose, and 14 days after the second dose. RESULTS Eighteen SARS03 adult survivors (15 women and 3 men; median age, 46.5 [IQR, 40.0-54.3] years) underwent prevaccination serologic examination. The vast majority retained a detectable level of antibodies that cross-reacted with SARS-CoV-2 (16 of 18 [88.9%] with nucleocapsid protein antibodies and 17 of 18 [94.4%] with receptor-binding domain of spike protein antibodies); a substantial proportion (11 of 18 [61.1%]) had detectable cross-neutralizing antibodies. Twelve SARS03 adult survivors (10 women and 2 men) underwent postvaccination serologic examination. At 7 days after the first dose of vaccine, SARS03 survivors mounted significantly higher levels of neutralizing antibodies compared with controls (median inhibition: 89.5% [IQR, 77.1%-93.7%] vs 13.9% [IQR, 11.8%-16.1%] for BNT162b2; 64.9% [IQR, 60.8%-69.5%] vs 13.4% [IQR, 9.5%-16.8%] for CoronaVac; P < .001 for both). At 14 days after the second dose, SARS03 survivors generated a broader antibody response with significantly higher levels of neutralizing antibodies against variants of concern compared with controls (eg, median inhibition against Omicron variant, 52.1% [IQR, 35.8%-66.0%] vs 14.7% [IQR, 2.5%-20.7%]; P < .001). CONCLUSIONS AND RELEVANCE The findings of this prospective cohort study suggest that infection with SARS-CoV-1 was associated with detectable levels of antibodies that cross-react and cross-neutralize SARS-CoV-2, which belongs to a distinct clade under the same subgenus Sarbecovirus. These findings support the development of broadly protective vaccines to cover sarbecoviruses that caused 2 devastating zoonotic outbreaks in humans over the last 2 decades.
Collapse
Affiliation(s)
- Rita W. Y. Ng
- Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
| | - Siaw S. Boon
- Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
| | - Wendy C. S. Ho
- Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
| | | | | | - Apple C. M. Yeung
- Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
| | - Martin C. S. Wong
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
- Stanley Ho Centre for Emerging Infectious Diseases, Faulty of Medicine, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Spada E, Bruno F, Castelli G, Vitale F, Reale S, Biondi V, Migliazzo A, Perego R, Baggiani L, Proverbio D. Do Blood Phenotypes of Feline AB Blood Group System Affect the SARS-CoV-2 Antibody Serostatus in Cats? Viruses 2022; 14:2691. [PMID: 36560695 PMCID: PMC9783645 DOI: 10.3390/v14122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cats are susceptible to coronavirus infections, including infection by human severe acute respiratory syndrome coronavirus (SARS-CoV). In human ABO system blood groups, alloantibodies can play a direct role in resistance to infectious diseases. Individuals with the AB blood type were over-represented in the SARS-CoV-2 infection group. Blood type AB individuals lack both anti-A and anti-B antibodies, and therefore lack the protective effect against SARS-CoV-2 infection given by these antibodies. Starting from this knowledge, this pilot preliminary study evaluated a possible association between feline blood phenotypes A, B, and AB and serostatus for SARS-CoV-2 antibodies in cats. We also investigated selected risk or protective factors associated with seropositivity for this coronavirus. A feline population of 215 cats was analysed for AB group system blood phenotypes and antibodies against the nucleocapsid (N-protein) SARS-CoV-2 antigen using a double antigen ELISA. SARS-CoV-2 seropositive samples were confirmed using a surrogate virus neutralization test (sVNT). Origin (stray colony/shelter/owned cat), breed (DSH/non DSH), gender (male/female), reproductive status (neutered/intact), age class (kitten/young adult/mature adult/senior), retroviruses status (seropositive/seronegative), and blood phenotype (A, B, and AB) were evaluated as protective or risk factors for SARS-CoV-2 seropositivity. Seropositivity for antibodies against the SARS-CoV-2 N-protein was recorded in eight cats, but only four of these tested positive with sVNT. Of these four SARS-CoV-2 seropositive cats, three were blood phenotype A and one was phenotype AB. Young adult age (1-6 years), FeLV seropositivity and blood type AB were significantly associated with SARS-CoV-2 seropositivity according to a univariate analysis, but only blood type AB (p = 0.0344, OR = 15.4, 95%CI: 1.22-194.39) and FeLV seropositivity (p = 0.0444, OR = 13.2, 95%CI: 1.06-163.63) were significant associated risk factors according to a logistic regression. Blood phenotype AB might be associated with seropositivity for SARS-CoV-2 antibodies. This could be due, as in people, to the protective effect of naturally occurring alloantibodies to blood type antigens which are lacking in type AB cats. The results of this pilot study should be considered very preliminary, and we suggest the need for further research to assess this potential relationship.
