1
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
N-methyl-d-aspartate receptor antagonism modulates P300 event-related potentials and associated activity in salience and central executive networks. Pharmacol Biochem Behav 2021; 211:173287. [PMID: 34653398 DOI: 10.1016/j.pbb.2021.173287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022]
Abstract
Impairments in auditory information processing in schizophrenia as indexed electrophysiologically by P300 deficits during novelty (P3a) and target (P3b) processing are linked to N -methyl- D -aspartate receptor (NMDAR) dysfunction. This study in 14 healthy volunteers examined the effects of a subanesthetic dose of the NMDAR antagonist ketamine on P300 and their relationship to psychomimetic symptoms and cortical source activity (with eLORETA). Ketamine reduced early (e- P3a) and late (l-P3a) novelty P300 at sensor (scalp)-level and at source-level in the salience network. Increases in dissociation symptoms were negatively correlated with ketamine-induced P3b changes, at sensor-level and source-level, in both salience and central executive networks. These P3a alterations during novelty processing, and the symptom-related P3b changes during target processing support a model of NMDAR hypofunction underlying disrupted auditory attention in schizophrenia.
Collapse
|
3
|
Sun S, Kapolowicz MR, Richardson M, Metherate R, Zeng FG. Task-dependent effects of nicotine treatment on auditory performance in young-adult and elderly human nonsmokers. Sci Rep 2021; 11:13187. [PMID: 34162968 PMCID: PMC8222263 DOI: 10.1038/s41598-021-92588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Electrophysiological studies show that nicotine enhances neural responses to characteristic frequency stimuli. Previous behavioral studies partially corroborate these findings in young adults, showing that nicotine selectively enhances auditory processing in difficult listening conditions. The present work extended previous work to include both young and older adults and assessed the nicotine effect on sound frequency and intensity discrimination. Hypotheses were that nicotine improves auditory performance and that the degree of improvement is inversely proportional to baseline performance. Young (19-23 years old) normal-hearing nonsmokers and elderly (61-80) nonsmokers with normal hearing between 500 and 2000 Hz received nicotine gum (6 mg) or placebo gum in a single-blind, randomized crossover design. Participants performed three experiments (frequency discrimination, frequency modulation identification, and intensity discrimination) before and after treatment. The perceptual differences were analyzed between pre- and post-treatment, as well as between post-treatment nicotine and placebo conditions as a function of pre-treatment baseline performance. Compared to pre-treatment performance, nicotine significantly improved frequency discrimination. Compared to placebo, nicotine significantly improved performance for intensity discrimination, and the improvement was more pronounced in the elderly with lower baseline performance. Nicotine had no effect on frequency modulation identification. Nicotine effects are task-dependent, reflecting possible interplays of subjects, tasks and neural mechanisms.
Collapse
Affiliation(s)
- Shuping Sun
- Department of Otolaryngology - Head and Neck Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Center for Hearing Research, University of California Irvine, Irvine, CA, USA
| | | | - Matthew Richardson
- Center for Hearing Research, University of California Irvine, Irvine, CA, USA
| | - Raju Metherate
- Center for Hearing Research, University of California Irvine, Irvine, CA, USA
| | - Fan-Gang Zeng
- Center for Hearing Research, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Coppens R, Rabinovich NE, Kanneganti R, Diggs HA, Wiggs K, Healey T, Huggenvik J, Rose GM, Gilbert DG. APOE genotype influences P3b amplitude and response to smoking abstinence in young adults. Psychopharmacology (Berl) 2021; 238:1171-1181. [PMID: 33506304 DOI: 10.1007/s00213-021-05763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/12/2021] [Indexed: 11/27/2022]
Abstract
RATIONALE There is strong evidence that nicotine can enhance cognitive functions and growing evidence that this effect may be larger in young healthy APOE ε4 carriers. However, the moderating effects of the APOE ε4 allele on cognitive impairments caused by nicotine deprivation in chronic smokers have not yet been studied with brain indices. OBJECTIVE We sought to determine whether young female carriers of the APOE ε4 allele, relative to noncarriers, would exhibit larger abstinence-induced decreases in P3b amplitude during a two-stimulus auditory oddball task. METHODS We compared parietal P3bs in female chronic smokers with either APOE ε3/ε3 (n = 54) or ε3/ε4 (n = 20) genotype under nicotine-sated conditions and after 12-17-h nicotine deprivation. RESULTS Nicotine deprivation significantly reduced P3b amplitudes in APOE ε4 carriers, but not in APOE-ε3/ε3 individuals, such that the difference seen prior to nicotine deprivation was eliminated. CONCLUSIONS The results suggest that subjects with the APOE ε4 allele are more sensitive to nicotine, which could influence smoking patterns, the risk for nicotine dependence, and the cognitive effects of nicotine use in these individuals.
Collapse
Affiliation(s)
- Ryan Coppens
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA
- Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Norka E Rabinovich
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | | | - Herman A Diggs
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA
- Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Kristin Wiggs
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Travis Healey
- Department of Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jodi Huggenvik
- Department of Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Gregory M Rose
- Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University, Carbondale, IL, USA
- Department of Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Anatomy, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - David G Gilbert
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA.
- Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University, Carbondale, IL, USA.
- School of Psychological and Behavioral Sciences, Southern Illinois University, Mail Code 6502, Carbondale, IL, 62901, USA.
| |
Collapse
|
5
|
Intskirveli I, Metherate R. Nicotine Enhances Amplitude and Consistency of Timing of Responses to Acoustic Trains in A1. Front Neural Circuits 2021; 15:597401. [PMID: 33679335 PMCID: PMC7935554 DOI: 10.3389/fncir.2021.597401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic nicotine enhances neural processing in primary auditory cortex (A1) as determined using tone-evoked, current-source density (CSD) measurements. For example, nicotine enhances the characteristic frequency (CF)-evoked current sink in layer 4 of A1, increasing amplitude and decreasing latency. However, since presenting auditory stimuli within a stream of stimuli increases the complexity of response dynamics, we sought to determine the effects of nicotine on CSD responses to trains of CF stimuli (one-second trains at 2–40 Hz; each train repeated 25 times). CSD recordings were obtained using a 16-channel multiprobe inserted in A1 of urethane/xylazine-anesthetized mice, and analysis focused on two current sinks in the middle (layer 4) and deep (layers 5/6) layers. CF trains produced adaptation of the layer 4 response that was weak at 2 Hz, stronger at 5–10 Hz and complete at 20–40 Hz. In contrast, the layer 5/6 current sink exhibited less adaptation at 2–10 Hz, and simultaneously recorded auditory brainstem responses (ABRs) showed no adaptation even at 40 Hz. Systemic nicotine (2.1 mg/kg) enhanced layer 4 responses throughout the one-second stimulus train at rates ≤10 Hz. Nicotine enhanced both response amplitude within each train and the consistency of response timing across 25 trials. Nicotine did not alter the degree of adaptation over one-second trials, but its effect to increase amplitudes revealed a novel, slower form of adaptation that developed over multiple trials. Nicotine did not affect responses that were fully adapted (20–40 Hz trains), nor did nicotine affect any aspect of the layer 5/6 current sink or ABRs. The overall effect of nicotine in layer 4 was to enhance all responses within each train, to emphasize earlier trials across multiple trials, and to improve the consistency of timing across all trials. These effects may improve processing of complex acoustic streams, including speech, that contain information in the 2–10 Hz range.
Collapse
Affiliation(s)
- Irakli Intskirveli
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Raju Metherate
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Conley AC, Key AP, Taylor WD, Albert KM, Boyd BD, Vega JN, Newhouse PA. EEG as a Functional Marker of Nicotine Activity: Evidence From a Pilot Study of Adults With Late-Life Depression. Front Psychiatry 2021; 12:721874. [PMID: 35002791 PMCID: PMC8732868 DOI: 10.3389/fpsyt.2021.721874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Late-life depression (LLD) is a debilitating condition that is associated with poor response to antidepressant medications and deficits in cognitive performance. Nicotinic cholinergic stimulation has emerged as a potentially effective candidate to improve cognitive performance in patients with cognitive impairment. Previous studies of nicotinic stimulation in animal models and human populations with cognitive impairment led to examining potential cognitive and mood effects of nicotinic stimulation in older adults with LLD. We report results from a pilot study of transdermal nicotine in LLD testing whether nicotine treatment would enhance cognitive performance and mood. The study used electroencephalography (EEG) recordings as a tool to test for potential mechanisms underlying the effect of nicotine. Eight non-smoking participants with LLD completed EEG recordings at baseline and after 12 weeks of transdermal nicotine treatment (NCT02816138). Nicotine augmentation treatment was associated with improved performance on an auditory oddball task. Analysis of event-related oscillations showed that nicotine treatment was associated with reduced beta desynchronization at week 12 for both standard and target trials. The change in beta power on standard trials was also correlated with improvement in mood symptoms. This pilot study provides preliminary evidence for the impact of nicotine in modulating cortical activity and improving mood in depressed older adults and shows the utility of using EEG as a marker of functional engagement in nicotinic interventions in clinical geriatric patients.
