1
|
Jia C, Gill WD, Lovins C, Brown RW, Hagg T. Astrocyte focal adhesion kinase reduces passive stress coping by inhibiting ciliary neurotrophic factor only in female mice. Neurobiol Stress 2024; 30:100621. [PMID: 38516563 PMCID: PMC10955429 DOI: 10.1016/j.ynstr.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Astrocytes have been implicated in stress responses and produce ciliary neurotrophic factor (CNTF), which we have shown in the mouse medial amygdala (MeA) to promote passive stress coping response only in females. Pharmacological inhibition of focal adhesion kinase (FAK) upregulates CNTF expression. Here, we found that inducible knockout of FAK in astrocytes or systemic treatment with an FAK inhibitor increased passive coping behavior, i.e., immobility, in an acute forced swim stress test in female, but not male, mice. Strikingly, four weeks of chronic unpredictable stress (CUS) did not further increase passive coping in female astrocytic FAK knockout mice, whereas it exacerbated it in female wildtype mice and male mice of both genotypes. These data suggest that astrocyte FAK inhibition is required for chronic stress-induced passive coping in females. Indeed, CUS reduced phospho-FAK and increased CNTF in the female MeA. Progesterone treatment after ovariectomy activated amygdala FAK and alleviated ovariectomy-induced passive coping in wildtype, but not astrocytic FAK knockout females. This suggests that progesterone-mediated activation of FAK in astrocytes reduces female stress responses. Finally, astrocytic FAK knockout or FAK inhibitor treatment increased CNTF expression in the MeA of both sexes, although not in the hippocampus. As mentioned, MeA CNTF promotes stress responses only in females, which may explain the female-specific role of astrocytic FAK inhibition. Together, this study reveals a novel female-specific progesterone-astrocytic FAK pathway that counteracts CNTF-mediated stress responses and points to opportunities for developing treatments for stress-related disorders in women.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - W. Drew Gill
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | | | | |
Collapse
|
2
|
Joshi S, Williams CL, Kapur J. Limbic progesterone receptors regulate spatial memory. Sci Rep 2023; 13:2164. [PMID: 36750584 PMCID: PMC9905062 DOI: 10.1038/s41598-023-29100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Progesterone and its receptors (PRs) participate in mating and reproduction, but their role in spatial declarative memory is not understood. Male mice expressed PRs, predominately in excitatory neurons, in brain regions that support spatial memory, such as the hippocampus and entorhinal cortex (EC). Furthermore, segesterone, a specific PR agonist, activates neurons in both the EC and hippocampus. We assessed the contribution of PRs in promoting spatial and non-spatial cognitive learning in male mice by examining the performance of mice lacking this receptor (PRKO), in novel object recognition, object placement, Y-maze alternation, and Morris-Water Maze (MWM) tasks. In the recognition test, the PRKO mice preferred the familiar object over the novel object. A similar preference for the familiar object was also seen following the EC-specific deletion of PRs. PRKO mice were also unable to recognize the change in object position. We confirmed deficits in spatial memory of PRKO mice by testing them on the Y-maze forced alternation and MWM tasks; PR deletion affected animal's performance in both these tasks. In contrast to spatial tasks, PR removal did not alter the response to fear conditioning. These studies provide novel insights into the role of PRs in facilitating spatial, declarative memory in males, which may help with finding reproductive partners.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Health Sciences Center, P.O. Box 801330, Charlottesville, VA, 22908, USA.
| | - Cedric L Williams
- Department of Psychology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Health Sciences Center, P.O. Box 801330, Charlottesville, VA, 22908, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA.,UVA Brain Institute, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
3
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. Mifepristone's effects on depression- and anxiety-like behavior in rodents. Steroids 2022; 184:109058. [PMID: 35679911 DOI: 10.1016/j.steroids.2022.109058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Mifepristone is a non-selective progesterone (PR), glucocorticoid (GR), and androgen receptor (AR) antagonist with antidepressant and anxiolytic effects. The dose and duration of mifepristone administration vary in rodent preclinical studies to evaluate depression-like and anxiety-like behavior. This review summarizes the findings so far and attempts to reconcile some of the differences in the results. While a few studies assessed basal depression- and anxiety-like behavior, several studies have used mifepristone in conjunction with stress, corticosterone/dexamethasone (after adrenalectomy), or progesterone administration. The effect of mifepristone on depression-like behavior appears to depend not only on the dose and duration of administration but also on the intensity or type of stress. In addition, the anxiolytic effects may depend on the species and strain of the experimental animals. More reports assess antidepressant-like or anxiolytic-like effects following acute than chronic administration. These effects are dependent on the paradigms and the nature of stressors. Most mifepristone studies implicate the role of GRs, yet only two reports have confirmed its role using a genetic approach, whereas none implicate the role of PRs/ARs. There are several novel selective GR antagonists whose effects on depression- and anxiety-like behavior are yet to be studied. Future studies could aim to confirm the role of GRs and evaluate the contribution of PRs/ARs to the effects of mifepristone. Such studies will contribute to a better understanding of depression, anxiety, and other mood disorders and develop novel strategies, particularly for treatment-resistant conditions.