Collapse
Affiliation(s)
- Eva Spada
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Federica Bruno
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Germano Castelli
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Fabrizio Vitale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Stefano Reale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonella Migliazzo
- Dipartimento di Prevenzione, Area Sanità Pubblica Veterinaria, UOC Sanità Animale, Igiene Degli Allevamenti e Produzioni Zootecniche, Asl Latina, 04100 Latina, Italy
| | - Roberta Perego
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Luciana Baggiani
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Daniela Proverbio
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
18
|
Evaluation of commercially available fully automated and ELISA-based assays for detecting anti-SARS-CoV-2 neutralizing antibodies. Sci Rep 2022; 12:19020. [PMID: 36347859 PMCID: PMC9643483 DOI: 10.1038/s41598-022-21317-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Rapid and accurate measurement of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2)-specific neutralizing antibodies (nAbs) is paramount for monitoring immunity in infected and vaccinated subjects. The current gold standard relies on pseudovirus neutralization tests which require sophisticated skills and facilities. Alternatively, recent competitive immunoassays measuring anti-SARS-CoV-2 nAbs are proposed as a quick and commercially available surrogate virus neutralization test (sVNT). Here, we report the performance evaluation of three sVNTs, including two ELISA-based assays and an automated bead-based immunoassay for detecting nAbs against SARS-CoV-2. The performance of three sVNTs, including GenScript cPass, Dynamiker, and Mindray NTAb was assessed in samples collected from SARS-CoV-2 infected patients (n = 160), COVID-19 vaccinated individuals (n = 163), and pre-pandemic controls (n = 70). Samples were collected from infected patients and vaccinated individuals 2-24 weeks after symptoms onset or second dose administration. Correlation analysis with pseudovirus neutralization test (pVNT) and immunoassays detecting anti-SARS-CoV-2 binding antibodies was performed. Receiver operating characteristic (ROC) curve analysis was generated to assess the optimal threshold for detecting nAbs by each assay. All three sVNTs showed an excellent performance in terms of specificity (100%) and sensitivity (100%, 97.0%, and 97.1% for GenScript, Dynamiker, and Mindray, respectively) in samples collected from vaccinated subjects. GenScript demonstrated the strongest correlation with pVNT (r = 0.743, R2 = 0.552), followed by Mindray (r = 0.718, R2 = 0.515) and Dynamiker (r = 0.608, R2 = 0.369). Correlation with anti-SARS-CoV-2 binding antibodies was variable, but the strongest correlations were observed between anti-RBD IgG antibodies and Mindray (r = 0.952, R2 = 0.907). ROC curve analyses demonstrated excellent performance for all three sVNT assays in both groups, with an AUC ranging between 0.99 and 1.0 (p < 0.0001). Also, it was shown that the manufacturer's recommended cutoff values could be modified based on the tested cohort without significantly affecting the sVNT performance. The sVNT provides a rapid, low-cost, and scalable alternative to conventional neutralization assays for measuring and expanding nAbs testing across various research and clinical settings. Also, it could aid in evaluating actual protective immunity at the population level and assessing vaccine effectiveness to lay a foundation for boosters' requirements.