Collapse
Affiliation(s)
- Alexander C Conley
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alexandra P Key
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Warren D Taylor
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Kimberly M Albert
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Brian D Boyd
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer N Vega
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paul A Newhouse
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
7
|
Pasetes SV, Ling PM, Apollonio DE. Cognitive performance effects of nicotine and industry affiliation: a systematic review. Subst Abuse 2020; 14:1178221820926545. [PMID: 32547048 PMCID: PMC7271274 DOI: 10.1177/1178221820926545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Studies assessing the cognitive performance effects of nicotine show inconsistent results and tobacco industry funding has been correlated with study outcomes. We conducted a systematic review of the primary literature assessing the cognitive performance effects of nicotine and assessed potential associations between tobacco and pharmaceutical industry affiliation and reported study conclusions. METHODS We searched PubMed, EMBASE, PsycINFO, BIOSIS, and Web of Science for peer-reviewed journal articles published between 2009 and 2016 that: (1) were randomized controlled trials; (2) investigated the effects of nicotine on cognitive performance in a laboratory setting; (3) administered nicotine to healthy adults (18-60 years); and (4) included participants were nonsmokers or minimally deprived smokers (⩽2 hours of abstaining from smoking). Study disclosures and tobacco industry documents were reviewed to determine industry funding. RESULTS Searches yielded 3,771 abstracts; 32 studies were included in the review. The majority of studies investigated the effects of nicotine on attention (n = 22). Nicotine had a non-uniform effect on attention: studies reported positive (41%; n = 9), mixed (41%; n = 9), and no effect (18%; n = 4). The majority of study authors had received prior tobacco industry funding (59%; n = 19), however over half of tobacco-industry funded authors did not report this (53%; n = 10). CONCLUSIONS Nicotine does not appear to be associated with consistent cognitive performance effects. Although no association was found between reported outcomes and tobacco or pharmaceutical industry funding, findings likely underestimate the influence of industry funding due to strict inclusion criteria and incomplete data on pharmaceutical industry funding. CLINICAL TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Sarah V. Pasetes
- Department of Clinical Pharmacy,
University of California, San Francisco, USA
| | - Pamela M. Ling
- Department of Medicine, Division of
General Internal Medicine, Center for Tobacco Control Research and Education,
University of California, San Francisco, USA
| | - Dorie E. Apollonio
- Department of Clinical Pharmacy,
University of California, San Francisco, USA
| |
Collapse
|
8
|
Ahrens S, Laux J, Müller C, Thiel CM. Increased dopamine availability magnifies nicotine effects on cognitive control: A pilot study. J Psychopharmacol 2020; 34:548-556. [PMID: 32133910 PMCID: PMC7370651 DOI: 10.1177/0269881120907989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION AND OBJECTIVES The ability to adapt to new task demands flexibly and to stabilise performance in the presence of distractors is termed cognitive control and is mediated by dopaminergic and cholinergic neurotransmission. We aimed to test the hypothesis that the effect of the cholinergic agonist nicotine on cognitive control depends on baseline dopamine levels. METHODS Thirty-eight healthy non-smokers (16 males; Mage=24.05 years) performed a cognitive control task including distractor and switch trials twice. Subjects were split into two parallel groups. One group received 2 g of L-tyrosine two hours prior to testing to manipulate dopamine availability experimentally, while the other group received placebo on both days. One hour later, both groups received in a within-subject design: on one day, a 7 mg nicotine patch; on the other day, a matched placebo. Response time costs for distractor and switch trials served as measures of cognitive stability and flexibility. RESULTS Nicotinic modulation reduced response time costs in switch trials and increased costs in distractor trials (nicotine×condition, p=0.027) with a trend-wise interaction between nicotine, L-tyrosine and trial type (nicotine×L-tyrosine×condition, p=0.068), which was due to stronger nicotine effects under L-tyrosine. CONCLUSIONS Our data provide preliminary evidence that nicotine has opponent effects on cognitive stability and flexibility. Subjects who received the dopamine precursor L-tyrosine were more prone to nicotine effects on behaviours, which are improvements in cognitive flexibility at the cost of decreased cognitive stability.
Collapse
Affiliation(s)
- Stefan Ahrens
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany,Stefan Ahrens, Biological Psychology, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg, 26111, Germany. Emails: ;
| | - Joana Laux
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christina Müller
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany,Cluster of Excellence ‘Hearing4all’, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany,Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Pham CQ, Kapolowicz MR, Metherate R, Zeng FG. Nicotine enhances auditory processing in healthy and normal-hearing young adult nonsmokers. Psychopharmacology (Berl) 2020; 237:833-840. [PMID: 31832719 PMCID: PMC7039769 DOI: 10.1007/s00213-019-05421-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
RATIONALE Electrophysiological studies show that systemic nicotine narrows frequency receptive fields and increases gain in neural responses to characteristic frequency stimuli. We postulated that nicotine enhances related auditory processing in humans. OBJECTIVES The main hypothesis was that nicotine improves auditory performance. A secondary hypothesis was that the degree of nicotine-induced improvement depends on the individual's baseline performance. METHODS Young (18-27 years old), normal-hearing nonsmokers received nicotine (Nicorette gum, 6mg) or placebo gum in a single-blind, randomized, crossover design. Subjects performed four experiments involving tone-in-noise detection, temporal gap detection, spectral ripple discrimination, and selective auditory attention before and after treatment. The perceptual differences between posttreatment nicotine and placebo conditions were measured and analyzed as a function of the pre-treatment baseline performance. RESULTS Nicotine significantly improved performance in the more difficult tasks of tone-in-noise detection and selective attention (effect size = - 0.3) but had no effect on relatively easier tasks of temporal gap detection and spectral ripple discrimination. The two tasks showing significant nicotine effects further showed no baseline-dependent improvement. CONCLUSIONS Nicotine improves auditory performance in difficult listening situations. The present results support future investigation of nicotine effects in clinical populations with auditory processing deficits or reduced cholinergic activation.