Collapse
Affiliation(s)
- J Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India.
| |
Collapse
|
4
|
Female-specific role of ciliary neurotrophic factor in the medial amygdala in promoting stress responses. Neurobiol Stress 2022; 17:100435. [PMID: 35146079 PMCID: PMC8819478 DOI: 10.1016/j.ynstr.2022.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is produced by astrocytes which have been implicated in regulating stress responses. We found that CNTF in the medial amygdala (MeA) promotes despair or passive coping, i.e., immobility in an acute forced swim stress, in female mice, while having no effect in males. Neutralizing CNTF antibody injected into the MeA of wildtype females reduced activation of downstream STAT3 (Y705) 24 and 48 h later. In concert, the antibody reduced immobility in the swim test in females and only after MeA injection, but not when injected in the central or basolateral amygdala. Antibody injected into the male MeA did not affect immobility. These data reveal a unique role of CNTF in female MeA in promoting despair or passive coping behavior. Moreover, 4 weeks of chronic unpredictable stress (CUS) increased immobility in the swim test and reduced sucrose preference in wildtype CNTF+/+, but not CNTF−/− littermate, females. Following CUS, 10 min of restraint stress increased plasma corticosterone levels only in CNTF+/+ females. In males, the CUS effects were present in both genotypes. Further, CUS increased CNTF expression in the MeA of female, but not male, mice. CUS did not alter CNTF in the female hippocampus, hypothalamus and bed nucleus of stria terminalis. This suggests that MeA CNTF has a female-specific role in promoting CUS-induced despair or passive coping, behavioral anhedonia and neuroendocrine responses. Compared to CNTF+/+ mice, CNTF−/− mice did not show differences in CUS-induced anxiety-like behavior and sensorimotor gating function as measured by elevated T-Maze, open field and pre-pulse inhibition of the acoustic startle response. Together, this study reveals a novel CNTF-mediated female-specific mechanism in stress responses and points to opportunities for developing treatments for stress-related disorders in women. CNTF in the MeA promotes despair or passive coping behavior in female mice only. Chronic stress upregulates CNTF in female but not male MeA. CNTF contributes to chronic stress-induced despair or passive coping, anhedonia and neuroendocrine responses in females only. CNTF does not affect anxiety-like behavior and sensorimotor gating function. These data reveal a novel CNTF-mediated female-specific mechanism in stress responses.
Collapse
|
5
|
Kerkenberg N, Hohoff C, Zhang M, Lang I, Schettler C, Ponimaskin E, Wachsmuth L, Faber C, Baune BT, Zhang W. Acute stress reveals different impacts in male and female Zdhhc7-deficient mice. Brain Struct Funct 2021; 226:1613-1626. [PMID: 33880616 PMCID: PMC8096773 DOI: 10.1007/s00429-021-02275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/09/2021] [Indexed: 10/25/2022]
Abstract
Numerous processes of neuronal development and synaptic plasticity in the brain rely on the palmitoyl acyltransferase ZDHHC7, as it palmitoylates various synaptic and extrasynaptic proteins such as neural cell adhesion molecule (NCAM) or gamma-aminobutyric acid (GABAA) receptors. In addition, ZDHHC7 palmitoylates sex steroid hormone receptors and is, therefore, indirectly linked to mental disorders that often occur because of or in conjunction with stress. In this work, we investigated how ZDHHC7 affects stress responses in mice. For this purpose, genetically modified mice with a knockout of the Zdhhc7 gene (KO) and wild-type (WT) littermates of both sexes were exposed to acute stressors or control conditions and examined with regard to their behavior, brain microstructure, gene expression, and synaptic plasticity. While no behavioral effects of acute stress were found, we did find that acute stress caused reduced mRNA levels of Esr1 and Esr2 coding for estrogen receptor α and β in the medial prefrontal cortex of male WT and KO mice. Strikingly, after acute stress only male KO mice showed reduced mean fiber lengths of the medioventral hippocampus. Furthermore, Zdhhc7-deficiency impaired synaptic plasticity in mice of both sexes, while acute stress improved it in females, but not in male mice. Taken together, our findings suggest that ZDHHC7 plays a modulatory role in the brain that leads to sex-specific stress responses, possibly due to estrogen receptor-mediated signaling pathways.
Collapse
Affiliation(s)
- Nicole Kerkenberg
- Department of Mental Health, University of Münster, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Christa Hohoff
- Department of Mental Health, University of Münster, Münster, Germany
| | - Mingyue Zhang
- Department of Mental Health, University of Münster, Münster, Germany
| | - Ilona Lang
- Department of Mental Health, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | | | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Mental Health, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| |
Collapse
|
6
|
Alshammari TK. Sexual dimorphism in pre-clinical studies of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110120. [PMID: 33002519 DOI: 10.1016/j.pnpbp.2020.110120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Although there is a sex bias in the pathological mechanisms exhibited by brain disorders, investigation of the female brain in biomedical science has long been neglected. Use of the male model has generally been the preferred option as the female animal model exhibits both biological variability and hormonal fluctuations. Existing studies that compare behavioral and/or molecular alterations in animal models of brain diseases are generally underrepresented, and most utilize the male model. Nevertheless, in recent years there has been a trend toward the increased inclusion of females in brain studies. However, current knowledge regarding sex-based differences in depression and stress-related disorders is limited. This can be improved by reviewing preclinical studies that highlight sex differences in depression. This paper therefore presents a review of sex-based preclinical studies of depression. These shed light on the discrepancies between males and females regarding the biological mechanisms that underpin mechanistic alterations in the diseased brain. This review also highlights the conclusions drawn by preclinical studies to advance our understanding of mood disorders, encouraging researchers to promote ways of investigating and managing sexually dimorphic disorders.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Saudi Arabia; Prince Naïf Bin Abdul-Aziz Health Research Center, King Saud University, Saudi Arabia.