Collapse
|
19
|
Ratti G, Lelli D, Moreno A, Stranieri A, Trogu T, Giordano A, Grassi A, Luzzago C, Decaro N, Paltrinieri S, Lauzi S. Comparison of diagnostic performances of different serological tests for SARS-CoV-2 antibody detection in cats and dogs. Transbound Emerg Dis 2022; 69:3530-3539. [PMID: 36183165 PMCID: PMC9538080 DOI: 10.1111/tbed.14716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 02/04/2023]
Abstract
Serosurveillance among animals, including pets, plays an important role in the current coronavirus disease 2019 (COVID-19) pandemic, because severe acute respiratory coronavirus 2 (SARS-CoV-2) infections in animal populations could result in the establishment of new virus reservoirs. Serological assays that offer the required sensitivity and specificity are essential. In this study, we evaluated the diagnostic performance of three different commercially available immunoassays for the detection of SARS-CoV-2 antibodies in pets, namely two ELISA tests for the detection of antibodies against SARS-CoV-2 nucleocapsid [ID Screen SARS CoV-2 double antigen multispecies (Double antigen) and ID Screen® SARS-CoV-2-N IgG indirect ELISA (Indirect)] and one test for the detection of neutralizing antibodies against SARS-CoV-2 receptor-binding-domain [surrogate virus neutralization test (sVNT)]. The obtained results were compared with those of conventional virus neutralization test (VNT), which was regarded as reference method. A total of 191 serum samples were analysed. Thirteen (6.8%) samples showed VNT-positive results. The overall sensitivity was higher for sVNT (100%) compared to nucleocapsid-based ELISA assays (23% for Double antigen and 60% for Indirect). The specificity was 100% for Indirect ELISA and sVNT, when a higher cut-off (>30%) was used compared to the one previously defined by the manufacturer (>20%), whereas the other test showed lower value (99%). The sVNT test showed the highest accuracy and agreement with VNT, with a perfect agreement when the higher cut-off was applied. The agreement between each nucleocapsid-based ELISA test and VNT was 96% for Indirect and 94% for Double antigen. Our findings showed that some commercially available serological tests may lead to a high rate of false-negative results, highlighting the importance of assays validation for the detection of SARS-CoV-2 antibodies in domestic animals.
Collapse
Affiliation(s)
- Gabriele Ratti
- Department of Veterinary Medicine and Animal SciencesUniversity of MilanLodiItaly
| | - Davide Lelli
- Department of VirologyIstituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia‐RomagnaBresciaItaly
| | - Ana Moreno
- Department of VirologyIstituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia‐RomagnaBresciaItaly
| | - Angelica Stranieri
- Department of Veterinary Medicine and Animal SciencesUniversity of MilanLodiItaly
| | - Tiziana Trogu
- Department of VirologyIstituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia‐RomagnaBresciaItaly
| | - Alessia Giordano
- Department of Veterinary Medicine and Animal SciencesUniversity of MilanLodiItaly
| | - Andrea Grassi
- I‐VET srl, Laboratorio di Analisi VeterinarieFleroBresciaItaly
| | - Camilla Luzzago
- Department of Veterinary Medicine and Animal SciencesUniversity of MilanLodiItaly
| | - Nicola Decaro
- Department of Veterinary MedicineUniversity of Bari Aldo MoroValenzanoBariItaly
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal SciencesUniversity of MilanLodiItaly
| | - Stefania Lauzi
- Department of Veterinary Medicine and Animal SciencesUniversity of MilanLodiItaly
| |
Collapse
|
20
|
Correia BP, Sousa MP, Sousa CEA, Mateus D, Sebastião AI, Cruz MT, Matos AM, Pereira AC, Moreira FTC. Development of colorimetric cellulose-based test-strip for the rapid detection of antibodies against SARS-CoV2 virus. CELLULOSE (LONDON, ENGLAND) 2022; 29:9311-9322. [PMID: 36158137 PMCID: PMC9483301 DOI: 10.1007/s10570-022-04808-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Given the pandemic situation, there is an urgent need for an accurate test to monitor antibodies anti-SARS-CoV-2, providing crucial epidemiological and clinical information to monitor the evolution of coronavirus disease in 2019 (COVID-19) and to stratify the immunized and asymptomatic population. Therefore, this paper describes a new cellulose-based test strip for rapid and cost-effective quantitative detection of antibodies to SARS-CoV2 virus by colorimetric transduction. For this purpose, Whatman paper was chemically modified with sodium metaperiodate to introduce aldehyde groups on its surface. Subsequently, the spike protein of the virus is covalently bound by forming an imine group. The chemical control of cellulose paper modification was evaluated by Fourier transform infrared spectroscopy, thermogravimetry and contact angle analysis. Colorimetric detection of the antibodies was performed by a conventional staining method using Ponceau S solution as the dye. Color analysis was performed after image acquisition with a smartphone using Image J software. The color intensity varied linearly with the logarithm of the anti-S concentration (from 10 ng/mL to 1 μg/mL) in 500-fold diluted serum samples when plotted against the green coordinate extracted from digital images. The test strip was selective in the presence of nucleocapsid antibodies, urea, glucose, and bovine serum albumin with less than 15% interference, and detection of antibodies in human serum was successfully performed. Overall, this is a simple and affordable design that can be readily used for mass population screening and does not require sophisticated equipment or qualified personnel. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-022-04808-y.