Collapse
Affiliation(s)
- Carol Q. Pham
- Center for Hearing Research, University of California, Irvine, CA, USA,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, CA, USA,Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Raju Metherate
- Center for Hearing Research, University of California, Irvine, CA, USA,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Fan-Gang Zeng
- Center for Hearing Research, University of California, Irvine, CA, USA. .,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA. .,Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, CA, USA. .,Department of Cognitive Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
10
|
Sajedin A, Menhaj MB, Vahabie AH, Panzeri S, Esteky H. Cholinergic Modulation Promotes Attentional Modulation in Primary Visual Cortex- A Modeling Study. Sci Rep 2019; 9:20186. [PMID: 31882838 PMCID: PMC6934489 DOI: 10.1038/s41598-019-56608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Attention greatly influences sensory neural processing by enhancing firing rates of neurons that represent the attended stimuli and by modulating their tuning properties. The cholinergic system is believed to partly mediate the attention contingent improvement of cortical processing by influencing neuronal excitability, synaptic transmission and neural network characteristics. Here, we used a biophysically based model to investigate the mechanisms by which cholinergic system influences sensory information processing in the primary visual cortex (V1) layer 4C. The physiological properties and architectures of our model were inspired by experimental data and include feed-forward input from dorsal lateral geniculate nucleus that sets up orientation preference in V1 neural responses. When including a cholinergic drive, we found significant sharpening in orientation selectivity, desynchronization of LFP gamma power and spike-field coherence, decreased response variability and correlation reduction mostly by influencing intracortical interactions and by increasing inhibitory drive. Our results indicated that these effects emerged due to changes specific to the behavior of the inhibitory neurons. The behavior of our model closely resembles the effects of attention on neural activities in monkey V1. Our model suggests precise mechanisms through which cholinergic modulation may mediate the effects of attention in the visual cortex.
Collapse
Affiliation(s)
- Atena Sajedin
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., 15875-4413, Tehran, Iran
| | - Mohammad Bagher Menhaj
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., 15875-4413, Tehran, Iran.
| | - Abdol-Hossein Vahabie
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), 19395-5746, Tehran, Iran
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
| | - Hossein Esteky
- Research Group for Brain and Cognitive Sciences, School of Medicine, Shahid Beheshti Medical University, 19839-63113, Tehran, Iran.
| |
Collapse
|
11
|
Choueiry J, Blais CM, Shah D, Smith D, Fisher D, Illivitsky V, Knott V. Combining CDP-choline and galantamine: Effects of a selective α7 nicotinic acetylcholine receptor agonist strategy on P50 sensory gating of speech sounds in healthy volunteers. J Psychopharmacol 2019; 33:688-699. [PMID: 30920339 DOI: 10.1177/0269881119836217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) patients and relatives have deficits in early cortical sensory gating (SG) typically measured by suppression of electroencephalography-derived P50 event-related potentials (ERPs) in a conditioning-testing (S1-S2) paradigm. Associated with alpha 7 nicotinic acetylcholine receptor (α7 nAChR) dysfunction and shown to be improved with nicotine and α7 nAChR agonists, SG has recently been shown to be improved in low P50 suppressing SCZ patients following acute CDP-choline treatment. AIMS This pilot study in healthy humans assessed the SG effects of an α7 nAChR strategy combining CDP-choline with galantamine, a positive allosteric modulator (PAM) of nAChRs, aimed at increasing and prolonging nicotinic receptor activity. METHODS The combined effect of CDP-choline (500 mg) and galantamine (16 mg) on speech P50 gating indices rP50 (S2/S1) and dP50 (S1-S2) was examined in 30 healthy participants stratified into low and high baseline P50 suppressors in a randomized, double-blind, placebo-controlled and counterbalanced design. RESULTS In low suppressors, CDP-choline/galantamine (vs. placebo) improved rP50 and dP50 gating, and reduced S2P50 amplitudes. No P50 gating effects were observed in high suppressors; however, CDP-choline/galantamine (vs. placebo) increased their S2P50 amplitudes. CONCLUSION Findings from this pilot study with CDP-choline/galantamine in a healthy, SCZ-like surrogate deficient gating sample are consistent with the association of α7 nAChR mechanisms in SG impairment in SCZ and support further research trials with CDP-choline and galantamine targeting sensory processes.