| |
Collapse
|
7
|
Frye CA, Lembo VF, Walf AA. Progesterone's Effects on Cognitive Performance of Male Mice Are Independent of Progestin Receptors but Relate to Increases in GABA A Activity in the Hippocampus and Cortex. Front Endocrinol (Lausanne) 2021; 11:552805. [PMID: 33505354 PMCID: PMC7829189 DOI: 10.3389/fendo.2020.552805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023] Open
Abstract
Progestogens' (e.g., progesterone and its neuroactive metabolite, allopregnanolone), cognitive effects and mechanisms among males are not well-understood. We hypothesized if progestogen's effects on cognitive performance are through its metabolite allopregnanolone, and not actions via binding to traditional progestin receptors (PRs), then progesterone administration would enhance performance in tasks mediated by the hippocampus and cortex, coincident with increasing allopregnanolone concentrations, brain derived neurotrophic factor (BDNF) and/or muscimol binding of PR knock out (PRKO) and wild-type PR replete mice. Experiment 1: Progesterone (4 mg/kg, subcutaneously (SC; n = 12/grp), or oil vehicle control, was administered to gonadally-intact adult male mice PRKO mice and their wild-type counterparts and cognitive behaviors in object recognition, T-maze and water maze was examined. Progesterone, compared to vehicle, when administered post-training increased time investigating novel objects by the PRKO and wild-type mice in the object recognition task. In the T-maze task, progesterone administration to wild-type and PRKO mice had significantly greater number of spontaneous alternations compared to their vehicle-administered counterparts. In the water maze task, PRKO mice administered vehicle spent significantly fewer seconds in the quadrant associated with the escape platform on testing compared to all other groups. Experiment 2: Progesterone administered to wild-type and PRKO mice increased plasma progesterone and allopregnanolone levels (n = 5/group). PRKO mice had higher allopregnanolone levels in plasma and hippocampus, but not cortex, when administered progesterone and compared to wild-type mice. Experiment 3: Assessment of PR binding revealed progesterone administered wild-type mice had significantly greater levels of PRs in the hippocampus and cortex, compared to all other groups (n = 5/group). Wild-type mice administered progesterone, but not vehicle, had increased BDNF levels in the hippocampus, but not the cortex, compared to PRKOs. Wild-type as well as PRKO mice administered progesterone experienced significant increases in maximal GABAA agonist, muscimol, binding in hippocampus and cortex, compared to their vehicle-administered counterparts. Thus, adult male mice can be responsive to progesterone for cognitive performance, and such effects may be independent of PRs trophic actions of BDNF levels in the hippocampus and/or increases in GABAA activity in the hippocampus and cortex.
Collapse
Affiliation(s)
- Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Department of Biological Sciences, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- The Center for Neuroscience Research, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- The Center for Life Sciences Research, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, United States
- Department of Chemistry, University of Alaska–Fairbanks, Fairbanks, AK, United States
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska–Fairbanks, Fairbanks, AK, United States
- Comprehensive Neuropsychological Services, Albany, NY, United States
| | - Vincent F. Lembo
- Comprehensive Neuropsychological Services, Albany, NY, United States
| | - Alicia A. Walf
- Department of Psychology, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, United States
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska–Fairbanks, Fairbanks, AK, United States
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
8
|
Briones-Aranda A, Castellanos-Pérez M, Villa VMV, Picazo O. Impact of Exposure to Environmental Enrichment on the Anxiety-Like Behavior of Ovariectomized Mice. IRANIAN JOURNAL OF PSYCHIATRY 2020; 15:88-95. [PMID: 32377218 PMCID: PMC7193238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Objective: The aim of this study was to explore the influence of short-term (2-week) exposure to social (SE) and/or physical enrichment (PE) on the anxiety-like behavior of ovariectomized (OVX) NIH Swiss mice. Method : One week after surgery, each OVX mouse was housed under one of 4 social conditions: (1) isolated, (2) accompanied by an intact female, (3) accompanied by an intact male, or (4) in a community of 10 OVX individuals. The animals in each of these environments were divided into 2 subgroups, consisting of the presence and absence of PE. Following a 2-week exposure to the respective conditions, each OVX mouse was subjected to either the light/dark exploration test (LDT) or the elevated plus maze (EPM) to examine anxiety-like behavior. Results: The LDT and EPM showed very similar patterns. Compared to an impoverished environment, PE elicited a significant anxiolytic effect for OVX mice housed alone or in companion of an intact female (F [1, 54] = 16.11, P = 0.001). By contrast, mice living in community but without PE displayed anxiogenic-like behavior, perhaps due to crowding, compared to the animals living in isolation (F [1, 36] = 5.64, P = 0.023). Conclusion: This study emphasized the importance of taking housing conditions into account during the screening of new anxiolytic agents and the critical role of OVX in the regulation of anxiety.