Collapse
Affiliation(s)
- Bárbara P. Correia
- BioMark/ISEP, School of Engineering, Polytechnic School of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mariana P. Sousa
- BioMark/ISEP, School of Engineering, Polytechnic School of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Cristina E. A. Sousa
- BioMark/ISEP, School of Engineering, Polytechnic School of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Daniela Mateus
- Faculty of Farmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Isabel Sebastião
- Faculty of Farmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Farmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Miguel Matos
- Faculty of Farmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Engineering Processes and Forest Products Research Center, CIEPQPF, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Cláudia Pereira
- BioMark/ISEP, School of Engineering, Polytechnic School of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Felismina T. C. Moreira
- BioMark/ISEP, School of Engineering, Polytechnic School of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
21
|
Wernike K, Böttcher J, Amelung S, Albrecht K, Gärtner T, Donat K, Beer M. Antibodies against SARS-CoV-2 Suggestive of Single Events of Spillover to Cattle, Germany. Emerg Infect Dis 2022; 28:1916-1918. [PMID: 35914515 PMCID: PMC9423924 DOI: 10.3201/eid2809.220125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human infection with SARS-CoV-2 poses a risk for transmission to animals. To characterize the risk for cattle, we serologically investigated 1,000 samples collected from cattle in Germany in late 2021. Eleven antibody-positive samples indicated that cattle may be occasionally infected by contact with SARS-CoV-2–positive keepers, but we found no indication of further spread.
Collapse
|
22
|
Moreno A, Lelli D, Trogu T, Lavazza A, Barbieri I, Boniotti M, Pezzoni G, Salogni C, Giovannini S, Alborali G, Bellini S, Boldini M, Farioli M, Ruocco L, Bessi O, Maroni Ponti A, Di Bartolo I, De Sabato L, Vaccari G, Belli G, Margutti A, Giorgi M. SARS-CoV-2 in a Mink Farm in Italy: Case Description, Molecular and Serological Diagnosis by Comparing Different Tests. Viruses 2022; 14:v14081738. [PMID: 36016360 PMCID: PMC9415545 DOI: 10.3390/v14081738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
This study described a SARS-CoV-2 infection in minks on an Italian farm. Surveillance was performed based on clinical examination and a collection of 1879 swabs and 74 sera from dead and live animals. The farm was placed under surveillance for 4.5 months, from the end of July 2020, when a man working on the farm tested positive by RT-PCR, till mid-December 2020 when all the animals were sacrificed. Clinical examination revealed no clinical signs or increased mortality rates attributable to SARS-CoV-2, while diagnostic tests detected only four weak PCR-positive samples, but 100% of sera were positive for SARS-CoV-2 anti-S antibodies. The phylogenetic analysis of two SARS-CoV-2 sequences from two minks and the sequence of the worker showed that they belonged to different clades. It could be therefore assumed that two distinct introductions of the virus occurred on the farm, and that the first introduction probably occurred before the start of the surveillance period. From the data collected, and especially from the detection of specific antibodies through the combination of different tests, it can be postulated that syndromic surveillance combined with genome detection by PCR may not be sufficient to achieve a diagnosis in asymptomatic animals. In particular, the serological approach, especially when using tests directed towards the S protein, may be useful for improving the traceability of virus circulation in similar environments.