Collapse
Affiliation(s)
- Joelle Choueiry
- 1 Department of Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Crystal M Blais
- 2 Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Dhrasti Shah
- 3 School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Smith
- 3 School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Derek Fisher
- 4 Department of Psychology, Faculty of Social Sciences, Mount Saint Vincent University, Halifax, NS, Canada
| | | | - Verner Knott
- 1 Department of Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,2 Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada.,3 School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.,5 The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada.,6 University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
12
|
Choueiry J, Blais CM, Shah D, Smith D, Fisher D, Labelle A, Knott V. Combining CDP-choline and galantamine, an optimized α7 nicotinic strategy, to ameliorate sensory gating to speech stimuli in schizophrenia. Int J Psychophysiol 2019; 145:70-82. [PMID: 30790597 DOI: 10.1016/j.ijpsycho.2019.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/04/2019] [Accepted: 02/12/2019] [Indexed: 11/18/2022]
Abstract
Neural α7 nicotinic acetylcholine receptor (nAChR) expression and functioning deficits have been extensively associated with cognitive and early sensory gating (SG) impairments in schizophrenia (SCZ) patients and their relatives. SG, the suppression of irrelevant and redundant stimuli, is measured in a conditioning-testing (S1-S2) paradigm eliciting electroencephalography-derived P50 event-related potentials (ERPs), the S2 amplitudes of which are typically suppressed relative to S1. Despite extensive reports of nicotine-related improvements and several decades of research, an efficient nicotinic treatment has yet to be approved for SCZ. Following reports of SG improvements in low P50 suppressing SCZ patients and healthy participants with the α7 agonist, CDP-choline, this pilot study examined the combined modulatory effect of CDP-choline (500 mg) and galantamine (16 mg), a nAChR positive allosteric modulator and acetylcholinesterase inhibitor, on SG to speech stimuli in twenty-four SCZ patients in a randomized, double-blind and placebo-controlled design. As expected, in low P50 suppressors CDP-choline/galantamine (vs. Placebo) improved rP50 and dP50 scores by increasing inhibitory mechanisms as reflected by S2P50 amplitude reductions. Results also suggest a moderating role for auditory verbal hallucinations in treatment response. These preliminary findings provide supportive evidence for the involvement of α7 nAChR activity in speech gating in SCZ and support additional trials, examining different dose combinations and repeated doses of this optimized and personalized targeted α7 cholinergic treatment for SG dysfunction in subgroups of SCZ patients.
Collapse
Affiliation(s)
- Joelle Choueiry
- Department of Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Crystal M Blais
- Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Dhrasti Shah
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Smith
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Derek Fisher
- Department of Psychology, Faculty of Social Sciences, Mount Saint Vincent University, Halifax, NS, Canada
| | - Alain Labelle
- The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Verner Knott
- Department of Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada; School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada; Department of Psychology, Faculty of Social Sciences, Mount Saint Vincent University, Halifax, NS, Canada; The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Hadjis E, Hyde M, Choueiry J, Jaworska N, Nelson R, de la Salle S, Smith D, Aidelbaum R, Knott V. Effect of GAD1 genotype status on auditory attention and acute nicotine administration in healthy volunteers. Hum Psychopharmacol 2019; 34:e2684. [PMID: 30488987 DOI: 10.1002/hup.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The effects of GABA modulating drugs and nicotine, the prototypical nicotinic cholinergic agonist, on attention have been investigated using subcomponents of the P300 event-related potentials (ERP), which index involuntary (P3a) and voluntary attention (P3b). However, investigations into how such pharmacologic effects interact with genetic features in the GABA system remain unclear. This study examined the moderating effects of a single nucleotide polymorphism (rs7557793) in the glutamic acid decarboxylase 67 (GAD1) gene, which is implicated in the conversion of glutamate to GABA, on P300-indices of auditory attentional processing; the influence of nicotine administration was also assessed. METHODS The effects of GAD1 genotype (TT/CC/CT) were examined on the P3a/b in response to an auditory selective attention task in healthy, nonsmoking male volunteers (N = 126; 18-40 years). Participants responded to rare target stimuli (P3b-eliciting) and ignored frequent nontarget stimuli as well as rare distractor stimuli (P3a-eliciting). In a subsample (N = 59), P3a/b profiles to acute nicotine (vs. placebo) administration were examined as a function of GAD1 genotype. As a secondary aim, earlier sensory processes were assessed with N200 ERP subcomponents elicited by novel (N2a) and target (N2b) auditory stimuli. RESULTS GAD1 allelic variation moderated early sensory processes, enhancing N2a amplitudes in CT versus TT carriers. Further, TT homozygotes exhibited larger P3b amplitudes than CC homozygotes in the placebo versus nicotine condition. Regardless of genotype, nicotine versus placebo moderated the N200 ERP. CONCLUSION These findings expand our knowledge regarding the attentional effects of GAD1 genetic variants in relation to nicotine.