Collapse
Affiliation(s)
- Alfredo Briones-Aranda
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México.,Corresponding Author: Address: Pharmacology Laboratory, School of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México. Decima Sur Esquina Calle Central Sin Número, Colonia Centro, Tuxtla Gutiérrez Chiapas México, CP: 29050. Tel: 52-9616122292,
| | - Manuela Castellanos-Pérez
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Victor Manuel Vega- Villa
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Ofir Picazo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| |
Collapse
|
9
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
10
|
Chronic aromatase inhibition increases ventral hippocampal neurogenesis in middle-aged female mice. Psychoneuroendocrinology 2019; 106:111-116. [PMID: 30974324 DOI: 10.1016/j.psyneuen.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
Letrozole, a third-generation aromatase inhibitor, prevents the production of estrogens in the final step in conversion from androgens. Due to its efficacy at suppressing estrogens, letrozole has recently taken favor as a first-line adjuvant treatment for hormone-responsive breast cancer in middle-aged women. Though patient response to letrozole has generally been positive, there is conflicting evidence surrounding its effects on the development of depression. It is possible that the potential adverse effects of letrozole on mood are a result of the impact of hormonal fluctuations on neurogenesis in the hippocampus. Thus, to clarify the effects of letrozole on the hippocampus and behavior, we examined how chronic administration affects hippocampal neurogenesis and depressive-like behavior in middle-aged, intact female mice. Mice were given either letrozole (1 mg/kg) or vehicle by injection (i.p.) daily for 3 weeks. Depressive-like behavior was assessed during the last 3 days of treatment using the forced swim test, tail suspension test, and sucrose preference test. The production of new neurons was quantified using the immature neuronal marker doublecortin (DCX), and cell proliferation was quantified using the endogenous marker Ki67. We found that letrozole increased DCX and Ki67 expression and maturation in the dentate gyrus, but had no significant effect on depressive-like behavior. Our findings suggest that a reduction in estrogens in middle-aged females increases hippocampal neurogenesis without any adverse impact on depressive-like behavior; as such, this furthers our understanding of how estrogens modulate neurogenesis, and to the rationale for the utilization of letrozole in the clinical management of breast cancer.
Collapse
|
11
|
Di Segni M, Andolina D, D'Addario SL, Babicola L, Ielpo D, Luchetti A, Pascucci T, Lo Iacono L, D'Amato FR, Ventura R. Sex-dependent effects of early unstable post-natal environment on response to positive and negative stimuli in adult mice. Neuroscience 2019; 413:1-10. [PMID: 31228589 DOI: 10.1016/j.neuroscience.2019.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Alterations in early environmental conditions that interfere with the creation of a stable mother-pup bond have been suggested to be a risk factor for the development of stress-related psychopathologies later in life. The long-lasting effects of early experiences are mediated by changes in various cerebral circuits, such as the corticolimbic system, which processes aversive and rewarding stimuli. However, it is evident that the early environment is not sufficient per se to induce psychiatric disorders; interindividual (eg, sex-based) differences in the response to environmental challenges exist. To examine the sex-related effects that are induced by an early experience on later events in adulthood, we determine the enduring effects of repeated cross-fostering (RCF) in female and male C57BL/6J mice. To this end, we assessed the behavioral phenotype of RCF and control (male and female) mice in the saccharine preference test and cocaine-induced conditioned place preference to evaluate the response to natural and pharmacological stimuli and in the elevated plus maze test and forced swimming test to measure their anxiety- and depression-like behavior. We also evaluated FST-induced c-Fos immunoreactivity in various brain regions that are engaged in the response to acute stress exposure (FST). Notably, RCF has opposing effects on the adult response to these tests between sexes, directing male mice toward an "anhedonia-like" phenotype and increasing the sensitivity for rewarding stimuli in female mice.
Collapse
Affiliation(s)
- Matteo Di Segni
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, 00184, Rome, Italy
| | - Lucy Babicola
- Dept. of Applied and Biotechnological Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, 00184, Rome, Italy
| | - Alessandra Luchetti
- Cell Biology and Neurobiology Institute, National Research Council, 00143 Rome, Italy
| | - Tiziana Pascucci
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Luisa Lo Iacono
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Francesca R D'Amato
- Cell Biology and Neurobiology Institute, National Research Council, 00143 Rome, Italy; Institut Universitaire en Santé Mentale de Québec, Laval University, Quebec, Canada
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy.