Collapse
Affiliation(s)
- Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
- Correspondence:
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Ilaria Barbieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - MariaBeatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Cristian Salogni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Stefano Giovannini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Giovanni Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Silvia Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Massimo Boldini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi, 9, 25124 Brescia, Italy
| | - Marco Farioli
- Direzione Generale Welfare, Regione Lombardia, Piazza Città di Lombardia 1, 20124 Milano, Italy
| | - Luigi Ruocco
- Direzione Generale Sanità Animale e Farmaci Veterinari, Ministero della Salute, Via Giorgio Ribotta, 5-00144 Roma, Italy
| | - Olivia Bessi
- Direzione Generale Sanità Animale e Farmaci Veterinari, Ministero della Salute, Via Giorgio Ribotta, 5-00144 Roma, Italy
| | - Andrea Maroni Ponti
- Direzione Generale Sanità Animale e Farmaci Veterinari, Ministero della Salute, Via Giorgio Ribotta, 5-00144 Roma, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele Belli
- Dipartimento di Prevenzione Veterinario, ATS Valpadana, Via Belgiardino, 6-26100 Cremona, Italy
| | - Alberto Margutti
- Dipartimento di Prevenzione Veterinario, ATS Valpadana, Via Belgiardino, 6-26100 Cremona, Italy
| | - Maurilio Giorgi
- Dipartimento di Prevenzione Veterinario, ATS Valpadana, Via Belgiardino, 6-26100 Cremona, Italy
| |
Collapse
|
23
|
Liu KT, Han YJ, Wu GH, Huang KYA, Huang PN. Overview of Neutralization Assays and International Standard for Detecting SARS-CoV-2 Neutralizing Antibody. Viruses 2022; 14:v14071560. [PMID: 35891540 PMCID: PMC9322699 DOI: 10.3390/v14071560] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
We aimed to review the existing literature on the different types of neutralization assays and international standards for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We comprehensively summarized the serological assays for detecting neutralizing antibodies against SARS-CoV-2 and demonstrated the importance of an international standard for calibrating the measurement of neutralizing antibodies. Following the coronavirus disease outbreak in December 2019, there was an urgent demand to detect neutralizing antibodies in patients or vaccinated people to monitor disease outcomes and determine vaccine efficacy. Therefore, many approaches were developed to detect neutralizing antibodies against SARS-CoV-2, such as microneutralization assay, SARS-CoV-2 pseudotype virus assay, enzyme-linked immunosorbent assay (ELISA), and rapid lateral flow assay. Given the many types of serological assays for quantifying the neutralizing antibody titer, the comparison of different assay results is a challenge. In 2020, the World Health Organization proposed the first international standard as a common unit to define neutralizing antibody titer and antibody responses against SARS-CoV-2. These standards are useful for comparing the results of different assays and laboratories.
Collapse
Affiliation(s)
- Kuan-Ting Liu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-T.L.); (Y.-J.H.); (G.-H.W.); (K.-Y.A.H.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Ju Han
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-T.L.); (Y.-J.H.); (G.-H.W.); (K.-Y.A.H.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Guan-Hong Wu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-T.L.); (Y.-J.H.); (G.-H.W.); (K.-Y.A.H.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kuan-Ying A. Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-T.L.); (Y.-J.H.); (G.-H.W.); (K.-Y.A.H.)
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-T.L.); (Y.-J.H.); (G.-H.W.); (K.-Y.A.H.)
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- International Master Degree Program for Molecular Medicine in Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
24
|
Watanabe Y, Matsuba I, Watanabe K, Kunishima T, Takechi Y, Takuma T, Araki Y, Hirotsu N, Sakai H, Oikawa R, Danno H, Fukuda M, Futagami S, Wada K, Yamamoto H, Itoh F, Oda I, Hatori Y, Degawa H. Heterogeneity assessment of vaccine-induced effects using point-of-care surrogate neutralization test for severe acute respiratory syndrome coronavirus 2. J Clin Lab Anal 2022; 36:e24545. [PMID: 35678628 PMCID: PMC9279978 DOI: 10.1002/jcla.24545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic even after vaccination. We aimed to identify immunological heterogeneity over time in vaccinated healthcare workers using neutralization antibodies and neutralizing activity tests. METHODS Serum samples were collected from 214 healthcare workers before vaccination (pre) and on days 22, 90, and 180 after receiving the first dose of BNT162b2 vaccine (day 0). Neutralization antibody (NAb, SARS-CoV-2 S-RBD IgM/IgG) titers and two kinds of surrogate virus neutralization tests (sVNTs) were analyzed (UMIN000043851). RESULTS The NAb (SARS-CoV-2 S-RBD IgG) titer peaked on day 90 after vaccination (30,808.0 μg/ml ± 35,211; p < 0.0001) and declined on day 180 (11,678.0 μg/ml ± 33,770.0; p < 0.0001). The neutralizing activity also peaked on day 90 and declined with larger individual differences than those of IgG titer on day 180 (88.9% ± 15.0%, 64.8% ± 23.7%, p < 0.0001). We also found that the results of POCT-sVNT (immunochromatography) were highly correlated with those of conventional sVNT (ELISA). CONCLUSIONS Neutralizing activity is the gold standard for vaccine efficacy evaluation. Our results using conventional sVNT showed large individual differences in neutralizing activity reduction on day 180 (64.8% ± 23.7%), suggesting an association with the difference in vaccine efficacy. POCT-sVNT is rapid and user-friendly; it might be used for triage in homes, isolation facilities, and event venues without restrictions on the medical testing environment.