Collapse
Affiliation(s)
- Efthymios Hadjis
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Molly Hyde
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Joelle Choueiry
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Renee Nelson
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sara de la Salle
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Rob Aidelbaum
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Schubert AL, Hagemann D, Frischkorn GT, Herpertz SC. Faster, but not smarter: An experimental analysis of the relationship between mental speed and mental abilities. INTELLIGENCE 2018. [DOI: 10.1016/j.intell.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Grundey J, Amu R, Batsikadze G, Paulus W, Nitsche MA. Diverging effects of nicotine on motor learning performance: Improvement in deprived smokers and attenuation in non-smokers. Addict Behav 2017; 74:90-97. [PMID: 28600927 DOI: 10.1016/j.addbeh.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Nicotine modulates cognition and neuroplasticity in smokers and non-smokers. A possible mechanism for its effect on learning and memory performance is its impact on long-term potentiation (LTP) and long-term depression (LTD). As neuroplasticity is closely connected to learning processes, we aimed to explore the effect of nicotine in healthy, young smokers and non-smokers on performance of the serial reaction time task (SRTT), a sequential motor learning paradigm. 20 nicotine-deprived smokers and 20 non-smokers participated in the study and were exposed to nicotine or placebo medication. Deprived smokers under placebo medication displayed reduced performance in terms of reaction time and error rates compared to the non-smoking group. After application of nicotine, performance in smokers improved while it deteriorated in non-smokers. These results indicate a restituting effect of nicotine in smokers in terms of cognitive parameters. This sheds further light on the proposed mechanism of nicotine on learning processes, which might be linked to the addictive component of nicotine, the probability of relapse and thus needs also be addressed in cessation treatment.
Collapse
Affiliation(s)
- J Grundey
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany.
| | - R Amu
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - G Batsikadze
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - M A Nitsche
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany; Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron 2017; 91:1199-1218. [PMID: 27657448 DOI: 10.1016/j.neuron.2016.09.006] [Citation(s) in RCA: 460] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Medical Scientist Training Program, Program in Neuroscience, Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Mala Ananth
- Program in Neuroscience, Department of Neurobiology & Behavior, Department of Psychiatry & Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A Talmage
- Department of Pharmacological Sciences, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorna W Role
- Department of Neurobiology & Behavior, Neurosciences Institute, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
17
|
Hammersley JJ, Gilbert DG, Rzetelny A, Rabinovich NE. Moderation of nicotine effects on covert orienting of attention tasks by poor placebo performance and cue validity. Pharmacol Biochem Behav 2016; 149:9-16. [PMID: 27461547 DOI: 10.1016/j.pbb.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022]
Abstract
INTRODUCTION AND RATIONALE Given baseline-dependent effects of nicotine on other forms of attention, there is reason to believe that inconsistent findings for the effects of nicotine on attentional orienting may be partly due to individual differences in baseline (abstinence state) functioning. Individuals with low baseline attention may benefit more from nicotine replacement. METHOD The effects of nicotine as a function of baseline performance (bottom, middle, and top third of mean reaction times during placebo) were assessed in 52 habitual abstinent smokers (26 females/26 males) utilizing an arrow-cued covert orienting of attention task. RESULTS Compared to a placebo patch, a 14mg nicotine patch produced faster overall reaction times (RTs). In addition, individuals with slower RTs during the placebo condition benefitted more from nicotine on cued trials than did those who had shorter (faster) RTs during placebo. Nicotine also enhanced the validity effect (shorter RTs to validly vs. invalidly cued targets), but this nicotine benefit did not differ as a function of overall placebo-baseline performance. CONCLUSIONS These findings support the view that nicotine enhances cued spatial attentional orienting in individuals who have slower RTs during placebo (nicotine-free) conditions; however, baseline-dependent effects may not generalize to all aspects of spatial attention. These findings are consistent with findings indicating that nicotine's effects vary as a function of task parameters rather than simple RT speeding or cognitive enhancement.
Collapse
Affiliation(s)
- Jonathan J Hammersley
- Southern Illinois University at Carbondale, Department of Psychology, Carbondale, IL 62901-6502, USA.
| | - David G Gilbert
- Southern Illinois University at Carbondale, Department of Psychology, Carbondale, IL 62901-6502, USA.
| | - Adam Rzetelny
- Southern Illinois University at Carbondale, Department of Psychology, Carbondale, IL 62901-6502, USA.
| | - Norka E Rabinovich
- Southern Illinois University at Carbondale, Department of Psychology, Carbondale, IL 62901-6502, USA.
| |
Collapse
|
18
|
Impey D, de la Salle S, Knott V. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing. Brain Cogn 2016; 105:46-54. [DOI: 10.1016/j.bandc.2016.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/04/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022]
|
19
|
Cholinergic modulation of auditory P3 event-related potentials as indexed by CHRNA4 and CHRNA7 genotype variation in healthy volunteers. Neurosci Lett 2016; 623:36-41. [PMID: 27109789 DOI: 10.1016/j.neulet.2016.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/23/2022]
Abstract
Schizophrenia (SZ) is a psychiatric disorder characterized by cognitive dysfunction within the realm of attentional processing. Reduced P3a and P3b event-related potentials (ERPs), indexing involuntary and voluntary attentional processing respectively, have been consistently observed in SZ patients who also express prominent cholinergic deficiencies. The involvement of the brain's cholinergic system in attention has been examined for several decades; however, further inquiry is required to further comprehend how abnormalities in this system affect neighbouring neurotransmitter systems and contribute to neurocognitive deficits. The objective of this pilot study was to examine the moderating role of the CHRNA4 (rs1044396), CHRNA7 (rs3087454), and SLC5A7 (rs1013940) genes on ERP indices of attentional processing in healthy volunteers (N=99; Caucasians and non-Caucasians) stratified by genotype and assessed using the auditory P300 "oddball" paradigm. Results indicated significantly greater P3a and P3b-indexed attentional processing for CT (vs. CC) CHRNA4 carriers and greater P3b for AA (vs. CC) CHRNA7 carriers. SLC5A7 allelic variants did not show significant differences in P3a and P3b processing. These findings expand our knowledge on the moderating effect of cholinergic genes on attention and could help inform targeted drug developments aimed at restoring attention deficits in SZ patients.