| |
Collapse
|
12
|
Jia C, Brown RW, Malone HM, Burgess KC, Gill DW, Keasey MP, Hagg T. Ciliary neurotrophic factor is a key sex-specific regulator of depressive-like behavior in mice. Psychoneuroendocrinology 2019; 100:96-105. [PMID: 30299260 PMCID: PMC6333501 DOI: 10.1016/j.psyneuen.2018.09.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/23/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is produced by astrocytes and promotes neurogenesis and neuroprotection. Little is known about the role of CNTF in affective behavior. We investigated whether CNTF affects depressive- and anxiety-like behavior in adult mice as tested in the forced swim, sucrose preference and elevated-T maze tests. Female wild type CNTF+/+ mice more readily developed behavioral despair with increased immobility time and decreased latency to immobility in the forced swim test than male CNTF+/+ littermates. The lack of CNTF in CNTF-/- mice had an opposite effect on depressive-like behavior in female mice (reduced immobility time and increased sucrose preference) vs. male mice (increased immobility time). Female wildtype mice expressed more CNTF in the amygdala than male mice. Ovariectomy increased CNTF expression, as well as immobility time, which was significantly reduced in CNTF-/- mice, suggesting that CNTF mediates overiectomy-induced immobility time, possibly in the amygdala. Progesterone but not 17-β estradiol inhibited CNTF expression in cultured C6 astroglioma cells. Progesterone treatment also reduced CNTF expression in the amygdala and decreased immobility time in female CNTF+/+ but not in CNTF-/- mice. Castration did not alter CNTF expression in males nor their behavior. Lastly, there were no effects of CNTF on the elevated T-maze, a behavioral test of anxiety, suggesting that a different mechanism may underlie anxiety-like behavior. This study reveals a novel CNTF-mediated mechanism in stress-induced depressive-like behavior and points to opportunities for sex-specific treatments for depression, e.g. progesterone in females and CNTF-stimulating drugs in males.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Xu K, Li P, Miao Y, Dong N, Zhang J, Wei S, Li S, Cao F. Effects of ovarian hormones on emotional behaviors in dopamine D3 receptor knockout mice. Physiol Behav 2019; 198:11-17. [PMID: 30292827 DOI: 10.1016/j.physbeh.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022]
Abstract
Ovarian hormones reportedly have beneficial effects on affective behaviors. However, the functions of ovarian hormones in neurotransmitter signaling must be identified to understand their role in anxiety and depression. Several studies have provided evidence of the relationship between ovarian hormones and the dopaminergic system, but the interaction between ovarian hormones and dopamine D3 receptor (DRD3) is poorly understood. The aim of the present study was to examine the role of DRD3 in the anxiety-like and depression-like behavioral changes induced by estrogen and progesterone. We subjected D3 receptor knockout (D3KO) and wild-type (WT) mice to a series of behavioral tests. Mice were ovariectomized 4 weeks before testing, and we randomly administered 17β-estradiol (E2, 0.2 mg/kg), progesterone (P4, 10 mg/kg), E2 (0.2 mg/kg) plus P4 (10 mg/kg) or vehicle (VEH, corn oil, 0.2 ml) subcutaneously daily for 9 consecutive days, starting 4 days before the testing day. On the testing day, the mice were injected 30 min prior to behavioral testing. Compared with WT mice in the same treatment group, D3KO mice displayed hyperactivity in the light-dark box test (LDBT) but lower activity in the open field test (OFT). In addition, D3KO mice but not their WT littermates showed behavioral changes after E2 treatment compared with those after VEH treatment in the LDBT only. In depression tests, D3KO-VEH mice displayed significantly longer immobility times than did WT-VEH mice. In addition, only D3KO mice exhibited an obvious decrease in immobility time after E2 and P4 administration. These results indicate that the anxiolytic and antidepressant effects of ovarian hormones can be influenced by DRD3 expression and that DRD3 knockout may induce varying sensitivities to ovarian hormones that depend on various factors, including test paradigms and experiences in animal models. Our research provides a novel insight, i.e., DRD3 may play a role in the efficacy of hormone therapy.
Collapse
Affiliation(s)
- Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yi Miao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Nan Dong
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Jianbo Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Shuguang Wei
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Shengbin Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Dossat AM, Wright KN, Strong CE, Kabbaj M. Behavioral and biochemical sensitivity to low doses of ketamine: Influence of estrous cycle in C57BL/6 mice. Neuropharmacology 2018; 130:30-41. [PMID: 29175352 PMCID: PMC5749639 DOI: 10.1016/j.neuropharm.2017.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/26/2022]
Abstract
RATIONALE Low-dose ketamine is a rapid-acting antidepressant, to which female rodents are more sensitive as compared to males. However, the mechanism mediating this sex difference in ketamine sensitivity remains elusive. OBJECTIVES We sought to determine whether male and female mice differ in their behavioral sensitivity to low doses of ketamine, and uncover how ovarian hormones influence females' ketamine sensitivity. We also aimed to uncover some of the molecular mechanism(s) in mood-related brain regions that mediate sex differences in ketamine antidepressant effects. METHODS Male and female mice (freely-cycling, diestrus 1 [D1], proestrus [Pro], or D1 treated with an estrogen receptor (ER) α, ERβ, or progesterone receptor (PR) agonist) received ketamine (0, 1.5, or 3 mg/kg, intraperitoneally) and were tested in the forced swim test (FST) 30 min later. Ketamine's influence over synaptic plasticity markers in the prefrontal cortex (PFC) and hippocampus (HPC) of males, D1, and Pro females was quantified by Western blot 1 h post-treatment. RESULTS Males, freely cycling females, D1 and Pro females exhibited antidepressant-like responses to 3 mg/kg ketamine. Pro females were the only group where ketamine exhibited an antidepressant effect at 1.5 mg/kg. D1 females treated with an agonist for ERα or ERβ exhibited an antidepressant-like response to 1.5 mg/kg ketamine. Ketamine (3 mg/kg) increased synaptic plasticity-related proteins in the PFC and HPC of males, D1, and Pro females. Yet, Pro females exhibited an increase in p-Akt and p-CaMKIIα in response to 1.5 and 3 mg/kg ketamine. CONCLUSION Our results indicate that females' enhanced sensitivity to ketamine during Pro is likely mediated through estradiol acting on ERα and ERβ, leading to greater activation of synaptic plasticity-related kinases within the PFC and HPC.