Collapse
Affiliation(s)
- Yoshiyuki Watanabe
- Kawasaki Physicians AssociationKawasakiJapan
- Department of Internal MedicineKawasaki Rinko General HospitalKawasakiJapan
- Department of Internal Medicine, Division of GastroenterologySt. Marianna University School of MedicineKawasakiJapan
- Department of Internal Medicine, Division of GastroenterologyNippon Medical SchoolTokyoJapan
- Department of OtorhinolaryngologyToho University Omori Medical CenterJapan
| | | | - Karin Watanabe
- Department of Internal MedicineKawasaki Rinko General HospitalKawasakiJapan
| | | | | | | | | | | | | | - Ritsuko Oikawa
- Department of Internal Medicine, Division of GastroenterologySt. Marianna University School of MedicineKawasakiJapan
| | | | | | - Seiji Futagami
- Department of Internal Medicine, Division of GastroenterologyNippon Medical SchoolTokyoJapan
| | - Kota Wada
- Department of OtorhinolaryngologyToho University Omori Medical CenterJapan
| | - Hiroyuki Yamamoto
- Department of BioinformaticsSt. Marianna University Graduate School of MedicineKanagawaJapan
| | - Fumio Itoh
- Department of Internal Medicine, Division of GastroenterologySt. Marianna University School of MedicineKawasakiJapan
| | - Ichiro Oda
- Department of Internal MedicineKawasaki Rinko General HospitalKawasakiJapan
| | | | | |
Collapse
|
25
|
Karaba AH, Zhu X, Benner SE, Akinde O, Eby Y, Wang KH, Saraf S, Garonzik-Wang JM, Klein SL, Bailey JR, Cox AL, Blankson JN, Durand CM, Segev DL, Werbel WA, Tobian AA. Higher Proinflammatory Cytokines Are Associated With Increased Antibody Titer After a Third Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients. Transplantation 2022; 106:835-841. [PMID: 35085183 PMCID: PMC8942602 DOI: 10.1097/tp.0000000000004057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Solid organ transplant recipients (SOTRs) are at increased risk for severe COVID-19 and exhibit lower antibody responses to SARS-CoV-2 vaccines. This study aimed to determine if prevaccination cytokine levels are associated with antibody response to SARS-CoV-2 vaccination. METHODS A cross-sectional study was performed among 58 SOTRs before and after two-dose mRNA vaccine series, 35 additional SOTRs before and after a third vaccine dose, and comparison to 16 healthy controls (HCs). Antispike antibody was assessed using the IgG Euroimmun ELISA. Electrochemiluminescence detection-based multiplexed sandwich immunoassays (Meso Scale Diagnostics) were used to quantify plasma cytokine and chemokine concentrations (n = 20 analytes) and compare concentrations between SOTRs and HCs, stratified by ultimate antibody response to the vaccine using Wilcoxon-rank-sum test with false discovery rates computed to correct for multiple comparisons. RESULTS In the study population, 100% of HCs, 59% of SOTRs after 2 doses and 63% of SOTRs after 3 doses had a detectable antibody response. Multiple baseline cytokines were elevated in SOTRs versus HCs. There was no significant difference in baseline cytokine levels between SOTRs with high versus low-titer antibodies after 2 doses of vaccine. However, as compared with poor antibody responders, SOTRs who went on to develop a high-titer antibody response to a third dose of vaccine had significantly higher prethird dose levels of several innate immune cytokines including IL-17, IL-2Ra, IL-6, IP-10, MIP-1α, and TNF-α (false discovery rates < 0.05). CONCLUSIONS A specific inflammatory profile may be associated with developing higher antibodies in response to a third dose of SARS-CoV-2 vaccine in SOTRs.