Collapse
|
20
|
Buzzell GA, Das B, Cruz-Cano R, Nkongho LE, Kidanu AW, Kim H, Clark PI, McDonald CG. Using Electrophysiological Measures to Assess the Consumer Acceptability of Smokeless Tobacco Products. Nicotine Tob Res 2016; 18:1853-1860. [PMID: 26928479 DOI: 10.1093/ntr/ntw041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Adequate evaluation of novel tobacco products must include investigation of consumers' psychological response to such products. Traditionally, subjective scales of product liking have been used to assess consumer acceptability of tobacco products. However, subjective scales may miss cognitive changes that can only be captured by direct neurophysiological assessment. The present investigation explored the viability of using electroencephalography (EEG), in combination with traditional subjective measures, to assess consumer acceptability of five smokeless tobacco products. Given previous work linking product liking to arousal/attentional (executive function) enhancement, we focused on EEG measures of attention/arousal to objectively characterize cognitive changes associated with tobacco product use. METHODS During five separate laboratory visits, smokeless tobacco users used Verve discs, Ariva dissolvables, Skoal snuff, Camel snus, or Nicorette lozenges. The N2 and P3b event-related potential components elicited by an oddball task were used to index attentional changes before/after product usage. Additionally, resting state alpha band EEG activity was analyzed before/after product usage to index cortical arousal. RESULTS Although analyses of the subjective results provided limited inference, analyses of the electrophysiological measures, particularly the alpha suppression measure, revealed robust differences between products. Skoal elicited significantly enhanced alpha suppression compared to all four other products tested. Additionally, alpha suppression was found to correlate positively with subjective measures of satisfaction and psychological reward, but was unrelated to perceived aversion. CONCLUSIONS The present results provide evidence that electrophysiological measures can yield important insights into consumer acceptability of novel tobacco products and are a valuable complement to subjective measures. IMPLICATIONS This study is the first to employ a combination of electrophysiological measures and traditional subjective assays in order to assess the consumer acceptability of smokeless tobacco products. The results highlight the importance of adopting a multidimensional/multi-method approach to studying the consumer acceptability of tobacco products.
Collapse
Affiliation(s)
| | - Babita Das
- Department of Behavioral and Community Health, University of Maryland School of Public Health , College Park, MD
| | - Raul Cruz-Cano
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health , College Park, MD
| | - Lizette E Nkongho
- Department of Behavioral and Community Health, University of Maryland School of Public Health , College Park, MD
| | - Azieb W Kidanu
- Department of Behavioral and Community Health, University of Maryland School of Public Health , College Park, MD
| | | | - Pamela I Clark
- Department of Behavioral and Community Health, University of Maryland School of Public Health , College Park, MD
| | | |
Collapse
|
21
|
Featherstone RE, Siegel SJ. The Role of Nicotine in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:23-78. [PMID: 26472525 DOI: 10.1016/bs.irn.2015.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is associated with by severe disruptions in thought, cognition, emotion, and behavior. Patients show a marked increase in rates of smoking and nicotine dependence relative to nonaffected individuals, a finding commonly ascribed to the potential ameliorative effects of nicotine on symptom severity and cognitive impairment. Indeed, many studies have demonstrated improvement in patients following the administration of nicotine. Such findings have led to an increased emphasis on the development of therapeutic agents to target the nicotinic system as well as increasing the impetus to understand the genetic basis for nicotinic dysfunction in schizophrenia. The goal of this review article is to provide a critical summary of evidence for the role of the nicotinic system in schizophrenia. The first part will review the role of nicotine in normalization of primary dysfunctions and endophenotypical changes found in schizophrenia. The second part will provide a summary of genetic evidence linking polymorphisms in nicotinic receptor genes to smoking and schizophrenia. The third part will summarize attempts to treat schizophrenia using agents specifically targeting nicotinic and nicotinic receptor subtypes. Although currently available antipsychotic treatments are generally able to manage some aspects of schizophrenia (e.g., positive symptoms) they fail to address several other critically effected aspects of the disease. As such, the search for novel mechanisms to treat this disease is necessary.