Collapse
Affiliation(s)
- Amanda M Dossat
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306, United States
| | - Katherine N Wright
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306, United States
| | - Caroline E Strong
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306, United States
| | - Mohamed Kabbaj
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306, United States.
| |
Collapse
|
15
|
Fernández-Guasti A, Olivares-Nazario M, Reyes R, Martínez-Mota L. Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacol Biochem Behav 2017; 152:81-89. [DOI: 10.1016/j.pbb.2016.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/27/2022]
|
16
|
Sun J, Walker AJ, Dean B, van den Buuse M, Gogos A. Progesterone: The neglected hormone in schizophrenia? A focus on progesterone-dopamine interactions. Psychoneuroendocrinology 2016; 74:126-140. [PMID: 27608362 DOI: 10.1016/j.psyneuen.2016.08.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022]
Abstract
Sex differences appear to be an important factor in schizophrenia. Women with schizophrenia tend to exhibit less disease impairment than men, typically presenting with a later age-at-onset, lower overall incidence and less severe symptoms. These observations underpin the estrogen hypothesis of schizophrenia, which postulates a protective role of estrogen against the development and severity of the disorder. While there has been significant attention placed on the impact of estrogens in schizophrenia, less consideration has been afforded to the role of progesterone, the other main female gonadal hormone. This narrative review discusses the role of progesterone as a neuroactive steroid and how it may be dysregulated in schizophrenia. Preclinical and molecular studies relevant to schizophrenia are discussed with a particular focus on the interactions between progesterone and the dopaminergic system. Notably, existing data on progesterone in relation to schizophrenia is inconsistent, with some studies suggesting a neuroprotective role for the hormone (e.g. animal models of cognitive dysfunction and positive symptoms), while other studies posit a disruptive impact of the hormone (e.g. negative correlations with symptom modulation in patients). This review aims to thoroughly address these discrepancies, concluding that altogether the data suggest that progesterone is a key modulator of central systems implicated in schizophrenia. On this basis, we argue that a more inclusive, considered effort of future studies to understand the intricacies of the interactions between progesterone and estrogen. Such an effort may enhance our understanding of the roles of sex hormones in schizophrenia, thus leading to avenues for novel therapeutic approaches.
Collapse
Affiliation(s)
- Jeehae Sun
- Division of Biological Psychiatry and Mental Health, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Adam J Walker
- Division of Biological Psychiatry and Mental Health, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Brian Dean
- Division of Biological Psychiatry and Mental Health, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, VIC, Australia; Department of Pharmacology, University of Melbourne, VIC, Australia; The College of Public Health, Medical and Veterinary Sciences, James Cook University, QLD, Australia
| | - Andrea Gogos
- Division of Biological Psychiatry and Mental Health, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Mitra S, Bastos CP, Chesworth S, Frye C, Bult-Ito A. Strain and sex based characterization of behavioral expressions in non-induced compulsive-like mice. Physiol Behav 2016; 168:103-111. [PMID: 27838311 DOI: 10.1016/j.physbeh.2016.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023]
Abstract
There is currently a lack of understanding how genetic background and sex differences attribute to the heterogeneity of obsessive-compulsive disorder (OCD). An animal model of compulsive-like behaviors has been developed through bidirectional selection of house mice (Mus musculus) for high (big cotton nests; BIG mice) and low levels (small nests; SMALL mice) of nest-building behavior. The BIG male strains have predictive and face validity as a spontaneous animal model of OCD. Here, we evaluated compulsive-, anxiety-, cognitive-, and depression-like behaviors among male and proestrus female replicate strains each of BIG (BIG1, BIG2) and SMALL (SML1, SML2) nest-builders, and randomly-bred Controls (C1, C2). BIG1 and BIG2 males and females had higher nesting scores when compared to SMALL and Control strains. Male BIG1 and BIG2 strains showed more compulsive-like nesting than BIG1 and BIG2 proestrus females, which was not observed among the other strains. Nesting scores were also different between BIG replicate male strains. A similar pattern was observed in the compulsive-like marble burying behavior with BIG strains burying more marbles than SMALL and Control strains. Significant replicate and sex differences were also observed in marble burying among the BIG strains. The open field test revealed replicate effects while the BIG strains showed less anxiety-like behavior in the elevated plus maze test compared to the SMALL strains. For novel object recognition only the Control strains showed replicate and sex differences. In the depression-like forced swim test proestrus females demonstrated less depression-like behavior than males. BIG and SMALL nest-building strains had a higher corticosterone stress response than the Control strains. Together these results indicate a strong interplay of genetic background and sex in influencing expression of behaviors in our compulsive-like mouse model. These results are in congruence with the clinical heterogeneity of OCD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA
| | - Cristiane P Bastos
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA; Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Savanna Chesworth
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA
| | - Cheryl Frye
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA; Department of Psychology, University at Albany, State University of New York, USA
| | - Abel Bult-Ito
- Department of Biology & Wildlife, University of Alaska Fairbanks, USA.