Collapse
Affiliation(s)
- Andrew H. Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Sarah E. Benner
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Olivia Akinde
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Yolanda Eby
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Kristy H. Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Sharada Saraf
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD
| | | | - Sabra L. Klein
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Justin R. Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Christine M. Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Dorry L. Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - William A. Werbel
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
26
|
Comparison of the Anti-SARS-CoV-2 Surrogate Neutralization Assays by TECOmedical and DiaPROPH-Med with Samples from Vaccinated and Infected Individuals. Viruses 2022; 14:v14020315. [PMID: 35215912 PMCID: PMC8877287 DOI: 10.3390/v14020315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Anti-SARS-CoV-2-specific serological responses are a topic of ongoing evaluation studies. In the study presented here, the anti-SARS-CoV-2 surrogate neutralization assays by TECOmedical and DiaPROPH -Med were assessed in a head-to-head comparison with serum samples of individuals after vaccination as well as after previous infection with SARS-CoV-2. In case of discordant results, a cell culture-based neutralization assay was applied as a reference standard. The TECOmedical assay showed sensitivity and specificity of 100% and 61.3%, respectively, the DiaPROPH-Med assay 95.0% and 48.4%, respectively. As a side finding of the study, differences in the likelihood of expressing neutralizing antibodies could be shown for different exposition types. So, 60 of 81 (74.07%) of the samples with only one vaccination showed an expression of neutralizing antibodies in contrast to 85.71% (60 of 70 samples) of the samples with two vaccinations and 100% (40 of 40) of the samples from previously infected individuals. In conclusion, the both assays showed results similar to previous assessments. While the measured diagnostic accuracy of both assays requires further technical improvement of this diagnostic approach, as the calculated specificity values of 61.3% and 48.4%, respectively, appear acceptable for diagnostic use only in populations with a high percentage of positive subjects, but not at expectedly low positivity rates.
Collapse
|
27
|
Kolesov DE, Sinegubova MV, Dayanova LK, Dolzhikova IV, Vorobiev II, Orlova NA. Fast and Accurate Surrogate Virus Neutralization Test Based on Antibody-Mediated Blocking of the Interaction of ACE2 and SARS-CoV-2 Spike Protein RBD. Diagnostics (Basel) 2022; 12:diagnostics12020393. [PMID: 35204485 PMCID: PMC8870830 DOI: 10.3390/diagnostics12020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
The humoral response to the SARS-CoV-2 S protein determines the development of protective immunity against this infection. The standard neutralizing antibodies detection method is a live virus neutralization test. It can be replaced with an ELISA-based surrogate virus neutralization test (sVNT), measuring the ability of serum antibodies to inhibit complex formation between the receptor-binding domain (RBD) of the S protein and the cellular ACE2 receptor. There are conflicting research data on the sVNT methodology and the reliability of its results. We show that the performance of sVNT dramatically improves when the intact RBD from the Wuhan-Hu-1 virus variant is used as the plate coating reagent, and the HRP-conjugated soluble ACE2 is used as the detection reagent. This design omits the pre-incubation step in separate tubes or separate microplate and allows the simple quantification of the results using the linear regression, utilizing only 3–4 test sample dilutions. When this sVNT was performed for 73 convalescent plasma samples, its results showed a very strong correlation with VNT (Spearman’s Rho 0.83). For the RBD, bearing three amino acid substitutions and corresponding to the SARS-CoV-2 beta variant, the inhibitory strength was diminished for 18 out of 20 randomly chosen serum samples, and the magnitude of this decrease was not similar to the change in overall anti-RBD IgG level. The sVNT assay design with the ACE2-HRP is preferable over the assay with the RBD-HRP reagent and is suitable for mass screening of neutralizing antibodies titers.
Collapse
Affiliation(s)
- Denis E. Kolesov
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
| | - Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
| | - Lutsia K. Dayanova
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
- Laboratory of Glycoproteins Biotechnology, Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Inna V. Dolzhikova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia;
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
- Laboratory of Glycoproteins Biotechnology, Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.E.K.); (M.V.S.); (L.K.D.); (I.I.V.)
- Correspondence:
| |
Collapse
|
28
|
Lim SM, Cheng HL, Jia H, Kongsuphol P, Shanmuganathan BD, Chen MW, Ng SY, Gao X, Turaga SP, Heussler SP, Somani J, Sengupta S, Tay DMY, McBee ME, Young BE, MacAry PA, Sikes HD, Preiser PR. Finger stick blood test to assess post vaccination
SARS‐CoV
‐2 neutralizing antibody response against variants. Bioeng Transl Med 2022; 7:e10293. [PMID: 35600666 PMCID: PMC9115707 DOI: 10.1002/btm2.10293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
There is clinical need for a quantifiable point‐of‐care (PoC) SARS‐CoV‐2 neutralizing antibody (nAb) test that is adaptable with the pandemic's changing landscape. Here, we present a rapid and semi‐quantitative nAb test that uses finger stick or venous blood to assess the nAb response of vaccinated population against wild‐type (WT), alpha, beta, gamma, and delta variant RBDs. It captures a clinically relevant range of nAb levels, and effectively differentiates prevaccination, post first dose, and post second dose vaccination samples within 10 min. The data observed against alpha, beta, gamma, and delta variants agrees with published results evaluated in established serology tests. Finally, our test revealed a substantial reduction in nAb level for beta, gamma, and delta variants between early BNT162b2 vaccination group (within 3 months) and later vaccination group (post 3 months). This test is highly suited for PoC settings and provides an insightful nAb response in a postvaccinated population.