Collapse
Affiliation(s)
- Robert E Featherstone
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Steven J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Smith DM, Fisher D, Blier P, Ilivitsky V, Knott V. The separate and combined effects of monoamine oxidase A inhibition and nicotine on the mismatch negativity event related potential. Pharmacol Biochem Behav 2015; 137:44-52. [PMID: 26226350 DOI: 10.1016/j.pbb.2015.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022]
Abstract
The mismatch negativity (MMN) auditory event-related potential (ERP) has been extensively studied as a potential biomarker for abnormal auditory processing in schizophrenia (SZ), a population which exhibits abnormally high smoking rates. The relationship between nicotinic activation and cognition in SZ may be related to underlying nicotinic and NMDA receptor dysfunction within the disease. However, transient cognitive improvements via smoking in patients may also result from monoamine oxidase (MAO) inhibition, achieved through tobacco smoke. In 24 healthy non-smoking males, we investigated the separate and combined effects of nicotine and MAO-A inhibition via moclobemide (75mg) on the optimal-5 variation of the MMN paradigm. No significant drug effects were observed in our total sample, however, stratification of individuals into low (N=12) and high (N=12) baseline MMN amplitude groups revealed increases in duration MMN amplitude relative to placebo by nicotine, as well as moclobemide, but not after the combination of the two. Because previous research has shown there was no effect of monoamine modulation on MMN, this study shows an unexpected effect of moclobemide on duration MMN.
Collapse
Affiliation(s)
- Dylan M Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Royal Ottawa Mental Health Centre, Ottawa, Ontario, Canada
| | | | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Royal Ottawa Mental Health Centre, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Modulation of nicotine effects on selective attention by DRD2 and CHRNA4 gene polymorphisms. Psychopharmacology (Berl) 2015; 232:2323-31. [PMID: 25647695 DOI: 10.1007/s00213-015-3869-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
RATIONALE Pharmacological and genetic modulation of cholinergic nicotinic neurotransmission influence visuospatial attention in humans. Prior studies show that nicotine as well as a single nucleotide polymorphism (SNP) in the gene coding for the alpha 4 subunit of the nicotinic acetylcholine receptor (CHRNA4) modulate visuospatial attention and distractor interference. The CHRNA4 gene synergistically interacts with a polymorphism in the dopaminergic receptor type d2 (DRD2) gene and impacts brain structure and cognition. OBJECTIVE We aimed to investigate whether CHRNA4 and DRD2 genotypes alter the effects of nicotine on distractor interference. METHODS Fifty-eight young healthy non-smokers were genotyped for CHRNA4 (rs1044396) and DRD2 (rs6277). They received either 7 mg transdermal nicotine or a matched placebo in a double-blind, within-subject design 1 h prior to performing a visual search task with distractors. RESULTS In isolation, DRD2 but not CHRNA4 genotype modulated the effects of nicotine on distractor interference with DRD2 CC carriers showing the strongest reduction of distractor interference after nicotine administration. A further analysis provided additional evidence that this effect was driven by those subjects, who carried at least one C allele in the CHRNA4 gene. CONCLUSION The effects of nicotine on distractor interference are modulated synergistically by cholinergic and dopaminergic genetic variations. Hence, both genes may contribute to the often reported individual variability in cognitive and neural effects of nicotine.
Collapse
|
24
|
Neurocognitive effects of acute choline supplementation in low, medium and high performer healthy volunteers. Pharmacol Biochem Behav 2015; 131:119-29. [PMID: 25681529 DOI: 10.1016/j.pbb.2015.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/20/2015] [Accepted: 02/04/2015] [Indexed: 12/28/2022]
Abstract
Novel pharmacological treatments targeting alpha 7 nicotinic acetylcholine receptor (α7 nAChR) hypofunction in schizophrenia have shown mixed success in ameliorating cognitive impairments associated with this disorder. Choline, a selective agonist at α7 receptors is increased with oral administration of cytidine 5'-diphosphocholine (CDP-choline), the cognitive effects of which were assessed in healthy volunteers. Using the CogState test battery, behavioral performance in schizophrenia-relevant cognitive domains was assessed in 24 male participants following a single low (500mg) and moderate (1000mg) dose of CDP-choline. Relative to placebo, CDP-choline improved processing speed, working memory, verbal learning, verbal memory, and executive function in low baseline performers, while exerting no effects in medium baseline performers, and diminishing cognition in high baseline performers. Dose effects varied with cognitive domain but were evident with both the 500mg and 1000mg doses. These preliminary findings of cognitive enhancement in relatively impaired performers are consistent with the α7 receptor mechanism and support further trials with CDP-choline as a potential pro-cognitive strategy for cognitive impairment in schizophrenia.
Collapse
|
25
|
Effect of transcranial direct current stimulation (tDCS) on MMN-indexed auditory discrimination: a pilot study. J Neural Transm (Vienna) 2015; 122:1175-85. [DOI: 10.1007/s00702-015-1365-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
26
|
7mg nicotine patch fails to enhance P300 neural indices of cognitive control among nonsmokers. Pharmacol Biochem Behav 2014; 126:77-82. [DOI: 10.1016/j.pbb.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/07/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022]
|
27
|
Logemann H, Böcker K, Deschamps P, Kemner C, Kenemans J. Differences between nicotine-abstinent smokers and non-smokers in terms of visuospatial attention and inhibition before and after single-blind nicotine administration. Neuroscience 2014; 277:375-82. [DOI: 10.1016/j.neuroscience.2014.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 02/02/2023]
|