| |
Collapse
|
18
|
Oezel L, Then H, Jung AL, Jabari S, Bonaterra GA, Wissniowski TT, Önel SF, Ocker M, Thieme K, Kinscherf R, Di Fazio P. Fibromyalgia syndrome: metabolic and autophagic processes in intermittent cold stress mice. Pharmacol Res Perspect 2016; 4:e00248. [PMID: 27713820 PMCID: PMC5045934 DOI: 10.1002/prp2.248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023] Open
Abstract
Fibromyalgia is characterized by widespread musculoskeletal pain, fatigue, and depression. The aim was to analyze potential mitochondrial dysfunction or autophagy in mice after exposure to intermittent cold stress (ICS). Muscle and liver specimens were obtained from 36 mice. Lactate dehydrogenase (LDH) activity was measured. Microtubule-associated protein light chain 3 (MAP1LC3B) and glycogen content were determined histologically; muscle ultrastructure by electron microscopy. Mitochondrial- and autophagy-related markers were analyzed by RT-qPCR and Western blotting. ATP level, cytotoxicity, and caspase 3 activity were measured in murine C2C12 myoblasts after ICS exposure. Coenzyme Q10B (COQ10B) transcript was up-regulated in limb muscle of ICS mice, whereas its protein content was stable. Cytochrome C oxidase 4 (COX4I1) and LDH activity increased in limb muscle of male ICS mice. Glycogen content was lower in muscle and liver tissue of male ICS mice. Electron micrographs of ICS mice specimens showed mitochondrial damage and autophagic vesicles. A significant up-regulation of autophagic transcripts of MAP1LC3B and BECLIN 1 (BECN1) was observed. Map1lc3b protein showed an aggregated distribution in ICS mice and SqSTM1/p62 (p62) protein level was stable. Furthermore, ATP level and caspase activity, detected as apoptotic marker, were significantly lowered after ICS exposure in differentiated C2C12 myoblasts. The present study shows that ICS mice are characterized by mitochondrial dysfunction, autophagic processes, and metabolic alterations. Further investigations could dissect autophagy process in the proposed model and link these mechanisms to potential therapeutic options for fibromyalgia.
Collapse
Affiliation(s)
- Lisa Oezel
- Department of Visceral Thoracic and Vascular Surgery Philipps University of Marburg Baldingerstrasse 35043 Marburg Germany
| | - Hanna Then
- Institute of Anatomy and Cell Biology Philipps University of Marburg Robert-Koch-Strasse 8 35032 Marburg Germany
| | - Anna L Jung
- Institute for Lung Research Philipps University of Marburg Baldingerstrasse 35043 Marburg Germany
| | - Samir Jabari
- Institute for Anatomy I University Hospital Erlangen Krankenhausstrasse 9 91054 Erlangen Germany
| | - Gabriel A Bonaterra
- Institute of Anatomy and Cell Biology Philipps University of Marburg Robert-Koch-Strasse 8 35032 Marburg Germany
| | - Thaddeus T Wissniowski
- Department of Gastroenterology and Endocrinology Philipps University of Marburg Baldingerstrasse 35043 Marburg Germany
| | - Susanne F Önel
- Developmental Biology Department of Biology Philipps University of Marburg Karl-von-Frisch-Strasse 8 35043 Marburg Germany
| | - Matthias Ocker
- Experimental Medicine Oncology Bayer Pharma AG Berlin Germany
| | - Kati Thieme
- Institute for Medical Psychology Philipps University of Marburg Karl-von-Frisch-Strasse 4 35032 Marburg Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology Philipps University of Marburg Robert-Koch-Strasse 8 35032 Marburg Germany
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery Philipps University of Marburg Baldingerstrasse 35043 Marburg Germany
| |
Collapse
|
19
|
Bristot G, Ascoli B, Gubert C, Panizzutti B, Kapczinski F, Rosa AR. Progesterone and its metabolites as therapeutic targets in psychiatric disorders. Expert Opin Ther Targets 2014; 18:679-90. [PMID: 24654651 DOI: 10.1517/14728222.2014.897329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Neurosteroids are molecules that regulate physiological functions of the CNS. There is increasing evidence suggesting that impaired neurosteroid biosynthesis has been associated with distinct psychiatric disorders. This review summarizes data from studies that have investigated the relationship between progesterone (PROG) and psychiatric disorders as well as the mechanisms potentially involved in PROG-induced neuroprotection. AREAS COVERED The review covers the role of PROG and its metabolites in psychiatric disorders, focusing on results from preclinical and some clinical studies that support the relationship between alterations on PROG levels and pathophysiology of psychiatric illness. We also discussed the main mechanisms underlying the neuroprotective effects of PROG metabolites. EXPERT OPINION Our review points out the possible relationship between PROG and its metabolites and the pathophysiology of psychiatric disorders. Furthermore, both preclinical and clinical studies show that certain treatments (antidepressants or antipsychotics) may normalize the levels of PROG, suggesting that the amelioration of psychiatric symptoms may occur due to upregulation of PROG metabolites. Therefore, these results give support to new possibilities of treatment for patients with psychiatric symptoms from anxiety- and depressive-like behaviors to aggressive behaviors.