Collapse
Affiliation(s)
- Sing Mei Lim
- Antimicrobial Resistance Interdisciplinary Research Group (AMR‐IRG), Singapore‐MIT Alliance in Research and Technology (SMART); #03‐10/11 Innovation Wing, 1 CREATE Way Singapore
| | - Hoi Lok Cheng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR‐IRG), Singapore‐MIT Alliance in Research and Technology (SMART); #03‐10/11 Innovation Wing, 1 CREATE Way Singapore
| | - Huan Jia
- Antimicrobial Resistance Interdisciplinary Research Group (AMR‐IRG), Singapore‐MIT Alliance in Research and Technology (SMART); #03‐10/11 Innovation Wing, 1 CREATE Way Singapore
| | - Patthara Kongsuphol
- Antimicrobial Resistance Interdisciplinary Research Group (AMR‐IRG), Singapore‐MIT Alliance in Research and Technology (SMART); #03‐10/11 Innovation Wing, 1 CREATE Way Singapore
| | - Bhuvaneshwari D/O Shanmuganathan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine National University of Singapore (NUS); 5 Science Drive 2, Blk MD4, Level 3 Singapore
| | - Ming Wei Chen
- School of Biological Sciences (SBS), Nanyang Technological University (NTU); 60 Nanyang Dr Singapore
| | - Say Yong Ng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR‐IRG), Singapore‐MIT Alliance in Research and Technology (SMART); #03‐10/11 Innovation Wing, 1 CREATE Way Singapore
| | - Xiaohong Gao
- School of Biological Sciences (SBS), Nanyang Technological University (NTU); 60 Nanyang Dr Singapore
| | | | - Sascha P. Heussler
- Attonics System Pte. Ltd. 10 Anson Road, #12‐01 International Plaza Singapore
| | - Jyoti Somani
- National University Hospital (NUH); 5 Lower Kent Ridge Rd Singapore
| | | | - Dousabel M. Y. Tay
- Department of Chemical Engineering Massachusetts Institute of Technology (MIT); 25 Ames Street, Building 66 Cambridge MA USA
| | - Megan E. McBee
- Antimicrobial Resistance Interdisciplinary Research Group (AMR‐IRG), Singapore‐MIT Alliance in Research and Technology (SMART); #03‐10/11 Innovation Wing, 1 CREATE Way Singapore
| | - Barnaby E. Young
- National Centre for Infectious Diseases (NCID); 16 Jalan Tan Tock Seng Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital; 16 Jalan Tan Tock Seng Singapore
- Lee Kong Chian School of Medicine; 59 Nanyang Drive Singapore
| | - Paul A. MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine National University of Singapore (NUS); 5 Science Drive 2, Blk MD4, Level 3 Singapore
- Life Sciences Institute (LSI), National University of Singapore (NUS); #05‐02, 28 Medical Drive Singapore
| | - Hadley D. Sikes
- Antimicrobial Resistance Interdisciplinary Research Group (AMR‐IRG), Singapore‐MIT Alliance in Research and Technology (SMART); #03‐10/11 Innovation Wing, 1 CREATE Way Singapore
- Department of Chemical Engineering Massachusetts Institute of Technology (MIT); 25 Ames Street, Building 66 Cambridge MA USA
| | - Peter R. Preiser
- Antimicrobial Resistance Interdisciplinary Research Group (AMR‐IRG), Singapore‐MIT Alliance in Research and Technology (SMART); #03‐10/11 Innovation Wing, 1 CREATE Way Singapore
- Department of Chemical Engineering Massachusetts Institute of Technology (MIT); 25 Ames Street, Building 66 Cambridge MA USA
| |
Collapse
|