Collapse
Affiliation(s)
- Giovana Bristot
- Universidade Federal do Rio Grande do Sul, National Science and Technology Institute for Translational Medicine (INCT-TM), Hospital de Clínicas de Porto Alegre, Laboratory of Molecular Psychiatry, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) , Porto Alegre , Brazil +55 51 33598845 ; +55 51 33598846 ;
| | | | | | | | | | | |
Collapse
|
20
|
Frye CA, Walf AA, Kohtz AS, Zhu Y. Progesterone-facilitated lordosis of estradiol-primed mice is attenuated by knocking down expression of membrane progestin receptors in the midbrain. Steroids 2014; 81:17-25. [PMID: 24269738 PMCID: PMC4540077 DOI: 10.1016/j.steroids.2013.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Evidence is emerging of the role of membrane progestin receptors (referred to as mPRs herein: members of Progestin and AdipoQ Receptor (Paqr) family) as a novel brain target in mammals, such as rats. In the present study, the role of mPRs in mice was assessed to further elucidate the conservation of this mechanism across species. The brain target investigated was the midbrain ventral tegmental area (VTA) given its described role for rapid actions of progestins for reproduction. Studies tested the hypothesis that if mPRs are required for progestin-facilitated lordosis through actions in the VTA, then knockdown of mPRs in the VTA will attenuate lordosis. Ovariectomized (OVX) mice were subcutaneously injected with estradiol (E2) and progesterone (P4), and infused with antisense oligodeoxynucleotides (AS-ODNs) to mPRα (Paqr7) and/or mPRβ (Paqr8) or vehicle to the lateral ventricle or VTA. Mice were assessed for reproductive behavior (lordosis and aggression/rejection quotients) in a standard mating task. Results supported our hypothesis. E2+P4-facilitated lordosis was significantly reduced, and aggression/rejection increased, with infusions of mPRα, mPRβ, or mPRαβ AS-ODNs to the lateral ventricle, compared to vehicle. E2+P4-facilitated lordosis was significantly decreased, and aggression/rejection increased, with mPRβ or mPRαβ AS-ODNs to the VTA of C57/BL6 mice. Both mPRɑ and mPRβ AS-ODNs reduced lordosis, and increased aggression/rejection, of wildtype (C57/BL6x129) mice, but not nuclear PR knockout mice. Thus, mPRs may be a novel target of progestins for reproductive behavior of mice.
Collapse
Affiliation(s)
- Cheryl A Frye
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Dept. of Biological Sciences, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Neuroscience, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Science Research, The University at Albany-SUNY, Albany, NY 12222, USA; Dept. of Chemistry, The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, AK 99775, USA.
| | - Alicia A Walf
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Dept. of Chemistry, The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, AK 99775, USA; Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Amy S Kohtz
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | - Yong Zhu
- Dept. of Biology, East Carolina University, Greenville, NC 27858-4353, USA
| |
Collapse
|
21
|
Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav 2013; 118:227-39. [PMID: 23685235 DOI: 10.1016/j.physbeh.2013.05.012] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/31/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
The forced swim test (FST) is a behavioral test in rodents which was developed in 1978 by Porsolt and colleagues as a model for predicting the clinical efficacy of antidepressant drugs. A modified version of the FST added the classification of active behaviors into swimming and climbing, in order to facilitate the differentiation between serotonergic and noradrenergic classes of antidepressant drugs. The FST is now widely used in basic research and the pharmaceutical screening of potential antidepressant treatments. It is also one of the most commonly used tests to assess depressive-like behavior in animal models. Despite the simplicity and sensitivity of the FST procedure, important differences even in baseline immobility rates have been reported between different groups, which complicate the comparison of results across studies. In spite of several methodological papers and reviews published on the FST, the need still exists for clarification of factors which can influence the procedure. While most recent reviews have focused on antidepressant effects observed with the FST, this one considers the methodological aspects of the procedure, aiming to summarize issues beyond antidepressant action in the FST. The previously published literature is analyzed for factors which are known to influence animal behavior in the FST. These include biological factors, such as strain, age, body weight, gender and individual differences between animals; influence of preconditioning before the FST: handling, social isolation or enriched environment, food manipulations, various kinds of stress, endocrine manipulations and surgery; schedule and routes of treatment, dosage and type of the drugs as well as experimental design and laboratory environmental effects. Consideration of these factors in planning experiments may result in more consistent FST results.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT84108, USA.
| | | | | | | |
Collapse
|